reset axis before trying to home
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
CommitLineData
df27a6a3 1/*
aab6cbba 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
5673fe39 10
29e809e0 11#include "Robot.h"
4cff3ded 12#include "Planner.h"
3fceb8eb 13#include "Conveyor.h"
5673fe39
MM
14#include "Pin.h"
15#include "StepperMotor.h"
16#include "Gcode.h"
5647f709 17#include "PublicDataRequest.h"
928467c0 18#include "PublicData.h"
4cff3ded
AW
19#include "arm_solutions/BaseSolution.h"
20#include "arm_solutions/CartesianSolution.h"
c41d6d95 21#include "arm_solutions/RotatableCartesianSolution.h"
2a06c415 22#include "arm_solutions/LinearDeltaSolution.h"
11a39396 23#include "arm_solutions/RotaryDeltaSolution.h"
bdaaa75d 24#include "arm_solutions/HBotSolution.h"
fff1e42d 25#include "arm_solutions/CoreXZSolution.h"
1217e470 26#include "arm_solutions/MorganSCARASolution.h"
61134a65 27#include "StepTicker.h"
7af0714f
JM
28#include "checksumm.h"
29#include "utils.h"
8d54c34c 30#include "ConfigValue.h"
5966b7d0 31#include "libs/StreamOutput.h"
dd0a7cfa 32#include "StreamOutputPool.h"
928467c0 33#include "ExtruderPublicAccess.h"
0ec2f63a 34#include "GcodeDispatch.h"
13ad7234 35#include "ActuatorCoordinates.h"
0ec2f63a 36
29e809e0
JM
37#include "mbed.h" // for us_ticker_read()
38#include "mri.h"
39
40#include <fastmath.h>
41#include <string>
42#include <algorithm>
43using std::string;
38bf9a1c 44
78d0e16a
MM
45#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
46#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
47#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
48#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
49#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
83c6e067 50#define mm_max_arc_error_checksum CHECKSUM("mm_max_arc_error")
78d0e16a
MM
51#define arc_correction_checksum CHECKSUM("arc_correction")
52#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
53#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
54#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
a3e1326a 55#define segment_z_moves_checksum CHECKSUM("segment_z_moves")
3aad33c7 56#define save_g92_checksum CHECKSUM("save_g92")
43424972
JM
57
58// arm solutions
78d0e16a
MM
59#define arm_solution_checksum CHECKSUM("arm_solution")
60#define cartesian_checksum CHECKSUM("cartesian")
61#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
62#define rostock_checksum CHECKSUM("rostock")
2a06c415 63#define linear_delta_checksum CHECKSUM("linear_delta")
11a39396 64#define rotary_delta_checksum CHECKSUM("rotary_delta")
78d0e16a
MM
65#define delta_checksum CHECKSUM("delta")
66#define hbot_checksum CHECKSUM("hbot")
67#define corexy_checksum CHECKSUM("corexy")
fff1e42d 68#define corexz_checksum CHECKSUM("corexz")
78d0e16a 69#define kossel_checksum CHECKSUM("kossel")
1217e470 70#define morgan_checksum CHECKSUM("morgan")
78d0e16a 71
78d0e16a
MM
72// new-style actuator stuff
73#define actuator_checksum CHEKCSUM("actuator")
74
75#define step_pin_checksum CHECKSUM("step_pin")
76#define dir_pin_checksum CHEKCSUM("dir_pin")
77#define en_pin_checksum CHECKSUM("en_pin")
78
79#define steps_per_mm_checksum CHECKSUM("steps_per_mm")
df6a30f2 80#define max_rate_checksum CHECKSUM("max_rate")
29e809e0
JM
81#define acceleration_checksum CHECKSUM("acceleration")
82#define z_acceleration_checksum CHECKSUM("z_acceleration")
78d0e16a
MM
83
84#define alpha_checksum CHECKSUM("alpha")
85#define beta_checksum CHECKSUM("beta")
86#define gamma_checksum CHECKSUM("gamma")
87
29e809e0
JM
88#define ARC_ANGULAR_TRAVEL_EPSILON 5E-7F // Float (radians)
89#define PI 3.14159265358979323846F // force to be float, do not use M_PI
5fa0c173 90
edac9072
AW
91// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
92// It takes care of cutting arcs into segments, same thing for line that are too long
93
4710532a
JM
94Robot::Robot()
95{
a1b7e9f0 96 this->inch_mode = false;
0e8b102e 97 this->absolute_mode = true;
29e809e0 98 this->e_absolute_mode = true;
4cff3ded 99 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
29e809e0
JM
100 memset(this->last_milestone, 0, sizeof last_milestone);
101 memset(this->last_machine_position, 0, sizeof last_machine_position);
0b804a41 102 this->arm_solution = NULL;
da947c62 103 seconds_per_minute = 60.0F;
fae93525 104 this->clearToolOffset();
03b01bac 105 this->compensationTransform = nullptr;
121094a5 106 this->get_e_scale_fnc= nullptr;
03b01bac
JM
107 this->wcs_offsets.fill(wcs_t(0.0F, 0.0F, 0.0F));
108 this->g92_offset = wcs_t(0.0F, 0.0F, 0.0F);
a6bbe768 109 this->next_command_is_MCS = false;
778093ce 110 this->disable_segmentation= false;
29e809e0 111 this->n_motors= 0;
4cff3ded
AW
112}
113
114//Called when the module has just been loaded
4710532a
JM
115void Robot::on_module_loaded()
116{
4cff3ded
AW
117 this->register_for_event(ON_GCODE_RECEIVED);
118
119 // Configuration
807b9b57 120 this->load_config();
da24d6ae
AW
121}
122
807b9b57
JM
123#define ACTUATOR_CHECKSUMS(X) { \
124 CHECKSUM(X "_step_pin"), \
125 CHECKSUM(X "_dir_pin"), \
126 CHECKSUM(X "_en_pin"), \
127 CHECKSUM(X "_steps_per_mm"), \
29e809e0
JM
128 CHECKSUM(X "_max_rate"), \
129 CHECKSUM(X "_acceleration") \
807b9b57 130}
5984acdf 131
807b9b57
JM
132void Robot::load_config()
133{
edac9072
AW
134 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
135 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
136 // To make adding those solution easier, they have their own, separate object.
5984acdf 137 // Here we read the config to find out which arm solution to use
0b804a41 138 if (this->arm_solution) delete this->arm_solution;
eda9facc 139 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
d149c730 140 // Note checksums are not const expressions when in debug mode, so don't use switch
98761c28 141 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
314ab8f7 142 this->arm_solution = new HBotSolution(THEKERNEL->config);
bdaaa75d 143
fff1e42d
JJ
144 } else if(solution_checksum == corexz_checksum) {
145 this->arm_solution = new CoreXZSolution(THEKERNEL->config);
146
2a06c415
JM
147 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
148 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
73a4e3c0 149
4710532a 150 } else if(solution_checksum == rotatable_cartesian_checksum) {
314ab8f7 151 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
b73a756d 152
11a39396
JM
153 } else if(solution_checksum == rotary_delta_checksum) {
154 this->arm_solution = new RotaryDeltaSolution(THEKERNEL->config);
c52b8675 155
1217e470
QH
156 } else if(solution_checksum == morgan_checksum) {
157 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
158
4710532a 159 } else if(solution_checksum == cartesian_checksum) {
314ab8f7 160 this->arm_solution = new CartesianSolution(THEKERNEL->config);
73a4e3c0 161
4710532a 162 } else {
314ab8f7 163 this->arm_solution = new CartesianSolution(THEKERNEL->config);
d149c730 164 }
73a4e3c0 165
6b661ab3
DP
166 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
167 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
168 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
169 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
b259f517 170 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.0f)->as_number();
4d0f60a9 171 this->mm_max_arc_error = THEKERNEL->config->value(mm_max_arc_error_checksum )->by_default( 0.01f)->as_number();
6b661ab3 172 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
78d0e16a 173
29e809e0 174 // in mm/sec but specified in config as mm/min
6b661ab3
DP
175 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
176 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
177 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
feb204be 178
a3e1326a 179 this->segment_z_moves = THEKERNEL->config->value(segment_z_moves_checksum )->by_default(true)->as_bool();
3aad33c7 180 this->save_g92 = THEKERNEL->config->value(save_g92_checksum )->by_default(false)->as_bool();
a3e1326a 181
29e809e0
JM
182 // Make our Primary XYZ StepperMotors
183 uint16_t const checksums[][6] = {
184 ACTUATOR_CHECKSUMS("alpha"), // X
185 ACTUATOR_CHECKSUMS("beta"), // Y
186 ACTUATOR_CHECKSUMS("gamma"), // Z
807b9b57 187 };
807b9b57 188
29e809e0
JM
189 // default acceleration setting, can be overriden with newer per axis settings
190 this->default_acceleration= THEKERNEL->config->value(acceleration_checksum)->by_default(100.0F )->as_number(); // Acceleration is in mm/s^2
191
192 // make each motor
193 for (size_t a = X_AXIS; a <= Z_AXIS; a++) {
807b9b57
JM
194 Pin pins[3]; //step, dir, enable
195 for (size_t i = 0; i < 3; i++) {
196 pins[i].from_string(THEKERNEL->config->value(checksums[a][i])->by_default("nc")->as_string())->as_output();
197 }
29e809e0
JM
198 StepperMotor *sm = new StepperMotor(pins[0], pins[1], pins[2]);
199 // register this motor (NB This must be 0,1,2) of the actuators array
200 uint8_t n= register_motor(sm);
201 if(n != a) {
202 // this is a fatal error
203 THEKERNEL->streams->printf("FATAL: motor %d does not match index %d\n", n, a);
204 __debugbreak();
205 }
78d0e16a 206
03b01bac 207 actuators[a]->change_steps_per_mm(THEKERNEL->config->value(checksums[a][3])->by_default(a == 2 ? 2560.0F : 80.0F)->as_number());
3702f300 208 actuators[a]->set_max_rate(THEKERNEL->config->value(checksums[a][4])->by_default(30000.0F)->as_number()/60.0F); // it is in mm/min and converted to mm/sec
29e809e0 209 actuators[a]->set_acceleration(THEKERNEL->config->value(checksums[a][5])->by_default(NAN)->as_number()); // mm/secs²
807b9b57 210 }
a84f0186 211
dd0a7cfa 212 check_max_actuator_speeds(); // check the configs are sane
df6a30f2 213
29e809e0
JM
214 // if we have not specified a z acceleration see if the legacy config was set
215 if(isnan(actuators[Z_AXIS]->get_acceleration())) {
216 float acc= THEKERNEL->config->value(z_acceleration_checksum)->by_default(NAN)->as_number(); // disabled by default
217 if(!isnan(acc)) {
218 actuators[Z_AXIS]->set_acceleration(acc);
219 }
220 }
221
975469ad
MM
222 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
223 // so the first move can be correct if homing is not performed
807b9b57 224 ActuatorCoordinates actuator_pos;
975469ad 225 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
29e809e0 226 for (size_t i = 0; i < n_motors; i++)
975469ad 227 actuators[i]->change_last_milestone(actuator_pos[i]);
5966b7d0
AT
228
229 //this->clearToolOffset();
4cff3ded
AW
230}
231
29e809e0
JM
232uint8_t Robot::register_motor(StepperMotor *motor)
233{
234 // register this motor with the step ticker
235 THEKERNEL->step_ticker->register_motor(motor);
236 if(n_motors >= k_max_actuators) {
237 // this is a fatal error
238 THEKERNEL->streams->printf("FATAL: too many motors, increase k_max_actuators\n");
239 __debugbreak();
240 }
2cd32d70
JM
241 actuators.push_back(motor);
242 return n_motors++;
29e809e0
JM
243}
244
212caccd
JM
245void Robot::push_state()
246{
03b01bac 247 bool am = this->absolute_mode;
29e809e0 248 bool em = this->e_absolute_mode;
03b01bac 249 bool im = this->inch_mode;
29e809e0 250 saved_state_t s(this->feed_rate, this->seek_rate, am, em, im, current_wcs);
212caccd
JM
251 state_stack.push(s);
252}
253
254void Robot::pop_state()
255{
03b01bac
JM
256 if(!state_stack.empty()) {
257 auto s = state_stack.top();
212caccd 258 state_stack.pop();
03b01bac
JM
259 this->feed_rate = std::get<0>(s);
260 this->seek_rate = std::get<1>(s);
261 this->absolute_mode = std::get<2>(s);
29e809e0
JM
262 this->e_absolute_mode = std::get<3>(s);
263 this->inch_mode = std::get<4>(s);
264 this->current_wcs = std::get<5>(s);
212caccd
JM
265 }
266}
267
34210908
JM
268std::vector<Robot::wcs_t> Robot::get_wcs_state() const
269{
270 std::vector<wcs_t> v;
0b8b81b6 271 v.push_back(wcs_t(current_wcs, MAX_WCS, 0));
34210908
JM
272 for(auto& i : wcs_offsets) {
273 v.push_back(i);
274 }
275 v.push_back(g92_offset);
276 v.push_back(tool_offset);
277 return v;
278}
279
e03f2747 280int Robot::print_position(uint8_t subcode, char *buf, size_t bufsize) const
2791c829
JM
281{
282 // M114.1 is a new way to do this (similar to how GRBL does it).
283 // it returns the realtime position based on the current step position of the actuators.
284 // this does require a FK to get a machine position from the actuator position
285 // and then invert all the transforms to get a workspace position from machine position
a3be54e3 286 // M114 just does it the old way uses last_milestone and does inversse transforms to get the requested position
2791c829 287 int n = 0;
e03f2747 288 if(subcode == 0) { // M114 print WCS
2791c829 289 wcs_t pos= mcs2wcs(last_milestone);
31c6c2c2 290 n = snprintf(buf, bufsize, "C: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
2791c829 291
df4574e0 292 } else if(subcode == 4) { // M114.4 print last milestone (which should be the same as machine position if axis are not moving and no level compensation)
31c6c2c2 293 n = snprintf(buf, bufsize, "LMS: X:%1.4f Y:%1.4f Z:%1.4f", last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
2791c829 294
df4574e0 295 } else if(subcode == 5) { // M114.5 print last machine position (which should be the same as M114.1 if axis are not moving and no level compensation)
cf6b8fd1 296 n = snprintf(buf, bufsize, "LMP: X:%1.4f Y:%1.4f Z:%1.4f", last_machine_position[X_AXIS], last_machine_position[Y_AXIS], last_machine_position[Z_AXIS]);
2791c829
JM
297
298 } else {
299 // get real time positions
300 // current actuator position in mm
301 ActuatorCoordinates current_position{
302 actuators[X_AXIS]->get_current_position(),
303 actuators[Y_AXIS]->get_current_position(),
304 actuators[Z_AXIS]->get_current_position()
305 };
306
307 // get machine position from the actuator position using FK
308 float mpos[3];
309 arm_solution->actuator_to_cartesian(current_position, mpos);
310
e03f2747 311 if(subcode == 1) { // M114.1 print realtime WCS
2791c829
JM
312 // FIXME this currently includes the compensation transform which is incorrect so will be slightly off if it is in effect (but by very little)
313 wcs_t pos= mcs2wcs(mpos);
29e809e0 314 n = snprintf(buf, bufsize, "WPOS: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
2791c829 315
df4574e0 316 } else if(subcode == 2) { // M114.2 print realtime Machine coordinate system
31c6c2c2 317 n = snprintf(buf, bufsize, "MPOS: X:%1.4f Y:%1.4f Z:%1.4f", mpos[X_AXIS], mpos[Y_AXIS], mpos[Z_AXIS]);
2791c829 318
df4574e0 319 } else if(subcode == 3) { // M114.3 print realtime actuator position
55783268 320 n = snprintf(buf, bufsize, "APOS: X:%1.4f Y:%1.4f Z:%1.4f", current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
2791c829
JM
321 }
322 }
e03f2747 323 return n;
2791c829
JM
324}
325
dc27139b 326// converts current last milestone (machine position without compensation transform) to work coordinate system (inverse transform)
31c6c2c2 327Robot::wcs_t Robot::mcs2wcs(const Robot::wcs_t& pos) const
dc27139b
JM
328{
329 return std::make_tuple(
31c6c2c2
JM
330 std::get<X_AXIS>(pos) - std::get<X_AXIS>(wcs_offsets[current_wcs]) + std::get<X_AXIS>(g92_offset) - std::get<X_AXIS>(tool_offset),
331 std::get<Y_AXIS>(pos) - std::get<Y_AXIS>(wcs_offsets[current_wcs]) + std::get<Y_AXIS>(g92_offset) - std::get<Y_AXIS>(tool_offset),
332 std::get<Z_AXIS>(pos) - std::get<Z_AXIS>(wcs_offsets[current_wcs]) + std::get<Z_AXIS>(g92_offset) - std::get<Z_AXIS>(tool_offset)
dc27139b
JM
333 );
334}
335
dd0a7cfa
JM
336// this does a sanity check that actuator speeds do not exceed steps rate capability
337// we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
338void Robot::check_max_actuator_speeds()
339{
29e809e0 340 for (size_t i = 0; i < n_motors; i++) {
807b9b57
JM
341 float step_freq = actuators[i]->get_max_rate() * actuators[i]->get_steps_per_mm();
342 if (step_freq > THEKERNEL->base_stepping_frequency) {
343 actuators[i]->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / actuators[i]->get_steps_per_mm()));
ad6a77d1 344 THEKERNEL->streams->printf("WARNING: actuator %d rate exceeds base_stepping_frequency * ..._steps_per_mm: %f, setting to %f\n", i, step_freq, actuators[i]->get_max_rate());
807b9b57 345 }
dd0a7cfa
JM
346 }
347}
348
4cff3ded 349//A GCode has been received
edac9072 350//See if the current Gcode line has some orders for us
4710532a
JM
351void Robot::on_gcode_received(void *argument)
352{
353 Gcode *gcode = static_cast<Gcode *>(argument);
6bc4a00a 354
29e809e0 355 enum MOTION_MODE_T motion_mode= NONE;
4cff3ded 356
4710532a
JM
357 if( gcode->has_g) {
358 switch( gcode->g ) {
29e809e0
JM
359 case 0: motion_mode = SEEK; break;
360 case 1: motion_mode = LINEAR; break;
361 case 2: motion_mode = CW_ARC; break;
362 case 3: motion_mode = CCW_ARC; break;
c2f7c261 363 case 4: { // G4 pause
03b01bac 364 uint32_t delay_ms = 0;
c3df978d 365 if (gcode->has_letter('P')) {
03b01bac 366 delay_ms = gcode->get_int('P');
c3df978d
JM
367 }
368 if (gcode->has_letter('S')) {
369 delay_ms += gcode->get_int('S') * 1000;
370 }
03b01bac 371 if (delay_ms > 0) {
c3df978d 372 // drain queue
04782655 373 THEKERNEL->conveyor->wait_for_idle();
c3df978d 374 // wait for specified time
03b01bac
JM
375 uint32_t start = us_ticker_read(); // mbed call
376 while ((us_ticker_read() - start) < delay_ms * 1000) {
c3df978d 377 THEKERNEL->call_event(ON_IDLE, this);
c2f7c261 378 if(THEKERNEL->is_halted()) return;
c3df978d
JM
379 }
380 }
adba2978 381 }
6b661ab3 382 break;
807b9b57 383
a6bbe768 384 case 10: // G10 L2 [L20] Pn Xn Yn Zn set WCS
00e607c7 385 if(gcode->has_letter('L') && (gcode->get_int('L') == 2 || gcode->get_int('L') == 20) && gcode->has_letter('P')) {
03b01bac
JM
386 size_t n = gcode->get_uint('P');
387 if(n == 0) n = current_wcs; // set current coordinate system
807b9b57 388 else --n;
0b8b81b6 389 if(n < MAX_WCS) {
807b9b57 390 float x, y, z;
03b01bac 391 std::tie(x, y, z) = wcs_offsets[n];
00e607c7 392 if(gcode->get_int('L') == 20) {
c2f7c261 393 // this makes the current machine position (less compensation transform) the offset
dc27139b
JM
394 // get current position in WCS
395 wcs_t pos= mcs2wcs(last_milestone);
396
397 if(gcode->has_letter('X')){
398 x -= to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
399 }
400
401 if(gcode->has_letter('Y')){
402 y -= to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
403 }
404 if(gcode->has_letter('Z')) {
405 z -= to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
406 }
407
a6bbe768 408 } else {
00e607c7
JM
409 // the value is the offset from machine zero
410 if(gcode->has_letter('X')) x = to_millimeters(gcode->get_value('X'));
411 if(gcode->has_letter('Y')) y = to_millimeters(gcode->get_value('Y'));
412 if(gcode->has_letter('Z')) z = to_millimeters(gcode->get_value('Z'));
413 }
03b01bac 414 wcs_offsets[n] = wcs_t(x, y, z);
807b9b57
JM
415 }
416 }
417 break;
418
6e92ab91
JM
419 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
420 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
421 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
422 case 20: this->inch_mode = true; break;
423 case 21: this->inch_mode = false; break;
807b9b57
JM
424
425 case 54: case 55: case 56: case 57: case 58: case 59:
426 // select WCS 0-8: G54..G59, G59.1, G59.2, G59.3
03b01bac 427 current_wcs = gcode->g - 54;
807b9b57
JM
428 if(gcode->g == 59 && gcode->subcode > 0) {
429 current_wcs += gcode->subcode;
0b8b81b6 430 if(current_wcs >= MAX_WCS) current_wcs = MAX_WCS - 1;
807b9b57
JM
431 }
432 break;
433
29e809e0
JM
434 case 90: this->absolute_mode = true; this->e_absolute_mode = true; break;
435 case 91: this->absolute_mode = false; this->e_absolute_mode = false; break;
807b9b57 436
0b804a41 437 case 92: {
a9e8c04b 438 if(gcode->subcode == 1 || gcode->subcode == 2 || gcode->get_num_args() == 0) {
03b01bac
JM
439 // reset G92 offsets to 0
440 g92_offset = wcs_t(0, 0, 0);
441
cee8bc1d
JM
442 } else if(gcode->subcode == 3) {
443 // initialize G92 to the specified values, only used for saving it with M500
444 float x= 0, y= 0, z= 0;
445 if(gcode->has_letter('X')) x= gcode->get_value('X');
446 if(gcode->has_letter('Y')) y= gcode->get_value('Y');
447 if(gcode->has_letter('Z')) z= gcode->get_value('Z');
448 g92_offset = wcs_t(x, y, z);
449
4710532a 450 } else {
61a3fa99 451 // standard setting of the g92 offsets, making current WCS position whatever the coordinate arguments are
807b9b57 452 float x, y, z;
03b01bac 453 std::tie(x, y, z) = g92_offset;
61a3fa99
JM
454 // get current position in WCS
455 wcs_t pos= mcs2wcs(last_milestone);
456
457 // adjust g92 offset to make the current wpos == the value requested
458 if(gcode->has_letter('X')){
459 x += to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
460 }
dc27139b
JM
461 if(gcode->has_letter('Y')){
462 y += to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
463 }
464 if(gcode->has_letter('Z')) {
465 z += to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
466 }
03b01bac 467 g92_offset = wcs_t(x, y, z);
6bc4a00a 468 }
a6bbe768 469
13ad7234
JM
470 #if MAX_ROBOT_ACTUATORS > 3
471 if(gcode->subcode == 0 && (gcode->has_letter('E') || gcode->get_num_args() == 0)){
472 // reset the E position, legacy for 3d Printers to be reprap compatible
473 // find the selected extruder
de2ee57c 474 // NOTE this will only work when E is 0 if volumetric and/or scaling is used as the actuator last milestone will be different if it was scaled
13ad7234
JM
475 for (int i = E_AXIS; i < n_motors; ++i) {
476 if(actuators[i]->is_selected()) {
477 float e= gcode->has_letter('E') ? gcode->get_value('E') : 0;
478 last_milestone[i]= last_machine_position[i]= e;
479 actuators[i]->change_last_milestone(e);
480 break;
481 }
482 }
483 }
484 #endif
485
78d0e16a 486 return;
4710532a
JM
487 }
488 }
67a649dd 489
4710532a
JM
490 } else if( gcode->has_m) {
491 switch( gcode->m ) {
20ed51b7
JM
492 // case 0: // M0 feed hold, (M0.1 is release feed hold, except we are in feed hold)
493 // if(THEKERNEL->is_grbl_mode()) THEKERNEL->set_feed_hold(gcode->subcode == 0);
494 // break;
01a8d21a
JM
495
496 case 30: // M30 end of program in grbl mode (otherwise it is delete sdcard file)
497 if(!THEKERNEL->is_grbl_mode()) break;
498 // fall through to M2
807b9b57 499 case 2: // M2 end of program
03b01bac
JM
500 current_wcs = 0;
501 absolute_mode = true;
807b9b57 502 break;
9e6014a6
JM
503 case 17:
504 THEKERNEL->call_event(ON_ENABLE, (void*)1); // turn all enable pins on
505 break;
506
507 case 18: // this used to support parameters, now it ignores them
508 case 84:
04782655 509 THEKERNEL->conveyor->wait_for_idle();
9e6014a6
JM
510 THEKERNEL->call_event(ON_ENABLE, nullptr); // turn all enable pins off
511 break;
807b9b57 512
29e809e0
JM
513 case 82: e_absolute_mode= true; break;
514 case 83: e_absolute_mode= false; break;
515
0fb5b438 516 case 92: // M92 - set steps per mm
0fb5b438 517 if (gcode->has_letter('X'))
78d0e16a 518 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
0fb5b438 519 if (gcode->has_letter('Y'))
78d0e16a 520 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
0fb5b438 521 if (gcode->has_letter('Z'))
78d0e16a 522 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
78d0e16a 523
ad6a77d1 524 gcode->stream->printf("X:%f Y:%f Z:%f ", actuators[0]->get_steps_per_mm(), actuators[1]->get_steps_per_mm(), actuators[2]->get_steps_per_mm());
0fb5b438 525 gcode->add_nl = true;
dd0a7cfa 526 check_max_actuator_speeds();
0fb5b438 527 return;
562db364 528
e03f2747
JM
529 case 114:{
530 char buf[64];
531 int n= print_position(gcode->subcode, buf, sizeof buf);
532 if(n > 0) gcode->txt_after_ok.append(buf, n);
2791c829 533 return;
e03f2747 534 }
33e4cc02 535
212caccd
JM
536 case 120: // push state
537 push_state();
538 break;
562db364
JM
539
540 case 121: // pop state
212caccd 541 pop_state();
562db364
JM
542 break;
543
125b71ce
JM
544 case 203: // M203 Set maximum feedrates in mm/sec, M203.1 set maximum actuator feedrates
545 if(gcode->get_num_args() == 0) {
546 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
55783268 547 gcode->stream->printf(" %c: %g ", 'X' + i, gcode->subcode == 0 ? this->max_speeds[i] : actuators[i]->get_max_rate());
125b71ce
JM
548 }
549 gcode->add_nl = true;
dd0a7cfa 550
125b71ce
JM
551 }else{
552 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
553 if (gcode->has_letter('X' + i)) {
55783268
JM
554 float v= gcode->get_value('X'+i);
555 if(gcode->subcode == 0) this->max_speeds[i]= v;
556 else if(gcode->subcode == 1) actuators[i]->set_max_rate(v);
125b71ce
JM
557 }
558 }
55783268 559 if(gcode->subcode == 1) check_max_actuator_speeds();
807b9b57 560 }
125b71ce 561 break;
83488642 562
29e809e0 563 case 204: // M204 Snnn - set default acceleration to nnn, Xnnn Ynnn Znnn sets axis specific acceleration
4710532a 564 if (gcode->has_letter('S')) {
4710532a 565 float acc = gcode->get_value('S'); // mm/s^2
d4ee6ee2 566 // enforce minimum
29e809e0
JM
567 if (acc < 1.0F) acc = 1.0F;
568 this->default_acceleration = acc;
d4ee6ee2 569 }
29e809e0
JM
570 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
571 if (gcode->has_letter(i+'X')) {
572 float acc = gcode->get_value(i+'X'); // mm/s^2
573 // enforce positive
574 if (acc <= 0.0F) acc = NAN;
575 actuators[i]->set_acceleration(acc);
576 }
c5fe1787 577 }
d4ee6ee2
JM
578 break;
579
125b71ce 580 case 205: // M205 Xnnn - set junction deviation, Z - set Z junction deviation, Snnn - Set minimum planner speed
4710532a
JM
581 if (gcode->has_letter('X')) {
582 float jd = gcode->get_value('X');
d4ee6ee2 583 // enforce minimum
8b69c90d
JM
584 if (jd < 0.0F)
585 jd = 0.0F;
4710532a 586 THEKERNEL->planner->junction_deviation = jd;
d4ee6ee2 587 }
107df03f
JM
588 if (gcode->has_letter('Z')) {
589 float jd = gcode->get_value('Z');
590 // enforce minimum, -1 disables it and uses regular junction deviation
591 if (jd < -1.0F)
592 jd = -1.0F;
593 THEKERNEL->planner->z_junction_deviation = jd;
594 }
4710532a
JM
595 if (gcode->has_letter('S')) {
596 float mps = gcode->get_value('S');
8b69c90d
JM
597 // enforce minimum
598 if (mps < 0.0F)
599 mps = 0.0F;
4710532a 600 THEKERNEL->planner->minimum_planner_speed = mps;
8b69c90d 601 }
d4ee6ee2 602 break;
98761c28 603
7369629d 604 case 220: // M220 - speed override percentage
4710532a 605 if (gcode->has_letter('S')) {
1ad23cd3 606 float factor = gcode->get_value('S');
98761c28 607 // enforce minimum 10% speed
da947c62
MM
608 if (factor < 10.0F)
609 factor = 10.0F;
610 // enforce maximum 10x speed
611 if (factor > 1000.0F)
612 factor = 1000.0F;
613
614 seconds_per_minute = 6000.0F / factor;
03b01bac 615 } else {
9ef9f45b 616 gcode->stream->printf("Speed factor at %6.2f %%\n", 6000.0F / seconds_per_minute);
7369629d 617 }
b4f56013 618 break;
ec4773e5 619
494dc541 620 case 400: // wait until all moves are done up to this point
04782655 621 THEKERNEL->conveyor->wait_for_idle();
494dc541
JM
622 break;
623
33e4cc02 624 case 500: // M500 saves some volatile settings to config override file
b7cd847e 625 case 503: { // M503 just prints the settings
ad6a77d1 626 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->get_steps_per_mm(), actuators[1]->get_steps_per_mm(), actuators[2]->get_steps_per_mm());
df56baf2
JM
627
628 // only print XYZ if not NAN
629 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f ", default_acceleration);
630 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
631 if(!isnan(actuators[i]->get_acceleration())) gcode->stream->printf("%c%1.5f ", 'X'+i, actuators[i]->get_acceleration());
632 }
633 gcode->stream->printf("\n");
634
c9cc5e06 635 gcode->stream->printf(";X- Junction Deviation, Z- Z junction deviation, S - Minimum Planner speed mm/sec:\nM205 X%1.5f Z%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->z_junction_deviation, THEKERNEL->planner->minimum_planner_speed);
125b71ce
JM
636
637 gcode->stream->printf(";Max cartesian feedrates in mm/sec:\nM203 X%1.5f Y%1.5f Z%1.5f\n", this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS]);
638 gcode->stream->printf(";Max actuator feedrates in mm/sec:\nM203.1 X%1.5f Y%1.5f Z%1.5f\n", actuators[X_AXIS]->get_max_rate(), actuators[Y_AXIS]->get_max_rate(), actuators[Z_AXIS]->get_max_rate());
b7cd847e
JM
639
640 // get or save any arm solution specific optional values
641 BaseSolution::arm_options_t options;
642 if(arm_solution->get_optional(options) && !options.empty()) {
643 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
4710532a 644 for(auto &i : options) {
b7cd847e
JM
645 gcode->stream->printf(" %c%1.4f", i.first, i.second);
646 }
647 gcode->stream->printf("\n");
648 }
6e92ab91 649
807b9b57
JM
650 // save wcs_offsets and current_wcs
651 // TODO this may need to be done whenever they change to be compliant
652 gcode->stream->printf(";WCS settings\n");
40fd5d98 653 gcode->stream->printf("%s\n", wcs2gcode(current_wcs).c_str());
03b01bac 654 int n = 1;
807b9b57 655 for(auto &i : wcs_offsets) {
2791c829 656 if(i != wcs_t(0, 0, 0)) {
807b9b57
JM
657 float x, y, z;
658 std::tie(x, y, z) = i;
40fd5d98 659 gcode->stream->printf("G10 L2 P%d X%f Y%f Z%f ; %s\n", n, x, y, z, wcs2gcode(n-1).c_str());
2791c829 660 }
807b9b57
JM
661 ++n;
662 }
3aad33c7
JM
663 if(save_g92) {
664 // linuxcnc saves G92, so we do too if configured, default is to not save to maintain backward compatibility
665 // also it needs to be used to set Z0 on rotary deltas as M206/306 can't be used, so saving it is necessary in that case
666 if(g92_offset != wcs_t(0, 0, 0)) {
667 float x, y, z;
668 std::tie(x, y, z) = g92_offset;
669 gcode->stream->printf("G92.3 X%f Y%f Z%f\n", x, y, z); // sets G92 to the specified values
670 }
67a649dd
JM
671 }
672 }
807b9b57 673 break;
33e4cc02 674
b7cd847e 675 case 665: { // M665 set optional arm solution variables based on arm solution.
ebc75fc6 676 // the parameter args could be any letter each arm solution only accepts certain ones
03b01bac 677 BaseSolution::arm_options_t options = gcode->get_args();
ebc75fc6
JM
678 options.erase('S'); // don't include the S
679 options.erase('U'); // don't include the U
680 if(options.size() > 0) {
681 // set the specified options
682 arm_solution->set_optional(options);
683 }
684 options.clear();
b7cd847e 685 if(arm_solution->get_optional(options)) {
ebc75fc6 686 // foreach optional value
4710532a 687 for(auto &i : options) {
b7cd847e
JM
688 // print all current values of supported options
689 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
5523c05d 690 gcode->add_nl = true;
ec4773e5
JM
691 }
692 }
ec4773e5 693
4a839bea 694 if(gcode->has_letter('S')) { // set delta segments per second, not saved by M500
4710532a 695 this->delta_segments_per_second = gcode->get_value('S');
4a839bea
JM
696 gcode->stream->printf("Delta segments set to %8.4f segs/sec\n", this->delta_segments_per_second);
697
03b01bac 698 } else if(gcode->has_letter('U')) { // or set mm_per_line_segment, not saved by M500
4a839bea
JM
699 this->mm_per_line_segment = gcode->get_value('U');
700 this->delta_segments_per_second = 0;
701 gcode->stream->printf("mm per line segment set to %8.4f\n", this->mm_per_line_segment);
ec29d378 702 }
4a839bea 703
ec4773e5 704 break;
b7cd847e 705 }
6989211c 706 }
494dc541
JM
707 }
708
29e809e0
JM
709 if( motion_mode != NONE) {
710 process_move(gcode, motion_mode);
00e607c7 711 }
6bc4a00a 712
c2f7c261
JM
713 next_command_is_MCS = false; // must be on same line as G0 or G1
714}
350c8a60 715
5d2319a9 716// process a G0/G1/G2/G3
29e809e0 717void Robot::process_move(Gcode *gcode, enum MOTION_MODE_T motion_mode)
c2f7c261 718{
2791c829 719 // we have a G0/G1/G2/G3 so extract parameters and apply offsets to get machine coordinate target
ad6a77d1 720 // get XYZ and one E (which goes to the selected extruder)
29e809e0
JM
721 float param[4]{NAN, NAN, NAN, NAN};
722
723 // process primary axis
350c8a60
JM
724 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
725 char letter= 'X'+i;
726 if( gcode->has_letter(letter) ) {
727 param[i] = this->to_millimeters(gcode->get_value(letter));
350c8a60
JM
728 }
729 }
6bc4a00a 730
c2f7c261 731 float offset[3]{0,0,0};
4710532a
JM
732 for(char letter = 'I'; letter <= 'K'; letter++) {
733 if( gcode->has_letter(letter) ) {
734 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
c2885de8
JM
735 }
736 }
00e607c7 737
c2f7c261 738 // calculate target in machine coordinates (less compensation transform which needs to be done after segmentation)
29e809e0
JM
739 float target[n_motors];
740 memcpy(target, last_milestone, n_motors*sizeof(float));
741
350c8a60
JM
742 if(!next_command_is_MCS) {
743 if(this->absolute_mode) {
c2f7c261
JM
744 // apply wcs offsets and g92 offset and tool offset
745 if(!isnan(param[X_AXIS])) {
746 target[X_AXIS]= param[X_AXIS] + std::get<X_AXIS>(wcs_offsets[current_wcs]) - std::get<X_AXIS>(g92_offset) + std::get<X_AXIS>(tool_offset);
747 }
748
749 if(!isnan(param[Y_AXIS])) {
750 target[Y_AXIS]= param[Y_AXIS] + std::get<Y_AXIS>(wcs_offsets[current_wcs]) - std::get<Y_AXIS>(g92_offset) + std::get<Y_AXIS>(tool_offset);
751 }
752
753 if(!isnan(param[Z_AXIS])) {
754 target[Z_AXIS]= param[Z_AXIS] + std::get<Z_AXIS>(wcs_offsets[current_wcs]) - std::get<Z_AXIS>(g92_offset) + std::get<Z_AXIS>(tool_offset);
755 }
350c8a60
JM
756
757 }else{
758 // they are deltas from the last_milestone if specified
759 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
c2f7c261 760 if(!isnan(param[i])) target[i] = param[i] + last_milestone[i];
a6bbe768
JM
761 }
762 }
763
350c8a60 764 }else{
c2f7c261
JM
765 // already in machine coordinates, we do not add tool offset for that
766 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
767 if(!isnan(param[i])) target[i] = param[i];
768 }
c2885de8 769 }
6bc4a00a 770
29e809e0
JM
771 // process extruder parameters, for active extruder only (only one active extruder at a time)
772 selected_extruder= 0;
773 if(gcode->has_letter('E')) {
774 for (int i = E_AXIS; i < n_motors; ++i) {
775 // find first selected extruder
776 if(actuators[i]->is_selected()) {
777 param[E_AXIS]= gcode->get_value('E');
778 selected_extruder= i;
779 break;
780 }
781 }
782 }
783
784 // do E for the selected extruder
785 float delta_e= NAN;
786 if(selected_extruder > 0 && !isnan(param[E_AXIS])) {
787 if(this->e_absolute_mode) {
788 target[selected_extruder]= param[E_AXIS];
789 delta_e= target[selected_extruder] - last_milestone[selected_extruder];
790 }else{
791 delta_e= param[E_AXIS];
792 target[selected_extruder] = delta_e + last_milestone[selected_extruder];
793 }
794 }
795
4710532a 796 if( gcode->has_letter('F') ) {
29e809e0 797 if( motion_mode == SEEK )
da947c62 798 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 799 else
da947c62 800 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 801 }
6bc4a00a 802
350c8a60 803 bool moved= false;
29e809e0
JM
804
805 // Perform any physical actions
806 switch(motion_mode) {
807 case NONE: break;
808
809 case SEEK:
810 moved= this->append_line(gcode, target, this->seek_rate / seconds_per_minute, delta_e );
350c8a60 811 break;
29e809e0
JM
812
813 case LINEAR:
814 moved= this->append_line(gcode, target, this->feed_rate / seconds_per_minute, delta_e );
350c8a60 815 break;
29e809e0
JM
816
817 case CW_ARC:
818 case CCW_ARC:
374d0777 819 // Note arcs are not currently supported by extruder based machines, as 3D slicers do not use arcs (G2/G3)
29e809e0 820 moved= this->compute_arc(gcode, offset, target, motion_mode);
350c8a60 821 break;
4cff3ded 822 }
13e4a3f9 823
c2f7c261
JM
824 if(moved) {
825 // set last_milestone to the calculated target
df56baf2 826 memcpy(last_milestone, target, n_motors*sizeof(float));
350c8a60 827 }
edac9072
AW
828}
829
a6bbe768 830// reset the machine position for all axis. Used for homing.
f6934849
JM
831// During homing compensation is turned off (actually not used as it drives steppers directly)
832// once homed and reset_axis called compensation is used for the move to origin and back off home if enabled,
833// so in those cases the final position is compensated.
cef9acea
JM
834void Robot::reset_axis_position(float x, float y, float z)
835{
f6934849 836 // these are set to the same as compensation was not used to get to the current position
c2f7c261
JM
837 last_machine_position[X_AXIS]= last_milestone[X_AXIS] = x;
838 last_machine_position[Y_AXIS]= last_milestone[Y_AXIS] = y;
839 last_machine_position[Z_AXIS]= last_milestone[Z_AXIS] = z;
cef9acea 840
a6bbe768 841 // now set the actuator positions to match
807b9b57 842 ActuatorCoordinates actuator_pos;
c2f7c261 843 arm_solution->cartesian_to_actuator(this->last_machine_position, actuator_pos);
29e809e0 844 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
cef9acea
JM
845 actuators[i]->change_last_milestone(actuator_pos[i]);
846}
847
de2ee57c 848// Reset the position for an axis (used in homing, and to reset extruder after suspend)
4710532a
JM
849void Robot::reset_axis_position(float position, int axis)
850{
c2f7c261 851 last_milestone[axis] = position;
de2ee57c
JM
852 if(axis <= Z_AXIS) {
853 reset_axis_position(last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
854 }else{
855 // extruders need to be set not calculated
856 last_machine_position[axis]= position;
857 }
4cff3ded
AW
858}
859
932a3995 860// similar to reset_axis_position but directly sets the actuator positions in actuators units (eg mm for cartesian, degrees for rotary delta)
93f20a8c
JM
861// then sets the axis positions to match. currently only called from Endstops.cpp
862void Robot::reset_actuator_position(const ActuatorCoordinates &ac)
586cc733 863{
29e809e0 864 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
93f20a8c 865 actuators[i]->change_last_milestone(ac[i]);
586cc733
JM
866
867 // now correct axis positions then recorrect actuator to account for rounding
868 reset_position_from_current_actuator_position();
869}
870
a6bbe768 871// Use FK to find out where actuator is and reset to match
728477c4
JM
872void Robot::reset_position_from_current_actuator_position()
873{
807b9b57 874 ActuatorCoordinates actuator_pos;
29e809e0 875 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
58587001 876 // NOTE actuator::current_position is curently NOT the same as actuator::last_milestone after an abrupt abort
807b9b57
JM
877 actuator_pos[i] = actuators[i]->get_current_position();
878 }
58587001
JM
879
880 // discover machine position from where actuators actually are
c2f7c261
JM
881 arm_solution->actuator_to_cartesian(actuator_pos, last_machine_position);
882 // FIXME problem is this includes any compensation transform, and without an inverse compensation we cannot get a correct last_milestone
883 memcpy(last_milestone, last_machine_position, sizeof last_milestone);
cf91d4f3 884
58587001
JM
885 // now reset actuator::last_milestone, NOTE this may lose a little precision as FK is not always entirely accurate.
886 // NOTE This is required to sync the machine position with the actuator position, we do a somewhat redundant cartesian_to_actuator() call
932a3995 887 // to get everything in perfect sync.
7baae81a 888 arm_solution->cartesian_to_actuator(last_machine_position, actuator_pos);
29e809e0 889 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
7baae81a 890 actuators[i]->change_last_milestone(actuator_pos[i]);
728477c4 891}
edac9072 892
ad6a77d1 893// Convert target (in machine coordinates) to machine_position, then convert to actuator position and append this to the planner
c2f7c261
JM
894// target is in machine coordinates without the compensation transform, however we save a last_machine_position that includes
895// all transforms and is what we actually convert to actuator positions
121094a5 896bool Robot::append_milestone(const float target[], float rate_mm_s, bool disable_compensation)
df6a30f2 897{
29e809e0 898 float deltas[n_motors];
1a936198 899 float transformed_target[n_motors]; // adjust target for bed compensation
29e809e0 900 float unit_vec[N_PRIMARY_AXIS];
df6a30f2 901
3632a517 902 // unity transform by default
29e809e0 903 memcpy(transformed_target, target, n_motors*sizeof(float));
5e45206a 904
350c8a60 905 // check function pointer and call if set to transform the target to compensate for bed
121094a5 906 if(!disable_compensation && compensationTransform) {
350c8a60
JM
907 // some compensation strategies can transform XYZ, some just change Z
908 compensationTransform(transformed_target);
00e607c7 909 }
807b9b57 910
29e809e0 911 bool move= false;
850b4eeb 912 float sos= 0; // sun of squares for just XYZ
29e809e0 913
a6bbe768 914 // find distance moved by each axis, use transformed target from the current machine position
ec45206d 915 for (size_t i = 0; i < n_motors; i++) {
29e809e0
JM
916 deltas[i] = transformed_target[i] - last_machine_position[i];
917 if(deltas[i] == 0) continue;
918 // at least one non zero delta
919 move = true;
121094a5 920 if(i <= Z_AXIS) {
29e809e0 921 sos += powf(deltas[i], 2);
121094a5 922 }
3632a517 923 }
aab6cbba 924
29e809e0
JM
925 // nothing moved
926 if(!move) return false;
927
850b4eeb
JM
928 // see if this is a primary axis move or not
929 bool auxilliary_move= deltas[X_AXIS] == 0 && deltas[Y_AXIS] == 0 && deltas[Z_AXIS] == 0;
29e809e0 930
850b4eeb
JM
931 // total movement, use XYZ if a primary axis otherwise we calculate distance for E after scaling to mm
932 float distance= auxilliary_move ? 0 : sqrtf(sos);
df6a30f2 933
a6bbe768
JM
934 // it is unlikely but we need to protect against divide by zero, so ignore insanely small moves here
935 // as the last milestone won't be updated we do not actually lose any moves as they will be accounted for in the next move
850b4eeb 936 if(!auxilliary_move && distance < 0.00001F) return false;
a6bbe768 937
a6bbe768 938
29e809e0 939 if(!auxilliary_move) {
850b4eeb 940 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
14a90ad5 941 // find distance unit vector for primary axis only
850b4eeb 942 unit_vec[i] = deltas[i] / distance;
df6a30f2 943
14a90ad5
JM
944 // Do not move faster than the configured cartesian limits for XYZ
945 if ( max_speeds[i] > 0 ) {
946 float axis_speed = fabsf(unit_vec[i] * rate_mm_s);
947
948 if (axis_speed > max_speeds[i])
949 rate_mm_s *= ( max_speeds[i] / axis_speed );
2cd32d70 950 }
7b470506
AW
951 }
952 }
4cff3ded 953
c2f7c261 954 // find actuator position given the machine position, use actual adjusted target
29e809e0 955 ActuatorCoordinates actuator_pos;
850b4eeb 956 arm_solution->cartesian_to_actuator( transformed_target, actuator_pos );
df6a30f2 957
13ad7234 958#if MAX_ROBOT_ACTUATORS > 3
850b4eeb 959 sos= 0;
ad6a77d1 960 // for the extruders just copy the position, and possibly scale it from mm³ to mm
374d0777 961 for (size_t i = E_AXIS; i < n_motors; i++) {
850b4eeb 962 actuator_pos[i]= transformed_target[i];
121094a5 963 if(get_e_scale_fnc) {
29e809e0
JM
964 // NOTE this relies on the fact only one extruder is active at a time
965 // scale for volumetric or flow rate
966 // TODO is this correct? scaling the absolute target? what if the scale changes?
ec45206d 967 // for volumetric it basically converts mm³ to mm, but what about flow rate?
121094a5 968 actuator_pos[i] *= get_e_scale_fnc();
29e809e0 969 }
850b4eeb
JM
970 if(auxilliary_move) {
971 // for E only moves we need to use the scaled E to calculate the distance
972 sos += pow(actuator_pos[i] - actuators[i]->get_last_milestone(), 2);
973 }
974 }
975 if(auxilliary_move) {
976 if(sos < 0.00001F) return false;
977 distance= sqrtf(sos); // distance in mm of the e move
29e809e0
JM
978 }
979#endif
980
850b4eeb
JM
981 // this is the machine position, we update here as we have detected a move
982 memcpy(this->last_machine_position, transformed_target, n_motors*sizeof(float));
983
29e809e0
JM
984 // use default acceleration to start with
985 float acceleration = default_acceleration;
986
850b4eeb 987 float isecs = rate_mm_s / distance;
29e809e0 988
df6a30f2 989 // check per-actuator speed limits
29e809e0
JM
990 for (size_t actuator = 0; actuator < n_motors; actuator++) {
991 float d = fabsf(actuator_pos[actuator] - actuators[actuator]->get_last_milestone());
992 if(d == 0 || !actuators[actuator]->is_selected()) continue; // no movement for this actuator
993
994 float actuator_rate= d * isecs;
03b01bac 995 if (actuator_rate > actuators[actuator]->get_max_rate()) {
3494f3d0 996 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
850b4eeb 997 isecs = rate_mm_s / distance;
928467c0 998 }
29e809e0 999
df56baf2 1000 // adjust acceleration to lowest found, for now just primary axis unless it is an auxiliary move
14a90ad5
JM
1001 // TODO we may need to do all of them, check E won't limit XYZ.. it does on long E moves, but not checking it could exceed the E acceleration.
1002 if(auxilliary_move || actuator <= Z_AXIS) {
df56baf2
JM
1003 float ma = actuators[actuator]->get_acceleration(); // in mm/sec²
1004 if(!isnan(ma)) { // if axis does not have acceleration set then it uses the default_acceleration
850b4eeb 1005 float ca = fabsf((d/distance) * acceleration);
df56baf2
JM
1006 if (ca > ma) {
1007 acceleration *= ( ma / ca );
1008 }
29e809e0 1009 }
14a90ad5 1010 }
928467c0
JM
1011 }
1012
edac9072 1013 // Append the block to the planner
850b4eeb
JM
1014 // NOTE that distance here should be either the distance travelled by the XYZ axis, or the E mm travel if a solo E move
1015 THEKERNEL->planner->append_block( actuator_pos, n_motors, rate_mm_s, distance, auxilliary_move ? nullptr : unit_vec, acceleration );
4cff3ded 1016
350c8a60 1017 return true;
4cff3ded
AW
1018}
1019
121094a5
JM
1020// Used to plan a single move used by things like endstops when homing, zprobe, extruder firmware retracts etc.
1021bool Robot::delta_move(const float *delta, float rate_mm_s, uint8_t naxis)
c8bac202
JM
1022{
1023 if(THEKERNEL->is_halted()) return false;
1024
121094a5 1025 // catch negative or zero feed rates
c8bac202
JM
1026 if(rate_mm_s <= 0.0F) {
1027 return false;
1028 }
1029
121094a5
JM
1030 // get the absolute target position, default is current last_milestone
1031 float target[n_motors];
1032 memcpy(target, last_milestone, n_motors*sizeof(float));
c8bac202 1033
121094a5
JM
1034 // add in the deltas to get new target
1035 for (int i= 0; i < naxis; i++) {
1036 target[i] += delta[i];
c8bac202 1037 }
c8bac202 1038
121094a5
JM
1039 // submit for planning and if moved update last_milestone
1040 // NOTE this disabled compensation transforms as homing and zprobe must not use them
1041 if(append_milestone(target, rate_mm_s, true)) {
1042 memcpy(last_milestone, target, n_motors*sizeof(float));
1043 return true;
29e809e0 1044 }
c8bac202 1045
121094a5 1046 return false;
c8bac202
JM
1047}
1048
edac9072 1049// Append a move to the queue ( cutting it into segments if needed )
29e809e0 1050bool Robot::append_line(Gcode *gcode, const float target[], float rate_mm_s, float delta_e)
4710532a 1051{
121094a5
JM
1052 // catch negative or zero feed rates and return the same error as GRBL does
1053 if(rate_mm_s <= 0.0F) {
1054 gcode->is_error= true;
1055 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1056 return false;
1057 }
29e809e0
JM
1058
1059 // Find out the distance for this move in XYZ in MCS
1060 float millimeters_of_travel = sqrtf(powf( target[X_AXIS] - last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - last_milestone[Z_AXIS], 2 ));
1061
374d0777 1062 if(millimeters_of_travel < 0.00001F) {
121094a5
JM
1063 // we have no movement in XYZ, probably E only extrude or retract
1064 return this->append_milestone(target, rate_mm_s);
29e809e0
JM
1065 }
1066
1067 /*
374d0777
JM
1068 For extruders, we need to do some extra work...
1069 if we have volumetric limits enabled we calculate the volume for this move and limit the rate if it exceeds the stated limit.
1070 Note we need to be using volumetric extrusion for this to work as Ennn is in mm³ not mm
1071 We ask Extruder to do all the work but we need to pass in the relevant data.
1072 NOTE we need to do this before we segment the line (for deltas)
1073 This also sets any scaling due to flow rate and volumetric if a G1
29e809e0
JM
1074 */
1075 if(!isnan(delta_e) && gcode->has_g && gcode->g == 1) {
1076 float data[2]= {delta_e, rate_mm_s / millimeters_of_travel};
d2adef5e 1077 if(PublicData::set_value(extruder_checksum, target_checksum, data)) {
29e809e0 1078 rate_mm_s *= data[1]; // adjust the feedrate
d2adef5e
JM
1079 }
1080 }
1081
c2f7c261 1082 // We cut the line into smaller segments. This is only needed on a cartesian robot for zgrid, but always necessary for robots with rotational axes like Deltas.
3b4b05b8
JM
1083 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second
1084 // The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
4a0c8e14 1085 uint16_t segments;
5984acdf 1086
a3e1326a 1087 if(this->disable_segmentation || (!segment_z_moves && !gcode->has_letter('X') && !gcode->has_letter('Y'))) {
778093ce
JM
1088 segments= 1;
1089
1090 } else if(this->delta_segments_per_second > 1.0F) {
4a0c8e14
JM
1091 // enabled if set to something > 1, it is set to 0.0 by default
1092 // segment based on current speed and requested segments per second
1093 // the faster the travel speed the fewer segments needed
1094 // NOTE rate is mm/sec and we take into account any speed override
29e809e0 1095 float seconds = millimeters_of_travel / rate_mm_s;
9502f9d5 1096 segments = max(1.0F, ceilf(this->delta_segments_per_second * seconds));
4a0c8e14 1097 // TODO if we are only moving in Z on a delta we don't really need to segment at all
5984acdf 1098
4710532a
JM
1099 } else {
1100 if(this->mm_per_line_segment == 0.0F) {
1101 segments = 1; // don't split it up
1102 } else {
29e809e0 1103 segments = ceilf( millimeters_of_travel / this->mm_per_line_segment);
4a0c8e14
JM
1104 }
1105 }
5984acdf 1106
350c8a60 1107 bool moved= false;
4710532a 1108 if (segments > 1) {
2ba859c9 1109 // A vector to keep track of the endpoint of each segment
29e809e0
JM
1110 float segment_delta[n_motors];
1111 float segment_end[n_motors];
1112 memcpy(segment_end, last_milestone, n_motors*sizeof(float));
2ba859c9
MM
1113
1114 // How far do we move each segment?
29e809e0 1115 for (int i = 0; i < n_motors; i++)
2791c829 1116 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
4cff3ded 1117
c8e0fb15
MM
1118 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
1119 // We always add another point after this loop so we stop at segments-1, ie i < segments
4710532a 1120 for (int i = 1; i < segments; i++) {
350c8a60 1121 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
29e809e0
JM
1122 for (int i = 0; i < n_motors; i++)
1123 segment_end[i] += segment_delta[i];
2ba859c9
MM
1124
1125 // Append the end of this segment to the queue
121094a5 1126 bool b= this->append_milestone(segment_end, rate_mm_s);
350c8a60 1127 moved= moved || b;
2ba859c9 1128 }
4cff3ded 1129 }
5984acdf
MM
1130
1131 // Append the end of this full move to the queue
121094a5 1132 if(this->append_milestone(target, rate_mm_s)) moved= true;
2134bcf2 1133
a6bbe768 1134 this->next_command_is_MCS = false; // always reset this
00e607c7 1135
350c8a60 1136 return moved;
4cff3ded
AW
1137}
1138
4cff3ded 1139
edac9072 1140// Append an arc to the queue ( cutting it into segments as needed )
350c8a60 1141bool Robot::append_arc(Gcode * gcode, const float target[], const float offset[], float radius, bool is_clockwise )
4710532a 1142{
121094a5
JM
1143 float rate_mm_s= this->feed_rate / seconds_per_minute;
1144 // catch negative or zero feed rates and return the same error as GRBL does
1145 if(rate_mm_s <= 0.0F) {
1146 gcode->is_error= true;
1147 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1148 return false;
1149 }
aab6cbba 1150
edac9072 1151 // Scary math
2ba859c9
MM
1152 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
1153 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
1154 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1ad23cd3
MM
1155 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
1156 float r_axis1 = -offset[this->plane_axis_1];
1157 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
1158 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
aab6cbba 1159
51871fb8 1160 // Patch from GRBL Firmware - Christoph Baumann 04072015
aab6cbba 1161 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
fb4c9d09 1162 float angular_travel = atan2f(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
5fa0c173 1163 if (is_clockwise) { // Correct atan2 output per direction
29e809e0 1164 if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= (2 * PI); }
5fa0c173 1165 } else {
29e809e0 1166 if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += (2 * PI); }
4710532a 1167 }
aab6cbba 1168
edac9072 1169 // Find the distance for this gcode
29e809e0 1170 float millimeters_of_travel = hypotf(angular_travel * radius, fabsf(linear_travel));
436a2cd1 1171
edac9072 1172 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
29e809e0 1173 if( millimeters_of_travel < 0.00001F ) {
350c8a60 1174 return false;
4710532a 1175 }
5dcb2ff3 1176
83c6e067
RA
1177 // limit segments by maximum arc error
1178 float arc_segment = this->mm_per_arc_segment;
4d0f60a9 1179 if ((this->mm_max_arc_error > 0) && (2 * radius > this->mm_max_arc_error)) {
83c6e067
RA
1180 float min_err_segment = 2 * sqrtf((this->mm_max_arc_error * (2 * radius - this->mm_max_arc_error)));
1181 if (this->mm_per_arc_segment < min_err_segment) {
1182 arc_segment = min_err_segment;
1183 }
1184 }
5984acdf 1185 // Figure out how many segments for this gcode
29e809e0 1186 uint16_t segments = ceilf(millimeters_of_travel / arc_segment);
aab6cbba 1187
29e809e0 1188 //printf("Radius %f - Segment Length %f - Number of Segments %d\r\n",radius,arc_segment,segments); // Testing Purposes ONLY
4710532a
JM
1189 float theta_per_segment = angular_travel / segments;
1190 float linear_per_segment = linear_travel / segments;
aab6cbba
AW
1191
1192 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
1193 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
1194 r_T = [cos(phi) -sin(phi);
1195 sin(phi) cos(phi] * r ;
1196 For arc generation, the center of the circle is the axis of rotation and the radius vector is
1197 defined from the circle center to the initial position. Each line segment is formed by successive
1198 vector rotations. This requires only two cos() and sin() computations to form the rotation
1199 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1ad23cd3 1200 all float numbers are single precision on the Arduino. (True float precision will not have
aab6cbba
AW
1201 round off issues for CNC applications.) Single precision error can accumulate to be greater than
1202 tool precision in some cases. Therefore, arc path correction is implemented.
1203
1204 Small angle approximation may be used to reduce computation overhead further. This approximation
1205 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
1206 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
1207 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
1208 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
1209 issue for CNC machines with the single precision Arduino calculations.
1210 This approximation also allows mc_arc to immediately insert a line segment into the planner
1211 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
1212 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
1213 This is important when there are successive arc motions.
1214 */
1215 // Vector rotation matrix values
4710532a 1216 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1ad23cd3 1217 float sin_T = theta_per_segment;
aab6cbba 1218
1ad23cd3
MM
1219 float arc_target[3];
1220 float sin_Ti;
1221 float cos_Ti;
1222 float r_axisi;
aab6cbba
AW
1223 uint16_t i;
1224 int8_t count = 0;
1225
1226 // Initialize the linear axis
2ba859c9 1227 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
aab6cbba 1228
350c8a60 1229 bool moved= false;
4710532a 1230 for (i = 1; i < segments; i++) { // Increment (segments-1)
350c8a60 1231 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
aab6cbba 1232
b66fb830 1233 if (count < this->arc_correction ) {
4710532a
JM
1234 // Apply vector rotation matrix
1235 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
1236 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
1237 r_axis1 = r_axisi;
1238 count++;
aab6cbba 1239 } else {
4710532a
JM
1240 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
1241 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
1242 cos_Ti = cosf(i * theta_per_segment);
1243 sin_Ti = sinf(i * theta_per_segment);
1244 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
1245 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
1246 count = 0;
aab6cbba
AW
1247 }
1248
1249 // Update arc_target location
1250 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
1251 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
1252 arc_target[this->plane_axis_2] += linear_per_segment;
edac9072
AW
1253
1254 // Append this segment to the queue
121094a5 1255 bool b= this->append_milestone(arc_target, rate_mm_s);
350c8a60 1256 moved= moved || b;
aab6cbba 1257 }
edac9072 1258
aab6cbba 1259 // Ensure last segment arrives at target location.
121094a5 1260 if(this->append_milestone(target, rate_mm_s)) moved= true;
350c8a60
JM
1261
1262 return moved;
aab6cbba
AW
1263}
1264
edac9072 1265// Do the math for an arc and add it to the queue
29e809e0 1266bool Robot::compute_arc(Gcode * gcode, const float offset[], const float target[], enum MOTION_MODE_T motion_mode)
4710532a 1267{
aab6cbba
AW
1268
1269 // Find the radius
13addf09 1270 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
aab6cbba
AW
1271
1272 // Set clockwise/counter-clockwise sign for mc_arc computations
1273 bool is_clockwise = false;
29e809e0 1274 if( motion_mode == CW_ARC ) {
4710532a
JM
1275 is_clockwise = true;
1276 }
aab6cbba
AW
1277
1278 // Append arc
350c8a60 1279 return this->append_arc(gcode, target, offset, radius, is_clockwise );
aab6cbba
AW
1280}
1281
1282
4710532a
JM
1283float Robot::theta(float x, float y)
1284{
1285 float t = atanf(x / fabs(y));
1286 if (y > 0) {
1287 return(t);
1288 } else {
1289 if (t > 0) {
29e809e0 1290 return(PI - t);
4710532a 1291 } else {
29e809e0 1292 return(-PI - t);
4710532a
JM
1293 }
1294 }
4cff3ded
AW
1295}
1296
4710532a
JM
1297void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
1298{
4cff3ded
AW
1299 this->plane_axis_0 = axis_0;
1300 this->plane_axis_1 = axis_1;
1301 this->plane_axis_2 = axis_2;
1302}
1303
fae93525 1304void Robot::clearToolOffset()
4710532a 1305{
c2f7c261 1306 this->tool_offset= wcs_t(0,0,0);
fae93525
JM
1307}
1308
1309void Robot::setToolOffset(const float offset[3])
1310{
c2f7c261 1311 this->tool_offset= wcs_t(offset[0], offset[1], offset[2]);
5966b7d0
AT
1312}
1313
0ec2f63a
JM
1314float Robot::get_feed_rate() const
1315{
1316 return THEKERNEL->gcode_dispatch->get_modal_command() == 0 ? seek_rate : feed_rate;
1317}