reset axis before trying to home
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10
11 #include "Robot.h"
12 #include "Planner.h"
13 #include "Conveyor.h"
14 #include "Pin.h"
15 #include "StepperMotor.h"
16 #include "Gcode.h"
17 #include "PublicDataRequest.h"
18 #include "PublicData.h"
19 #include "arm_solutions/BaseSolution.h"
20 #include "arm_solutions/CartesianSolution.h"
21 #include "arm_solutions/RotatableCartesianSolution.h"
22 #include "arm_solutions/LinearDeltaSolution.h"
23 #include "arm_solutions/RotaryDeltaSolution.h"
24 #include "arm_solutions/HBotSolution.h"
25 #include "arm_solutions/CoreXZSolution.h"
26 #include "arm_solutions/MorganSCARASolution.h"
27 #include "StepTicker.h"
28 #include "checksumm.h"
29 #include "utils.h"
30 #include "ConfigValue.h"
31 #include "libs/StreamOutput.h"
32 #include "StreamOutputPool.h"
33 #include "ExtruderPublicAccess.h"
34 #include "GcodeDispatch.h"
35 #include "ActuatorCoordinates.h"
36
37 #include "mbed.h" // for us_ticker_read()
38 #include "mri.h"
39
40 #include <fastmath.h>
41 #include <string>
42 #include <algorithm>
43 using std::string;
44
45 #define default_seek_rate_checksum CHECKSUM("default_seek_rate")
46 #define default_feed_rate_checksum CHECKSUM("default_feed_rate")
47 #define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
48 #define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
49 #define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
50 #define mm_max_arc_error_checksum CHECKSUM("mm_max_arc_error")
51 #define arc_correction_checksum CHECKSUM("arc_correction")
52 #define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
53 #define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
54 #define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
55 #define segment_z_moves_checksum CHECKSUM("segment_z_moves")
56 #define save_g92_checksum CHECKSUM("save_g92")
57
58 // arm solutions
59 #define arm_solution_checksum CHECKSUM("arm_solution")
60 #define cartesian_checksum CHECKSUM("cartesian")
61 #define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
62 #define rostock_checksum CHECKSUM("rostock")
63 #define linear_delta_checksum CHECKSUM("linear_delta")
64 #define rotary_delta_checksum CHECKSUM("rotary_delta")
65 #define delta_checksum CHECKSUM("delta")
66 #define hbot_checksum CHECKSUM("hbot")
67 #define corexy_checksum CHECKSUM("corexy")
68 #define corexz_checksum CHECKSUM("corexz")
69 #define kossel_checksum CHECKSUM("kossel")
70 #define morgan_checksum CHECKSUM("morgan")
71
72 // new-style actuator stuff
73 #define actuator_checksum CHEKCSUM("actuator")
74
75 #define step_pin_checksum CHECKSUM("step_pin")
76 #define dir_pin_checksum CHEKCSUM("dir_pin")
77 #define en_pin_checksum CHECKSUM("en_pin")
78
79 #define steps_per_mm_checksum CHECKSUM("steps_per_mm")
80 #define max_rate_checksum CHECKSUM("max_rate")
81 #define acceleration_checksum CHECKSUM("acceleration")
82 #define z_acceleration_checksum CHECKSUM("z_acceleration")
83
84 #define alpha_checksum CHECKSUM("alpha")
85 #define beta_checksum CHECKSUM("beta")
86 #define gamma_checksum CHECKSUM("gamma")
87
88 #define ARC_ANGULAR_TRAVEL_EPSILON 5E-7F // Float (radians)
89 #define PI 3.14159265358979323846F // force to be float, do not use M_PI
90
91 // The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
92 // It takes care of cutting arcs into segments, same thing for line that are too long
93
94 Robot::Robot()
95 {
96 this->inch_mode = false;
97 this->absolute_mode = true;
98 this->e_absolute_mode = true;
99 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
100 memset(this->last_milestone, 0, sizeof last_milestone);
101 memset(this->last_machine_position, 0, sizeof last_machine_position);
102 this->arm_solution = NULL;
103 seconds_per_minute = 60.0F;
104 this->clearToolOffset();
105 this->compensationTransform = nullptr;
106 this->get_e_scale_fnc= nullptr;
107 this->wcs_offsets.fill(wcs_t(0.0F, 0.0F, 0.0F));
108 this->g92_offset = wcs_t(0.0F, 0.0F, 0.0F);
109 this->next_command_is_MCS = false;
110 this->disable_segmentation= false;
111 this->n_motors= 0;
112 }
113
114 //Called when the module has just been loaded
115 void Robot::on_module_loaded()
116 {
117 this->register_for_event(ON_GCODE_RECEIVED);
118
119 // Configuration
120 this->load_config();
121 }
122
123 #define ACTUATOR_CHECKSUMS(X) { \
124 CHECKSUM(X "_step_pin"), \
125 CHECKSUM(X "_dir_pin"), \
126 CHECKSUM(X "_en_pin"), \
127 CHECKSUM(X "_steps_per_mm"), \
128 CHECKSUM(X "_max_rate"), \
129 CHECKSUM(X "_acceleration") \
130 }
131
132 void Robot::load_config()
133 {
134 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
135 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
136 // To make adding those solution easier, they have their own, separate object.
137 // Here we read the config to find out which arm solution to use
138 if (this->arm_solution) delete this->arm_solution;
139 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
140 // Note checksums are not const expressions when in debug mode, so don't use switch
141 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
142 this->arm_solution = new HBotSolution(THEKERNEL->config);
143
144 } else if(solution_checksum == corexz_checksum) {
145 this->arm_solution = new CoreXZSolution(THEKERNEL->config);
146
147 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
148 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
149
150 } else if(solution_checksum == rotatable_cartesian_checksum) {
151 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
152
153 } else if(solution_checksum == rotary_delta_checksum) {
154 this->arm_solution = new RotaryDeltaSolution(THEKERNEL->config);
155
156 } else if(solution_checksum == morgan_checksum) {
157 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
158
159 } else if(solution_checksum == cartesian_checksum) {
160 this->arm_solution = new CartesianSolution(THEKERNEL->config);
161
162 } else {
163 this->arm_solution = new CartesianSolution(THEKERNEL->config);
164 }
165
166 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
167 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
168 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
169 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
170 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.0f)->as_number();
171 this->mm_max_arc_error = THEKERNEL->config->value(mm_max_arc_error_checksum )->by_default( 0.01f)->as_number();
172 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
173
174 // in mm/sec but specified in config as mm/min
175 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
176 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
177 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
178
179 this->segment_z_moves = THEKERNEL->config->value(segment_z_moves_checksum )->by_default(true)->as_bool();
180 this->save_g92 = THEKERNEL->config->value(save_g92_checksum )->by_default(false)->as_bool();
181
182 // Make our Primary XYZ StepperMotors
183 uint16_t const checksums[][6] = {
184 ACTUATOR_CHECKSUMS("alpha"), // X
185 ACTUATOR_CHECKSUMS("beta"), // Y
186 ACTUATOR_CHECKSUMS("gamma"), // Z
187 };
188
189 // default acceleration setting, can be overriden with newer per axis settings
190 this->default_acceleration= THEKERNEL->config->value(acceleration_checksum)->by_default(100.0F )->as_number(); // Acceleration is in mm/s^2
191
192 // make each motor
193 for (size_t a = X_AXIS; a <= Z_AXIS; a++) {
194 Pin pins[3]; //step, dir, enable
195 for (size_t i = 0; i < 3; i++) {
196 pins[i].from_string(THEKERNEL->config->value(checksums[a][i])->by_default("nc")->as_string())->as_output();
197 }
198 StepperMotor *sm = new StepperMotor(pins[0], pins[1], pins[2]);
199 // register this motor (NB This must be 0,1,2) of the actuators array
200 uint8_t n= register_motor(sm);
201 if(n != a) {
202 // this is a fatal error
203 THEKERNEL->streams->printf("FATAL: motor %d does not match index %d\n", n, a);
204 __debugbreak();
205 }
206
207 actuators[a]->change_steps_per_mm(THEKERNEL->config->value(checksums[a][3])->by_default(a == 2 ? 2560.0F : 80.0F)->as_number());
208 actuators[a]->set_max_rate(THEKERNEL->config->value(checksums[a][4])->by_default(30000.0F)->as_number()/60.0F); // it is in mm/min and converted to mm/sec
209 actuators[a]->set_acceleration(THEKERNEL->config->value(checksums[a][5])->by_default(NAN)->as_number()); // mm/secs²
210 }
211
212 check_max_actuator_speeds(); // check the configs are sane
213
214 // if we have not specified a z acceleration see if the legacy config was set
215 if(isnan(actuators[Z_AXIS]->get_acceleration())) {
216 float acc= THEKERNEL->config->value(z_acceleration_checksum)->by_default(NAN)->as_number(); // disabled by default
217 if(!isnan(acc)) {
218 actuators[Z_AXIS]->set_acceleration(acc);
219 }
220 }
221
222 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
223 // so the first move can be correct if homing is not performed
224 ActuatorCoordinates actuator_pos;
225 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
226 for (size_t i = 0; i < n_motors; i++)
227 actuators[i]->change_last_milestone(actuator_pos[i]);
228
229 //this->clearToolOffset();
230 }
231
232 uint8_t Robot::register_motor(StepperMotor *motor)
233 {
234 // register this motor with the step ticker
235 THEKERNEL->step_ticker->register_motor(motor);
236 if(n_motors >= k_max_actuators) {
237 // this is a fatal error
238 THEKERNEL->streams->printf("FATAL: too many motors, increase k_max_actuators\n");
239 __debugbreak();
240 }
241 actuators.push_back(motor);
242 return n_motors++;
243 }
244
245 void Robot::push_state()
246 {
247 bool am = this->absolute_mode;
248 bool em = this->e_absolute_mode;
249 bool im = this->inch_mode;
250 saved_state_t s(this->feed_rate, this->seek_rate, am, em, im, current_wcs);
251 state_stack.push(s);
252 }
253
254 void Robot::pop_state()
255 {
256 if(!state_stack.empty()) {
257 auto s = state_stack.top();
258 state_stack.pop();
259 this->feed_rate = std::get<0>(s);
260 this->seek_rate = std::get<1>(s);
261 this->absolute_mode = std::get<2>(s);
262 this->e_absolute_mode = std::get<3>(s);
263 this->inch_mode = std::get<4>(s);
264 this->current_wcs = std::get<5>(s);
265 }
266 }
267
268 std::vector<Robot::wcs_t> Robot::get_wcs_state() const
269 {
270 std::vector<wcs_t> v;
271 v.push_back(wcs_t(current_wcs, MAX_WCS, 0));
272 for(auto& i : wcs_offsets) {
273 v.push_back(i);
274 }
275 v.push_back(g92_offset);
276 v.push_back(tool_offset);
277 return v;
278 }
279
280 int Robot::print_position(uint8_t subcode, char *buf, size_t bufsize) const
281 {
282 // M114.1 is a new way to do this (similar to how GRBL does it).
283 // it returns the realtime position based on the current step position of the actuators.
284 // this does require a FK to get a machine position from the actuator position
285 // and then invert all the transforms to get a workspace position from machine position
286 // M114 just does it the old way uses last_milestone and does inversse transforms to get the requested position
287 int n = 0;
288 if(subcode == 0) { // M114 print WCS
289 wcs_t pos= mcs2wcs(last_milestone);
290 n = snprintf(buf, bufsize, "C: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
291
292 } else if(subcode == 4) { // M114.4 print last milestone (which should be the same as machine position if axis are not moving and no level compensation)
293 n = snprintf(buf, bufsize, "LMS: X:%1.4f Y:%1.4f Z:%1.4f", last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
294
295 } else if(subcode == 5) { // M114.5 print last machine position (which should be the same as M114.1 if axis are not moving and no level compensation)
296 n = snprintf(buf, bufsize, "LMP: X:%1.4f Y:%1.4f Z:%1.4f", last_machine_position[X_AXIS], last_machine_position[Y_AXIS], last_machine_position[Z_AXIS]);
297
298 } else {
299 // get real time positions
300 // current actuator position in mm
301 ActuatorCoordinates current_position{
302 actuators[X_AXIS]->get_current_position(),
303 actuators[Y_AXIS]->get_current_position(),
304 actuators[Z_AXIS]->get_current_position()
305 };
306
307 // get machine position from the actuator position using FK
308 float mpos[3];
309 arm_solution->actuator_to_cartesian(current_position, mpos);
310
311 if(subcode == 1) { // M114.1 print realtime WCS
312 // FIXME this currently includes the compensation transform which is incorrect so will be slightly off if it is in effect (but by very little)
313 wcs_t pos= mcs2wcs(mpos);
314 n = snprintf(buf, bufsize, "WPOS: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
315
316 } else if(subcode == 2) { // M114.2 print realtime Machine coordinate system
317 n = snprintf(buf, bufsize, "MPOS: X:%1.4f Y:%1.4f Z:%1.4f", mpos[X_AXIS], mpos[Y_AXIS], mpos[Z_AXIS]);
318
319 } else if(subcode == 3) { // M114.3 print realtime actuator position
320 n = snprintf(buf, bufsize, "APOS: X:%1.4f Y:%1.4f Z:%1.4f", current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
321 }
322 }
323 return n;
324 }
325
326 // converts current last milestone (machine position without compensation transform) to work coordinate system (inverse transform)
327 Robot::wcs_t Robot::mcs2wcs(const Robot::wcs_t& pos) const
328 {
329 return std::make_tuple(
330 std::get<X_AXIS>(pos) - std::get<X_AXIS>(wcs_offsets[current_wcs]) + std::get<X_AXIS>(g92_offset) - std::get<X_AXIS>(tool_offset),
331 std::get<Y_AXIS>(pos) - std::get<Y_AXIS>(wcs_offsets[current_wcs]) + std::get<Y_AXIS>(g92_offset) - std::get<Y_AXIS>(tool_offset),
332 std::get<Z_AXIS>(pos) - std::get<Z_AXIS>(wcs_offsets[current_wcs]) + std::get<Z_AXIS>(g92_offset) - std::get<Z_AXIS>(tool_offset)
333 );
334 }
335
336 // this does a sanity check that actuator speeds do not exceed steps rate capability
337 // we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
338 void Robot::check_max_actuator_speeds()
339 {
340 for (size_t i = 0; i < n_motors; i++) {
341 float step_freq = actuators[i]->get_max_rate() * actuators[i]->get_steps_per_mm();
342 if (step_freq > THEKERNEL->base_stepping_frequency) {
343 actuators[i]->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / actuators[i]->get_steps_per_mm()));
344 THEKERNEL->streams->printf("WARNING: actuator %d rate exceeds base_stepping_frequency * ..._steps_per_mm: %f, setting to %f\n", i, step_freq, actuators[i]->get_max_rate());
345 }
346 }
347 }
348
349 //A GCode has been received
350 //See if the current Gcode line has some orders for us
351 void Robot::on_gcode_received(void *argument)
352 {
353 Gcode *gcode = static_cast<Gcode *>(argument);
354
355 enum MOTION_MODE_T motion_mode= NONE;
356
357 if( gcode->has_g) {
358 switch( gcode->g ) {
359 case 0: motion_mode = SEEK; break;
360 case 1: motion_mode = LINEAR; break;
361 case 2: motion_mode = CW_ARC; break;
362 case 3: motion_mode = CCW_ARC; break;
363 case 4: { // G4 pause
364 uint32_t delay_ms = 0;
365 if (gcode->has_letter('P')) {
366 delay_ms = gcode->get_int('P');
367 }
368 if (gcode->has_letter('S')) {
369 delay_ms += gcode->get_int('S') * 1000;
370 }
371 if (delay_ms > 0) {
372 // drain queue
373 THEKERNEL->conveyor->wait_for_idle();
374 // wait for specified time
375 uint32_t start = us_ticker_read(); // mbed call
376 while ((us_ticker_read() - start) < delay_ms * 1000) {
377 THEKERNEL->call_event(ON_IDLE, this);
378 if(THEKERNEL->is_halted()) return;
379 }
380 }
381 }
382 break;
383
384 case 10: // G10 L2 [L20] Pn Xn Yn Zn set WCS
385 if(gcode->has_letter('L') && (gcode->get_int('L') == 2 || gcode->get_int('L') == 20) && gcode->has_letter('P')) {
386 size_t n = gcode->get_uint('P');
387 if(n == 0) n = current_wcs; // set current coordinate system
388 else --n;
389 if(n < MAX_WCS) {
390 float x, y, z;
391 std::tie(x, y, z) = wcs_offsets[n];
392 if(gcode->get_int('L') == 20) {
393 // this makes the current machine position (less compensation transform) the offset
394 // get current position in WCS
395 wcs_t pos= mcs2wcs(last_milestone);
396
397 if(gcode->has_letter('X')){
398 x -= to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
399 }
400
401 if(gcode->has_letter('Y')){
402 y -= to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
403 }
404 if(gcode->has_letter('Z')) {
405 z -= to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
406 }
407
408 } else {
409 // the value is the offset from machine zero
410 if(gcode->has_letter('X')) x = to_millimeters(gcode->get_value('X'));
411 if(gcode->has_letter('Y')) y = to_millimeters(gcode->get_value('Y'));
412 if(gcode->has_letter('Z')) z = to_millimeters(gcode->get_value('Z'));
413 }
414 wcs_offsets[n] = wcs_t(x, y, z);
415 }
416 }
417 break;
418
419 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
420 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
421 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
422 case 20: this->inch_mode = true; break;
423 case 21: this->inch_mode = false; break;
424
425 case 54: case 55: case 56: case 57: case 58: case 59:
426 // select WCS 0-8: G54..G59, G59.1, G59.2, G59.3
427 current_wcs = gcode->g - 54;
428 if(gcode->g == 59 && gcode->subcode > 0) {
429 current_wcs += gcode->subcode;
430 if(current_wcs >= MAX_WCS) current_wcs = MAX_WCS - 1;
431 }
432 break;
433
434 case 90: this->absolute_mode = true; this->e_absolute_mode = true; break;
435 case 91: this->absolute_mode = false; this->e_absolute_mode = false; break;
436
437 case 92: {
438 if(gcode->subcode == 1 || gcode->subcode == 2 || gcode->get_num_args() == 0) {
439 // reset G92 offsets to 0
440 g92_offset = wcs_t(0, 0, 0);
441
442 } else if(gcode->subcode == 3) {
443 // initialize G92 to the specified values, only used for saving it with M500
444 float x= 0, y= 0, z= 0;
445 if(gcode->has_letter('X')) x= gcode->get_value('X');
446 if(gcode->has_letter('Y')) y= gcode->get_value('Y');
447 if(gcode->has_letter('Z')) z= gcode->get_value('Z');
448 g92_offset = wcs_t(x, y, z);
449
450 } else {
451 // standard setting of the g92 offsets, making current WCS position whatever the coordinate arguments are
452 float x, y, z;
453 std::tie(x, y, z) = g92_offset;
454 // get current position in WCS
455 wcs_t pos= mcs2wcs(last_milestone);
456
457 // adjust g92 offset to make the current wpos == the value requested
458 if(gcode->has_letter('X')){
459 x += to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
460 }
461 if(gcode->has_letter('Y')){
462 y += to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
463 }
464 if(gcode->has_letter('Z')) {
465 z += to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
466 }
467 g92_offset = wcs_t(x, y, z);
468 }
469
470 #if MAX_ROBOT_ACTUATORS > 3
471 if(gcode->subcode == 0 && (gcode->has_letter('E') || gcode->get_num_args() == 0)){
472 // reset the E position, legacy for 3d Printers to be reprap compatible
473 // find the selected extruder
474 // NOTE this will only work when E is 0 if volumetric and/or scaling is used as the actuator last milestone will be different if it was scaled
475 for (int i = E_AXIS; i < n_motors; ++i) {
476 if(actuators[i]->is_selected()) {
477 float e= gcode->has_letter('E') ? gcode->get_value('E') : 0;
478 last_milestone[i]= last_machine_position[i]= e;
479 actuators[i]->change_last_milestone(e);
480 break;
481 }
482 }
483 }
484 #endif
485
486 return;
487 }
488 }
489
490 } else if( gcode->has_m) {
491 switch( gcode->m ) {
492 // case 0: // M0 feed hold, (M0.1 is release feed hold, except we are in feed hold)
493 // if(THEKERNEL->is_grbl_mode()) THEKERNEL->set_feed_hold(gcode->subcode == 0);
494 // break;
495
496 case 30: // M30 end of program in grbl mode (otherwise it is delete sdcard file)
497 if(!THEKERNEL->is_grbl_mode()) break;
498 // fall through to M2
499 case 2: // M2 end of program
500 current_wcs = 0;
501 absolute_mode = true;
502 break;
503 case 17:
504 THEKERNEL->call_event(ON_ENABLE, (void*)1); // turn all enable pins on
505 break;
506
507 case 18: // this used to support parameters, now it ignores them
508 case 84:
509 THEKERNEL->conveyor->wait_for_idle();
510 THEKERNEL->call_event(ON_ENABLE, nullptr); // turn all enable pins off
511 break;
512
513 case 82: e_absolute_mode= true; break;
514 case 83: e_absolute_mode= false; break;
515
516 case 92: // M92 - set steps per mm
517 if (gcode->has_letter('X'))
518 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
519 if (gcode->has_letter('Y'))
520 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
521 if (gcode->has_letter('Z'))
522 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
523
524 gcode->stream->printf("X:%f Y:%f Z:%f ", actuators[0]->get_steps_per_mm(), actuators[1]->get_steps_per_mm(), actuators[2]->get_steps_per_mm());
525 gcode->add_nl = true;
526 check_max_actuator_speeds();
527 return;
528
529 case 114:{
530 char buf[64];
531 int n= print_position(gcode->subcode, buf, sizeof buf);
532 if(n > 0) gcode->txt_after_ok.append(buf, n);
533 return;
534 }
535
536 case 120: // push state
537 push_state();
538 break;
539
540 case 121: // pop state
541 pop_state();
542 break;
543
544 case 203: // M203 Set maximum feedrates in mm/sec, M203.1 set maximum actuator feedrates
545 if(gcode->get_num_args() == 0) {
546 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
547 gcode->stream->printf(" %c: %g ", 'X' + i, gcode->subcode == 0 ? this->max_speeds[i] : actuators[i]->get_max_rate());
548 }
549 gcode->add_nl = true;
550
551 }else{
552 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
553 if (gcode->has_letter('X' + i)) {
554 float v= gcode->get_value('X'+i);
555 if(gcode->subcode == 0) this->max_speeds[i]= v;
556 else if(gcode->subcode == 1) actuators[i]->set_max_rate(v);
557 }
558 }
559 if(gcode->subcode == 1) check_max_actuator_speeds();
560 }
561 break;
562
563 case 204: // M204 Snnn - set default acceleration to nnn, Xnnn Ynnn Znnn sets axis specific acceleration
564 if (gcode->has_letter('S')) {
565 float acc = gcode->get_value('S'); // mm/s^2
566 // enforce minimum
567 if (acc < 1.0F) acc = 1.0F;
568 this->default_acceleration = acc;
569 }
570 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
571 if (gcode->has_letter(i+'X')) {
572 float acc = gcode->get_value(i+'X'); // mm/s^2
573 // enforce positive
574 if (acc <= 0.0F) acc = NAN;
575 actuators[i]->set_acceleration(acc);
576 }
577 }
578 break;
579
580 case 205: // M205 Xnnn - set junction deviation, Z - set Z junction deviation, Snnn - Set minimum planner speed
581 if (gcode->has_letter('X')) {
582 float jd = gcode->get_value('X');
583 // enforce minimum
584 if (jd < 0.0F)
585 jd = 0.0F;
586 THEKERNEL->planner->junction_deviation = jd;
587 }
588 if (gcode->has_letter('Z')) {
589 float jd = gcode->get_value('Z');
590 // enforce minimum, -1 disables it and uses regular junction deviation
591 if (jd < -1.0F)
592 jd = -1.0F;
593 THEKERNEL->planner->z_junction_deviation = jd;
594 }
595 if (gcode->has_letter('S')) {
596 float mps = gcode->get_value('S');
597 // enforce minimum
598 if (mps < 0.0F)
599 mps = 0.0F;
600 THEKERNEL->planner->minimum_planner_speed = mps;
601 }
602 break;
603
604 case 220: // M220 - speed override percentage
605 if (gcode->has_letter('S')) {
606 float factor = gcode->get_value('S');
607 // enforce minimum 10% speed
608 if (factor < 10.0F)
609 factor = 10.0F;
610 // enforce maximum 10x speed
611 if (factor > 1000.0F)
612 factor = 1000.0F;
613
614 seconds_per_minute = 6000.0F / factor;
615 } else {
616 gcode->stream->printf("Speed factor at %6.2f %%\n", 6000.0F / seconds_per_minute);
617 }
618 break;
619
620 case 400: // wait until all moves are done up to this point
621 THEKERNEL->conveyor->wait_for_idle();
622 break;
623
624 case 500: // M500 saves some volatile settings to config override file
625 case 503: { // M503 just prints the settings
626 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->get_steps_per_mm(), actuators[1]->get_steps_per_mm(), actuators[2]->get_steps_per_mm());
627
628 // only print XYZ if not NAN
629 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f ", default_acceleration);
630 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
631 if(!isnan(actuators[i]->get_acceleration())) gcode->stream->printf("%c%1.5f ", 'X'+i, actuators[i]->get_acceleration());
632 }
633 gcode->stream->printf("\n");
634
635 gcode->stream->printf(";X- Junction Deviation, Z- Z junction deviation, S - Minimum Planner speed mm/sec:\nM205 X%1.5f Z%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->z_junction_deviation, THEKERNEL->planner->minimum_planner_speed);
636
637 gcode->stream->printf(";Max cartesian feedrates in mm/sec:\nM203 X%1.5f Y%1.5f Z%1.5f\n", this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS]);
638 gcode->stream->printf(";Max actuator feedrates in mm/sec:\nM203.1 X%1.5f Y%1.5f Z%1.5f\n", actuators[X_AXIS]->get_max_rate(), actuators[Y_AXIS]->get_max_rate(), actuators[Z_AXIS]->get_max_rate());
639
640 // get or save any arm solution specific optional values
641 BaseSolution::arm_options_t options;
642 if(arm_solution->get_optional(options) && !options.empty()) {
643 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
644 for(auto &i : options) {
645 gcode->stream->printf(" %c%1.4f", i.first, i.second);
646 }
647 gcode->stream->printf("\n");
648 }
649
650 // save wcs_offsets and current_wcs
651 // TODO this may need to be done whenever they change to be compliant
652 gcode->stream->printf(";WCS settings\n");
653 gcode->stream->printf("%s\n", wcs2gcode(current_wcs).c_str());
654 int n = 1;
655 for(auto &i : wcs_offsets) {
656 if(i != wcs_t(0, 0, 0)) {
657 float x, y, z;
658 std::tie(x, y, z) = i;
659 gcode->stream->printf("G10 L2 P%d X%f Y%f Z%f ; %s\n", n, x, y, z, wcs2gcode(n-1).c_str());
660 }
661 ++n;
662 }
663 if(save_g92) {
664 // linuxcnc saves G92, so we do too if configured, default is to not save to maintain backward compatibility
665 // also it needs to be used to set Z0 on rotary deltas as M206/306 can't be used, so saving it is necessary in that case
666 if(g92_offset != wcs_t(0, 0, 0)) {
667 float x, y, z;
668 std::tie(x, y, z) = g92_offset;
669 gcode->stream->printf("G92.3 X%f Y%f Z%f\n", x, y, z); // sets G92 to the specified values
670 }
671 }
672 }
673 break;
674
675 case 665: { // M665 set optional arm solution variables based on arm solution.
676 // the parameter args could be any letter each arm solution only accepts certain ones
677 BaseSolution::arm_options_t options = gcode->get_args();
678 options.erase('S'); // don't include the S
679 options.erase('U'); // don't include the U
680 if(options.size() > 0) {
681 // set the specified options
682 arm_solution->set_optional(options);
683 }
684 options.clear();
685 if(arm_solution->get_optional(options)) {
686 // foreach optional value
687 for(auto &i : options) {
688 // print all current values of supported options
689 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
690 gcode->add_nl = true;
691 }
692 }
693
694 if(gcode->has_letter('S')) { // set delta segments per second, not saved by M500
695 this->delta_segments_per_second = gcode->get_value('S');
696 gcode->stream->printf("Delta segments set to %8.4f segs/sec\n", this->delta_segments_per_second);
697
698 } else if(gcode->has_letter('U')) { // or set mm_per_line_segment, not saved by M500
699 this->mm_per_line_segment = gcode->get_value('U');
700 this->delta_segments_per_second = 0;
701 gcode->stream->printf("mm per line segment set to %8.4f\n", this->mm_per_line_segment);
702 }
703
704 break;
705 }
706 }
707 }
708
709 if( motion_mode != NONE) {
710 process_move(gcode, motion_mode);
711 }
712
713 next_command_is_MCS = false; // must be on same line as G0 or G1
714 }
715
716 // process a G0/G1/G2/G3
717 void Robot::process_move(Gcode *gcode, enum MOTION_MODE_T motion_mode)
718 {
719 // we have a G0/G1/G2/G3 so extract parameters and apply offsets to get machine coordinate target
720 // get XYZ and one E (which goes to the selected extruder)
721 float param[4]{NAN, NAN, NAN, NAN};
722
723 // process primary axis
724 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
725 char letter= 'X'+i;
726 if( gcode->has_letter(letter) ) {
727 param[i] = this->to_millimeters(gcode->get_value(letter));
728 }
729 }
730
731 float offset[3]{0,0,0};
732 for(char letter = 'I'; letter <= 'K'; letter++) {
733 if( gcode->has_letter(letter) ) {
734 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
735 }
736 }
737
738 // calculate target in machine coordinates (less compensation transform which needs to be done after segmentation)
739 float target[n_motors];
740 memcpy(target, last_milestone, n_motors*sizeof(float));
741
742 if(!next_command_is_MCS) {
743 if(this->absolute_mode) {
744 // apply wcs offsets and g92 offset and tool offset
745 if(!isnan(param[X_AXIS])) {
746 target[X_AXIS]= param[X_AXIS] + std::get<X_AXIS>(wcs_offsets[current_wcs]) - std::get<X_AXIS>(g92_offset) + std::get<X_AXIS>(tool_offset);
747 }
748
749 if(!isnan(param[Y_AXIS])) {
750 target[Y_AXIS]= param[Y_AXIS] + std::get<Y_AXIS>(wcs_offsets[current_wcs]) - std::get<Y_AXIS>(g92_offset) + std::get<Y_AXIS>(tool_offset);
751 }
752
753 if(!isnan(param[Z_AXIS])) {
754 target[Z_AXIS]= param[Z_AXIS] + std::get<Z_AXIS>(wcs_offsets[current_wcs]) - std::get<Z_AXIS>(g92_offset) + std::get<Z_AXIS>(tool_offset);
755 }
756
757 }else{
758 // they are deltas from the last_milestone if specified
759 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
760 if(!isnan(param[i])) target[i] = param[i] + last_milestone[i];
761 }
762 }
763
764 }else{
765 // already in machine coordinates, we do not add tool offset for that
766 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
767 if(!isnan(param[i])) target[i] = param[i];
768 }
769 }
770
771 // process extruder parameters, for active extruder only (only one active extruder at a time)
772 selected_extruder= 0;
773 if(gcode->has_letter('E')) {
774 for (int i = E_AXIS; i < n_motors; ++i) {
775 // find first selected extruder
776 if(actuators[i]->is_selected()) {
777 param[E_AXIS]= gcode->get_value('E');
778 selected_extruder= i;
779 break;
780 }
781 }
782 }
783
784 // do E for the selected extruder
785 float delta_e= NAN;
786 if(selected_extruder > 0 && !isnan(param[E_AXIS])) {
787 if(this->e_absolute_mode) {
788 target[selected_extruder]= param[E_AXIS];
789 delta_e= target[selected_extruder] - last_milestone[selected_extruder];
790 }else{
791 delta_e= param[E_AXIS];
792 target[selected_extruder] = delta_e + last_milestone[selected_extruder];
793 }
794 }
795
796 if( gcode->has_letter('F') ) {
797 if( motion_mode == SEEK )
798 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
799 else
800 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
801 }
802
803 bool moved= false;
804
805 // Perform any physical actions
806 switch(motion_mode) {
807 case NONE: break;
808
809 case SEEK:
810 moved= this->append_line(gcode, target, this->seek_rate / seconds_per_minute, delta_e );
811 break;
812
813 case LINEAR:
814 moved= this->append_line(gcode, target, this->feed_rate / seconds_per_minute, delta_e );
815 break;
816
817 case CW_ARC:
818 case CCW_ARC:
819 // Note arcs are not currently supported by extruder based machines, as 3D slicers do not use arcs (G2/G3)
820 moved= this->compute_arc(gcode, offset, target, motion_mode);
821 break;
822 }
823
824 if(moved) {
825 // set last_milestone to the calculated target
826 memcpy(last_milestone, target, n_motors*sizeof(float));
827 }
828 }
829
830 // reset the machine position for all axis. Used for homing.
831 // During homing compensation is turned off (actually not used as it drives steppers directly)
832 // once homed and reset_axis called compensation is used for the move to origin and back off home if enabled,
833 // so in those cases the final position is compensated.
834 void Robot::reset_axis_position(float x, float y, float z)
835 {
836 // these are set to the same as compensation was not used to get to the current position
837 last_machine_position[X_AXIS]= last_milestone[X_AXIS] = x;
838 last_machine_position[Y_AXIS]= last_milestone[Y_AXIS] = y;
839 last_machine_position[Z_AXIS]= last_milestone[Z_AXIS] = z;
840
841 // now set the actuator positions to match
842 ActuatorCoordinates actuator_pos;
843 arm_solution->cartesian_to_actuator(this->last_machine_position, actuator_pos);
844 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
845 actuators[i]->change_last_milestone(actuator_pos[i]);
846 }
847
848 // Reset the position for an axis (used in homing, and to reset extruder after suspend)
849 void Robot::reset_axis_position(float position, int axis)
850 {
851 last_milestone[axis] = position;
852 if(axis <= Z_AXIS) {
853 reset_axis_position(last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
854 }else{
855 // extruders need to be set not calculated
856 last_machine_position[axis]= position;
857 }
858 }
859
860 // similar to reset_axis_position but directly sets the actuator positions in actuators units (eg mm for cartesian, degrees for rotary delta)
861 // then sets the axis positions to match. currently only called from Endstops.cpp
862 void Robot::reset_actuator_position(const ActuatorCoordinates &ac)
863 {
864 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
865 actuators[i]->change_last_milestone(ac[i]);
866
867 // now correct axis positions then recorrect actuator to account for rounding
868 reset_position_from_current_actuator_position();
869 }
870
871 // Use FK to find out where actuator is and reset to match
872 void Robot::reset_position_from_current_actuator_position()
873 {
874 ActuatorCoordinates actuator_pos;
875 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
876 // NOTE actuator::current_position is curently NOT the same as actuator::last_milestone after an abrupt abort
877 actuator_pos[i] = actuators[i]->get_current_position();
878 }
879
880 // discover machine position from where actuators actually are
881 arm_solution->actuator_to_cartesian(actuator_pos, last_machine_position);
882 // FIXME problem is this includes any compensation transform, and without an inverse compensation we cannot get a correct last_milestone
883 memcpy(last_milestone, last_machine_position, sizeof last_milestone);
884
885 // now reset actuator::last_milestone, NOTE this may lose a little precision as FK is not always entirely accurate.
886 // NOTE This is required to sync the machine position with the actuator position, we do a somewhat redundant cartesian_to_actuator() call
887 // to get everything in perfect sync.
888 arm_solution->cartesian_to_actuator(last_machine_position, actuator_pos);
889 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
890 actuators[i]->change_last_milestone(actuator_pos[i]);
891 }
892
893 // Convert target (in machine coordinates) to machine_position, then convert to actuator position and append this to the planner
894 // target is in machine coordinates without the compensation transform, however we save a last_machine_position that includes
895 // all transforms and is what we actually convert to actuator positions
896 bool Robot::append_milestone(const float target[], float rate_mm_s, bool disable_compensation)
897 {
898 float deltas[n_motors];
899 float transformed_target[n_motors]; // adjust target for bed compensation
900 float unit_vec[N_PRIMARY_AXIS];
901
902 // unity transform by default
903 memcpy(transformed_target, target, n_motors*sizeof(float));
904
905 // check function pointer and call if set to transform the target to compensate for bed
906 if(!disable_compensation && compensationTransform) {
907 // some compensation strategies can transform XYZ, some just change Z
908 compensationTransform(transformed_target);
909 }
910
911 bool move= false;
912 float sos= 0; // sun of squares for just XYZ
913
914 // find distance moved by each axis, use transformed target from the current machine position
915 for (size_t i = 0; i < n_motors; i++) {
916 deltas[i] = transformed_target[i] - last_machine_position[i];
917 if(deltas[i] == 0) continue;
918 // at least one non zero delta
919 move = true;
920 if(i <= Z_AXIS) {
921 sos += powf(deltas[i], 2);
922 }
923 }
924
925 // nothing moved
926 if(!move) return false;
927
928 // see if this is a primary axis move or not
929 bool auxilliary_move= deltas[X_AXIS] == 0 && deltas[Y_AXIS] == 0 && deltas[Z_AXIS] == 0;
930
931 // total movement, use XYZ if a primary axis otherwise we calculate distance for E after scaling to mm
932 float distance= auxilliary_move ? 0 : sqrtf(sos);
933
934 // it is unlikely but we need to protect against divide by zero, so ignore insanely small moves here
935 // as the last milestone won't be updated we do not actually lose any moves as they will be accounted for in the next move
936 if(!auxilliary_move && distance < 0.00001F) return false;
937
938
939 if(!auxilliary_move) {
940 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
941 // find distance unit vector for primary axis only
942 unit_vec[i] = deltas[i] / distance;
943
944 // Do not move faster than the configured cartesian limits for XYZ
945 if ( max_speeds[i] > 0 ) {
946 float axis_speed = fabsf(unit_vec[i] * rate_mm_s);
947
948 if (axis_speed > max_speeds[i])
949 rate_mm_s *= ( max_speeds[i] / axis_speed );
950 }
951 }
952 }
953
954 // find actuator position given the machine position, use actual adjusted target
955 ActuatorCoordinates actuator_pos;
956 arm_solution->cartesian_to_actuator( transformed_target, actuator_pos );
957
958 #if MAX_ROBOT_ACTUATORS > 3
959 sos= 0;
960 // for the extruders just copy the position, and possibly scale it from mm³ to mm
961 for (size_t i = E_AXIS; i < n_motors; i++) {
962 actuator_pos[i]= transformed_target[i];
963 if(get_e_scale_fnc) {
964 // NOTE this relies on the fact only one extruder is active at a time
965 // scale for volumetric or flow rate
966 // TODO is this correct? scaling the absolute target? what if the scale changes?
967 // for volumetric it basically converts mm³ to mm, but what about flow rate?
968 actuator_pos[i] *= get_e_scale_fnc();
969 }
970 if(auxilliary_move) {
971 // for E only moves we need to use the scaled E to calculate the distance
972 sos += pow(actuator_pos[i] - actuators[i]->get_last_milestone(), 2);
973 }
974 }
975 if(auxilliary_move) {
976 if(sos < 0.00001F) return false;
977 distance= sqrtf(sos); // distance in mm of the e move
978 }
979 #endif
980
981 // this is the machine position, we update here as we have detected a move
982 memcpy(this->last_machine_position, transformed_target, n_motors*sizeof(float));
983
984 // use default acceleration to start with
985 float acceleration = default_acceleration;
986
987 float isecs = rate_mm_s / distance;
988
989 // check per-actuator speed limits
990 for (size_t actuator = 0; actuator < n_motors; actuator++) {
991 float d = fabsf(actuator_pos[actuator] - actuators[actuator]->get_last_milestone());
992 if(d == 0 || !actuators[actuator]->is_selected()) continue; // no movement for this actuator
993
994 float actuator_rate= d * isecs;
995 if (actuator_rate > actuators[actuator]->get_max_rate()) {
996 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
997 isecs = rate_mm_s / distance;
998 }
999
1000 // adjust acceleration to lowest found, for now just primary axis unless it is an auxiliary move
1001 // TODO we may need to do all of them, check E won't limit XYZ.. it does on long E moves, but not checking it could exceed the E acceleration.
1002 if(auxilliary_move || actuator <= Z_AXIS) {
1003 float ma = actuators[actuator]->get_acceleration(); // in mm/sec²
1004 if(!isnan(ma)) { // if axis does not have acceleration set then it uses the default_acceleration
1005 float ca = fabsf((d/distance) * acceleration);
1006 if (ca > ma) {
1007 acceleration *= ( ma / ca );
1008 }
1009 }
1010 }
1011 }
1012
1013 // Append the block to the planner
1014 // NOTE that distance here should be either the distance travelled by the XYZ axis, or the E mm travel if a solo E move
1015 THEKERNEL->planner->append_block( actuator_pos, n_motors, rate_mm_s, distance, auxilliary_move ? nullptr : unit_vec, acceleration );
1016
1017 return true;
1018 }
1019
1020 // Used to plan a single move used by things like endstops when homing, zprobe, extruder firmware retracts etc.
1021 bool Robot::delta_move(const float *delta, float rate_mm_s, uint8_t naxis)
1022 {
1023 if(THEKERNEL->is_halted()) return false;
1024
1025 // catch negative or zero feed rates
1026 if(rate_mm_s <= 0.0F) {
1027 return false;
1028 }
1029
1030 // get the absolute target position, default is current last_milestone
1031 float target[n_motors];
1032 memcpy(target, last_milestone, n_motors*sizeof(float));
1033
1034 // add in the deltas to get new target
1035 for (int i= 0; i < naxis; i++) {
1036 target[i] += delta[i];
1037 }
1038
1039 // submit for planning and if moved update last_milestone
1040 // NOTE this disabled compensation transforms as homing and zprobe must not use them
1041 if(append_milestone(target, rate_mm_s, true)) {
1042 memcpy(last_milestone, target, n_motors*sizeof(float));
1043 return true;
1044 }
1045
1046 return false;
1047 }
1048
1049 // Append a move to the queue ( cutting it into segments if needed )
1050 bool Robot::append_line(Gcode *gcode, const float target[], float rate_mm_s, float delta_e)
1051 {
1052 // catch negative or zero feed rates and return the same error as GRBL does
1053 if(rate_mm_s <= 0.0F) {
1054 gcode->is_error= true;
1055 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1056 return false;
1057 }
1058
1059 // Find out the distance for this move in XYZ in MCS
1060 float millimeters_of_travel = sqrtf(powf( target[X_AXIS] - last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - last_milestone[Z_AXIS], 2 ));
1061
1062 if(millimeters_of_travel < 0.00001F) {
1063 // we have no movement in XYZ, probably E only extrude or retract
1064 return this->append_milestone(target, rate_mm_s);
1065 }
1066
1067 /*
1068 For extruders, we need to do some extra work...
1069 if we have volumetric limits enabled we calculate the volume for this move and limit the rate if it exceeds the stated limit.
1070 Note we need to be using volumetric extrusion for this to work as Ennn is in mm³ not mm
1071 We ask Extruder to do all the work but we need to pass in the relevant data.
1072 NOTE we need to do this before we segment the line (for deltas)
1073 This also sets any scaling due to flow rate and volumetric if a G1
1074 */
1075 if(!isnan(delta_e) && gcode->has_g && gcode->g == 1) {
1076 float data[2]= {delta_e, rate_mm_s / millimeters_of_travel};
1077 if(PublicData::set_value(extruder_checksum, target_checksum, data)) {
1078 rate_mm_s *= data[1]; // adjust the feedrate
1079 }
1080 }
1081
1082 // We cut the line into smaller segments. This is only needed on a cartesian robot for zgrid, but always necessary for robots with rotational axes like Deltas.
1083 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second
1084 // The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
1085 uint16_t segments;
1086
1087 if(this->disable_segmentation || (!segment_z_moves && !gcode->has_letter('X') && !gcode->has_letter('Y'))) {
1088 segments= 1;
1089
1090 } else if(this->delta_segments_per_second > 1.0F) {
1091 // enabled if set to something > 1, it is set to 0.0 by default
1092 // segment based on current speed and requested segments per second
1093 // the faster the travel speed the fewer segments needed
1094 // NOTE rate is mm/sec and we take into account any speed override
1095 float seconds = millimeters_of_travel / rate_mm_s;
1096 segments = max(1.0F, ceilf(this->delta_segments_per_second * seconds));
1097 // TODO if we are only moving in Z on a delta we don't really need to segment at all
1098
1099 } else {
1100 if(this->mm_per_line_segment == 0.0F) {
1101 segments = 1; // don't split it up
1102 } else {
1103 segments = ceilf( millimeters_of_travel / this->mm_per_line_segment);
1104 }
1105 }
1106
1107 bool moved= false;
1108 if (segments > 1) {
1109 // A vector to keep track of the endpoint of each segment
1110 float segment_delta[n_motors];
1111 float segment_end[n_motors];
1112 memcpy(segment_end, last_milestone, n_motors*sizeof(float));
1113
1114 // How far do we move each segment?
1115 for (int i = 0; i < n_motors; i++)
1116 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
1117
1118 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
1119 // We always add another point after this loop so we stop at segments-1, ie i < segments
1120 for (int i = 1; i < segments; i++) {
1121 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
1122 for (int i = 0; i < n_motors; i++)
1123 segment_end[i] += segment_delta[i];
1124
1125 // Append the end of this segment to the queue
1126 bool b= this->append_milestone(segment_end, rate_mm_s);
1127 moved= moved || b;
1128 }
1129 }
1130
1131 // Append the end of this full move to the queue
1132 if(this->append_milestone(target, rate_mm_s)) moved= true;
1133
1134 this->next_command_is_MCS = false; // always reset this
1135
1136 return moved;
1137 }
1138
1139
1140 // Append an arc to the queue ( cutting it into segments as needed )
1141 bool Robot::append_arc(Gcode * gcode, const float target[], const float offset[], float radius, bool is_clockwise )
1142 {
1143 float rate_mm_s= this->feed_rate / seconds_per_minute;
1144 // catch negative or zero feed rates and return the same error as GRBL does
1145 if(rate_mm_s <= 0.0F) {
1146 gcode->is_error= true;
1147 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1148 return false;
1149 }
1150
1151 // Scary math
1152 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
1153 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
1154 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1155 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
1156 float r_axis1 = -offset[this->plane_axis_1];
1157 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
1158 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
1159
1160 // Patch from GRBL Firmware - Christoph Baumann 04072015
1161 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
1162 float angular_travel = atan2f(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
1163 if (is_clockwise) { // Correct atan2 output per direction
1164 if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= (2 * PI); }
1165 } else {
1166 if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += (2 * PI); }
1167 }
1168
1169 // Find the distance for this gcode
1170 float millimeters_of_travel = hypotf(angular_travel * radius, fabsf(linear_travel));
1171
1172 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
1173 if( millimeters_of_travel < 0.00001F ) {
1174 return false;
1175 }
1176
1177 // limit segments by maximum arc error
1178 float arc_segment = this->mm_per_arc_segment;
1179 if ((this->mm_max_arc_error > 0) && (2 * radius > this->mm_max_arc_error)) {
1180 float min_err_segment = 2 * sqrtf((this->mm_max_arc_error * (2 * radius - this->mm_max_arc_error)));
1181 if (this->mm_per_arc_segment < min_err_segment) {
1182 arc_segment = min_err_segment;
1183 }
1184 }
1185 // Figure out how many segments for this gcode
1186 uint16_t segments = ceilf(millimeters_of_travel / arc_segment);
1187
1188 //printf("Radius %f - Segment Length %f - Number of Segments %d\r\n",radius,arc_segment,segments); // Testing Purposes ONLY
1189 float theta_per_segment = angular_travel / segments;
1190 float linear_per_segment = linear_travel / segments;
1191
1192 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
1193 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
1194 r_T = [cos(phi) -sin(phi);
1195 sin(phi) cos(phi] * r ;
1196 For arc generation, the center of the circle is the axis of rotation and the radius vector is
1197 defined from the circle center to the initial position. Each line segment is formed by successive
1198 vector rotations. This requires only two cos() and sin() computations to form the rotation
1199 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1200 all float numbers are single precision on the Arduino. (True float precision will not have
1201 round off issues for CNC applications.) Single precision error can accumulate to be greater than
1202 tool precision in some cases. Therefore, arc path correction is implemented.
1203
1204 Small angle approximation may be used to reduce computation overhead further. This approximation
1205 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
1206 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
1207 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
1208 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
1209 issue for CNC machines with the single precision Arduino calculations.
1210 This approximation also allows mc_arc to immediately insert a line segment into the planner
1211 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
1212 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
1213 This is important when there are successive arc motions.
1214 */
1215 // Vector rotation matrix values
1216 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1217 float sin_T = theta_per_segment;
1218
1219 float arc_target[3];
1220 float sin_Ti;
1221 float cos_Ti;
1222 float r_axisi;
1223 uint16_t i;
1224 int8_t count = 0;
1225
1226 // Initialize the linear axis
1227 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
1228
1229 bool moved= false;
1230 for (i = 1; i < segments; i++) { // Increment (segments-1)
1231 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
1232
1233 if (count < this->arc_correction ) {
1234 // Apply vector rotation matrix
1235 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
1236 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
1237 r_axis1 = r_axisi;
1238 count++;
1239 } else {
1240 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
1241 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
1242 cos_Ti = cosf(i * theta_per_segment);
1243 sin_Ti = sinf(i * theta_per_segment);
1244 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
1245 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
1246 count = 0;
1247 }
1248
1249 // Update arc_target location
1250 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
1251 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
1252 arc_target[this->plane_axis_2] += linear_per_segment;
1253
1254 // Append this segment to the queue
1255 bool b= this->append_milestone(arc_target, rate_mm_s);
1256 moved= moved || b;
1257 }
1258
1259 // Ensure last segment arrives at target location.
1260 if(this->append_milestone(target, rate_mm_s)) moved= true;
1261
1262 return moved;
1263 }
1264
1265 // Do the math for an arc and add it to the queue
1266 bool Robot::compute_arc(Gcode * gcode, const float offset[], const float target[], enum MOTION_MODE_T motion_mode)
1267 {
1268
1269 // Find the radius
1270 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
1271
1272 // Set clockwise/counter-clockwise sign for mc_arc computations
1273 bool is_clockwise = false;
1274 if( motion_mode == CW_ARC ) {
1275 is_clockwise = true;
1276 }
1277
1278 // Append arc
1279 return this->append_arc(gcode, target, offset, radius, is_clockwise );
1280 }
1281
1282
1283 float Robot::theta(float x, float y)
1284 {
1285 float t = atanf(x / fabs(y));
1286 if (y > 0) {
1287 return(t);
1288 } else {
1289 if (t > 0) {
1290 return(PI - t);
1291 } else {
1292 return(-PI - t);
1293 }
1294 }
1295 }
1296
1297 void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
1298 {
1299 this->plane_axis_0 = axis_0;
1300 this->plane_axis_1 = axis_1;
1301 this->plane_axis_2 = axis_2;
1302 }
1303
1304 void Robot::clearToolOffset()
1305 {
1306 this->tool_offset= wcs_t(0,0,0);
1307 }
1308
1309 void Robot::setToolOffset(const float offset[3])
1310 {
1311 this->tool_offset= wcs_t(offset[0], offset[1], offset[2]);
1312 }
1313
1314 float Robot::get_feed_rate() const
1315 {
1316 return THEKERNEL->gcode_dispatch->get_modal_command() == 0 ? seek_rate : feed_rate;
1317 }