rename some network commands ? becomes h, test becomes ntest
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
CommitLineData
df27a6a3 1/*
aab6cbba 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
5673fe39 10
29e809e0 11#include "Robot.h"
4cff3ded 12#include "Planner.h"
3fceb8eb 13#include "Conveyor.h"
5673fe39
MM
14#include "Pin.h"
15#include "StepperMotor.h"
16#include "Gcode.h"
5647f709 17#include "PublicDataRequest.h"
928467c0 18#include "PublicData.h"
4cff3ded
AW
19#include "arm_solutions/BaseSolution.h"
20#include "arm_solutions/CartesianSolution.h"
c41d6d95 21#include "arm_solutions/RotatableCartesianSolution.h"
2a06c415 22#include "arm_solutions/LinearDeltaSolution.h"
11a39396 23#include "arm_solutions/RotaryDeltaSolution.h"
bdaaa75d 24#include "arm_solutions/HBotSolution.h"
fff1e42d 25#include "arm_solutions/CoreXZSolution.h"
1217e470 26#include "arm_solutions/MorganSCARASolution.h"
61134a65 27#include "StepTicker.h"
7af0714f
JM
28#include "checksumm.h"
29#include "utils.h"
8d54c34c 30#include "ConfigValue.h"
5966b7d0 31#include "libs/StreamOutput.h"
dd0a7cfa 32#include "StreamOutputPool.h"
928467c0 33#include "ExtruderPublicAccess.h"
0ec2f63a 34#include "GcodeDispatch.h"
13ad7234 35#include "ActuatorCoordinates.h"
0ec2f63a 36
29e809e0
JM
37#include "mbed.h" // for us_ticker_read()
38#include "mri.h"
39
40#include <fastmath.h>
41#include <string>
42#include <algorithm>
43using std::string;
38bf9a1c 44
78d0e16a
MM
45#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
46#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
47#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
48#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
49#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
83c6e067 50#define mm_max_arc_error_checksum CHECKSUM("mm_max_arc_error")
78d0e16a
MM
51#define arc_correction_checksum CHECKSUM("arc_correction")
52#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
53#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
54#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
a3e1326a 55#define segment_z_moves_checksum CHECKSUM("segment_z_moves")
3aad33c7 56#define save_g92_checksum CHECKSUM("save_g92")
43424972
JM
57
58// arm solutions
78d0e16a
MM
59#define arm_solution_checksum CHECKSUM("arm_solution")
60#define cartesian_checksum CHECKSUM("cartesian")
61#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
62#define rostock_checksum CHECKSUM("rostock")
2a06c415 63#define linear_delta_checksum CHECKSUM("linear_delta")
11a39396 64#define rotary_delta_checksum CHECKSUM("rotary_delta")
78d0e16a
MM
65#define delta_checksum CHECKSUM("delta")
66#define hbot_checksum CHECKSUM("hbot")
67#define corexy_checksum CHECKSUM("corexy")
fff1e42d 68#define corexz_checksum CHECKSUM("corexz")
78d0e16a 69#define kossel_checksum CHECKSUM("kossel")
1217e470 70#define morgan_checksum CHECKSUM("morgan")
78d0e16a 71
78d0e16a
MM
72// new-style actuator stuff
73#define actuator_checksum CHEKCSUM("actuator")
74
75#define step_pin_checksum CHECKSUM("step_pin")
76#define dir_pin_checksum CHEKCSUM("dir_pin")
77#define en_pin_checksum CHECKSUM("en_pin")
78
79#define steps_per_mm_checksum CHECKSUM("steps_per_mm")
df6a30f2 80#define max_rate_checksum CHECKSUM("max_rate")
29e809e0
JM
81#define acceleration_checksum CHECKSUM("acceleration")
82#define z_acceleration_checksum CHECKSUM("z_acceleration")
78d0e16a
MM
83
84#define alpha_checksum CHECKSUM("alpha")
85#define beta_checksum CHECKSUM("beta")
86#define gamma_checksum CHECKSUM("gamma")
87
29e809e0
JM
88#define ARC_ANGULAR_TRAVEL_EPSILON 5E-7F // Float (radians)
89#define PI 3.14159265358979323846F // force to be float, do not use M_PI
5fa0c173 90
edac9072
AW
91// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
92// It takes care of cutting arcs into segments, same thing for line that are too long
93
4710532a
JM
94Robot::Robot()
95{
a1b7e9f0 96 this->inch_mode = false;
0e8b102e 97 this->absolute_mode = true;
29e809e0 98 this->e_absolute_mode = true;
4cff3ded 99 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
29e809e0
JM
100 memset(this->last_milestone, 0, sizeof last_milestone);
101 memset(this->last_machine_position, 0, sizeof last_machine_position);
0b804a41 102 this->arm_solution = NULL;
da947c62 103 seconds_per_minute = 60.0F;
fae93525 104 this->clearToolOffset();
03b01bac 105 this->compensationTransform = nullptr;
121094a5 106 this->get_e_scale_fnc= nullptr;
03b01bac
JM
107 this->wcs_offsets.fill(wcs_t(0.0F, 0.0F, 0.0F));
108 this->g92_offset = wcs_t(0.0F, 0.0F, 0.0F);
a6bbe768 109 this->next_command_is_MCS = false;
778093ce 110 this->disable_segmentation= false;
29e809e0 111 this->n_motors= 0;
4cff3ded
AW
112}
113
114//Called when the module has just been loaded
4710532a
JM
115void Robot::on_module_loaded()
116{
4cff3ded
AW
117 this->register_for_event(ON_GCODE_RECEIVED);
118
119 // Configuration
807b9b57 120 this->load_config();
da24d6ae
AW
121}
122
807b9b57
JM
123#define ACTUATOR_CHECKSUMS(X) { \
124 CHECKSUM(X "_step_pin"), \
125 CHECKSUM(X "_dir_pin"), \
126 CHECKSUM(X "_en_pin"), \
127 CHECKSUM(X "_steps_per_mm"), \
29e809e0
JM
128 CHECKSUM(X "_max_rate"), \
129 CHECKSUM(X "_acceleration") \
807b9b57 130}
5984acdf 131
807b9b57
JM
132void Robot::load_config()
133{
edac9072
AW
134 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
135 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
136 // To make adding those solution easier, they have their own, separate object.
5984acdf 137 // Here we read the config to find out which arm solution to use
0b804a41 138 if (this->arm_solution) delete this->arm_solution;
eda9facc 139 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
d149c730 140 // Note checksums are not const expressions when in debug mode, so don't use switch
98761c28 141 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
314ab8f7 142 this->arm_solution = new HBotSolution(THEKERNEL->config);
bdaaa75d 143
fff1e42d
JJ
144 } else if(solution_checksum == corexz_checksum) {
145 this->arm_solution = new CoreXZSolution(THEKERNEL->config);
146
2a06c415
JM
147 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
148 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
73a4e3c0 149
4710532a 150 } else if(solution_checksum == rotatable_cartesian_checksum) {
314ab8f7 151 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
b73a756d 152
11a39396
JM
153 } else if(solution_checksum == rotary_delta_checksum) {
154 this->arm_solution = new RotaryDeltaSolution(THEKERNEL->config);
c52b8675 155
1217e470
QH
156 } else if(solution_checksum == morgan_checksum) {
157 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
158
4710532a 159 } else if(solution_checksum == cartesian_checksum) {
314ab8f7 160 this->arm_solution = new CartesianSolution(THEKERNEL->config);
73a4e3c0 161
4710532a 162 } else {
314ab8f7 163 this->arm_solution = new CartesianSolution(THEKERNEL->config);
d149c730 164 }
73a4e3c0 165
6b661ab3
DP
166 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
167 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
168 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
169 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
b259f517 170 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.0f)->as_number();
4d0f60a9 171 this->mm_max_arc_error = THEKERNEL->config->value(mm_max_arc_error_checksum )->by_default( 0.01f)->as_number();
6b661ab3 172 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
78d0e16a 173
29e809e0 174 // in mm/sec but specified in config as mm/min
6b661ab3
DP
175 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
176 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
177 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
feb204be 178
a3e1326a 179 this->segment_z_moves = THEKERNEL->config->value(segment_z_moves_checksum )->by_default(true)->as_bool();
3aad33c7 180 this->save_g92 = THEKERNEL->config->value(save_g92_checksum )->by_default(false)->as_bool();
a3e1326a 181
29e809e0
JM
182 // Make our Primary XYZ StepperMotors
183 uint16_t const checksums[][6] = {
184 ACTUATOR_CHECKSUMS("alpha"), // X
185 ACTUATOR_CHECKSUMS("beta"), // Y
186 ACTUATOR_CHECKSUMS("gamma"), // Z
807b9b57 187 };
807b9b57 188
29e809e0
JM
189 // default acceleration setting, can be overriden with newer per axis settings
190 this->default_acceleration= THEKERNEL->config->value(acceleration_checksum)->by_default(100.0F )->as_number(); // Acceleration is in mm/s^2
191
192 // make each motor
193 for (size_t a = X_AXIS; a <= Z_AXIS; a++) {
807b9b57
JM
194 Pin pins[3]; //step, dir, enable
195 for (size_t i = 0; i < 3; i++) {
196 pins[i].from_string(THEKERNEL->config->value(checksums[a][i])->by_default("nc")->as_string())->as_output();
197 }
29e809e0
JM
198 StepperMotor *sm = new StepperMotor(pins[0], pins[1], pins[2]);
199 // register this motor (NB This must be 0,1,2) of the actuators array
200 uint8_t n= register_motor(sm);
201 if(n != a) {
202 // this is a fatal error
203 THEKERNEL->streams->printf("FATAL: motor %d does not match index %d\n", n, a);
204 __debugbreak();
205 }
78d0e16a 206
03b01bac 207 actuators[a]->change_steps_per_mm(THEKERNEL->config->value(checksums[a][3])->by_default(a == 2 ? 2560.0F : 80.0F)->as_number());
3702f300 208 actuators[a]->set_max_rate(THEKERNEL->config->value(checksums[a][4])->by_default(30000.0F)->as_number()/60.0F); // it is in mm/min and converted to mm/sec
29e809e0 209 actuators[a]->set_acceleration(THEKERNEL->config->value(checksums[a][5])->by_default(NAN)->as_number()); // mm/secs²
807b9b57 210 }
a84f0186 211
dd0a7cfa 212 check_max_actuator_speeds(); // check the configs are sane
df6a30f2 213
29e809e0
JM
214 // if we have not specified a z acceleration see if the legacy config was set
215 if(isnan(actuators[Z_AXIS]->get_acceleration())) {
216 float acc= THEKERNEL->config->value(z_acceleration_checksum)->by_default(NAN)->as_number(); // disabled by default
217 if(!isnan(acc)) {
218 actuators[Z_AXIS]->set_acceleration(acc);
219 }
220 }
221
975469ad
MM
222 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
223 // so the first move can be correct if homing is not performed
807b9b57 224 ActuatorCoordinates actuator_pos;
975469ad 225 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
29e809e0 226 for (size_t i = 0; i < n_motors; i++)
975469ad 227 actuators[i]->change_last_milestone(actuator_pos[i]);
5966b7d0
AT
228
229 //this->clearToolOffset();
4cff3ded
AW
230}
231
29e809e0
JM
232uint8_t Robot::register_motor(StepperMotor *motor)
233{
234 // register this motor with the step ticker
235 THEKERNEL->step_ticker->register_motor(motor);
236 if(n_motors >= k_max_actuators) {
237 // this is a fatal error
238 THEKERNEL->streams->printf("FATAL: too many motors, increase k_max_actuators\n");
239 __debugbreak();
240 }
2cd32d70
JM
241 actuators.push_back(motor);
242 return n_motors++;
29e809e0
JM
243}
244
212caccd
JM
245void Robot::push_state()
246{
03b01bac 247 bool am = this->absolute_mode;
29e809e0 248 bool em = this->e_absolute_mode;
03b01bac 249 bool im = this->inch_mode;
29e809e0 250 saved_state_t s(this->feed_rate, this->seek_rate, am, em, im, current_wcs);
212caccd
JM
251 state_stack.push(s);
252}
253
254void Robot::pop_state()
255{
03b01bac
JM
256 if(!state_stack.empty()) {
257 auto s = state_stack.top();
212caccd 258 state_stack.pop();
03b01bac
JM
259 this->feed_rate = std::get<0>(s);
260 this->seek_rate = std::get<1>(s);
261 this->absolute_mode = std::get<2>(s);
29e809e0
JM
262 this->e_absolute_mode = std::get<3>(s);
263 this->inch_mode = std::get<4>(s);
264 this->current_wcs = std::get<5>(s);
212caccd
JM
265 }
266}
267
34210908
JM
268std::vector<Robot::wcs_t> Robot::get_wcs_state() const
269{
270 std::vector<wcs_t> v;
0b8b81b6 271 v.push_back(wcs_t(current_wcs, MAX_WCS, 0));
34210908
JM
272 for(auto& i : wcs_offsets) {
273 v.push_back(i);
274 }
275 v.push_back(g92_offset);
276 v.push_back(tool_offset);
277 return v;
278}
279
e03f2747 280int Robot::print_position(uint8_t subcode, char *buf, size_t bufsize) const
2791c829
JM
281{
282 // M114.1 is a new way to do this (similar to how GRBL does it).
283 // it returns the realtime position based on the current step position of the actuators.
284 // this does require a FK to get a machine position from the actuator position
285 // and then invert all the transforms to get a workspace position from machine position
a3be54e3 286 // M114 just does it the old way uses last_milestone and does inversse transforms to get the requested position
2791c829 287 int n = 0;
e03f2747 288 if(subcode == 0) { // M114 print WCS
2791c829 289 wcs_t pos= mcs2wcs(last_milestone);
31c6c2c2 290 n = snprintf(buf, bufsize, "C: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
2791c829 291
df4574e0 292 } else if(subcode == 4) { // M114.4 print last milestone (which should be the same as machine position if axis are not moving and no level compensation)
31c6c2c2 293 n = snprintf(buf, bufsize, "LMS: X:%1.4f Y:%1.4f Z:%1.4f", last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
2791c829 294
df4574e0 295 } else if(subcode == 5) { // M114.5 print last machine position (which should be the same as M114.1 if axis are not moving and no level compensation)
cf6b8fd1 296 n = snprintf(buf, bufsize, "LMP: X:%1.4f Y:%1.4f Z:%1.4f", last_machine_position[X_AXIS], last_machine_position[Y_AXIS], last_machine_position[Z_AXIS]);
2791c829
JM
297
298 } else {
299 // get real time positions
300 // current actuator position in mm
301 ActuatorCoordinates current_position{
302 actuators[X_AXIS]->get_current_position(),
303 actuators[Y_AXIS]->get_current_position(),
304 actuators[Z_AXIS]->get_current_position()
305 };
306
307 // get machine position from the actuator position using FK
308 float mpos[3];
309 arm_solution->actuator_to_cartesian(current_position, mpos);
310
e03f2747 311 if(subcode == 1) { // M114.1 print realtime WCS
2791c829
JM
312 // FIXME this currently includes the compensation transform which is incorrect so will be slightly off if it is in effect (but by very little)
313 wcs_t pos= mcs2wcs(mpos);
29e809e0 314 n = snprintf(buf, bufsize, "WPOS: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
2791c829 315
df4574e0 316 } else if(subcode == 2) { // M114.2 print realtime Machine coordinate system
31c6c2c2 317 n = snprintf(buf, bufsize, "MPOS: X:%1.4f Y:%1.4f Z:%1.4f", mpos[X_AXIS], mpos[Y_AXIS], mpos[Z_AXIS]);
2791c829 318
df4574e0 319 } else if(subcode == 3) { // M114.3 print realtime actuator position
55783268 320 n = snprintf(buf, bufsize, "APOS: X:%1.4f Y:%1.4f Z:%1.4f", current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
2791c829
JM
321 }
322 }
e03f2747 323 return n;
2791c829
JM
324}
325
dc27139b 326// converts current last milestone (machine position without compensation transform) to work coordinate system (inverse transform)
31c6c2c2 327Robot::wcs_t Robot::mcs2wcs(const Robot::wcs_t& pos) const
dc27139b
JM
328{
329 return std::make_tuple(
31c6c2c2
JM
330 std::get<X_AXIS>(pos) - std::get<X_AXIS>(wcs_offsets[current_wcs]) + std::get<X_AXIS>(g92_offset) - std::get<X_AXIS>(tool_offset),
331 std::get<Y_AXIS>(pos) - std::get<Y_AXIS>(wcs_offsets[current_wcs]) + std::get<Y_AXIS>(g92_offset) - std::get<Y_AXIS>(tool_offset),
332 std::get<Z_AXIS>(pos) - std::get<Z_AXIS>(wcs_offsets[current_wcs]) + std::get<Z_AXIS>(g92_offset) - std::get<Z_AXIS>(tool_offset)
dc27139b
JM
333 );
334}
335
dd0a7cfa
JM
336// this does a sanity check that actuator speeds do not exceed steps rate capability
337// we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
338void Robot::check_max_actuator_speeds()
339{
29e809e0 340 for (size_t i = 0; i < n_motors; i++) {
807b9b57
JM
341 float step_freq = actuators[i]->get_max_rate() * actuators[i]->get_steps_per_mm();
342 if (step_freq > THEKERNEL->base_stepping_frequency) {
343 actuators[i]->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / actuators[i]->get_steps_per_mm()));
ad6a77d1 344 THEKERNEL->streams->printf("WARNING: actuator %d rate exceeds base_stepping_frequency * ..._steps_per_mm: %f, setting to %f\n", i, step_freq, actuators[i]->get_max_rate());
807b9b57 345 }
dd0a7cfa
JM
346 }
347}
348
4cff3ded 349//A GCode has been received
edac9072 350//See if the current Gcode line has some orders for us
4710532a
JM
351void Robot::on_gcode_received(void *argument)
352{
353 Gcode *gcode = static_cast<Gcode *>(argument);
6bc4a00a 354
29e809e0 355 enum MOTION_MODE_T motion_mode= NONE;
4cff3ded 356
4710532a
JM
357 if( gcode->has_g) {
358 switch( gcode->g ) {
29e809e0
JM
359 case 0: motion_mode = SEEK; break;
360 case 1: motion_mode = LINEAR; break;
361 case 2: motion_mode = CW_ARC; break;
362 case 3: motion_mode = CCW_ARC; break;
c2f7c261 363 case 4: { // G4 pause
03b01bac 364 uint32_t delay_ms = 0;
c3df978d 365 if (gcode->has_letter('P')) {
03b01bac 366 delay_ms = gcode->get_int('P');
c3df978d
JM
367 }
368 if (gcode->has_letter('S')) {
369 delay_ms += gcode->get_int('S') * 1000;
370 }
03b01bac 371 if (delay_ms > 0) {
c3df978d 372 // drain queue
04782655 373 THEKERNEL->conveyor->wait_for_idle();
c3df978d 374 // wait for specified time
03b01bac
JM
375 uint32_t start = us_ticker_read(); // mbed call
376 while ((us_ticker_read() - start) < delay_ms * 1000) {
c3df978d 377 THEKERNEL->call_event(ON_IDLE, this);
c2f7c261 378 if(THEKERNEL->is_halted()) return;
c3df978d
JM
379 }
380 }
adba2978 381 }
6b661ab3 382 break;
807b9b57 383
a6bbe768 384 case 10: // G10 L2 [L20] Pn Xn Yn Zn set WCS
00e607c7 385 if(gcode->has_letter('L') && (gcode->get_int('L') == 2 || gcode->get_int('L') == 20) && gcode->has_letter('P')) {
03b01bac
JM
386 size_t n = gcode->get_uint('P');
387 if(n == 0) n = current_wcs; // set current coordinate system
807b9b57 388 else --n;
0b8b81b6 389 if(n < MAX_WCS) {
807b9b57 390 float x, y, z;
03b01bac 391 std::tie(x, y, z) = wcs_offsets[n];
00e607c7 392 if(gcode->get_int('L') == 20) {
c2f7c261 393 // this makes the current machine position (less compensation transform) the offset
dc27139b
JM
394 // get current position in WCS
395 wcs_t pos= mcs2wcs(last_milestone);
396
397 if(gcode->has_letter('X')){
398 x -= to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
399 }
400
401 if(gcode->has_letter('Y')){
402 y -= to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
403 }
404 if(gcode->has_letter('Z')) {
405 z -= to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
406 }
407
a6bbe768 408 } else {
00e607c7
JM
409 // the value is the offset from machine zero
410 if(gcode->has_letter('X')) x = to_millimeters(gcode->get_value('X'));
411 if(gcode->has_letter('Y')) y = to_millimeters(gcode->get_value('Y'));
412 if(gcode->has_letter('Z')) z = to_millimeters(gcode->get_value('Z'));
413 }
03b01bac 414 wcs_offsets[n] = wcs_t(x, y, z);
807b9b57
JM
415 }
416 }
417 break;
418
6e92ab91
JM
419 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
420 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
421 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
422 case 20: this->inch_mode = true; break;
423 case 21: this->inch_mode = false; break;
807b9b57
JM
424
425 case 54: case 55: case 56: case 57: case 58: case 59:
426 // select WCS 0-8: G54..G59, G59.1, G59.2, G59.3
03b01bac 427 current_wcs = gcode->g - 54;
807b9b57
JM
428 if(gcode->g == 59 && gcode->subcode > 0) {
429 current_wcs += gcode->subcode;
0b8b81b6 430 if(current_wcs >= MAX_WCS) current_wcs = MAX_WCS - 1;
807b9b57
JM
431 }
432 break;
433
29e809e0
JM
434 case 90: this->absolute_mode = true; this->e_absolute_mode = true; break;
435 case 91: this->absolute_mode = false; this->e_absolute_mode = false; break;
807b9b57 436
0b804a41 437 case 92: {
a9e8c04b 438 if(gcode->subcode == 1 || gcode->subcode == 2 || gcode->get_num_args() == 0) {
03b01bac
JM
439 // reset G92 offsets to 0
440 g92_offset = wcs_t(0, 0, 0);
441
cee8bc1d
JM
442 } else if(gcode->subcode == 3) {
443 // initialize G92 to the specified values, only used for saving it with M500
444 float x= 0, y= 0, z= 0;
445 if(gcode->has_letter('X')) x= gcode->get_value('X');
446 if(gcode->has_letter('Y')) y= gcode->get_value('Y');
447 if(gcode->has_letter('Z')) z= gcode->get_value('Z');
448 g92_offset = wcs_t(x, y, z);
449
4710532a 450 } else {
61a3fa99 451 // standard setting of the g92 offsets, making current WCS position whatever the coordinate arguments are
807b9b57 452 float x, y, z;
03b01bac 453 std::tie(x, y, z) = g92_offset;
61a3fa99
JM
454 // get current position in WCS
455 wcs_t pos= mcs2wcs(last_milestone);
456
457 // adjust g92 offset to make the current wpos == the value requested
458 if(gcode->has_letter('X')){
459 x += to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
460 }
dc27139b
JM
461 if(gcode->has_letter('Y')){
462 y += to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
463 }
464 if(gcode->has_letter('Z')) {
465 z += to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
466 }
03b01bac 467 g92_offset = wcs_t(x, y, z);
6bc4a00a 468 }
a6bbe768 469
13ad7234
JM
470 #if MAX_ROBOT_ACTUATORS > 3
471 if(gcode->subcode == 0 && (gcode->has_letter('E') || gcode->get_num_args() == 0)){
472 // reset the E position, legacy for 3d Printers to be reprap compatible
473 // find the selected extruder
de2ee57c 474 // NOTE this will only work when E is 0 if volumetric and/or scaling is used as the actuator last milestone will be different if it was scaled
13ad7234
JM
475 for (int i = E_AXIS; i < n_motors; ++i) {
476 if(actuators[i]->is_selected()) {
477 float e= gcode->has_letter('E') ? gcode->get_value('E') : 0;
478 last_milestone[i]= last_machine_position[i]= e;
479 actuators[i]->change_last_milestone(e);
480 break;
481 }
482 }
483 }
484 #endif
485
78d0e16a 486 return;
4710532a
JM
487 }
488 }
67a649dd 489
4710532a
JM
490 } else if( gcode->has_m) {
491 switch( gcode->m ) {
20ed51b7
JM
492 // case 0: // M0 feed hold, (M0.1 is release feed hold, except we are in feed hold)
493 // if(THEKERNEL->is_grbl_mode()) THEKERNEL->set_feed_hold(gcode->subcode == 0);
494 // break;
01a8d21a
JM
495
496 case 30: // M30 end of program in grbl mode (otherwise it is delete sdcard file)
497 if(!THEKERNEL->is_grbl_mode()) break;
498 // fall through to M2
807b9b57 499 case 2: // M2 end of program
03b01bac
JM
500 current_wcs = 0;
501 absolute_mode = true;
807b9b57 502 break;
9e6014a6
JM
503 case 17:
504 THEKERNEL->call_event(ON_ENABLE, (void*)1); // turn all enable pins on
505 break;
506
507 case 18: // this used to support parameters, now it ignores them
508 case 84:
04782655 509 THEKERNEL->conveyor->wait_for_idle();
9e6014a6
JM
510 THEKERNEL->call_event(ON_ENABLE, nullptr); // turn all enable pins off
511 break;
807b9b57 512
29e809e0
JM
513 case 82: e_absolute_mode= true; break;
514 case 83: e_absolute_mode= false; break;
515
0fb5b438 516 case 92: // M92 - set steps per mm
0fb5b438 517 if (gcode->has_letter('X'))
78d0e16a 518 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
0fb5b438 519 if (gcode->has_letter('Y'))
78d0e16a 520 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
0fb5b438 521 if (gcode->has_letter('Z'))
78d0e16a 522 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
78d0e16a 523
ad6a77d1 524 gcode->stream->printf("X:%f Y:%f Z:%f ", actuators[0]->get_steps_per_mm(), actuators[1]->get_steps_per_mm(), actuators[2]->get_steps_per_mm());
0fb5b438 525 gcode->add_nl = true;
dd0a7cfa 526 check_max_actuator_speeds();
0fb5b438 527 return;
562db364 528
e03f2747
JM
529 case 114:{
530 char buf[64];
531 int n= print_position(gcode->subcode, buf, sizeof buf);
532 if(n > 0) gcode->txt_after_ok.append(buf, n);
2791c829 533 return;
e03f2747 534 }
33e4cc02 535
212caccd
JM
536 case 120: // push state
537 push_state();
538 break;
562db364
JM
539
540 case 121: // pop state
212caccd 541 pop_state();
562db364
JM
542 break;
543
125b71ce
JM
544 case 203: // M203 Set maximum feedrates in mm/sec, M203.1 set maximum actuator feedrates
545 if(gcode->get_num_args() == 0) {
546 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
55783268 547 gcode->stream->printf(" %c: %g ", 'X' + i, gcode->subcode == 0 ? this->max_speeds[i] : actuators[i]->get_max_rate());
125b71ce
JM
548 }
549 gcode->add_nl = true;
dd0a7cfa 550
125b71ce
JM
551 }else{
552 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
553 if (gcode->has_letter('X' + i)) {
55783268
JM
554 float v= gcode->get_value('X'+i);
555 if(gcode->subcode == 0) this->max_speeds[i]= v;
556 else if(gcode->subcode == 1) actuators[i]->set_max_rate(v);
125b71ce
JM
557 }
558 }
3e1ea0e2
JM
559
560 // this format is deprecated
561 if(gcode->subcode == 0 && (gcode->has_letter('A') || gcode->has_letter('B') || gcode->has_letter('C'))) {
562 gcode->stream->printf("NOTE this format is deprecated, Use M203.1 instead\n");
563 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
564 if (gcode->has_letter('A' + i)) {
565 float v= gcode->get_value('A'+i);
566 actuators[i]->set_max_rate(v);
567 }
568 }
569 }
570
55783268 571 if(gcode->subcode == 1) check_max_actuator_speeds();
807b9b57 572 }
125b71ce 573 break;
83488642 574
29e809e0 575 case 204: // M204 Snnn - set default acceleration to nnn, Xnnn Ynnn Znnn sets axis specific acceleration
4710532a 576 if (gcode->has_letter('S')) {
4710532a 577 float acc = gcode->get_value('S'); // mm/s^2
d4ee6ee2 578 // enforce minimum
29e809e0
JM
579 if (acc < 1.0F) acc = 1.0F;
580 this->default_acceleration = acc;
d4ee6ee2 581 }
29e809e0
JM
582 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
583 if (gcode->has_letter(i+'X')) {
584 float acc = gcode->get_value(i+'X'); // mm/s^2
585 // enforce positive
586 if (acc <= 0.0F) acc = NAN;
587 actuators[i]->set_acceleration(acc);
588 }
c5fe1787 589 }
d4ee6ee2
JM
590 break;
591
125b71ce 592 case 205: // M205 Xnnn - set junction deviation, Z - set Z junction deviation, Snnn - Set minimum planner speed
4710532a
JM
593 if (gcode->has_letter('X')) {
594 float jd = gcode->get_value('X');
d4ee6ee2 595 // enforce minimum
8b69c90d
JM
596 if (jd < 0.0F)
597 jd = 0.0F;
4710532a 598 THEKERNEL->planner->junction_deviation = jd;
d4ee6ee2 599 }
107df03f
JM
600 if (gcode->has_letter('Z')) {
601 float jd = gcode->get_value('Z');
602 // enforce minimum, -1 disables it and uses regular junction deviation
73a0eab6
JM
603 if (jd <= -1.0F)
604 jd = NAN;
107df03f
JM
605 THEKERNEL->planner->z_junction_deviation = jd;
606 }
4710532a
JM
607 if (gcode->has_letter('S')) {
608 float mps = gcode->get_value('S');
8b69c90d
JM
609 // enforce minimum
610 if (mps < 0.0F)
611 mps = 0.0F;
4710532a 612 THEKERNEL->planner->minimum_planner_speed = mps;
8b69c90d 613 }
d4ee6ee2 614 break;
98761c28 615
7369629d 616 case 220: // M220 - speed override percentage
4710532a 617 if (gcode->has_letter('S')) {
1ad23cd3 618 float factor = gcode->get_value('S');
98761c28 619 // enforce minimum 10% speed
da947c62
MM
620 if (factor < 10.0F)
621 factor = 10.0F;
622 // enforce maximum 10x speed
623 if (factor > 1000.0F)
624 factor = 1000.0F;
625
626 seconds_per_minute = 6000.0F / factor;
03b01bac 627 } else {
9ef9f45b 628 gcode->stream->printf("Speed factor at %6.2f %%\n", 6000.0F / seconds_per_minute);
7369629d 629 }
b4f56013 630 break;
ec4773e5 631
494dc541 632 case 400: // wait until all moves are done up to this point
04782655 633 THEKERNEL->conveyor->wait_for_idle();
494dc541
JM
634 break;
635
33e4cc02 636 case 500: // M500 saves some volatile settings to config override file
b7cd847e 637 case 503: { // M503 just prints the settings
ad6a77d1 638 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->get_steps_per_mm(), actuators[1]->get_steps_per_mm(), actuators[2]->get_steps_per_mm());
df56baf2
JM
639
640 // only print XYZ if not NAN
641 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f ", default_acceleration);
642 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
643 if(!isnan(actuators[i]->get_acceleration())) gcode->stream->printf("%c%1.5f ", 'X'+i, actuators[i]->get_acceleration());
644 }
645 gcode->stream->printf("\n");
646
43fa8fd2 647 gcode->stream->printf(";X- Junction Deviation, Z- Z junction deviation, S - Minimum Planner speed mm/sec:\nM205 X%1.5f Z%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, isnan(THEKERNEL->planner->z_junction_deviation)?-1:THEKERNEL->planner->z_junction_deviation, THEKERNEL->planner->minimum_planner_speed);
125b71ce
JM
648
649 gcode->stream->printf(";Max cartesian feedrates in mm/sec:\nM203 X%1.5f Y%1.5f Z%1.5f\n", this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS]);
650 gcode->stream->printf(";Max actuator feedrates in mm/sec:\nM203.1 X%1.5f Y%1.5f Z%1.5f\n", actuators[X_AXIS]->get_max_rate(), actuators[Y_AXIS]->get_max_rate(), actuators[Z_AXIS]->get_max_rate());
b7cd847e
JM
651
652 // get or save any arm solution specific optional values
653 BaseSolution::arm_options_t options;
654 if(arm_solution->get_optional(options) && !options.empty()) {
655 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
4710532a 656 for(auto &i : options) {
b7cd847e
JM
657 gcode->stream->printf(" %c%1.4f", i.first, i.second);
658 }
659 gcode->stream->printf("\n");
660 }
6e92ab91 661
807b9b57
JM
662 // save wcs_offsets and current_wcs
663 // TODO this may need to be done whenever they change to be compliant
664 gcode->stream->printf(";WCS settings\n");
40fd5d98 665 gcode->stream->printf("%s\n", wcs2gcode(current_wcs).c_str());
03b01bac 666 int n = 1;
807b9b57 667 for(auto &i : wcs_offsets) {
2791c829 668 if(i != wcs_t(0, 0, 0)) {
807b9b57
JM
669 float x, y, z;
670 std::tie(x, y, z) = i;
40fd5d98 671 gcode->stream->printf("G10 L2 P%d X%f Y%f Z%f ; %s\n", n, x, y, z, wcs2gcode(n-1).c_str());
2791c829 672 }
807b9b57
JM
673 ++n;
674 }
3aad33c7
JM
675 if(save_g92) {
676 // linuxcnc saves G92, so we do too if configured, default is to not save to maintain backward compatibility
677 // also it needs to be used to set Z0 on rotary deltas as M206/306 can't be used, so saving it is necessary in that case
678 if(g92_offset != wcs_t(0, 0, 0)) {
679 float x, y, z;
680 std::tie(x, y, z) = g92_offset;
681 gcode->stream->printf("G92.3 X%f Y%f Z%f\n", x, y, z); // sets G92 to the specified values
682 }
67a649dd
JM
683 }
684 }
807b9b57 685 break;
33e4cc02 686
b7cd847e 687 case 665: { // M665 set optional arm solution variables based on arm solution.
ebc75fc6 688 // the parameter args could be any letter each arm solution only accepts certain ones
03b01bac 689 BaseSolution::arm_options_t options = gcode->get_args();
ebc75fc6
JM
690 options.erase('S'); // don't include the S
691 options.erase('U'); // don't include the U
692 if(options.size() > 0) {
693 // set the specified options
694 arm_solution->set_optional(options);
695 }
696 options.clear();
b7cd847e 697 if(arm_solution->get_optional(options)) {
ebc75fc6 698 // foreach optional value
4710532a 699 for(auto &i : options) {
b7cd847e
JM
700 // print all current values of supported options
701 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
5523c05d 702 gcode->add_nl = true;
ec4773e5
JM
703 }
704 }
ec4773e5 705
4a839bea 706 if(gcode->has_letter('S')) { // set delta segments per second, not saved by M500
4710532a 707 this->delta_segments_per_second = gcode->get_value('S');
4a839bea
JM
708 gcode->stream->printf("Delta segments set to %8.4f segs/sec\n", this->delta_segments_per_second);
709
03b01bac 710 } else if(gcode->has_letter('U')) { // or set mm_per_line_segment, not saved by M500
4a839bea
JM
711 this->mm_per_line_segment = gcode->get_value('U');
712 this->delta_segments_per_second = 0;
713 gcode->stream->printf("mm per line segment set to %8.4f\n", this->mm_per_line_segment);
ec29d378 714 }
4a839bea 715
ec4773e5 716 break;
b7cd847e 717 }
6989211c 718 }
494dc541
JM
719 }
720
29e809e0
JM
721 if( motion_mode != NONE) {
722 process_move(gcode, motion_mode);
00e607c7 723 }
6bc4a00a 724
c2f7c261
JM
725 next_command_is_MCS = false; // must be on same line as G0 or G1
726}
350c8a60 727
5d2319a9 728// process a G0/G1/G2/G3
29e809e0 729void Robot::process_move(Gcode *gcode, enum MOTION_MODE_T motion_mode)
c2f7c261 730{
2791c829 731 // we have a G0/G1/G2/G3 so extract parameters and apply offsets to get machine coordinate target
ad6a77d1 732 // get XYZ and one E (which goes to the selected extruder)
29e809e0
JM
733 float param[4]{NAN, NAN, NAN, NAN};
734
735 // process primary axis
350c8a60
JM
736 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
737 char letter= 'X'+i;
738 if( gcode->has_letter(letter) ) {
739 param[i] = this->to_millimeters(gcode->get_value(letter));
350c8a60
JM
740 }
741 }
6bc4a00a 742
c2f7c261 743 float offset[3]{0,0,0};
4710532a
JM
744 for(char letter = 'I'; letter <= 'K'; letter++) {
745 if( gcode->has_letter(letter) ) {
746 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
c2885de8
JM
747 }
748 }
00e607c7 749
c2f7c261 750 // calculate target in machine coordinates (less compensation transform which needs to be done after segmentation)
29e809e0
JM
751 float target[n_motors];
752 memcpy(target, last_milestone, n_motors*sizeof(float));
753
350c8a60
JM
754 if(!next_command_is_MCS) {
755 if(this->absolute_mode) {
c2f7c261
JM
756 // apply wcs offsets and g92 offset and tool offset
757 if(!isnan(param[X_AXIS])) {
758 target[X_AXIS]= param[X_AXIS] + std::get<X_AXIS>(wcs_offsets[current_wcs]) - std::get<X_AXIS>(g92_offset) + std::get<X_AXIS>(tool_offset);
759 }
760
761 if(!isnan(param[Y_AXIS])) {
762 target[Y_AXIS]= param[Y_AXIS] + std::get<Y_AXIS>(wcs_offsets[current_wcs]) - std::get<Y_AXIS>(g92_offset) + std::get<Y_AXIS>(tool_offset);
763 }
764
765 if(!isnan(param[Z_AXIS])) {
766 target[Z_AXIS]= param[Z_AXIS] + std::get<Z_AXIS>(wcs_offsets[current_wcs]) - std::get<Z_AXIS>(g92_offset) + std::get<Z_AXIS>(tool_offset);
767 }
350c8a60
JM
768
769 }else{
770 // they are deltas from the last_milestone if specified
771 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
c2f7c261 772 if(!isnan(param[i])) target[i] = param[i] + last_milestone[i];
a6bbe768
JM
773 }
774 }
775
350c8a60 776 }else{
c2f7c261
JM
777 // already in machine coordinates, we do not add tool offset for that
778 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
779 if(!isnan(param[i])) target[i] = param[i];
780 }
c2885de8 781 }
6bc4a00a 782
29e809e0
JM
783 // process extruder parameters, for active extruder only (only one active extruder at a time)
784 selected_extruder= 0;
785 if(gcode->has_letter('E')) {
786 for (int i = E_AXIS; i < n_motors; ++i) {
787 // find first selected extruder
788 if(actuators[i]->is_selected()) {
789 param[E_AXIS]= gcode->get_value('E');
790 selected_extruder= i;
791 break;
792 }
793 }
794 }
795
796 // do E for the selected extruder
797 float delta_e= NAN;
798 if(selected_extruder > 0 && !isnan(param[E_AXIS])) {
799 if(this->e_absolute_mode) {
800 target[selected_extruder]= param[E_AXIS];
801 delta_e= target[selected_extruder] - last_milestone[selected_extruder];
802 }else{
803 delta_e= param[E_AXIS];
804 target[selected_extruder] = delta_e + last_milestone[selected_extruder];
805 }
806 }
807
4710532a 808 if( gcode->has_letter('F') ) {
29e809e0 809 if( motion_mode == SEEK )
da947c62 810 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 811 else
da947c62 812 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 813 }
6bc4a00a 814
350c8a60 815 bool moved= false;
29e809e0
JM
816
817 // Perform any physical actions
818 switch(motion_mode) {
819 case NONE: break;
820
821 case SEEK:
822 moved= this->append_line(gcode, target, this->seek_rate / seconds_per_minute, delta_e );
350c8a60 823 break;
29e809e0
JM
824
825 case LINEAR:
826 moved= this->append_line(gcode, target, this->feed_rate / seconds_per_minute, delta_e );
350c8a60 827 break;
29e809e0
JM
828
829 case CW_ARC:
830 case CCW_ARC:
374d0777 831 // Note arcs are not currently supported by extruder based machines, as 3D slicers do not use arcs (G2/G3)
29e809e0 832 moved= this->compute_arc(gcode, offset, target, motion_mode);
350c8a60 833 break;
4cff3ded 834 }
13e4a3f9 835
c2f7c261
JM
836 if(moved) {
837 // set last_milestone to the calculated target
df56baf2 838 memcpy(last_milestone, target, n_motors*sizeof(float));
350c8a60 839 }
edac9072
AW
840}
841
a6bbe768 842// reset the machine position for all axis. Used for homing.
f6934849
JM
843// During homing compensation is turned off (actually not used as it drives steppers directly)
844// once homed and reset_axis called compensation is used for the move to origin and back off home if enabled,
845// so in those cases the final position is compensated.
cef9acea
JM
846void Robot::reset_axis_position(float x, float y, float z)
847{
f6934849 848 // these are set to the same as compensation was not used to get to the current position
c2f7c261
JM
849 last_machine_position[X_AXIS]= last_milestone[X_AXIS] = x;
850 last_machine_position[Y_AXIS]= last_milestone[Y_AXIS] = y;
851 last_machine_position[Z_AXIS]= last_milestone[Z_AXIS] = z;
cef9acea 852
a6bbe768 853 // now set the actuator positions to match
807b9b57 854 ActuatorCoordinates actuator_pos;
c2f7c261 855 arm_solution->cartesian_to_actuator(this->last_machine_position, actuator_pos);
29e809e0 856 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
cef9acea
JM
857 actuators[i]->change_last_milestone(actuator_pos[i]);
858}
859
de2ee57c 860// Reset the position for an axis (used in homing, and to reset extruder after suspend)
4710532a
JM
861void Robot::reset_axis_position(float position, int axis)
862{
c2f7c261 863 last_milestone[axis] = position;
de2ee57c
JM
864 if(axis <= Z_AXIS) {
865 reset_axis_position(last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
72420864 866#if MAX_ROBOT_ACTUATORS > 3
de2ee57c
JM
867 }else{
868 // extruders need to be set not calculated
869 last_machine_position[axis]= position;
72420864 870#endif
de2ee57c 871 }
4cff3ded
AW
872}
873
932a3995 874// similar to reset_axis_position but directly sets the actuator positions in actuators units (eg mm for cartesian, degrees for rotary delta)
93f20a8c
JM
875// then sets the axis positions to match. currently only called from Endstops.cpp
876void Robot::reset_actuator_position(const ActuatorCoordinates &ac)
586cc733 877{
29e809e0 878 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
93f20a8c 879 actuators[i]->change_last_milestone(ac[i]);
586cc733
JM
880
881 // now correct axis positions then recorrect actuator to account for rounding
882 reset_position_from_current_actuator_position();
883}
884
a6bbe768 885// Use FK to find out where actuator is and reset to match
728477c4
JM
886void Robot::reset_position_from_current_actuator_position()
887{
807b9b57 888 ActuatorCoordinates actuator_pos;
29e809e0 889 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
58587001 890 // NOTE actuator::current_position is curently NOT the same as actuator::last_milestone after an abrupt abort
807b9b57
JM
891 actuator_pos[i] = actuators[i]->get_current_position();
892 }
58587001
JM
893
894 // discover machine position from where actuators actually are
c2f7c261
JM
895 arm_solution->actuator_to_cartesian(actuator_pos, last_machine_position);
896 // FIXME problem is this includes any compensation transform, and without an inverse compensation we cannot get a correct last_milestone
897 memcpy(last_milestone, last_machine_position, sizeof last_milestone);
cf91d4f3 898
58587001
JM
899 // now reset actuator::last_milestone, NOTE this may lose a little precision as FK is not always entirely accurate.
900 // NOTE This is required to sync the machine position with the actuator position, we do a somewhat redundant cartesian_to_actuator() call
932a3995 901 // to get everything in perfect sync.
7baae81a 902 arm_solution->cartesian_to_actuator(last_machine_position, actuator_pos);
29e809e0 903 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
7baae81a 904 actuators[i]->change_last_milestone(actuator_pos[i]);
728477c4 905}
edac9072 906
ad6a77d1 907// Convert target (in machine coordinates) to machine_position, then convert to actuator position and append this to the planner
c2f7c261
JM
908// target is in machine coordinates without the compensation transform, however we save a last_machine_position that includes
909// all transforms and is what we actually convert to actuator positions
c1ebb1fe 910bool Robot::append_milestone(const float target[], float rate_mm_s)
df6a30f2 911{
29e809e0 912 float deltas[n_motors];
1a936198 913 float transformed_target[n_motors]; // adjust target for bed compensation
29e809e0 914 float unit_vec[N_PRIMARY_AXIS];
df6a30f2 915
3632a517 916 // unity transform by default
29e809e0 917 memcpy(transformed_target, target, n_motors*sizeof(float));
5e45206a 918
350c8a60 919 // check function pointer and call if set to transform the target to compensate for bed
c1ebb1fe 920 if(compensationTransform) {
350c8a60
JM
921 // some compensation strategies can transform XYZ, some just change Z
922 compensationTransform(transformed_target);
00e607c7 923 }
807b9b57 924
29e809e0 925 bool move= false;
850b4eeb 926 float sos= 0; // sun of squares for just XYZ
29e809e0 927
a6bbe768 928 // find distance moved by each axis, use transformed target from the current machine position
ec45206d 929 for (size_t i = 0; i < n_motors; i++) {
29e809e0
JM
930 deltas[i] = transformed_target[i] - last_machine_position[i];
931 if(deltas[i] == 0) continue;
932 // at least one non zero delta
933 move = true;
121094a5 934 if(i <= Z_AXIS) {
29e809e0 935 sos += powf(deltas[i], 2);
121094a5 936 }
3632a517 937 }
aab6cbba 938
29e809e0
JM
939 // nothing moved
940 if(!move) return false;
941
850b4eeb
JM
942 // see if this is a primary axis move or not
943 bool auxilliary_move= deltas[X_AXIS] == 0 && deltas[Y_AXIS] == 0 && deltas[Z_AXIS] == 0;
29e809e0 944
850b4eeb
JM
945 // total movement, use XYZ if a primary axis otherwise we calculate distance for E after scaling to mm
946 float distance= auxilliary_move ? 0 : sqrtf(sos);
df6a30f2 947
a6bbe768
JM
948 // it is unlikely but we need to protect against divide by zero, so ignore insanely small moves here
949 // as the last milestone won't be updated we do not actually lose any moves as they will be accounted for in the next move
850b4eeb 950 if(!auxilliary_move && distance < 0.00001F) return false;
a6bbe768 951
a6bbe768 952
29e809e0 953 if(!auxilliary_move) {
850b4eeb 954 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
14a90ad5 955 // find distance unit vector for primary axis only
850b4eeb 956 unit_vec[i] = deltas[i] / distance;
df6a30f2 957
14a90ad5
JM
958 // Do not move faster than the configured cartesian limits for XYZ
959 if ( max_speeds[i] > 0 ) {
960 float axis_speed = fabsf(unit_vec[i] * rate_mm_s);
961
962 if (axis_speed > max_speeds[i])
963 rate_mm_s *= ( max_speeds[i] / axis_speed );
2cd32d70 964 }
7b470506
AW
965 }
966 }
4cff3ded 967
c2f7c261 968 // find actuator position given the machine position, use actual adjusted target
29e809e0 969 ActuatorCoordinates actuator_pos;
850b4eeb 970 arm_solution->cartesian_to_actuator( transformed_target, actuator_pos );
df6a30f2 971
13ad7234 972#if MAX_ROBOT_ACTUATORS > 3
850b4eeb 973 sos= 0;
ad6a77d1 974 // for the extruders just copy the position, and possibly scale it from mm³ to mm
374d0777 975 for (size_t i = E_AXIS; i < n_motors; i++) {
850b4eeb 976 actuator_pos[i]= transformed_target[i];
121094a5 977 if(get_e_scale_fnc) {
29e809e0
JM
978 // NOTE this relies on the fact only one extruder is active at a time
979 // scale for volumetric or flow rate
980 // TODO is this correct? scaling the absolute target? what if the scale changes?
ec45206d 981 // for volumetric it basically converts mm³ to mm, but what about flow rate?
121094a5 982 actuator_pos[i] *= get_e_scale_fnc();
29e809e0 983 }
850b4eeb
JM
984 if(auxilliary_move) {
985 // for E only moves we need to use the scaled E to calculate the distance
986 sos += pow(actuator_pos[i] - actuators[i]->get_last_milestone(), 2);
987 }
988 }
989 if(auxilliary_move) {
850b4eeb 990 distance= sqrtf(sos); // distance in mm of the e move
1843a68f 991 if(distance < 0.00001F) return false;
29e809e0
JM
992 }
993#endif
994
995 // use default acceleration to start with
996 float acceleration = default_acceleration;
997
850b4eeb 998 float isecs = rate_mm_s / distance;
29e809e0 999
df6a30f2 1000 // check per-actuator speed limits
29e809e0
JM
1001 for (size_t actuator = 0; actuator < n_motors; actuator++) {
1002 float d = fabsf(actuator_pos[actuator] - actuators[actuator]->get_last_milestone());
1003 if(d == 0 || !actuators[actuator]->is_selected()) continue; // no movement for this actuator
1004
1005 float actuator_rate= d * isecs;
03b01bac 1006 if (actuator_rate > actuators[actuator]->get_max_rate()) {
3494f3d0 1007 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
850b4eeb 1008 isecs = rate_mm_s / distance;
928467c0 1009 }
29e809e0 1010
df56baf2 1011 // adjust acceleration to lowest found, for now just primary axis unless it is an auxiliary move
14a90ad5
JM
1012 // TODO we may need to do all of them, check E won't limit XYZ.. it does on long E moves, but not checking it could exceed the E acceleration.
1013 if(auxilliary_move || actuator <= Z_AXIS) {
df56baf2
JM
1014 float ma = actuators[actuator]->get_acceleration(); // in mm/sec²
1015 if(!isnan(ma)) { // if axis does not have acceleration set then it uses the default_acceleration
850b4eeb 1016 float ca = fabsf((d/distance) * acceleration);
df56baf2
JM
1017 if (ca > ma) {
1018 acceleration *= ( ma / ca );
1019 }
29e809e0 1020 }
14a90ad5 1021 }
928467c0
JM
1022 }
1023
edac9072 1024 // Append the block to the planner
850b4eeb 1025 // NOTE that distance here should be either the distance travelled by the XYZ axis, or the E mm travel if a solo E move
6f5d947f
JM
1026 if(THEKERNEL->planner->append_block( actuator_pos, n_motors, rate_mm_s, distance, auxilliary_move ? nullptr : unit_vec, acceleration )) {
1027 // this is the machine position
1028 memcpy(this->last_machine_position, transformed_target, n_motors*sizeof(float));
1029 }
1030
4cff3ded 1031
350c8a60 1032 return true;
4cff3ded
AW
1033}
1034
121094a5
JM
1035// Used to plan a single move used by things like endstops when homing, zprobe, extruder firmware retracts etc.
1036bool Robot::delta_move(const float *delta, float rate_mm_s, uint8_t naxis)
c8bac202
JM
1037{
1038 if(THEKERNEL->is_halted()) return false;
1039
121094a5 1040 // catch negative or zero feed rates
c8bac202
JM
1041 if(rate_mm_s <= 0.0F) {
1042 return false;
1043 }
1044
121094a5
JM
1045 // get the absolute target position, default is current last_milestone
1046 float target[n_motors];
1047 memcpy(target, last_milestone, n_motors*sizeof(float));
c8bac202 1048
121094a5
JM
1049 // add in the deltas to get new target
1050 for (int i= 0; i < naxis; i++) {
1051 target[i] += delta[i];
c8bac202 1052 }
c8bac202 1053
121094a5 1054 // submit for planning and if moved update last_milestone
c1ebb1fe 1055 if(append_milestone(target, rate_mm_s)) {
121094a5
JM
1056 memcpy(last_milestone, target, n_motors*sizeof(float));
1057 return true;
29e809e0 1058 }
c8bac202 1059
121094a5 1060 return false;
c8bac202
JM
1061}
1062
edac9072 1063// Append a move to the queue ( cutting it into segments if needed )
29e809e0 1064bool Robot::append_line(Gcode *gcode, const float target[], float rate_mm_s, float delta_e)
4710532a 1065{
121094a5
JM
1066 // catch negative or zero feed rates and return the same error as GRBL does
1067 if(rate_mm_s <= 0.0F) {
1068 gcode->is_error= true;
1069 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1070 return false;
1071 }
29e809e0
JM
1072
1073 // Find out the distance for this move in XYZ in MCS
1074 float millimeters_of_travel = sqrtf(powf( target[X_AXIS] - last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - last_milestone[Z_AXIS], 2 ));
1075
374d0777 1076 if(millimeters_of_travel < 0.00001F) {
121094a5
JM
1077 // we have no movement in XYZ, probably E only extrude or retract
1078 return this->append_milestone(target, rate_mm_s);
29e809e0
JM
1079 }
1080
1081 /*
374d0777
JM
1082 For extruders, we need to do some extra work...
1083 if we have volumetric limits enabled we calculate the volume for this move and limit the rate if it exceeds the stated limit.
1084 Note we need to be using volumetric extrusion for this to work as Ennn is in mm³ not mm
1085 We ask Extruder to do all the work but we need to pass in the relevant data.
1086 NOTE we need to do this before we segment the line (for deltas)
1087 This also sets any scaling due to flow rate and volumetric if a G1
29e809e0
JM
1088 */
1089 if(!isnan(delta_e) && gcode->has_g && gcode->g == 1) {
1090 float data[2]= {delta_e, rate_mm_s / millimeters_of_travel};
d2adef5e 1091 if(PublicData::set_value(extruder_checksum, target_checksum, data)) {
29e809e0 1092 rate_mm_s *= data[1]; // adjust the feedrate
d2adef5e
JM
1093 }
1094 }
1095
c2f7c261 1096 // We cut the line into smaller segments. This is only needed on a cartesian robot for zgrid, but always necessary for robots with rotational axes like Deltas.
3b4b05b8
JM
1097 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second
1098 // The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
4a0c8e14 1099 uint16_t segments;
5984acdf 1100
a3e1326a 1101 if(this->disable_segmentation || (!segment_z_moves && !gcode->has_letter('X') && !gcode->has_letter('Y'))) {
778093ce
JM
1102 segments= 1;
1103
1104 } else if(this->delta_segments_per_second > 1.0F) {
4a0c8e14
JM
1105 // enabled if set to something > 1, it is set to 0.0 by default
1106 // segment based on current speed and requested segments per second
1107 // the faster the travel speed the fewer segments needed
1108 // NOTE rate is mm/sec and we take into account any speed override
29e809e0 1109 float seconds = millimeters_of_travel / rate_mm_s;
9502f9d5 1110 segments = max(1.0F, ceilf(this->delta_segments_per_second * seconds));
4a0c8e14 1111 // TODO if we are only moving in Z on a delta we don't really need to segment at all
5984acdf 1112
4710532a
JM
1113 } else {
1114 if(this->mm_per_line_segment == 0.0F) {
1115 segments = 1; // don't split it up
1116 } else {
29e809e0 1117 segments = ceilf( millimeters_of_travel / this->mm_per_line_segment);
4a0c8e14
JM
1118 }
1119 }
5984acdf 1120
350c8a60 1121 bool moved= false;
4710532a 1122 if (segments > 1) {
2ba859c9 1123 // A vector to keep track of the endpoint of each segment
29e809e0
JM
1124 float segment_delta[n_motors];
1125 float segment_end[n_motors];
1126 memcpy(segment_end, last_milestone, n_motors*sizeof(float));
2ba859c9
MM
1127
1128 // How far do we move each segment?
29e809e0 1129 for (int i = 0; i < n_motors; i++)
2791c829 1130 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
4cff3ded 1131
c8e0fb15
MM
1132 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
1133 // We always add another point after this loop so we stop at segments-1, ie i < segments
4710532a 1134 for (int i = 1; i < segments; i++) {
350c8a60 1135 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
29e809e0
JM
1136 for (int i = 0; i < n_motors; i++)
1137 segment_end[i] += segment_delta[i];
2ba859c9
MM
1138
1139 // Append the end of this segment to the queue
121094a5 1140 bool b= this->append_milestone(segment_end, rate_mm_s);
350c8a60 1141 moved= moved || b;
2ba859c9 1142 }
4cff3ded 1143 }
5984acdf
MM
1144
1145 // Append the end of this full move to the queue
121094a5 1146 if(this->append_milestone(target, rate_mm_s)) moved= true;
2134bcf2 1147
a6bbe768 1148 this->next_command_is_MCS = false; // always reset this
00e607c7 1149
350c8a60 1150 return moved;
4cff3ded
AW
1151}
1152
4cff3ded 1153
edac9072 1154// Append an arc to the queue ( cutting it into segments as needed )
350c8a60 1155bool Robot::append_arc(Gcode * gcode, const float target[], const float offset[], float radius, bool is_clockwise )
4710532a 1156{
121094a5
JM
1157 float rate_mm_s= this->feed_rate / seconds_per_minute;
1158 // catch negative or zero feed rates and return the same error as GRBL does
1159 if(rate_mm_s <= 0.0F) {
1160 gcode->is_error= true;
1161 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1162 return false;
1163 }
aab6cbba 1164
edac9072 1165 // Scary math
2ba859c9
MM
1166 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
1167 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
1168 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1ad23cd3
MM
1169 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
1170 float r_axis1 = -offset[this->plane_axis_1];
1171 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
1172 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
aab6cbba 1173
51871fb8 1174 // Patch from GRBL Firmware - Christoph Baumann 04072015
aab6cbba 1175 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
fb4c9d09 1176 float angular_travel = atan2f(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
5fa0c173 1177 if (is_clockwise) { // Correct atan2 output per direction
29e809e0 1178 if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= (2 * PI); }
5fa0c173 1179 } else {
29e809e0 1180 if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += (2 * PI); }
4710532a 1181 }
aab6cbba 1182
edac9072 1183 // Find the distance for this gcode
29e809e0 1184 float millimeters_of_travel = hypotf(angular_travel * radius, fabsf(linear_travel));
436a2cd1 1185
edac9072 1186 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
29e809e0 1187 if( millimeters_of_travel < 0.00001F ) {
350c8a60 1188 return false;
4710532a 1189 }
5dcb2ff3 1190
83c6e067
RA
1191 // limit segments by maximum arc error
1192 float arc_segment = this->mm_per_arc_segment;
4d0f60a9 1193 if ((this->mm_max_arc_error > 0) && (2 * radius > this->mm_max_arc_error)) {
83c6e067
RA
1194 float min_err_segment = 2 * sqrtf((this->mm_max_arc_error * (2 * radius - this->mm_max_arc_error)));
1195 if (this->mm_per_arc_segment < min_err_segment) {
1196 arc_segment = min_err_segment;
1197 }
1198 }
5984acdf 1199 // Figure out how many segments for this gcode
29e809e0 1200 uint16_t segments = ceilf(millimeters_of_travel / arc_segment);
aab6cbba 1201
29e809e0 1202 //printf("Radius %f - Segment Length %f - Number of Segments %d\r\n",radius,arc_segment,segments); // Testing Purposes ONLY
4710532a
JM
1203 float theta_per_segment = angular_travel / segments;
1204 float linear_per_segment = linear_travel / segments;
aab6cbba
AW
1205
1206 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
1207 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
1208 r_T = [cos(phi) -sin(phi);
1209 sin(phi) cos(phi] * r ;
1210 For arc generation, the center of the circle is the axis of rotation and the radius vector is
1211 defined from the circle center to the initial position. Each line segment is formed by successive
1212 vector rotations. This requires only two cos() and sin() computations to form the rotation
1213 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1ad23cd3 1214 all float numbers are single precision on the Arduino. (True float precision will not have
aab6cbba
AW
1215 round off issues for CNC applications.) Single precision error can accumulate to be greater than
1216 tool precision in some cases. Therefore, arc path correction is implemented.
1217
1218 Small angle approximation may be used to reduce computation overhead further. This approximation
1219 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
1220 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
1221 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
1222 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
1223 issue for CNC machines with the single precision Arduino calculations.
1224 This approximation also allows mc_arc to immediately insert a line segment into the planner
1225 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
1226 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
1227 This is important when there are successive arc motions.
1228 */
1229 // Vector rotation matrix values
4710532a 1230 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1ad23cd3 1231 float sin_T = theta_per_segment;
aab6cbba 1232
1ad23cd3
MM
1233 float arc_target[3];
1234 float sin_Ti;
1235 float cos_Ti;
1236 float r_axisi;
aab6cbba
AW
1237 uint16_t i;
1238 int8_t count = 0;
1239
1240 // Initialize the linear axis
2ba859c9 1241 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
aab6cbba 1242
350c8a60 1243 bool moved= false;
4710532a 1244 for (i = 1; i < segments; i++) { // Increment (segments-1)
350c8a60 1245 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
aab6cbba 1246
b66fb830 1247 if (count < this->arc_correction ) {
4710532a
JM
1248 // Apply vector rotation matrix
1249 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
1250 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
1251 r_axis1 = r_axisi;
1252 count++;
aab6cbba 1253 } else {
4710532a
JM
1254 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
1255 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
1256 cos_Ti = cosf(i * theta_per_segment);
1257 sin_Ti = sinf(i * theta_per_segment);
1258 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
1259 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
1260 count = 0;
aab6cbba
AW
1261 }
1262
1263 // Update arc_target location
1264 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
1265 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
1266 arc_target[this->plane_axis_2] += linear_per_segment;
edac9072
AW
1267
1268 // Append this segment to the queue
121094a5 1269 bool b= this->append_milestone(arc_target, rate_mm_s);
350c8a60 1270 moved= moved || b;
aab6cbba 1271 }
edac9072 1272
aab6cbba 1273 // Ensure last segment arrives at target location.
121094a5 1274 if(this->append_milestone(target, rate_mm_s)) moved= true;
350c8a60
JM
1275
1276 return moved;
aab6cbba
AW
1277}
1278
edac9072 1279// Do the math for an arc and add it to the queue
29e809e0 1280bool Robot::compute_arc(Gcode * gcode, const float offset[], const float target[], enum MOTION_MODE_T motion_mode)
4710532a 1281{
aab6cbba
AW
1282
1283 // Find the radius
13addf09 1284 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
aab6cbba
AW
1285
1286 // Set clockwise/counter-clockwise sign for mc_arc computations
1287 bool is_clockwise = false;
29e809e0 1288 if( motion_mode == CW_ARC ) {
4710532a
JM
1289 is_clockwise = true;
1290 }
aab6cbba
AW
1291
1292 // Append arc
350c8a60 1293 return this->append_arc(gcode, target, offset, radius, is_clockwise );
aab6cbba
AW
1294}
1295
1296
4710532a
JM
1297float Robot::theta(float x, float y)
1298{
1299 float t = atanf(x / fabs(y));
1300 if (y > 0) {
1301 return(t);
1302 } else {
1303 if (t > 0) {
29e809e0 1304 return(PI - t);
4710532a 1305 } else {
29e809e0 1306 return(-PI - t);
4710532a
JM
1307 }
1308 }
4cff3ded
AW
1309}
1310
4710532a
JM
1311void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
1312{
4cff3ded
AW
1313 this->plane_axis_0 = axis_0;
1314 this->plane_axis_1 = axis_1;
1315 this->plane_axis_2 = axis_2;
1316}
1317
fae93525 1318void Robot::clearToolOffset()
4710532a 1319{
c2f7c261 1320 this->tool_offset= wcs_t(0,0,0);
fae93525
JM
1321}
1322
1323void Robot::setToolOffset(const float offset[3])
1324{
c2f7c261 1325 this->tool_offset= wcs_t(offset[0], offset[1], offset[2]);
5966b7d0
AT
1326}
1327
0ec2f63a
JM
1328float Robot::get_feed_rate() const
1329{
1330 return THEKERNEL->gcode_dispatch->get_modal_command() == 0 ? seek_rate : feed_rate;
1331}