Old extruder config settings have been removed, Azteeg configs updated to accomodate
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
CommitLineData
df27a6a3 1/*
aab6cbba 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
5673fe39 10
29e809e0 11#include "Robot.h"
4cff3ded 12#include "Planner.h"
3fceb8eb 13#include "Conveyor.h"
5673fe39
MM
14#include "Pin.h"
15#include "StepperMotor.h"
16#include "Gcode.h"
5647f709 17#include "PublicDataRequest.h"
928467c0 18#include "PublicData.h"
4cff3ded
AW
19#include "arm_solutions/BaseSolution.h"
20#include "arm_solutions/CartesianSolution.h"
c41d6d95 21#include "arm_solutions/RotatableCartesianSolution.h"
2a06c415 22#include "arm_solutions/LinearDeltaSolution.h"
11a39396 23#include "arm_solutions/RotaryDeltaSolution.h"
bdaaa75d 24#include "arm_solutions/HBotSolution.h"
fff1e42d 25#include "arm_solutions/CoreXZSolution.h"
1217e470 26#include "arm_solutions/MorganSCARASolution.h"
61134a65 27#include "StepTicker.h"
7af0714f
JM
28#include "checksumm.h"
29#include "utils.h"
8d54c34c 30#include "ConfigValue.h"
5966b7d0 31#include "libs/StreamOutput.h"
dd0a7cfa 32#include "StreamOutputPool.h"
928467c0 33#include "ExtruderPublicAccess.h"
0ec2f63a 34#include "GcodeDispatch.h"
13ad7234 35#include "ActuatorCoordinates.h"
0ec2f63a 36
29e809e0
JM
37#include "mbed.h" // for us_ticker_read()
38#include "mri.h"
39
40#include <fastmath.h>
41#include <string>
42#include <algorithm>
43using std::string;
38bf9a1c 44
78d0e16a
MM
45#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
46#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
47#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
48#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
49#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
83c6e067 50#define mm_max_arc_error_checksum CHECKSUM("mm_max_arc_error")
78d0e16a
MM
51#define arc_correction_checksum CHECKSUM("arc_correction")
52#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
53#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
54#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
a3e1326a 55#define segment_z_moves_checksum CHECKSUM("segment_z_moves")
3aad33c7 56#define save_g92_checksum CHECKSUM("save_g92")
43424972
JM
57
58// arm solutions
78d0e16a
MM
59#define arm_solution_checksum CHECKSUM("arm_solution")
60#define cartesian_checksum CHECKSUM("cartesian")
61#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
62#define rostock_checksum CHECKSUM("rostock")
2a06c415 63#define linear_delta_checksum CHECKSUM("linear_delta")
11a39396 64#define rotary_delta_checksum CHECKSUM("rotary_delta")
78d0e16a
MM
65#define delta_checksum CHECKSUM("delta")
66#define hbot_checksum CHECKSUM("hbot")
67#define corexy_checksum CHECKSUM("corexy")
fff1e42d 68#define corexz_checksum CHECKSUM("corexz")
78d0e16a 69#define kossel_checksum CHECKSUM("kossel")
1217e470 70#define morgan_checksum CHECKSUM("morgan")
78d0e16a 71
78d0e16a
MM
72// new-style actuator stuff
73#define actuator_checksum CHEKCSUM("actuator")
74
75#define step_pin_checksum CHECKSUM("step_pin")
76#define dir_pin_checksum CHEKCSUM("dir_pin")
77#define en_pin_checksum CHECKSUM("en_pin")
78
79#define steps_per_mm_checksum CHECKSUM("steps_per_mm")
df6a30f2 80#define max_rate_checksum CHECKSUM("max_rate")
29e809e0
JM
81#define acceleration_checksum CHECKSUM("acceleration")
82#define z_acceleration_checksum CHECKSUM("z_acceleration")
78d0e16a
MM
83
84#define alpha_checksum CHECKSUM("alpha")
85#define beta_checksum CHECKSUM("beta")
86#define gamma_checksum CHECKSUM("gamma")
87
29e809e0
JM
88#define ARC_ANGULAR_TRAVEL_EPSILON 5E-7F // Float (radians)
89#define PI 3.14159265358979323846F // force to be float, do not use M_PI
5fa0c173 90
edac9072
AW
91// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
92// It takes care of cutting arcs into segments, same thing for line that are too long
93
4710532a
JM
94Robot::Robot()
95{
a1b7e9f0 96 this->inch_mode = false;
0e8b102e 97 this->absolute_mode = true;
29e809e0 98 this->e_absolute_mode = true;
4cff3ded 99 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
29e809e0
JM
100 memset(this->last_milestone, 0, sizeof last_milestone);
101 memset(this->last_machine_position, 0, sizeof last_machine_position);
0b804a41 102 this->arm_solution = NULL;
da947c62 103 seconds_per_minute = 60.0F;
fae93525 104 this->clearToolOffset();
03b01bac
JM
105 this->compensationTransform = nullptr;
106 this->wcs_offsets.fill(wcs_t(0.0F, 0.0F, 0.0F));
107 this->g92_offset = wcs_t(0.0F, 0.0F, 0.0F);
a6bbe768 108 this->next_command_is_MCS = false;
778093ce 109 this->disable_segmentation= false;
29e809e0
JM
110 this->n_motors= 0;
111 this->actuators.fill(nullptr);
4cff3ded
AW
112}
113
114//Called when the module has just been loaded
4710532a
JM
115void Robot::on_module_loaded()
116{
4cff3ded
AW
117 this->register_for_event(ON_GCODE_RECEIVED);
118
119 // Configuration
807b9b57 120 this->load_config();
da24d6ae
AW
121}
122
807b9b57
JM
123#define ACTUATOR_CHECKSUMS(X) { \
124 CHECKSUM(X "_step_pin"), \
125 CHECKSUM(X "_dir_pin"), \
126 CHECKSUM(X "_en_pin"), \
127 CHECKSUM(X "_steps_per_mm"), \
29e809e0
JM
128 CHECKSUM(X "_max_rate"), \
129 CHECKSUM(X "_acceleration") \
807b9b57 130}
5984acdf 131
807b9b57
JM
132void Robot::load_config()
133{
edac9072
AW
134 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
135 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
136 // To make adding those solution easier, they have their own, separate object.
5984acdf 137 // Here we read the config to find out which arm solution to use
0b804a41 138 if (this->arm_solution) delete this->arm_solution;
eda9facc 139 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
d149c730 140 // Note checksums are not const expressions when in debug mode, so don't use switch
98761c28 141 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
314ab8f7 142 this->arm_solution = new HBotSolution(THEKERNEL->config);
bdaaa75d 143
fff1e42d
JJ
144 } else if(solution_checksum == corexz_checksum) {
145 this->arm_solution = new CoreXZSolution(THEKERNEL->config);
146
2a06c415
JM
147 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
148 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
73a4e3c0 149
4710532a 150 } else if(solution_checksum == rotatable_cartesian_checksum) {
314ab8f7 151 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
b73a756d 152
11a39396
JM
153 } else if(solution_checksum == rotary_delta_checksum) {
154 this->arm_solution = new RotaryDeltaSolution(THEKERNEL->config);
c52b8675 155
1217e470
QH
156 } else if(solution_checksum == morgan_checksum) {
157 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
158
4710532a 159 } else if(solution_checksum == cartesian_checksum) {
314ab8f7 160 this->arm_solution = new CartesianSolution(THEKERNEL->config);
73a4e3c0 161
4710532a 162 } else {
314ab8f7 163 this->arm_solution = new CartesianSolution(THEKERNEL->config);
d149c730 164 }
73a4e3c0 165
6b661ab3
DP
166 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
167 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
168 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
169 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
b259f517 170 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.0f)->as_number();
4d0f60a9 171 this->mm_max_arc_error = THEKERNEL->config->value(mm_max_arc_error_checksum )->by_default( 0.01f)->as_number();
6b661ab3 172 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
78d0e16a 173
29e809e0 174 // in mm/sec but specified in config as mm/min
6b661ab3
DP
175 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
176 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
177 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
feb204be 178
a3e1326a 179 this->segment_z_moves = THEKERNEL->config->value(segment_z_moves_checksum )->by_default(true)->as_bool();
3aad33c7 180 this->save_g92 = THEKERNEL->config->value(save_g92_checksum )->by_default(false)->as_bool();
a3e1326a 181
29e809e0
JM
182 // Make our Primary XYZ StepperMotors
183 uint16_t const checksums[][6] = {
184 ACTUATOR_CHECKSUMS("alpha"), // X
185 ACTUATOR_CHECKSUMS("beta"), // Y
186 ACTUATOR_CHECKSUMS("gamma"), // Z
807b9b57 187 };
807b9b57 188
29e809e0
JM
189 // default acceleration setting, can be overriden with newer per axis settings
190 this->default_acceleration= THEKERNEL->config->value(acceleration_checksum)->by_default(100.0F )->as_number(); // Acceleration is in mm/s^2
191
192 // make each motor
193 for (size_t a = X_AXIS; a <= Z_AXIS; a++) {
807b9b57
JM
194 Pin pins[3]; //step, dir, enable
195 for (size_t i = 0; i < 3; i++) {
196 pins[i].from_string(THEKERNEL->config->value(checksums[a][i])->by_default("nc")->as_string())->as_output();
197 }
29e809e0
JM
198 StepperMotor *sm = new StepperMotor(pins[0], pins[1], pins[2]);
199 // register this motor (NB This must be 0,1,2) of the actuators array
200 uint8_t n= register_motor(sm);
201 if(n != a) {
202 // this is a fatal error
203 THEKERNEL->streams->printf("FATAL: motor %d does not match index %d\n", n, a);
204 __debugbreak();
205 }
78d0e16a 206
03b01bac 207 actuators[a]->change_steps_per_mm(THEKERNEL->config->value(checksums[a][3])->by_default(a == 2 ? 2560.0F : 80.0F)->as_number());
3702f300 208 actuators[a]->set_max_rate(THEKERNEL->config->value(checksums[a][4])->by_default(30000.0F)->as_number()/60.0F); // it is in mm/min and converted to mm/sec
29e809e0 209 actuators[a]->set_acceleration(THEKERNEL->config->value(checksums[a][5])->by_default(NAN)->as_number()); // mm/secs²
807b9b57 210 }
a84f0186 211
dd0a7cfa 212 check_max_actuator_speeds(); // check the configs are sane
df6a30f2 213
29e809e0
JM
214 // if we have not specified a z acceleration see if the legacy config was set
215 if(isnan(actuators[Z_AXIS]->get_acceleration())) {
216 float acc= THEKERNEL->config->value(z_acceleration_checksum)->by_default(NAN)->as_number(); // disabled by default
217 if(!isnan(acc)) {
218 actuators[Z_AXIS]->set_acceleration(acc);
219 }
220 }
221
975469ad
MM
222 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
223 // so the first move can be correct if homing is not performed
807b9b57 224 ActuatorCoordinates actuator_pos;
975469ad 225 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
29e809e0 226 for (size_t i = 0; i < n_motors; i++)
975469ad 227 actuators[i]->change_last_milestone(actuator_pos[i]);
5966b7d0
AT
228
229 //this->clearToolOffset();
4cff3ded
AW
230}
231
29e809e0
JM
232uint8_t Robot::register_motor(StepperMotor *motor)
233{
234 // register this motor with the step ticker
235 THEKERNEL->step_ticker->register_motor(motor);
236 if(n_motors >= k_max_actuators) {
237 // this is a fatal error
238 THEKERNEL->streams->printf("FATAL: too many motors, increase k_max_actuators\n");
239 __debugbreak();
240 }
241 actuators[n_motors++]= motor;
242 return n_motors-1;
243}
244
212caccd
JM
245void Robot::push_state()
246{
03b01bac 247 bool am = this->absolute_mode;
29e809e0 248 bool em = this->e_absolute_mode;
03b01bac 249 bool im = this->inch_mode;
29e809e0 250 saved_state_t s(this->feed_rate, this->seek_rate, am, em, im, current_wcs);
212caccd
JM
251 state_stack.push(s);
252}
253
254void Robot::pop_state()
255{
03b01bac
JM
256 if(!state_stack.empty()) {
257 auto s = state_stack.top();
212caccd 258 state_stack.pop();
03b01bac
JM
259 this->feed_rate = std::get<0>(s);
260 this->seek_rate = std::get<1>(s);
261 this->absolute_mode = std::get<2>(s);
29e809e0
JM
262 this->e_absolute_mode = std::get<3>(s);
263 this->inch_mode = std::get<4>(s);
264 this->current_wcs = std::get<5>(s);
212caccd
JM
265 }
266}
267
34210908
JM
268std::vector<Robot::wcs_t> Robot::get_wcs_state() const
269{
270 std::vector<wcs_t> v;
0b8b81b6 271 v.push_back(wcs_t(current_wcs, MAX_WCS, 0));
34210908
JM
272 for(auto& i : wcs_offsets) {
273 v.push_back(i);
274 }
275 v.push_back(g92_offset);
276 v.push_back(tool_offset);
277 return v;
278}
279
e03f2747 280int Robot::print_position(uint8_t subcode, char *buf, size_t bufsize) const
2791c829
JM
281{
282 // M114.1 is a new way to do this (similar to how GRBL does it).
283 // it returns the realtime position based on the current step position of the actuators.
284 // this does require a FK to get a machine position from the actuator position
285 // and then invert all the transforms to get a workspace position from machine position
a3be54e3 286 // M114 just does it the old way uses last_milestone and does inversse transforms to get the requested position
2791c829 287 int n = 0;
e03f2747 288 if(subcode == 0) { // M114 print WCS
2791c829 289 wcs_t pos= mcs2wcs(last_milestone);
31c6c2c2 290 n = snprintf(buf, bufsize, "C: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
2791c829 291
df4574e0 292 } else if(subcode == 4) { // M114.4 print last milestone (which should be the same as machine position if axis are not moving and no level compensation)
31c6c2c2 293 n = snprintf(buf, bufsize, "LMS: X:%1.4f Y:%1.4f Z:%1.4f", last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
2791c829 294
df4574e0 295 } else if(subcode == 5) { // M114.5 print last machine position (which should be the same as M114.1 if axis are not moving and no level compensation)
cf6b8fd1 296 n = snprintf(buf, bufsize, "LMP: X:%1.4f Y:%1.4f Z:%1.4f", last_machine_position[X_AXIS], last_machine_position[Y_AXIS], last_machine_position[Z_AXIS]);
2791c829
JM
297
298 } else {
299 // get real time positions
300 // current actuator position in mm
301 ActuatorCoordinates current_position{
302 actuators[X_AXIS]->get_current_position(),
303 actuators[Y_AXIS]->get_current_position(),
304 actuators[Z_AXIS]->get_current_position()
305 };
306
307 // get machine position from the actuator position using FK
308 float mpos[3];
309 arm_solution->actuator_to_cartesian(current_position, mpos);
310
e03f2747 311 if(subcode == 1) { // M114.1 print realtime WCS
2791c829
JM
312 // FIXME this currently includes the compensation transform which is incorrect so will be slightly off if it is in effect (but by very little)
313 wcs_t pos= mcs2wcs(mpos);
29e809e0 314 n = snprintf(buf, bufsize, "WPOS: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
2791c829 315
df4574e0 316 } else if(subcode == 2) { // M114.2 print realtime Machine coordinate system
31c6c2c2 317 n = snprintf(buf, bufsize, "MPOS: X:%1.4f Y:%1.4f Z:%1.4f", mpos[X_AXIS], mpos[Y_AXIS], mpos[Z_AXIS]);
2791c829 318
df4574e0 319 } else if(subcode == 3) { // M114.3 print realtime actuator position
31c6c2c2 320 n = snprintf(buf, bufsize, "APOS: A:%1.4f B:%1.4f C:%1.4f", current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
2791c829
JM
321 }
322 }
e03f2747 323 return n;
2791c829
JM
324}
325
dc27139b 326// converts current last milestone (machine position without compensation transform) to work coordinate system (inverse transform)
31c6c2c2 327Robot::wcs_t Robot::mcs2wcs(const Robot::wcs_t& pos) const
dc27139b
JM
328{
329 return std::make_tuple(
31c6c2c2
JM
330 std::get<X_AXIS>(pos) - std::get<X_AXIS>(wcs_offsets[current_wcs]) + std::get<X_AXIS>(g92_offset) - std::get<X_AXIS>(tool_offset),
331 std::get<Y_AXIS>(pos) - std::get<Y_AXIS>(wcs_offsets[current_wcs]) + std::get<Y_AXIS>(g92_offset) - std::get<Y_AXIS>(tool_offset),
332 std::get<Z_AXIS>(pos) - std::get<Z_AXIS>(wcs_offsets[current_wcs]) + std::get<Z_AXIS>(g92_offset) - std::get<Z_AXIS>(tool_offset)
dc27139b
JM
333 );
334}
335
dd0a7cfa
JM
336// this does a sanity check that actuator speeds do not exceed steps rate capability
337// we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
338void Robot::check_max_actuator_speeds()
339{
29e809e0 340 for (size_t i = 0; i < n_motors; i++) {
807b9b57
JM
341 float step_freq = actuators[i]->get_max_rate() * actuators[i]->get_steps_per_mm();
342 if (step_freq > THEKERNEL->base_stepping_frequency) {
343 actuators[i]->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / actuators[i]->get_steps_per_mm()));
29e809e0 344 THEKERNEL->streams->printf("WARNING: actuator %d rate exceeds base_stepping_frequency * ..._steps_per_mm: %f, setting to %f\n", i, step_freq, actuators[i]->max_rate);
807b9b57 345 }
dd0a7cfa
JM
346 }
347}
348
4cff3ded 349//A GCode has been received
edac9072 350//See if the current Gcode line has some orders for us
4710532a
JM
351void Robot::on_gcode_received(void *argument)
352{
353 Gcode *gcode = static_cast<Gcode *>(argument);
6bc4a00a 354
29e809e0 355 enum MOTION_MODE_T motion_mode= NONE;
4cff3ded 356
4710532a
JM
357 if( gcode->has_g) {
358 switch( gcode->g ) {
29e809e0
JM
359 case 0: motion_mode = SEEK; break;
360 case 1: motion_mode = LINEAR; break;
361 case 2: motion_mode = CW_ARC; break;
362 case 3: motion_mode = CCW_ARC; break;
c2f7c261 363 case 4: { // G4 pause
03b01bac 364 uint32_t delay_ms = 0;
c3df978d 365 if (gcode->has_letter('P')) {
03b01bac 366 delay_ms = gcode->get_int('P');
c3df978d
JM
367 }
368 if (gcode->has_letter('S')) {
369 delay_ms += gcode->get_int('S') * 1000;
370 }
03b01bac 371 if (delay_ms > 0) {
c3df978d
JM
372 // drain queue
373 THEKERNEL->conveyor->wait_for_empty_queue();
374 // wait for specified time
03b01bac
JM
375 uint32_t start = us_ticker_read(); // mbed call
376 while ((us_ticker_read() - start) < delay_ms * 1000) {
c3df978d 377 THEKERNEL->call_event(ON_IDLE, this);
c2f7c261 378 if(THEKERNEL->is_halted()) return;
c3df978d
JM
379 }
380 }
adba2978 381 }
6b661ab3 382 break;
807b9b57 383
a6bbe768 384 case 10: // G10 L2 [L20] Pn Xn Yn Zn set WCS
00e607c7 385 if(gcode->has_letter('L') && (gcode->get_int('L') == 2 || gcode->get_int('L') == 20) && gcode->has_letter('P')) {
03b01bac
JM
386 size_t n = gcode->get_uint('P');
387 if(n == 0) n = current_wcs; // set current coordinate system
807b9b57 388 else --n;
0b8b81b6 389 if(n < MAX_WCS) {
807b9b57 390 float x, y, z;
03b01bac 391 std::tie(x, y, z) = wcs_offsets[n];
00e607c7 392 if(gcode->get_int('L') == 20) {
c2f7c261 393 // this makes the current machine position (less compensation transform) the offset
dc27139b
JM
394 // get current position in WCS
395 wcs_t pos= mcs2wcs(last_milestone);
396
397 if(gcode->has_letter('X')){
398 x -= to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
399 }
400
401 if(gcode->has_letter('Y')){
402 y -= to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
403 }
404 if(gcode->has_letter('Z')) {
405 z -= to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
406 }
407
a6bbe768 408 } else {
00e607c7
JM
409 // the value is the offset from machine zero
410 if(gcode->has_letter('X')) x = to_millimeters(gcode->get_value('X'));
411 if(gcode->has_letter('Y')) y = to_millimeters(gcode->get_value('Y'));
412 if(gcode->has_letter('Z')) z = to_millimeters(gcode->get_value('Z'));
413 }
03b01bac 414 wcs_offsets[n] = wcs_t(x, y, z);
807b9b57
JM
415 }
416 }
417 break;
418
6e92ab91
JM
419 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
420 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
421 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
422 case 20: this->inch_mode = true; break;
423 case 21: this->inch_mode = false; break;
807b9b57
JM
424
425 case 54: case 55: case 56: case 57: case 58: case 59:
426 // select WCS 0-8: G54..G59, G59.1, G59.2, G59.3
03b01bac 427 current_wcs = gcode->g - 54;
807b9b57
JM
428 if(gcode->g == 59 && gcode->subcode > 0) {
429 current_wcs += gcode->subcode;
0b8b81b6 430 if(current_wcs >= MAX_WCS) current_wcs = MAX_WCS - 1;
807b9b57
JM
431 }
432 break;
433
29e809e0
JM
434 case 90: this->absolute_mode = true; this->e_absolute_mode = true; break;
435 case 91: this->absolute_mode = false; this->e_absolute_mode = false; break;
807b9b57 436
0b804a41 437 case 92: {
a9e8c04b 438 if(gcode->subcode == 1 || gcode->subcode == 2 || gcode->get_num_args() == 0) {
03b01bac
JM
439 // reset G92 offsets to 0
440 g92_offset = wcs_t(0, 0, 0);
441
cee8bc1d
JM
442 } else if(gcode->subcode == 3) {
443 // initialize G92 to the specified values, only used for saving it with M500
444 float x= 0, y= 0, z= 0;
445 if(gcode->has_letter('X')) x= gcode->get_value('X');
446 if(gcode->has_letter('Y')) y= gcode->get_value('Y');
447 if(gcode->has_letter('Z')) z= gcode->get_value('Z');
448 g92_offset = wcs_t(x, y, z);
449
4710532a 450 } else {
61a3fa99 451 // standard setting of the g92 offsets, making current WCS position whatever the coordinate arguments are
807b9b57 452 float x, y, z;
03b01bac 453 std::tie(x, y, z) = g92_offset;
61a3fa99
JM
454 // get current position in WCS
455 wcs_t pos= mcs2wcs(last_milestone);
456
457 // adjust g92 offset to make the current wpos == the value requested
458 if(gcode->has_letter('X')){
459 x += to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
460 }
dc27139b
JM
461 if(gcode->has_letter('Y')){
462 y += to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
463 }
464 if(gcode->has_letter('Z')) {
465 z += to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
466 }
03b01bac 467 g92_offset = wcs_t(x, y, z);
6bc4a00a 468 }
a6bbe768 469
13ad7234
JM
470 #if MAX_ROBOT_ACTUATORS > 3
471 if(gcode->subcode == 0 && (gcode->has_letter('E') || gcode->get_num_args() == 0)){
472 // reset the E position, legacy for 3d Printers to be reprap compatible
473 // find the selected extruder
474 for (int i = E_AXIS; i < n_motors; ++i) {
475 if(actuators[i]->is_selected()) {
476 float e= gcode->has_letter('E') ? gcode->get_value('E') : 0;
477 last_milestone[i]= last_machine_position[i]= e;
478 actuators[i]->change_last_milestone(e);
479 break;
480 }
481 }
482 }
483 #endif
484
78d0e16a 485 return;
4710532a
JM
486 }
487 }
67a649dd 488
4710532a
JM
489 } else if( gcode->has_m) {
490 switch( gcode->m ) {
20ed51b7
JM
491 // case 0: // M0 feed hold, (M0.1 is release feed hold, except we are in feed hold)
492 // if(THEKERNEL->is_grbl_mode()) THEKERNEL->set_feed_hold(gcode->subcode == 0);
493 // break;
01a8d21a
JM
494
495 case 30: // M30 end of program in grbl mode (otherwise it is delete sdcard file)
496 if(!THEKERNEL->is_grbl_mode()) break;
497 // fall through to M2
807b9b57 498 case 2: // M2 end of program
03b01bac
JM
499 current_wcs = 0;
500 absolute_mode = true;
807b9b57 501 break;
9e6014a6
JM
502 case 17:
503 THEKERNEL->call_event(ON_ENABLE, (void*)1); // turn all enable pins on
504 break;
505
506 case 18: // this used to support parameters, now it ignores them
507 case 84:
508 THEKERNEL->conveyor->wait_for_empty_queue();
509 THEKERNEL->call_event(ON_ENABLE, nullptr); // turn all enable pins off
510 break;
807b9b57 511
29e809e0
JM
512 case 82: e_absolute_mode= true; break;
513 case 83: e_absolute_mode= false; break;
514
0fb5b438 515 case 92: // M92 - set steps per mm
0fb5b438 516 if (gcode->has_letter('X'))
78d0e16a 517 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
0fb5b438 518 if (gcode->has_letter('Y'))
78d0e16a 519 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
0fb5b438 520 if (gcode->has_letter('Z'))
78d0e16a 521 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
78d0e16a 522
7f818fc8 523 gcode->stream->printf("X:%f Y:%f Z:%f ", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm);
0fb5b438 524 gcode->add_nl = true;
dd0a7cfa 525 check_max_actuator_speeds();
0fb5b438 526 return;
562db364 527
e03f2747
JM
528 case 114:{
529 char buf[64];
530 int n= print_position(gcode->subcode, buf, sizeof buf);
531 if(n > 0) gcode->txt_after_ok.append(buf, n);
2791c829 532 return;
e03f2747 533 }
33e4cc02 534
212caccd
JM
535 case 120: // push state
536 push_state();
537 break;
562db364
JM
538
539 case 121: // pop state
212caccd 540 pop_state();
562db364
JM
541 break;
542
83488642
JM
543 case 203: // M203 Set maximum feedrates in mm/sec
544 if (gcode->has_letter('X'))
4710532a 545 this->max_speeds[X_AXIS] = gcode->get_value('X');
83488642 546 if (gcode->has_letter('Y'))
4710532a 547 this->max_speeds[Y_AXIS] = gcode->get_value('Y');
83488642 548 if (gcode->has_letter('Z'))
4710532a 549 this->max_speeds[Z_AXIS] = gcode->get_value('Z');
29e809e0 550 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
807b9b57
JM
551 if (gcode->has_letter('A' + i))
552 actuators[i]->set_max_rate(gcode->get_value('A' + i));
553 }
dd0a7cfa
JM
554 check_max_actuator_speeds();
555
928467c0 556 if(gcode->get_num_args() == 0) {
807b9b57 557 gcode->stream->printf("X:%g Y:%g Z:%g",
03b01bac 558 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS]);
29e809e0 559 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
807b9b57
JM
560 gcode->stream->printf(" %c : %g", 'A' + i, actuators[i]->get_max_rate()); //xxx
561 }
928467c0
JM
562 gcode->add_nl = true;
563 }
83488642
JM
564 break;
565
29e809e0 566 case 204: // M204 Snnn - set default acceleration to nnn, Xnnn Ynnn Znnn sets axis specific acceleration
4710532a 567 if (gcode->has_letter('S')) {
4710532a 568 float acc = gcode->get_value('S'); // mm/s^2
d4ee6ee2 569 // enforce minimum
29e809e0
JM
570 if (acc < 1.0F) acc = 1.0F;
571 this->default_acceleration = acc;
d4ee6ee2 572 }
29e809e0
JM
573 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
574 if (gcode->has_letter(i+'X')) {
575 float acc = gcode->get_value(i+'X'); // mm/s^2
576 // enforce positive
577 if (acc <= 0.0F) acc = NAN;
578 actuators[i]->set_acceleration(acc);
579 }
c5fe1787 580 }
d4ee6ee2
JM
581 break;
582
9502f9d5 583 case 205: // M205 Xnnn - set junction deviation, Z - set Z junction deviation, Snnn - Set minimum planner speed, Ynnn - set minimum step rate
4710532a
JM
584 if (gcode->has_letter('X')) {
585 float jd = gcode->get_value('X');
d4ee6ee2 586 // enforce minimum
8b69c90d
JM
587 if (jd < 0.0F)
588 jd = 0.0F;
4710532a 589 THEKERNEL->planner->junction_deviation = jd;
d4ee6ee2 590 }
107df03f
JM
591 if (gcode->has_letter('Z')) {
592 float jd = gcode->get_value('Z');
593 // enforce minimum, -1 disables it and uses regular junction deviation
594 if (jd < -1.0F)
595 jd = -1.0F;
596 THEKERNEL->planner->z_junction_deviation = jd;
597 }
4710532a
JM
598 if (gcode->has_letter('S')) {
599 float mps = gcode->get_value('S');
8b69c90d
JM
600 // enforce minimum
601 if (mps < 0.0F)
602 mps = 0.0F;
4710532a 603 THEKERNEL->planner->minimum_planner_speed = mps;
8b69c90d 604 }
d4ee6ee2 605 break;
98761c28 606
7369629d 607 case 220: // M220 - speed override percentage
4710532a 608 if (gcode->has_letter('S')) {
1ad23cd3 609 float factor = gcode->get_value('S');
98761c28 610 // enforce minimum 10% speed
da947c62
MM
611 if (factor < 10.0F)
612 factor = 10.0F;
613 // enforce maximum 10x speed
614 if (factor > 1000.0F)
615 factor = 1000.0F;
616
617 seconds_per_minute = 6000.0F / factor;
03b01bac 618 } else {
9ef9f45b 619 gcode->stream->printf("Speed factor at %6.2f %%\n", 6000.0F / seconds_per_minute);
7369629d 620 }
b4f56013 621 break;
ec4773e5 622
494dc541 623 case 400: // wait until all moves are done up to this point
314ab8f7 624 THEKERNEL->conveyor->wait_for_empty_queue();
494dc541
JM
625 break;
626
33e4cc02 627 case 500: // M500 saves some volatile settings to config override file
b7cd847e 628 case 503: { // M503 just prints the settings
78d0e16a 629 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm);
29e809e0 630 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f Z%1.5f\n", default_acceleration, actuators[Z_AXIS]->get_acceleration()); // TODO only print XYZ if not NAN
c9cc5e06 631 gcode->stream->printf(";X- Junction Deviation, Z- Z junction deviation, S - Minimum Planner speed mm/sec:\nM205 X%1.5f Z%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->z_junction_deviation, THEKERNEL->planner->minimum_planner_speed);
29e809e0
JM
632 gcode->stream->printf(";Max feedrates in mm/sec, XYZ cartesian, ABC actuator:\nM203 X%1.5f Y%1.5f Z%1.5f A%1.5f B%1.5f C%1.5f",
633 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
634 actuators[X_AXIS]->get_max_rate(), actuators[Y_AXIS]->get_max_rate(), actuators[Z_AXIS]->get_max_rate());
807b9b57 635 gcode->stream->printf("\n");
b7cd847e
JM
636
637 // get or save any arm solution specific optional values
638 BaseSolution::arm_options_t options;
639 if(arm_solution->get_optional(options) && !options.empty()) {
640 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
4710532a 641 for(auto &i : options) {
b7cd847e
JM
642 gcode->stream->printf(" %c%1.4f", i.first, i.second);
643 }
644 gcode->stream->printf("\n");
645 }
6e92ab91 646
807b9b57
JM
647 // save wcs_offsets and current_wcs
648 // TODO this may need to be done whenever they change to be compliant
649 gcode->stream->printf(";WCS settings\n");
40fd5d98 650 gcode->stream->printf("%s\n", wcs2gcode(current_wcs).c_str());
03b01bac 651 int n = 1;
807b9b57 652 for(auto &i : wcs_offsets) {
2791c829 653 if(i != wcs_t(0, 0, 0)) {
807b9b57
JM
654 float x, y, z;
655 std::tie(x, y, z) = i;
40fd5d98 656 gcode->stream->printf("G10 L2 P%d X%f Y%f Z%f ; %s\n", n, x, y, z, wcs2gcode(n-1).c_str());
2791c829 657 }
807b9b57
JM
658 ++n;
659 }
3aad33c7
JM
660 if(save_g92) {
661 // linuxcnc saves G92, so we do too if configured, default is to not save to maintain backward compatibility
662 // also it needs to be used to set Z0 on rotary deltas as M206/306 can't be used, so saving it is necessary in that case
663 if(g92_offset != wcs_t(0, 0, 0)) {
664 float x, y, z;
665 std::tie(x, y, z) = g92_offset;
666 gcode->stream->printf("G92.3 X%f Y%f Z%f\n", x, y, z); // sets G92 to the specified values
667 }
67a649dd
JM
668 }
669 }
807b9b57 670 break;
33e4cc02 671
b7cd847e 672 case 665: { // M665 set optional arm solution variables based on arm solution.
ebc75fc6 673 // the parameter args could be any letter each arm solution only accepts certain ones
03b01bac 674 BaseSolution::arm_options_t options = gcode->get_args();
ebc75fc6
JM
675 options.erase('S'); // don't include the S
676 options.erase('U'); // don't include the U
677 if(options.size() > 0) {
678 // set the specified options
679 arm_solution->set_optional(options);
680 }
681 options.clear();
b7cd847e 682 if(arm_solution->get_optional(options)) {
ebc75fc6 683 // foreach optional value
4710532a 684 for(auto &i : options) {
b7cd847e
JM
685 // print all current values of supported options
686 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
5523c05d 687 gcode->add_nl = true;
ec4773e5
JM
688 }
689 }
ec4773e5 690
4a839bea 691 if(gcode->has_letter('S')) { // set delta segments per second, not saved by M500
4710532a 692 this->delta_segments_per_second = gcode->get_value('S');
4a839bea
JM
693 gcode->stream->printf("Delta segments set to %8.4f segs/sec\n", this->delta_segments_per_second);
694
03b01bac 695 } else if(gcode->has_letter('U')) { // or set mm_per_line_segment, not saved by M500
4a839bea
JM
696 this->mm_per_line_segment = gcode->get_value('U');
697 this->delta_segments_per_second = 0;
698 gcode->stream->printf("mm per line segment set to %8.4f\n", this->mm_per_line_segment);
ec29d378 699 }
4a839bea 700
ec4773e5 701 break;
b7cd847e 702 }
6989211c 703 }
494dc541
JM
704 }
705
29e809e0
JM
706 if( motion_mode != NONE) {
707 process_move(gcode, motion_mode);
00e607c7 708 }
6bc4a00a 709
c2f7c261
JM
710 next_command_is_MCS = false; // must be on same line as G0 or G1
711}
350c8a60 712
5d2319a9 713// process a G0/G1/G2/G3
29e809e0 714void Robot::process_move(Gcode *gcode, enum MOTION_MODE_T motion_mode)
c2f7c261 715{
2791c829 716 // we have a G0/G1/G2/G3 so extract parameters and apply offsets to get machine coordinate target
29e809e0
JM
717 float param[4]{NAN, NAN, NAN, NAN};
718
719 // process primary axis
350c8a60
JM
720 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
721 char letter= 'X'+i;
722 if( gcode->has_letter(letter) ) {
723 param[i] = this->to_millimeters(gcode->get_value(letter));
350c8a60
JM
724 }
725 }
6bc4a00a 726
c2f7c261 727 float offset[3]{0,0,0};
4710532a
JM
728 for(char letter = 'I'; letter <= 'K'; letter++) {
729 if( gcode->has_letter(letter) ) {
730 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
c2885de8
JM
731 }
732 }
00e607c7 733
c2f7c261 734 // calculate target in machine coordinates (less compensation transform which needs to be done after segmentation)
29e809e0
JM
735 float target[n_motors];
736 memcpy(target, last_milestone, n_motors*sizeof(float));
737
350c8a60
JM
738 if(!next_command_is_MCS) {
739 if(this->absolute_mode) {
c2f7c261
JM
740 // apply wcs offsets and g92 offset and tool offset
741 if(!isnan(param[X_AXIS])) {
742 target[X_AXIS]= param[X_AXIS] + std::get<X_AXIS>(wcs_offsets[current_wcs]) - std::get<X_AXIS>(g92_offset) + std::get<X_AXIS>(tool_offset);
743 }
744
745 if(!isnan(param[Y_AXIS])) {
746 target[Y_AXIS]= param[Y_AXIS] + std::get<Y_AXIS>(wcs_offsets[current_wcs]) - std::get<Y_AXIS>(g92_offset) + std::get<Y_AXIS>(tool_offset);
747 }
748
749 if(!isnan(param[Z_AXIS])) {
750 target[Z_AXIS]= param[Z_AXIS] + std::get<Z_AXIS>(wcs_offsets[current_wcs]) - std::get<Z_AXIS>(g92_offset) + std::get<Z_AXIS>(tool_offset);
751 }
350c8a60
JM
752
753 }else{
754 // they are deltas from the last_milestone if specified
755 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
c2f7c261 756 if(!isnan(param[i])) target[i] = param[i] + last_milestone[i];
a6bbe768
JM
757 }
758 }
759
350c8a60 760 }else{
c2f7c261
JM
761 // already in machine coordinates, we do not add tool offset for that
762 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
763 if(!isnan(param[i])) target[i] = param[i];
764 }
c2885de8 765 }
6bc4a00a 766
29e809e0
JM
767 // process extruder parameters, for active extruder only (only one active extruder at a time)
768 selected_extruder= 0;
769 if(gcode->has_letter('E')) {
770 for (int i = E_AXIS; i < n_motors; ++i) {
771 // find first selected extruder
772 if(actuators[i]->is_selected()) {
773 param[E_AXIS]= gcode->get_value('E');
774 selected_extruder= i;
775 break;
776 }
777 }
778 }
779
780 // do E for the selected extruder
781 float delta_e= NAN;
782 if(selected_extruder > 0 && !isnan(param[E_AXIS])) {
783 if(this->e_absolute_mode) {
784 target[selected_extruder]= param[E_AXIS];
785 delta_e= target[selected_extruder] - last_milestone[selected_extruder];
786 }else{
787 delta_e= param[E_AXIS];
788 target[selected_extruder] = delta_e + last_milestone[selected_extruder];
789 }
790 }
791
4710532a 792 if( gcode->has_letter('F') ) {
29e809e0 793 if( motion_mode == SEEK )
da947c62 794 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 795 else
da947c62 796 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 797 }
6bc4a00a 798
350c8a60 799 bool moved= false;
29e809e0
JM
800
801 // Perform any physical actions
802 switch(motion_mode) {
803 case NONE: break;
804
805 case SEEK:
806 moved= this->append_line(gcode, target, this->seek_rate / seconds_per_minute, delta_e );
350c8a60 807 break;
29e809e0
JM
808
809 case LINEAR:
810 moved= this->append_line(gcode, target, this->feed_rate / seconds_per_minute, delta_e );
350c8a60 811 break;
29e809e0
JM
812
813 case CW_ARC:
814 case CCW_ARC:
815 moved= this->compute_arc(gcode, offset, target, motion_mode);
350c8a60 816 break;
4cff3ded 817 }
13e4a3f9 818
c2f7c261
JM
819 if(moved) {
820 // set last_milestone to the calculated target
821 memcpy(this->last_milestone, target, sizeof(this->last_milestone));
350c8a60 822 }
edac9072
AW
823}
824
a6bbe768 825// reset the machine position for all axis. Used for homing.
f6934849
JM
826// During homing compensation is turned off (actually not used as it drives steppers directly)
827// once homed and reset_axis called compensation is used for the move to origin and back off home if enabled,
828// so in those cases the final position is compensated.
cef9acea
JM
829void Robot::reset_axis_position(float x, float y, float z)
830{
f6934849 831 // these are set to the same as compensation was not used to get to the current position
c2f7c261
JM
832 last_machine_position[X_AXIS]= last_milestone[X_AXIS] = x;
833 last_machine_position[Y_AXIS]= last_milestone[Y_AXIS] = y;
834 last_machine_position[Z_AXIS]= last_milestone[Z_AXIS] = z;
cef9acea 835
a6bbe768 836 // now set the actuator positions to match
807b9b57 837 ActuatorCoordinates actuator_pos;
c2f7c261 838 arm_solution->cartesian_to_actuator(this->last_machine_position, actuator_pos);
29e809e0 839 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
cef9acea
JM
840 actuators[i]->change_last_milestone(actuator_pos[i]);
841}
842
807b9b57 843// Reset the position for an axis (used in homing)
4710532a
JM
844void Robot::reset_axis_position(float position, int axis)
845{
c2f7c261
JM
846 last_milestone[axis] = position;
847 reset_axis_position(last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
4cff3ded
AW
848}
849
932a3995 850// similar to reset_axis_position but directly sets the actuator positions in actuators units (eg mm for cartesian, degrees for rotary delta)
93f20a8c
JM
851// then sets the axis positions to match. currently only called from Endstops.cpp
852void Robot::reset_actuator_position(const ActuatorCoordinates &ac)
586cc733 853{
29e809e0 854 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
93f20a8c 855 actuators[i]->change_last_milestone(ac[i]);
586cc733
JM
856
857 // now correct axis positions then recorrect actuator to account for rounding
858 reset_position_from_current_actuator_position();
859}
860
a6bbe768 861// Use FK to find out where actuator is and reset to match
728477c4
JM
862void Robot::reset_position_from_current_actuator_position()
863{
807b9b57 864 ActuatorCoordinates actuator_pos;
29e809e0 865 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
58587001 866 // NOTE actuator::current_position is curently NOT the same as actuator::last_milestone after an abrupt abort
807b9b57
JM
867 actuator_pos[i] = actuators[i]->get_current_position();
868 }
58587001
JM
869
870 // discover machine position from where actuators actually are
c2f7c261
JM
871 arm_solution->actuator_to_cartesian(actuator_pos, last_machine_position);
872 // FIXME problem is this includes any compensation transform, and without an inverse compensation we cannot get a correct last_milestone
873 memcpy(last_milestone, last_machine_position, sizeof last_milestone);
cf91d4f3 874
58587001
JM
875 // now reset actuator::last_milestone, NOTE this may lose a little precision as FK is not always entirely accurate.
876 // NOTE This is required to sync the machine position with the actuator position, we do a somewhat redundant cartesian_to_actuator() call
932a3995 877 // to get everything in perfect sync.
7baae81a 878 arm_solution->cartesian_to_actuator(last_machine_position, actuator_pos);
29e809e0 879 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
7baae81a 880 actuators[i]->change_last_milestone(actuator_pos[i]);
728477c4 881}
edac9072 882
c2f7c261
JM
883// Convert target (in machine coordinates) from millimeters to steps, and append this to the planner
884// target is in machine coordinates without the compensation transform, however we save a last_machine_position that includes
885// all transforms and is what we actually convert to actuator positions
c8bac202 886bool Robot::append_milestone(Gcode *gcode, const float target[], float rate_mm_s)
df6a30f2 887{
29e809e0
JM
888 float deltas[n_motors];
889 float transformed_target[n_motors]; // adjust target for bed compensation and WCS offsets
890 float unit_vec[N_PRIMARY_AXIS];
891 float millimeters_of_travel= 0;
df6a30f2 892
166836be
JM
893 // catch negative or zero feed rates and return the same error as GRBL does
894 if(rate_mm_s <= 0.0F) {
895 gcode->is_error= true;
896 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
897 return false;
898 }
899
3632a517 900 // unity transform by default
29e809e0 901 memcpy(transformed_target, target, n_motors*sizeof(float));
5e45206a 902
350c8a60
JM
903 // check function pointer and call if set to transform the target to compensate for bed
904 if(compensationTransform) {
905 // some compensation strategies can transform XYZ, some just change Z
906 compensationTransform(transformed_target);
00e607c7 907 }
807b9b57 908
29e809e0
JM
909 bool move= false;
910 float sos= 0;
911
a6bbe768 912 // find distance moved by each axis, use transformed target from the current machine position
29e809e0
JM
913 for (size_t i = 0; i <= n_motors; i++) {
914 deltas[i] = transformed_target[i] - last_machine_position[i];
915 if(deltas[i] == 0) continue;
916 // at least one non zero delta
917 move = true;
918 if(i <= Z_AXIS) {
919 sos += powf(deltas[i], 2);
920 }
3632a517 921 }
aab6cbba 922
29e809e0
JM
923 // nothing moved
924 if(!move) return false;
925
926 // set if none of the primary axis is moving
927 bool auxilliary_move= false;
928 if(sos > 0.0F){
929 millimeters_of_travel= sqrtf(sos);
930
931 } else if(n_motors >= E_AXIS) { // if we have more than 3 axis/actuators (XYZE)
932 // non primary axis move (like extrude)
933 // select the biggest one (usually just E)
934 auto mi= std::max_element(&deltas[E_AXIS], &deltas[n_motors], [](float a, float b){ return std::abs(a) < std::abs(b); } );
935 millimeters_of_travel= std::abs(*mi);
936 auxilliary_move= true;
937
938 }else{
939 // shouldn't happen but just in case
940 return false;
941 }
df6a30f2 942
a6bbe768
JM
943 // it is unlikely but we need to protect against divide by zero, so ignore insanely small moves here
944 // as the last milestone won't be updated we do not actually lose any moves as they will be accounted for in the next move
350c8a60 945 if(millimeters_of_travel < 0.00001F) return false;
a6bbe768
JM
946
947 // this is the machine position
29e809e0 948 memcpy(this->last_machine_position, transformed_target, n_motors*sizeof(float));
a6bbe768 949
29e809e0
JM
950 if(!auxilliary_move) {
951 // find distance unit vector for primary axis only
952 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
953 unit_vec[i] = deltas[i] / millimeters_of_travel;
df6a30f2 954
29e809e0
JM
955 // Do not move faster than the configured cartesian limits for XYZ
956 for (int axis = X_AXIS; axis <= Z_AXIS; axis++) {
957 if ( max_speeds[axis] > 0 ) {
958 float axis_speed = fabsf(unit_vec[axis] * rate_mm_s);
df6a30f2 959
29e809e0
JM
960 if (axis_speed > max_speeds[axis])
961 rate_mm_s *= ( max_speeds[axis] / axis_speed );
962 }
7b470506
AW
963 }
964 }
4cff3ded 965
c2f7c261 966 // find actuator position given the machine position, use actual adjusted target
29e809e0 967 ActuatorCoordinates actuator_pos;
c2f7c261 968 arm_solution->cartesian_to_actuator( this->last_machine_position, actuator_pos );
df6a30f2 969
13ad7234 970#if MAX_ROBOT_ACTUATORS > 3
29e809e0 971 // for the extruders just copy the position
13ad7234 972 for (size_t i = E_AXIS; i < k_max_actuators; i++) {
29e809e0
JM
973 actuator_pos[i]= last_machine_position[i];
974 if(!isnan(this->e_scale)) {
975 // NOTE this relies on the fact only one extruder is active at a time
976 // scale for volumetric or flow rate
977 // TODO is this correct? scaling the absolute target? what if the scale changes?
978 actuator_pos[i] *= this->e_scale;
979 }
980 }
981#endif
982
983 // use default acceleration to start with
984 float acceleration = default_acceleration;
985
03b01bac 986 float isecs = rate_mm_s / millimeters_of_travel;
29e809e0 987
df6a30f2 988 // check per-actuator speed limits
29e809e0
JM
989 for (size_t actuator = 0; actuator < n_motors; actuator++) {
990 float d = fabsf(actuator_pos[actuator] - actuators[actuator]->get_last_milestone());
991 if(d == 0 || !actuators[actuator]->is_selected()) continue; // no movement for this actuator
992
993 float actuator_rate= d * isecs;
03b01bac 994 if (actuator_rate > actuators[actuator]->get_max_rate()) {
3494f3d0 995 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
03b01bac 996 isecs = rate_mm_s / millimeters_of_travel;
928467c0 997 }
29e809e0
JM
998
999 // adjust acceleration to lowest found in an active axis
1000 float ma = actuators[actuator]->get_acceleration(); // in mm/sec²
1001 if(!isnan(ma)) { // if axis does not have acceleration set then it uses the default_acceleration
1002 float ca = fabsf((deltas[actuator]/millimeters_of_travel) * acceleration);
1003 if (ca > ma) {
1004 acceleration *= ( ma / ca );
1005 }
1006 }
928467c0
JM
1007 }
1008
edac9072 1009 // Append the block to the planner
29e809e0 1010 THEKERNEL->planner->append_block( actuator_pos, rate_mm_s, millimeters_of_travel, auxilliary_move? nullptr : unit_vec, acceleration );
4cff3ded 1011
350c8a60 1012 return true;
4cff3ded
AW
1013}
1014
c8bac202 1015// Used to plan a single move used by things like endstops when homing, zprobe, extruder retracts etc.
13ad7234
JM
1016// TODO this pretty much duplicates append_milestone, so try to refactor it away.
1017bool Robot::solo_move(const float *delta, float rate_mm_s, uint8_t naxis)
c8bac202
JM
1018{
1019 if(THEKERNEL->is_halted()) return false;
1020
1021 // catch negative or zero feed rates and return the same error as GRBL does
1022 if(rate_mm_s <= 0.0F) {
1023 return false;
1024 }
1025
13ad7234
JM
1026 bool move= false;
1027 float sos= 0;
1028
1029 // find distance moved by each axis
1030 for (size_t i = 0; i <= naxis; i++) {
1031 if(delta[i] == 0) continue;
1032 // at least one non zero delta
1033 move = true;
1034 sos += powf(delta[i], 2);
1035 }
1036
1037 // nothing moved
1038 if(!move) return false;
c8bac202
JM
1039
1040 // it is unlikely but we need to protect against divide by zero, so ignore insanely small moves here
1041 // as the last milestone won't be updated we do not actually lose any moves as they will be accounted for in the next move
13ad7234
JM
1042 if(sos < 0.00001F) return false;
1043
1044 float millimeters_of_travel= sqrtf(sos);
c8bac202
JM
1045
1046 // this is the new machine position
13ad7234 1047 for (int axis = 0; axis <= naxis; axis++) {
c8bac202
JM
1048 this->last_machine_position[axis] += delta[axis];
1049 }
1050
13ad7234
JM
1051 // find actuator position given the machine position
1052 ActuatorCoordinates actuator_pos;
1053 arm_solution->cartesian_to_actuator( this->last_machine_position, actuator_pos );
c8bac202 1054
13ad7234
JM
1055 // for the extruders just copy the position, need to copy all possible actuators
1056 for (size_t i = N_PRIMARY_AXIS; i < k_max_actuators; i++) {
1057 actuator_pos[i]= last_machine_position[i];
1058 if(!isnan(this->e_scale)) {
1059 // NOTE this relies on the fact only one extruder is active at a time
1060 // scale for volumetric or flow rate
1061 // TODO is this correct? scaling the absolute target? what if the scale changes?
1062 actuator_pos[i] *= this->e_scale;
c8bac202
JM
1063 }
1064 }
1065
29e809e0
JM
1066 // use default acceleration to start with
1067 float acceleration = default_acceleration;
c8bac202 1068 float isecs = rate_mm_s / millimeters_of_travel;
29e809e0 1069
c8bac202 1070 // check per-actuator speed limits
13ad7234 1071 for (size_t actuator = 0; actuator < naxis; actuator++) {
29e809e0
JM
1072 float d = fabsf(actuator_pos[actuator] - actuators[actuator]->get_last_milestone());
1073 if(d == 0) continue; // no movement for this actuator
1074
1075 float actuator_rate= d * isecs;
c8bac202
JM
1076 if (actuator_rate > actuators[actuator]->get_max_rate()) {
1077 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
1078 isecs = rate_mm_s / millimeters_of_travel;
1079 }
c8bac202 1080
29e809e0
JM
1081 // adjust acceleration to lowest found in an active axis
1082 float ma = actuators[actuator]->get_acceleration(); // in mm/sec²
1083 if(!isnan(ma)) { // if axis does not have acceleration set then it uses the default_acceleration
1084 float ca = fabsf((d/millimeters_of_travel) * acceleration);
1085 if (ca > ma) {
1086 acceleration *= ( ma / ca );
1087 }
1088 }
1089 }
c8bac202 1090 // Append the block to the planner
29e809e0 1091 THEKERNEL->planner->append_block(actuator_pos, rate_mm_s, millimeters_of_travel, nullptr, acceleration);
c8bac202
JM
1092
1093 return true;
1094}
1095
edac9072 1096// Append a move to the queue ( cutting it into segments if needed )
29e809e0 1097bool Robot::append_line(Gcode *gcode, const float target[], float rate_mm_s, float delta_e)
4710532a 1098{
29e809e0
JM
1099 // by default there is no e scaling required
1100 this->e_scale= NAN;
1101
1102 // Find out the distance for this move in XYZ in MCS
1103 float millimeters_of_travel = sqrtf(powf( target[X_AXIS] - last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - last_milestone[Z_AXIS], 2 ));
1104
1105 if(millimeters_of_travel < 0.00001F) { // we have no movement in XYZ, probably E only
1106 return this->append_milestone(gcode, target, rate_mm_s);
1107 }
1108
1109 /*
1110 For extruders, we need to do some extra work...
1111 if we have volumetric limits enabled we calculate the volume for this move and limit the rate if it exceeds the stated limit.
1112 Note we need to be using volumetric extrusion for this to work as Ennn is in mm³ not mm
1113 We ask Extruder to do all the work but we need to pass in the relevant data.
1114 NOTE we need to do this before we segment the line (for deltas)
1115 This also sets any scaling due to flow rate and volumetric if a G1
1116 */
1117 if(!isnan(delta_e) && gcode->has_g && gcode->g == 1) {
1118 float data[2]= {delta_e, rate_mm_s / millimeters_of_travel};
d2adef5e 1119 if(PublicData::set_value(extruder_checksum, target_checksum, data)) {
29e809e0
JM
1120 rate_mm_s *= data[1]; // adjust the feedrate
1121 // we may need to scale the amount moved too
1122 this->e_scale= data[0];
d2adef5e
JM
1123 }
1124 }
1125
c2f7c261 1126 // We cut the line into smaller segments. This is only needed on a cartesian robot for zgrid, but always necessary for robots with rotational axes like Deltas.
3b4b05b8
JM
1127 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second
1128 // The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
4a0c8e14 1129 uint16_t segments;
5984acdf 1130
a3e1326a 1131 if(this->disable_segmentation || (!segment_z_moves && !gcode->has_letter('X') && !gcode->has_letter('Y'))) {
778093ce
JM
1132 segments= 1;
1133
1134 } else if(this->delta_segments_per_second > 1.0F) {
4a0c8e14
JM
1135 // enabled if set to something > 1, it is set to 0.0 by default
1136 // segment based on current speed and requested segments per second
1137 // the faster the travel speed the fewer segments needed
1138 // NOTE rate is mm/sec and we take into account any speed override
29e809e0 1139 float seconds = millimeters_of_travel / rate_mm_s;
9502f9d5 1140 segments = max(1.0F, ceilf(this->delta_segments_per_second * seconds));
4a0c8e14 1141 // TODO if we are only moving in Z on a delta we don't really need to segment at all
5984acdf 1142
4710532a
JM
1143 } else {
1144 if(this->mm_per_line_segment == 0.0F) {
1145 segments = 1; // don't split it up
1146 } else {
29e809e0 1147 segments = ceilf( millimeters_of_travel / this->mm_per_line_segment);
4a0c8e14
JM
1148 }
1149 }
5984acdf 1150
350c8a60 1151 bool moved= false;
4710532a 1152 if (segments > 1) {
2ba859c9 1153 // A vector to keep track of the endpoint of each segment
29e809e0
JM
1154 float segment_delta[n_motors];
1155 float segment_end[n_motors];
1156 memcpy(segment_end, last_milestone, n_motors*sizeof(float));
2ba859c9
MM
1157
1158 // How far do we move each segment?
29e809e0 1159 for (int i = 0; i < n_motors; i++)
2791c829 1160 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
4cff3ded 1161
c8e0fb15
MM
1162 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
1163 // We always add another point after this loop so we stop at segments-1, ie i < segments
4710532a 1164 for (int i = 1; i < segments; i++) {
350c8a60 1165 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
29e809e0
JM
1166 for (int i = 0; i < n_motors; i++)
1167 segment_end[i] += segment_delta[i];
2ba859c9
MM
1168
1169 // Append the end of this segment to the queue
350c8a60
JM
1170 bool b= this->append_milestone(gcode, segment_end, rate_mm_s);
1171 moved= moved || b;
2ba859c9 1172 }
4cff3ded 1173 }
5984acdf
MM
1174
1175 // Append the end of this full move to the queue
350c8a60 1176 if(this->append_milestone(gcode, target, rate_mm_s)) moved= true;
2134bcf2 1177
a6bbe768 1178 this->next_command_is_MCS = false; // always reset this
00e607c7 1179
350c8a60 1180 return moved;
4cff3ded
AW
1181}
1182
4cff3ded 1183
edac9072 1184// Append an arc to the queue ( cutting it into segments as needed )
350c8a60 1185bool Robot::append_arc(Gcode * gcode, const float target[], const float offset[], float radius, bool is_clockwise )
4710532a 1186{
aab6cbba 1187
edac9072 1188 // Scary math
2ba859c9
MM
1189 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
1190 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
1191 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1ad23cd3
MM
1192 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
1193 float r_axis1 = -offset[this->plane_axis_1];
1194 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
1195 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
aab6cbba 1196
51871fb8 1197 // Patch from GRBL Firmware - Christoph Baumann 04072015
aab6cbba 1198 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
fb4c9d09 1199 float angular_travel = atan2f(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
5fa0c173 1200 if (is_clockwise) { // Correct atan2 output per direction
29e809e0 1201 if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= (2 * PI); }
5fa0c173 1202 } else {
29e809e0 1203 if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += (2 * PI); }
4710532a 1204 }
aab6cbba 1205
edac9072 1206 // Find the distance for this gcode
29e809e0 1207 float millimeters_of_travel = hypotf(angular_travel * radius, fabsf(linear_travel));
436a2cd1 1208
edac9072 1209 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
29e809e0 1210 if( millimeters_of_travel < 0.00001F ) {
350c8a60 1211 return false;
4710532a 1212 }
5dcb2ff3 1213
83c6e067
RA
1214 // limit segments by maximum arc error
1215 float arc_segment = this->mm_per_arc_segment;
4d0f60a9 1216 if ((this->mm_max_arc_error > 0) && (2 * radius > this->mm_max_arc_error)) {
83c6e067
RA
1217 float min_err_segment = 2 * sqrtf((this->mm_max_arc_error * (2 * radius - this->mm_max_arc_error)));
1218 if (this->mm_per_arc_segment < min_err_segment) {
1219 arc_segment = min_err_segment;
1220 }
1221 }
5984acdf 1222 // Figure out how many segments for this gcode
29e809e0 1223 uint16_t segments = ceilf(millimeters_of_travel / arc_segment);
aab6cbba 1224
29e809e0 1225 //printf("Radius %f - Segment Length %f - Number of Segments %d\r\n",radius,arc_segment,segments); // Testing Purposes ONLY
4710532a
JM
1226 float theta_per_segment = angular_travel / segments;
1227 float linear_per_segment = linear_travel / segments;
aab6cbba
AW
1228
1229 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
1230 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
1231 r_T = [cos(phi) -sin(phi);
1232 sin(phi) cos(phi] * r ;
1233 For arc generation, the center of the circle is the axis of rotation and the radius vector is
1234 defined from the circle center to the initial position. Each line segment is formed by successive
1235 vector rotations. This requires only two cos() and sin() computations to form the rotation
1236 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1ad23cd3 1237 all float numbers are single precision on the Arduino. (True float precision will not have
aab6cbba
AW
1238 round off issues for CNC applications.) Single precision error can accumulate to be greater than
1239 tool precision in some cases. Therefore, arc path correction is implemented.
1240
1241 Small angle approximation may be used to reduce computation overhead further. This approximation
1242 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
1243 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
1244 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
1245 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
1246 issue for CNC machines with the single precision Arduino calculations.
1247 This approximation also allows mc_arc to immediately insert a line segment into the planner
1248 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
1249 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
1250 This is important when there are successive arc motions.
1251 */
1252 // Vector rotation matrix values
4710532a 1253 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1ad23cd3 1254 float sin_T = theta_per_segment;
aab6cbba 1255
1ad23cd3
MM
1256 float arc_target[3];
1257 float sin_Ti;
1258 float cos_Ti;
1259 float r_axisi;
aab6cbba
AW
1260 uint16_t i;
1261 int8_t count = 0;
1262
1263 // Initialize the linear axis
2ba859c9 1264 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
aab6cbba 1265
350c8a60 1266 bool moved= false;
4710532a 1267 for (i = 1; i < segments; i++) { // Increment (segments-1)
350c8a60 1268 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
aab6cbba 1269
b66fb830 1270 if (count < this->arc_correction ) {
4710532a
JM
1271 // Apply vector rotation matrix
1272 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
1273 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
1274 r_axis1 = r_axisi;
1275 count++;
aab6cbba 1276 } else {
4710532a
JM
1277 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
1278 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
1279 cos_Ti = cosf(i * theta_per_segment);
1280 sin_Ti = sinf(i * theta_per_segment);
1281 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
1282 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
1283 count = 0;
aab6cbba
AW
1284 }
1285
1286 // Update arc_target location
1287 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
1288 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
1289 arc_target[this->plane_axis_2] += linear_per_segment;
edac9072
AW
1290
1291 // Append this segment to the queue
350c8a60
JM
1292 bool b= this->append_milestone(gcode, arc_target, this->feed_rate / seconds_per_minute);
1293 moved= moved || b;
aab6cbba 1294 }
edac9072 1295
aab6cbba 1296 // Ensure last segment arrives at target location.
350c8a60
JM
1297 if(this->append_milestone(gcode, target, this->feed_rate / seconds_per_minute)) moved= true;
1298
1299 return moved;
aab6cbba
AW
1300}
1301
edac9072 1302// Do the math for an arc and add it to the queue
29e809e0 1303bool Robot::compute_arc(Gcode * gcode, const float offset[], const float target[], enum MOTION_MODE_T motion_mode)
4710532a 1304{
aab6cbba
AW
1305
1306 // Find the radius
13addf09 1307 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
aab6cbba
AW
1308
1309 // Set clockwise/counter-clockwise sign for mc_arc computations
1310 bool is_clockwise = false;
29e809e0 1311 if( motion_mode == CW_ARC ) {
4710532a
JM
1312 is_clockwise = true;
1313 }
aab6cbba
AW
1314
1315 // Append arc
350c8a60 1316 return this->append_arc(gcode, target, offset, radius, is_clockwise );
aab6cbba
AW
1317}
1318
1319
4710532a
JM
1320float Robot::theta(float x, float y)
1321{
1322 float t = atanf(x / fabs(y));
1323 if (y > 0) {
1324 return(t);
1325 } else {
1326 if (t > 0) {
29e809e0 1327 return(PI - t);
4710532a 1328 } else {
29e809e0 1329 return(-PI - t);
4710532a
JM
1330 }
1331 }
4cff3ded
AW
1332}
1333
4710532a
JM
1334void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
1335{
4cff3ded
AW
1336 this->plane_axis_0 = axis_0;
1337 this->plane_axis_1 = axis_1;
1338 this->plane_axis_2 = axis_2;
1339}
1340
fae93525 1341void Robot::clearToolOffset()
4710532a 1342{
c2f7c261 1343 this->tool_offset= wcs_t(0,0,0);
fae93525
JM
1344}
1345
1346void Robot::setToolOffset(const float offset[3])
1347{
c2f7c261 1348 this->tool_offset= wcs_t(offset[0], offset[1], offset[2]);
5966b7d0
AT
1349}
1350
0ec2f63a
JM
1351float Robot::get_feed_rate() const
1352{
1353 return THEKERNEL->gcode_dispatch->get_modal_command() == 0 ? seek_rate : feed_rate;
1354}