(Fdisplay_buffer): Cope with unsplittable frames and dedicated windows.
[bpt/emacs.git] / src / regex.c
CommitLineData
bc78d348 1/* Extended regular expression matching and search library,
8b20806d 2 version 0.12.
bc78d348
KB
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
6cd14acb 6 Copyright (C) 1993, 1994 Free Software Foundation, Inc.
bc78d348
KB
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
27#define _GNU_SOURCE
28
2f4e547f 29#ifdef HAVE_CONFIG_H
972a693a 30#if defined (emacs) || defined (CONFIG_BROKETS)
2f4e547f
JM
31/* We use <config.h> instead of "config.h" so that a compilation
32 using -I. -I$srcdir will use ./config.h rather than $srcdir/config.h
33 (which it would do because it found this file in $srcdir). */
34#include <config.h>
35#else
36#include "config.h"
37#endif
38#endif
39
bc78d348
KB
40/* We need this for `regex.h', and perhaps for the Emacs include files. */
41#include <sys/types.h>
42
43/* The `emacs' switch turns on certain matching commands
44 that make sense only in Emacs. */
45#ifdef emacs
46
bc78d348
KB
47#include "lisp.h"
48#include "buffer.h"
49#include "syntax.h"
50
51/* Emacs uses `NULL' as a predicate. */
52#undef NULL
53
54#else /* not emacs */
55
74da5007
JB
56#ifdef STDC_HEADERS
57#include <stdlib.h>
58#else
59char *malloc ();
60char *realloc ();
61#endif
62
63
bc78d348
KB
64/* We used to test for `BSTRING' here, but only GCC and Emacs define
65 `BSTRING', as far as I know, and neither of them use this code. */
3fa89e8c 66#ifndef INHIBIT_STRING_HEADER
18ec5b05 67#if HAVE_STRING_H || STDC_HEADERS
bc78d348 68#include <string.h>
9114e279 69#ifndef bcmp
bc78d348 70#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
9114e279
KB
71#endif
72#ifndef bcopy
bc78d348 73#define bcopy(s, d, n) memcpy ((d), (s), (n))
9114e279
KB
74#endif
75#ifndef bzero
bc78d348 76#define bzero(s, n) memset ((s), 0, (n))
9114e279 77#endif
bc78d348
KB
78#else
79#include <strings.h>
80#endif
3fa89e8c 81#endif
bc78d348 82
bc78d348
KB
83/* Define the syntax stuff for \<, \>, etc. */
84
85/* This must be nonzero for the wordchar and notwordchar pattern
86 commands in re_match_2. */
87#ifndef Sword
88#define Sword 1
89#endif
90
91#ifdef SYNTAX_TABLE
92
93extern char *re_syntax_table;
94
95#else /* not SYNTAX_TABLE */
96
97/* How many characters in the character set. */
98#define CHAR_SET_SIZE 256
99
100static char re_syntax_table[CHAR_SET_SIZE];
101
102static void
103init_syntax_once ()
104{
105 register int c;
106 static int done = 0;
107
108 if (done)
109 return;
110
111 bzero (re_syntax_table, sizeof re_syntax_table);
112
113 for (c = 'a'; c <= 'z'; c++)
114 re_syntax_table[c] = Sword;
115
116 for (c = 'A'; c <= 'Z'; c++)
117 re_syntax_table[c] = Sword;
118
119 for (c = '0'; c <= '9'; c++)
120 re_syntax_table[c] = Sword;
121
122 re_syntax_table['_'] = Sword;
123
124 done = 1;
125}
126
127#endif /* not SYNTAX_TABLE */
128
129#define SYNTAX(c) re_syntax_table[c]
130
131#endif /* not emacs */
132\f
133/* Get the interface, including the syntax bits. */
134#include "regex.h"
135
bc78d348
KB
136/* isalpha etc. are used for the character classes. */
137#include <ctype.h>
c6b40788 138
a1dd004b
JB
139/* Jim Meyering writes:
140
141 "... Some ctype macros are valid only for character codes that
142 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
143 using /bin/cc or gcc but without giving an ansi option). So, all
144 ctype uses should be through macros like ISPRINT... If
145 STDC_HEADERS is defined, then autoconf has verified that the ctype
146 macros don't need to be guarded with references to isascii. ...
147 Defining isascii to 1 should let any compiler worth its salt
148 eliminate the && through constant folding." */
6b528f2f
KH
149
150#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
151#define ISASCII(c) 1
152#else
153#define ISASCII(c) isascii(c)
bc78d348 154#endif
c6b40788
JM
155
156#ifdef isblank
6b528f2f 157#define ISBLANK(c) (ISASCII (c) && isblank (c))
c6b40788
JM
158#else
159#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
bc78d348 160#endif
c6b40788 161#ifdef isgraph
6b528f2f 162#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
c6b40788 163#else
6b528f2f 164#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
c6b40788
JM
165#endif
166
6b528f2f
KH
167#define ISPRINT(c) (ISASCII (c) && isprint (c))
168#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
169#define ISALNUM(c) (ISASCII (c) && isalnum (c))
170#define ISALPHA(c) (ISASCII (c) && isalpha (c))
171#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
172#define ISLOWER(c) (ISASCII (c) && islower (c))
173#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
174#define ISSPACE(c) (ISASCII (c) && isspace (c))
175#define ISUPPER(c) (ISASCII (c) && isupper (c))
176#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
bc78d348
KB
177
178#ifndef NULL
179#define NULL 0
180#endif
181
182/* We remove any previous definition of `SIGN_EXTEND_CHAR',
183 since ours (we hope) works properly with all combinations of
184 machines, compilers, `char' and `unsigned char' argument types.
185 (Per Bothner suggested the basic approach.) */
186#undef SIGN_EXTEND_CHAR
187#if __STDC__
188#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
9114e279 189#else /* not __STDC__ */
bc78d348
KB
190/* As in Harbison and Steele. */
191#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
192#endif
193\f
194/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
195 use `alloca' instead of `malloc'. This is because using malloc in
196 re_search* or re_match* could cause memory leaks when C-g is used in
197 Emacs; also, malloc is slower and causes storage fragmentation. On
198 the other hand, malloc is more portable, and easier to debug.
199
200 Because we sometimes use alloca, some routines have to be macros,
201 not functions -- `alloca'-allocated space disappears at the end of the
202 function it is called in. */
203
204#ifdef REGEX_MALLOC
205
206#define REGEX_ALLOCATE malloc
207#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
208
209#else /* not REGEX_MALLOC */
210
211/* Emacs already defines alloca, sometimes. */
212#ifndef alloca
213
214/* Make alloca work the best possible way. */
215#ifdef __GNUC__
216#define alloca __builtin_alloca
217#else /* not __GNUC__ */
218#if HAVE_ALLOCA_H
219#include <alloca.h>
220#else /* not __GNUC__ or HAVE_ALLOCA_H */
221#ifndef _AIX /* Already did AIX, up at the top. */
222char *alloca ();
223#endif /* not _AIX */
224#endif /* not HAVE_ALLOCA_H */
225#endif /* not __GNUC__ */
226
227#endif /* not alloca */
228
229#define REGEX_ALLOCATE alloca
230
231/* Assumes a `char *destination' variable. */
232#define REGEX_REALLOCATE(source, osize, nsize) \
233 (destination = (char *) alloca (nsize), \
234 bcopy (source, destination, osize), \
235 destination)
236
237#endif /* not REGEX_MALLOC */
238
239
240/* True if `size1' is non-NULL and PTR is pointing anywhere inside
241 `string1' or just past its end. This works if PTR is NULL, which is
242 a good thing. */
243#define FIRST_STRING_P(ptr) \
244 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
245
246/* (Re)Allocate N items of type T using malloc, or fail. */
247#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
248#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
e959bada
JB
249#define RETALLOC_IF(addr, n, t) \
250 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
bc78d348
KB
251#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
252
253#define BYTEWIDTH 8 /* In bits. */
254
255#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
256
63268f76
KH
257#undef MAX
258#undef MIN
bc78d348
KB
259#define MAX(a, b) ((a) > (b) ? (a) : (b))
260#define MIN(a, b) ((a) < (b) ? (a) : (b))
261
262typedef char boolean;
263#define false 0
264#define true 1
f765858e
KH
265
266static int re_match_2_internal ();
bc78d348
KB
267\f
268/* These are the command codes that appear in compiled regular
269 expressions. Some opcodes are followed by argument bytes. A
270 command code can specify any interpretation whatsoever for its
271 arguments. Zero bytes may appear in the compiled regular expression.
272
273 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
274 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
275 `exactn' we use here must also be 1. */
276
277typedef enum
278{
279 no_op = 0,
280
281 /* Followed by one byte giving n, then by n literal bytes. */
282 exactn = 1,
283
284 /* Matches any (more or less) character. */
285 anychar,
286
287 /* Matches any one char belonging to specified set. First
288 following byte is number of bitmap bytes. Then come bytes
289 for a bitmap saying which chars are in. Bits in each byte
290 are ordered low-bit-first. A character is in the set if its
291 bit is 1. A character too large to have a bit in the map is
292 automatically not in the set. */
293 charset,
294
295 /* Same parameters as charset, but match any character that is
296 not one of those specified. */
297 charset_not,
298
299 /* Start remembering the text that is matched, for storing in a
300 register. Followed by one byte with the register number, in
301 the range 0 to one less than the pattern buffer's re_nsub
302 field. Then followed by one byte with the number of groups
303 inner to this one. (This last has to be part of the
304 start_memory only because we need it in the on_failure_jump
305 of re_match_2.) */
306 start_memory,
307
308 /* Stop remembering the text that is matched and store it in a
309 memory register. Followed by one byte with the register
310 number, in the range 0 to one less than `re_nsub' in the
311 pattern buffer, and one byte with the number of inner groups,
312 just like `start_memory'. (We need the number of inner
313 groups here because we don't have any easy way of finding the
314 corresponding start_memory when we're at a stop_memory.) */
315 stop_memory,
316
317 /* Match a duplicate of something remembered. Followed by one
318 byte containing the register number. */
319 duplicate,
320
321 /* Fail unless at beginning of line. */
322 begline,
323
324 /* Fail unless at end of line. */
325 endline,
326
327 /* Succeeds if at beginning of buffer (if emacs) or at beginning
328 of string to be matched (if not). */
329 begbuf,
330
331 /* Analogously, for end of buffer/string. */
332 endbuf,
333
334 /* Followed by two byte relative address to which to jump. */
335 jump,
336
337 /* Same as jump, but marks the end of an alternative. */
338 jump_past_alt,
339
340 /* Followed by two-byte relative address of place to resume at
341 in case of failure. */
342 on_failure_jump,
343
344 /* Like on_failure_jump, but pushes a placeholder instead of the
345 current string position when executed. */
346 on_failure_keep_string_jump,
347
348 /* Throw away latest failure point and then jump to following
349 two-byte relative address. */
350 pop_failure_jump,
351
352 /* Change to pop_failure_jump if know won't have to backtrack to
353 match; otherwise change to jump. This is used to jump
354 back to the beginning of a repeat. If what follows this jump
355 clearly won't match what the repeat does, such that we can be
356 sure that there is no use backtracking out of repetitions
357 already matched, then we change it to a pop_failure_jump.
358 Followed by two-byte address. */
359 maybe_pop_jump,
360
361 /* Jump to following two-byte address, and push a dummy failure
362 point. This failure point will be thrown away if an attempt
363 is made to use it for a failure. A `+' construct makes this
364 before the first repeat. Also used as an intermediary kind
365 of jump when compiling an alternative. */
366 dummy_failure_jump,
367
368 /* Push a dummy failure point and continue. Used at the end of
369 alternatives. */
370 push_dummy_failure,
371
372 /* Followed by two-byte relative address and two-byte number n.
373 After matching N times, jump to the address upon failure. */
374 succeed_n,
375
376 /* Followed by two-byte relative address, and two-byte number n.
377 Jump to the address N times, then fail. */
378 jump_n,
379
380 /* Set the following two-byte relative address to the
381 subsequent two-byte number. The address *includes* the two
382 bytes of number. */
383 set_number_at,
384
385 wordchar, /* Matches any word-constituent character. */
386 notwordchar, /* Matches any char that is not a word-constituent. */
387
388 wordbeg, /* Succeeds if at word beginning. */
389 wordend, /* Succeeds if at word end. */
390
391 wordbound, /* Succeeds if at a word boundary. */
392 notwordbound /* Succeeds if not at a word boundary. */
393
394#ifdef emacs
395 ,before_dot, /* Succeeds if before point. */
396 at_dot, /* Succeeds if at point. */
397 after_dot, /* Succeeds if after point. */
398
399 /* Matches any character whose syntax is specified. Followed by
400 a byte which contains a syntax code, e.g., Sword. */
401 syntaxspec,
402
403 /* Matches any character whose syntax is not that specified. */
404 notsyntaxspec
405#endif /* emacs */
406} re_opcode_t;
407\f
408/* Common operations on the compiled pattern. */
409
410/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
411
412#define STORE_NUMBER(destination, number) \
413 do { \
414 (destination)[0] = (number) & 0377; \
415 (destination)[1] = (number) >> 8; \
416 } while (0)
417
418/* Same as STORE_NUMBER, except increment DESTINATION to
419 the byte after where the number is stored. Therefore, DESTINATION
420 must be an lvalue. */
421
422#define STORE_NUMBER_AND_INCR(destination, number) \
423 do { \
424 STORE_NUMBER (destination, number); \
425 (destination) += 2; \
426 } while (0)
427
428/* Put into DESTINATION a number stored in two contiguous bytes starting
429 at SOURCE. */
430
431#define EXTRACT_NUMBER(destination, source) \
432 do { \
433 (destination) = *(source) & 0377; \
434 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
435 } while (0)
436
437#ifdef DEBUG
438static void
439extract_number (dest, source)
440 int *dest;
441 unsigned char *source;
442{
443 int temp = SIGN_EXTEND_CHAR (*(source + 1));
444 *dest = *source & 0377;
445 *dest += temp << 8;
446}
447
448#ifndef EXTRACT_MACROS /* To debug the macros. */
449#undef EXTRACT_NUMBER
450#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
451#endif /* not EXTRACT_MACROS */
452
453#endif /* DEBUG */
454
455/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
456 SOURCE must be an lvalue. */
457
458#define EXTRACT_NUMBER_AND_INCR(destination, source) \
459 do { \
460 EXTRACT_NUMBER (destination, source); \
461 (source) += 2; \
462 } while (0)
463
464#ifdef DEBUG
465static void
466extract_number_and_incr (destination, source)
467 int *destination;
468 unsigned char **source;
469{
470 extract_number (destination, *source);
471 *source += 2;
472}
473
474#ifndef EXTRACT_MACROS
475#undef EXTRACT_NUMBER_AND_INCR
476#define EXTRACT_NUMBER_AND_INCR(dest, src) \
477 extract_number_and_incr (&dest, &src)
478#endif /* not EXTRACT_MACROS */
479
480#endif /* DEBUG */
481\f
482/* If DEBUG is defined, Regex prints many voluminous messages about what
483 it is doing (if the variable `debug' is nonzero). If linked with the
484 main program in `iregex.c', you can enter patterns and strings
485 interactively. And if linked with the main program in `main.c' and
486 the other test files, you can run the already-written tests. */
487
488#ifdef DEBUG
489
490/* We use standard I/O for debugging. */
491#include <stdio.h>
492
493/* It is useful to test things that ``must'' be true when debugging. */
494#include <assert.h>
495
496static int debug = 0;
497
498#define DEBUG_STATEMENT(e) e
499#define DEBUG_PRINT1(x) if (debug) printf (x)
500#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
501#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
9114e279 502#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
bc78d348
KB
503#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
504 if (debug) print_partial_compiled_pattern (s, e)
505#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
506 if (debug) print_double_string (w, s1, sz1, s2, sz2)
507
508
509extern void printchar ();
510
511/* Print the fastmap in human-readable form. */
512
513void
514print_fastmap (fastmap)
515 char *fastmap;
516{
517 unsigned was_a_range = 0;
518 unsigned i = 0;
519
520 while (i < (1 << BYTEWIDTH))
521 {
522 if (fastmap[i++])
523 {
524 was_a_range = 0;
525 printchar (i - 1);
526 while (i < (1 << BYTEWIDTH) && fastmap[i])
527 {
528 was_a_range = 1;
529 i++;
530 }
531 if (was_a_range)
532 {
533 printf ("-");
534 printchar (i - 1);
535 }
536 }
537 }
538 putchar ('\n');
539}
540
541
542/* Print a compiled pattern string in human-readable form, starting at
543 the START pointer into it and ending just before the pointer END. */
544
545void
546print_partial_compiled_pattern (start, end)
547 unsigned char *start;
548 unsigned char *end;
549{
550 int mcnt, mcnt2;
551 unsigned char *p = start;
552 unsigned char *pend = end;
553
554 if (start == NULL)
555 {
556 printf ("(null)\n");
557 return;
558 }
559
560 /* Loop over pattern commands. */
561 while (p < pend)
562 {
b0bef8c5
JB
563 printf ("%d:\t", p - start);
564
bc78d348
KB
565 switch ((re_opcode_t) *p++)
566 {
567 case no_op:
568 printf ("/no_op");
569 break;
570
571 case exactn:
572 mcnt = *p++;
573 printf ("/exactn/%d", mcnt);
574 do
575 {
576 putchar ('/');
577 printchar (*p++);
578 }
579 while (--mcnt);
580 break;
581
582 case start_memory:
583 mcnt = *p++;
584 printf ("/start_memory/%d/%d", mcnt, *p++);
585 break;
586
587 case stop_memory:
588 mcnt = *p++;
589 printf ("/stop_memory/%d/%d", mcnt, *p++);
590 break;
591
592 case duplicate:
593 printf ("/duplicate/%d", *p++);
594 break;
595
596 case anychar:
597 printf ("/anychar");
598 break;
599
600 case charset:
601 case charset_not:
602 {
b0bef8c5
JB
603 register int c, last = -100;
604 register int in_range = 0;
bc78d348 605
b0bef8c5
JB
606 printf ("/charset [%s",
607 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
bc78d348
KB
608
609 assert (p + *p < pend);
610
b0bef8c5
JB
611 for (c = 0; c < 256; c++)
612 if (c / 8 < *p
613 && (p[1 + (c/8)] & (1 << (c % 8))))
614 {
615 /* Are we starting a range? */
616 if (last + 1 == c && ! in_range)
617 {
618 putchar ('-');
619 in_range = 1;
620 }
621 /* Have we broken a range? */
622 else if (last + 1 != c && in_range)
bc78d348 623 {
b0bef8c5
JB
624 printchar (last);
625 in_range = 0;
626 }
bc78d348 627
b0bef8c5
JB
628 if (! in_range)
629 printchar (c);
bc78d348 630
b0bef8c5 631 last = c;
bc78d348 632 }
b0bef8c5
JB
633
634 if (in_range)
635 printchar (last);
636
637 putchar (']');
638
bc78d348 639 p += 1 + *p;
bc78d348 640 }
b0bef8c5 641 break;
bc78d348
KB
642
643 case begline:
644 printf ("/begline");
645 break;
646
647 case endline:
648 printf ("/endline");
649 break;
650
651 case on_failure_jump:
652 extract_number_and_incr (&mcnt, &p);
b0bef8c5 653 printf ("/on_failure_jump to %d", p + mcnt - start);
bc78d348
KB
654 break;
655
656 case on_failure_keep_string_jump:
657 extract_number_and_incr (&mcnt, &p);
b0bef8c5 658 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
bc78d348
KB
659 break;
660
661 case dummy_failure_jump:
662 extract_number_and_incr (&mcnt, &p);
b0bef8c5 663 printf ("/dummy_failure_jump to %d", p + mcnt - start);
bc78d348
KB
664 break;
665
666 case push_dummy_failure:
667 printf ("/push_dummy_failure");
668 break;
669
670 case maybe_pop_jump:
671 extract_number_and_incr (&mcnt, &p);
b0bef8c5 672 printf ("/maybe_pop_jump to %d", p + mcnt - start);
bc78d348
KB
673 break;
674
675 case pop_failure_jump:
676 extract_number_and_incr (&mcnt, &p);
b0bef8c5 677 printf ("/pop_failure_jump to %d", p + mcnt - start);
bc78d348
KB
678 break;
679
680 case jump_past_alt:
681 extract_number_and_incr (&mcnt, &p);
b0bef8c5 682 printf ("/jump_past_alt to %d", p + mcnt - start);
bc78d348
KB
683 break;
684
685 case jump:
686 extract_number_and_incr (&mcnt, &p);
b0bef8c5 687 printf ("/jump to %d", p + mcnt - start);
bc78d348
KB
688 break;
689
690 case succeed_n:
691 extract_number_and_incr (&mcnt, &p);
692 extract_number_and_incr (&mcnt2, &p);
b0bef8c5 693 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
bc78d348
KB
694 break;
695
696 case jump_n:
697 extract_number_and_incr (&mcnt, &p);
698 extract_number_and_incr (&mcnt2, &p);
b0bef8c5 699 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
bc78d348
KB
700 break;
701
702 case set_number_at:
703 extract_number_and_incr (&mcnt, &p);
704 extract_number_and_incr (&mcnt2, &p);
b0bef8c5 705 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
bc78d348
KB
706 break;
707
708 case wordbound:
709 printf ("/wordbound");
710 break;
711
712 case notwordbound:
713 printf ("/notwordbound");
714 break;
715
716 case wordbeg:
717 printf ("/wordbeg");
718 break;
719
720 case wordend:
721 printf ("/wordend");
722
723#ifdef emacs
724 case before_dot:
725 printf ("/before_dot");
726 break;
727
728 case at_dot:
729 printf ("/at_dot");
730 break;
731
732 case after_dot:
733 printf ("/after_dot");
734 break;
735
736 case syntaxspec:
737 printf ("/syntaxspec");
738 mcnt = *p++;
739 printf ("/%d", mcnt);
740 break;
741
742 case notsyntaxspec:
743 printf ("/notsyntaxspec");
744 mcnt = *p++;
745 printf ("/%d", mcnt);
746 break;
747#endif /* emacs */
748
749 case wordchar:
750 printf ("/wordchar");
751 break;
752
753 case notwordchar:
754 printf ("/notwordchar");
755 break;
756
757 case begbuf:
758 printf ("/begbuf");
759 break;
760
761 case endbuf:
762 printf ("/endbuf");
763 break;
764
765 default:
766 printf ("?%d", *(p-1));
767 }
b0bef8c5
JB
768
769 putchar ('\n');
bc78d348 770 }
b0bef8c5
JB
771
772 printf ("%d:\tend of pattern.\n", p - start);
bc78d348
KB
773}
774
775
776void
777print_compiled_pattern (bufp)
778 struct re_pattern_buffer *bufp;
779{
780 unsigned char *buffer = bufp->buffer;
781
782 print_partial_compiled_pattern (buffer, buffer + bufp->used);
783 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
784
785 if (bufp->fastmap_accurate && bufp->fastmap)
786 {
787 printf ("fastmap: ");
788 print_fastmap (bufp->fastmap);
789 }
790
791 printf ("re_nsub: %d\t", bufp->re_nsub);
792 printf ("regs_alloc: %d\t", bufp->regs_allocated);
793 printf ("can_be_null: %d\t", bufp->can_be_null);
794 printf ("newline_anchor: %d\n", bufp->newline_anchor);
795 printf ("no_sub: %d\t", bufp->no_sub);
796 printf ("not_bol: %d\t", bufp->not_bol);
797 printf ("not_eol: %d\t", bufp->not_eol);
798 printf ("syntax: %d\n", bufp->syntax);
799 /* Perhaps we should print the translate table? */
800}
801
802
803void
804print_double_string (where, string1, size1, string2, size2)
805 const char *where;
806 const char *string1;
807 const char *string2;
808 int size1;
809 int size2;
810{
811 unsigned this_char;
812
813 if (where == NULL)
814 printf ("(null)");
815 else
816 {
817 if (FIRST_STRING_P (where))
818 {
819 for (this_char = where - string1; this_char < size1; this_char++)
820 printchar (string1[this_char]);
821
822 where = string2;
823 }
824
825 for (this_char = where - string2; this_char < size2; this_char++)
826 printchar (string2[this_char]);
827 }
828}
829
830#else /* not DEBUG */
831
832#undef assert
833#define assert(e)
834
835#define DEBUG_STATEMENT(e)
836#define DEBUG_PRINT1(x)
837#define DEBUG_PRINT2(x1, x2)
838#define DEBUG_PRINT3(x1, x2, x3)
9114e279 839#define DEBUG_PRINT4(x1, x2, x3, x4)
bc78d348
KB
840#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
841#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
842
843#endif /* not DEBUG */
844\f
845/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
846 also be assigned to arbitrarily: each pattern buffer stores its own
847 syntax, so it can be changed between regex compilations. */
848reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
849
850
851/* Specify the precise syntax of regexps for compilation. This provides
852 for compatibility for various utilities which historically have
853 different, incompatible syntaxes.
854
855 The argument SYNTAX is a bit mask comprised of the various bits
856 defined in regex.h. We return the old syntax. */
857
858reg_syntax_t
859re_set_syntax (syntax)
860 reg_syntax_t syntax;
861{
862 reg_syntax_t ret = re_syntax_options;
863
864 re_syntax_options = syntax;
865 return ret;
866}
867\f
868/* This table gives an error message for each of the error codes listed
869 in regex.h. Obviously the order here has to be same as there. */
870
871static const char *re_error_msg[] =
872 { NULL, /* REG_NOERROR */
873 "No match", /* REG_NOMATCH */
874 "Invalid regular expression", /* REG_BADPAT */
875 "Invalid collation character", /* REG_ECOLLATE */
876 "Invalid character class name", /* REG_ECTYPE */
877 "Trailing backslash", /* REG_EESCAPE */
878 "Invalid back reference", /* REG_ESUBREG */
879 "Unmatched [ or [^", /* REG_EBRACK */
880 "Unmatched ( or \\(", /* REG_EPAREN */
881 "Unmatched \\{", /* REG_EBRACE */
882 "Invalid content of \\{\\}", /* REG_BADBR */
883 "Invalid range end", /* REG_ERANGE */
884 "Memory exhausted", /* REG_ESPACE */
885 "Invalid preceding regular expression", /* REG_BADRPT */
886 "Premature end of regular expression", /* REG_EEND */
887 "Regular expression too big", /* REG_ESIZE */
888 "Unmatched ) or \\)", /* REG_ERPAREN */
889 };
890\f
e959bada
JB
891/* Avoiding alloca during matching, to placate r_alloc. */
892
501b568d 893/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
e959bada
JB
894 searching and matching functions should not call alloca. On some
895 systems, alloca is implemented in terms of malloc, and if we're
896 using the relocating allocator routines, then malloc could cause a
897 relocation, which might (if the strings being searched are in the
898 ralloc heap) shift the data out from underneath the regexp
85be3101
JB
899 routines.
900
d0a11f95
RS
901 Here's another reason to avoid allocation: Emacs
902 processes input from X in a signal handler; processing X input may
85be3101
JB
903 call malloc; if input arrives while a matching routine is calling
904 malloc, then we're scrod. But Emacs can't just block input while
905 calling matching routines; then we don't notice interrupts when
906 they come in. So, Emacs blocks input around all regexp calls
907 except the matching calls, which it leaves unprotected, in the
908 faith that they will not malloc. */
a822d92f
JB
909
910/* Normally, this is fine. */
911#define MATCH_MAY_ALLOCATE
912
d0a11f95
RS
913/* The match routines may not allocate if (1) they would do it with malloc
914 and (2) it's not safe for htem to use malloc. */
915#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && (defined (emacs) || defined (REL_ALLOC))
a822d92f 916#undef MATCH_MAY_ALLOCATE
e959bada 917#endif
bc78d348 918
e959bada
JB
919\f
920/* Failure stack declarations and macros; both re_compile_fastmap and
921 re_match_2 use a failure stack. These have to be macros because of
922 REGEX_ALLOCATE. */
923
bc78d348 924
e959bada
JB
925/* Number of failure points for which to initially allocate space
926 when matching. If this number is exceeded, we allocate more
927 space, so it is not a hard limit. */
928#ifndef INIT_FAILURE_ALLOC
929#define INIT_FAILURE_ALLOC 5
930#endif
bc78d348 931
e959bada
JB
932/* Roughly the maximum number of failure points on the stack. Would be
933 exactly that if always used MAX_FAILURE_SPACE each time we failed.
934 This is a variable only so users of regex can assign to it; we never
935 change it ourselves. */
936int re_max_failures = 2000;
bc78d348 937
794ce2c1 938typedef unsigned char *fail_stack_elt_t;
bc78d348 939
e959bada
JB
940typedef struct
941{
942 fail_stack_elt_t *stack;
943 unsigned size;
944 unsigned avail; /* Offset of next open position. */
945} fail_stack_type;
bc78d348 946
e959bada
JB
947#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
948#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
949#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
950#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
bc78d348 951
bc78d348 952
e959bada 953/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
bc78d348 954
a822d92f 955#ifdef MATCH_MAY_ALLOCATE
e959bada 956#define INIT_FAIL_STACK() \
bc78d348 957 do { \
e959bada
JB
958 fail_stack.stack = (fail_stack_elt_t *) \
959 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
960 \
961 if (fail_stack.stack == NULL) \
962 return -2; \
963 \
964 fail_stack.size = INIT_FAILURE_ALLOC; \
965 fail_stack.avail = 0; \
bc78d348 966 } while (0)
e959bada
JB
967#else
968#define INIT_FAIL_STACK() \
bc78d348 969 do { \
e959bada 970 fail_stack.avail = 0; \
bc78d348 971 } while (0)
e959bada 972#endif
bc78d348
KB
973
974
e959bada 975/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
bc78d348 976
e959bada
JB
977 Return 1 if succeeds, and 0 if either ran out of memory
978 allocating space for it or it was already too large.
979
980 REGEX_REALLOCATE requires `destination' be declared. */
bc78d348 981
e959bada
JB
982#define DOUBLE_FAIL_STACK(fail_stack) \
983 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
984 ? 0 \
985 : ((fail_stack).stack = (fail_stack_elt_t *) \
986 REGEX_REALLOCATE ((fail_stack).stack, \
987 (fail_stack).size * sizeof (fail_stack_elt_t), \
988 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
989 \
990 (fail_stack).stack == NULL \
991 ? 0 \
992 : ((fail_stack).size <<= 1, \
993 1)))
bc78d348 994
bc78d348 995
e959bada 996/* Push PATTERN_OP on FAIL_STACK.
bc78d348 997
e959bada
JB
998 Return 1 if was able to do so and 0 if ran out of memory allocating
999 space to do so. */
1000#define PUSH_PATTERN_OP(pattern_op, fail_stack) \
1001 ((FAIL_STACK_FULL () \
1002 && !DOUBLE_FAIL_STACK (fail_stack)) \
1003 ? 0 \
1004 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
1005 1))
bc78d348 1006
e959bada
JB
1007/* This pushes an item onto the failure stack. Must be a four-byte
1008 value. Assumes the variable `fail_stack'. Probably should only
1009 be called from within `PUSH_FAILURE_POINT'. */
1010#define PUSH_FAILURE_ITEM(item) \
1011 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
bc78d348 1012
e959bada
JB
1013/* The complement operation. Assumes `fail_stack' is nonempty. */
1014#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
bc78d348 1015
e959bada
JB
1016/* Used to omit pushing failure point id's when we're not debugging. */
1017#ifdef DEBUG
1018#define DEBUG_PUSH PUSH_FAILURE_ITEM
1019#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
1020#else
1021#define DEBUG_PUSH(item)
1022#define DEBUG_POP(item_addr)
1023#endif
bc78d348 1024
bc78d348 1025
e959bada
JB
1026/* Push the information about the state we will need
1027 if we ever fail back to it.
1028
1029 Requires variables fail_stack, regstart, regend, reg_info, and
1030 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1031 declared.
1032
1033 Does `return FAILURE_CODE' if runs out of memory. */
bc78d348 1034
e959bada
JB
1035#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1036 do { \
1037 char *destination; \
1038 /* Must be int, so when we don't save any registers, the arithmetic \
1039 of 0 + -1 isn't done as unsigned. */ \
1040 int this_reg; \
1041 \
1042 DEBUG_STATEMENT (failure_id++); \
1043 DEBUG_STATEMENT (nfailure_points_pushed++); \
1044 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1045 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1046 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1047 \
1048 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1049 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1050 \
1051 /* Ensure we have enough space allocated for what we will push. */ \
1052 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1053 { \
1054 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1055 return failure_code; \
1056 \
1057 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1058 (fail_stack).size); \
1059 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1060 } \
1061 \
1062 /* Push the info, starting with the registers. */ \
1063 DEBUG_PRINT1 ("\n"); \
1064 \
1065 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1066 this_reg++) \
1067 { \
1068 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1069 DEBUG_STATEMENT (num_regs_pushed++); \
1070 \
1071 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1072 PUSH_FAILURE_ITEM (regstart[this_reg]); \
1073 \
1074 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1075 PUSH_FAILURE_ITEM (regend[this_reg]); \
1076 \
1077 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1078 DEBUG_PRINT2 (" match_null=%d", \
1079 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1080 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1081 DEBUG_PRINT2 (" matched_something=%d", \
1082 MATCHED_SOMETHING (reg_info[this_reg])); \
1083 DEBUG_PRINT2 (" ever_matched=%d", \
1084 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1085 DEBUG_PRINT1 ("\n"); \
1086 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
1087 } \
1088 \
1089 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1090 PUSH_FAILURE_ITEM (lowest_active_reg); \
1091 \
1092 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1093 PUSH_FAILURE_ITEM (highest_active_reg); \
1094 \
1095 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1096 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1097 PUSH_FAILURE_ITEM (pattern_place); \
1098 \
1099 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1100 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1101 size2); \
1102 DEBUG_PRINT1 ("'\n"); \
1103 PUSH_FAILURE_ITEM (string_place); \
1104 \
1105 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1106 DEBUG_PUSH (failure_id); \
1107 } while (0)
1108
1109/* This is the number of items that are pushed and popped on the stack
1110 for each register. */
1111#define NUM_REG_ITEMS 3
1112
1113/* Individual items aside from the registers. */
1114#ifdef DEBUG
1115#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1116#else
1117#define NUM_NONREG_ITEMS 4
1118#endif
1119
1120/* We push at most this many items on the stack. */
1121#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1122
1123/* We actually push this many items. */
1124#define NUM_FAILURE_ITEMS \
1125 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1126 + NUM_NONREG_ITEMS)
1127
1128/* How many items can still be added to the stack without overflowing it. */
1129#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1130
1131
1132/* Pops what PUSH_FAIL_STACK pushes.
1133
1134 We restore into the parameters, all of which should be lvalues:
1135 STR -- the saved data position.
1136 PAT -- the saved pattern position.
1137 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1138 REGSTART, REGEND -- arrays of string positions.
1139 REG_INFO -- array of information about each subexpression.
1140
1141 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1142 `pend', `string1', `size1', `string2', and `size2'. */
1143
1144#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1145{ \
1146 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1147 int this_reg; \
1148 const unsigned char *string_temp; \
1149 \
1150 assert (!FAIL_STACK_EMPTY ()); \
1151 \
1152 /* Remove failure points and point to how many regs pushed. */ \
1153 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1154 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1155 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1156 \
1157 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1158 \
1159 DEBUG_POP (&failure_id); \
1160 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1161 \
1162 /* If the saved string location is NULL, it came from an \
1163 on_failure_keep_string_jump opcode, and we want to throw away the \
1164 saved NULL, thus retaining our current position in the string. */ \
1165 string_temp = POP_FAILURE_ITEM (); \
1166 if (string_temp != NULL) \
1167 str = (const char *) string_temp; \
1168 \
1169 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1170 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1171 DEBUG_PRINT1 ("'\n"); \
1172 \
1173 pat = (unsigned char *) POP_FAILURE_ITEM (); \
1174 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1175 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1176 \
1177 /* Restore register info. */ \
1178 high_reg = (unsigned) POP_FAILURE_ITEM (); \
1179 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1180 \
1181 low_reg = (unsigned) POP_FAILURE_ITEM (); \
1182 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1183 \
1184 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1185 { \
1186 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1187 \
1188 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
1189 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1190 \
1191 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1192 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1193 \
1194 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1195 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1196 } \
1197 \
1198 DEBUG_STATEMENT (nfailure_points_popped++); \
1199} /* POP_FAILURE_POINT */
1200
1201
1202\f
1203/* Structure for per-register (a.k.a. per-group) information.
1204 This must not be longer than one word, because we push this value
1205 onto the failure stack. Other register information, such as the
1206 starting and ending positions (which are addresses), and the list of
1207 inner groups (which is a bits list) are maintained in separate
1208 variables.
1209
1210 We are making a (strictly speaking) nonportable assumption here: that
1211 the compiler will pack our bit fields into something that fits into
1212 the type of `word', i.e., is something that fits into one item on the
1213 failure stack. */
1214typedef union
1215{
1216 fail_stack_elt_t word;
1217 struct
1218 {
1219 /* This field is one if this group can match the empty string,
1220 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1221#define MATCH_NULL_UNSET_VALUE 3
1222 unsigned match_null_string_p : 2;
1223 unsigned is_active : 1;
1224 unsigned matched_something : 1;
1225 unsigned ever_matched_something : 1;
1226 } bits;
1227} register_info_type;
1228
1229#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1230#define IS_ACTIVE(R) ((R).bits.is_active)
1231#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1232#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1233
1234
1235/* Call this when have matched a real character; it sets `matched' flags
1236 for the subexpressions which we are currently inside. Also records
1237 that those subexprs have matched. */
1238#define SET_REGS_MATCHED() \
1239 do \
1240 { \
1241 unsigned r; \
1242 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1243 { \
1244 MATCHED_SOMETHING (reg_info[r]) \
1245 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1246 = 1; \
1247 } \
1248 } \
1249 while (0)
1250
1251
1252/* Registers are set to a sentinel when they haven't yet matched. */
1253#define REG_UNSET_VALUE ((char *) -1)
1254#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1255
1256
1257\f
a822d92f 1258/* How do we implement a missing MATCH_MAY_ALLOCATE?
e959bada
JB
1259 We make the fail stack a global thing, and then grow it to
1260 re_max_failures when we compile. */
a822d92f 1261#ifndef MATCH_MAY_ALLOCATE
e959bada
JB
1262static fail_stack_type fail_stack;
1263
1264static const char ** regstart, ** regend;
1265static const char ** old_regstart, ** old_regend;
1266static const char **best_regstart, **best_regend;
1267static register_info_type *reg_info;
1268static const char **reg_dummy;
1269static register_info_type *reg_info_dummy;
1270#endif
1271
1272\f
1273/* Subroutine declarations and macros for regex_compile. */
1274
1275static void store_op1 (), store_op2 ();
1276static void insert_op1 (), insert_op2 ();
1277static boolean at_begline_loc_p (), at_endline_loc_p ();
1278static boolean group_in_compile_stack ();
1279static reg_errcode_t compile_range ();
1280
1281/* Fetch the next character in the uncompiled pattern---translating it
1282 if necessary. Also cast from a signed character in the constant
1283 string passed to us by the user to an unsigned char that we can use
1284 as an array index (in, e.g., `translate'). */
1285#define PATFETCH(c) \
1286 do {if (p == pend) return REG_EEND; \
1287 c = (unsigned char) *p++; \
1288 if (translate) c = translate[c]; \
1289 } while (0)
1290
1291/* Fetch the next character in the uncompiled pattern, with no
1292 translation. */
1293#define PATFETCH_RAW(c) \
1294 do {if (p == pend) return REG_EEND; \
1295 c = (unsigned char) *p++; \
1296 } while (0)
1297
1298/* Go backwards one character in the pattern. */
1299#define PATUNFETCH p--
1300
1301
1302/* If `translate' is non-null, return translate[D], else just D. We
1303 cast the subscript to translate because some data is declared as
1304 `char *', to avoid warnings when a string constant is passed. But
1305 when we use a character as a subscript we must make it unsigned. */
1306#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1307
1308
1309/* Macros for outputting the compiled pattern into `buffer'. */
1310
1311/* If the buffer isn't allocated when it comes in, use this. */
1312#define INIT_BUF_SIZE 32
1313
1314/* Make sure we have at least N more bytes of space in buffer. */
1315#define GET_BUFFER_SPACE(n) \
1316 while (b - bufp->buffer + (n) > bufp->allocated) \
1317 EXTEND_BUFFER ()
1318
1319/* Make sure we have one more byte of buffer space and then add C to it. */
1320#define BUF_PUSH(c) \
1321 do { \
1322 GET_BUFFER_SPACE (1); \
1323 *b++ = (unsigned char) (c); \
1324 } while (0)
1325
1326
1327/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1328#define BUF_PUSH_2(c1, c2) \
1329 do { \
1330 GET_BUFFER_SPACE (2); \
1331 *b++ = (unsigned char) (c1); \
1332 *b++ = (unsigned char) (c2); \
1333 } while (0)
1334
1335
1336/* As with BUF_PUSH_2, except for three bytes. */
1337#define BUF_PUSH_3(c1, c2, c3) \
1338 do { \
1339 GET_BUFFER_SPACE (3); \
1340 *b++ = (unsigned char) (c1); \
1341 *b++ = (unsigned char) (c2); \
1342 *b++ = (unsigned char) (c3); \
1343 } while (0)
1344
1345
1346/* Store a jump with opcode OP at LOC to location TO. We store a
1347 relative address offset by the three bytes the jump itself occupies. */
1348#define STORE_JUMP(op, loc, to) \
1349 store_op1 (op, loc, (to) - (loc) - 3)
1350
1351/* Likewise, for a two-argument jump. */
1352#define STORE_JUMP2(op, loc, to, arg) \
1353 store_op2 (op, loc, (to) - (loc) - 3, arg)
1354
1355/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1356#define INSERT_JUMP(op, loc, to) \
1357 insert_op1 (op, loc, (to) - (loc) - 3, b)
1358
1359/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1360#define INSERT_JUMP2(op, loc, to, arg) \
1361 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1362
1363
1364/* This is not an arbitrary limit: the arguments which represent offsets
1365 into the pattern are two bytes long. So if 2^16 bytes turns out to
1366 be too small, many things would have to change. */
1367#define MAX_BUF_SIZE (1L << 16)
1368
1369
1370/* Extend the buffer by twice its current size via realloc and
1371 reset the pointers that pointed into the old block to point to the
1372 correct places in the new one. If extending the buffer results in it
1373 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1374#define EXTEND_BUFFER() \
1375 do { \
1376 unsigned char *old_buffer = bufp->buffer; \
1377 if (bufp->allocated == MAX_BUF_SIZE) \
1378 return REG_ESIZE; \
1379 bufp->allocated <<= 1; \
1380 if (bufp->allocated > MAX_BUF_SIZE) \
1381 bufp->allocated = MAX_BUF_SIZE; \
1382 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1383 if (bufp->buffer == NULL) \
1384 return REG_ESPACE; \
1385 /* If the buffer moved, move all the pointers into it. */ \
1386 if (old_buffer != bufp->buffer) \
1387 { \
1388 b = (b - old_buffer) + bufp->buffer; \
1389 begalt = (begalt - old_buffer) + bufp->buffer; \
1390 if (fixup_alt_jump) \
1391 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1392 if (laststart) \
1393 laststart = (laststart - old_buffer) + bufp->buffer; \
1394 if (pending_exact) \
1395 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1396 } \
1397 } while (0)
1398
1399
1400/* Since we have one byte reserved for the register number argument to
1401 {start,stop}_memory, the maximum number of groups we can report
1402 things about is what fits in that byte. */
1403#define MAX_REGNUM 255
1404
1405/* But patterns can have more than `MAX_REGNUM' registers. We just
1406 ignore the excess. */
1407typedef unsigned regnum_t;
1408
1409
1410/* Macros for the compile stack. */
1411
1412/* Since offsets can go either forwards or backwards, this type needs to
1413 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1414typedef int pattern_offset_t;
1415
1416typedef struct
1417{
1418 pattern_offset_t begalt_offset;
1419 pattern_offset_t fixup_alt_jump;
1420 pattern_offset_t inner_group_offset;
1421 pattern_offset_t laststart_offset;
1422 regnum_t regnum;
1423} compile_stack_elt_t;
1424
1425
1426typedef struct
1427{
1428 compile_stack_elt_t *stack;
1429 unsigned size;
1430 unsigned avail; /* Offset of next open position. */
1431} compile_stack_type;
1432
1433
1434#define INIT_COMPILE_STACK_SIZE 32
1435
1436#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1437#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1438
1439/* The next available element. */
1440#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1441
1442
1443/* Set the bit for character C in a list. */
1444#define SET_LIST_BIT(c) \
1445 (b[((unsigned char) (c)) / BYTEWIDTH] \
1446 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1447
1448
1449/* Get the next unsigned number in the uncompiled pattern. */
1450#define GET_UNSIGNED_NUMBER(num) \
1451 { if (p != pend) \
1452 { \
1453 PATFETCH (c); \
1454 while (ISDIGIT (c)) \
1455 { \
1456 if (num < 0) \
1457 num = 0; \
1458 num = num * 10 + c - '0'; \
1459 if (p == pend) \
1460 break; \
1461 PATFETCH (c); \
1462 } \
bc78d348
KB
1463 } \
1464 }
1465
1466#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1467
1468#define IS_CHAR_CLASS(string) \
1469 (STREQ (string, "alpha") || STREQ (string, "upper") \
1470 || STREQ (string, "lower") || STREQ (string, "digit") \
1471 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1472 || STREQ (string, "space") || STREQ (string, "print") \
1473 || STREQ (string, "punct") || STREQ (string, "graph") \
1474 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1475\f
1476/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1477 Returns one of error codes defined in `regex.h', or zero for success.
1478
1479 Assumes the `allocated' (and perhaps `buffer') and `translate'
1480 fields are set in BUFP on entry.
1481
1482 If it succeeds, results are put in BUFP (if it returns an error, the
1483 contents of BUFP are undefined):
1484 `buffer' is the compiled pattern;
1485 `syntax' is set to SYNTAX;
1486 `used' is set to the length of the compiled pattern;
9114e279
KB
1487 `fastmap_accurate' is zero;
1488 `re_nsub' is the number of subexpressions in PATTERN;
1489 `not_bol' and `not_eol' are zero;
bc78d348
KB
1490
1491 The `fastmap' and `newline_anchor' fields are neither
1492 examined nor set. */
1493
69c38b46
RS
1494/* Return, freeing storage we allocated. */
1495#define FREE_STACK_RETURN(value) \
5330e99c 1496 return (free (compile_stack.stack), value)
69c38b46 1497
bc78d348
KB
1498static reg_errcode_t
1499regex_compile (pattern, size, syntax, bufp)
1500 const char *pattern;
1501 int size;
1502 reg_syntax_t syntax;
1503 struct re_pattern_buffer *bufp;
1504{
1505 /* We fetch characters from PATTERN here. Even though PATTERN is
1506 `char *' (i.e., signed), we declare these variables as unsigned, so
1507 they can be reliably used as array indices. */
1508 register unsigned char c, c1;
1509
63268f76 1510 /* A random temporary spot in PATTERN. */
bc78d348
KB
1511 const char *p1;
1512
1513 /* Points to the end of the buffer, where we should append. */
1514 register unsigned char *b;
1515
1516 /* Keeps track of unclosed groups. */
1517 compile_stack_type compile_stack;
1518
1519 /* Points to the current (ending) position in the pattern. */
1520 const char *p = pattern;
1521 const char *pend = pattern + size;
1522
1523 /* How to translate the characters in the pattern. */
1524 char *translate = bufp->translate;
1525
1526 /* Address of the count-byte of the most recently inserted `exactn'
1527 command. This makes it possible to tell if a new exact-match
1528 character can be added to that command or if the character requires
1529 a new `exactn' command. */
1530 unsigned char *pending_exact = 0;
1531
1532 /* Address of start of the most recently finished expression.
1533 This tells, e.g., postfix * where to find the start of its
1534 operand. Reset at the beginning of groups and alternatives. */
1535 unsigned char *laststart = 0;
1536
1537 /* Address of beginning of regexp, or inside of last group. */
1538 unsigned char *begalt;
1539
1540 /* Place in the uncompiled pattern (i.e., the {) to
1541 which to go back if the interval is invalid. */
1542 const char *beg_interval;
1543
1544 /* Address of the place where a forward jump should go to the end of
1545 the containing expression. Each alternative of an `or' -- except the
1546 last -- ends with a forward jump of this sort. */
1547 unsigned char *fixup_alt_jump = 0;
1548
1549 /* Counts open-groups as they are encountered. Remembered for the
1550 matching close-group on the compile stack, so the same register
1551 number is put in the stop_memory as the start_memory. */
1552 regnum_t regnum = 0;
1553
1554#ifdef DEBUG
1555 DEBUG_PRINT1 ("\nCompiling pattern: ");
1556 if (debug)
1557 {
1558 unsigned debug_count;
1559
1560 for (debug_count = 0; debug_count < size; debug_count++)
1561 printchar (pattern[debug_count]);
1562 putchar ('\n');
1563 }
1564#endif /* DEBUG */
1565
1566 /* Initialize the compile stack. */
1567 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1568 if (compile_stack.stack == NULL)
1569 return REG_ESPACE;
1570
1571 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1572 compile_stack.avail = 0;
1573
1574 /* Initialize the pattern buffer. */
1575 bufp->syntax = syntax;
1576 bufp->fastmap_accurate = 0;
1577 bufp->not_bol = bufp->not_eol = 0;
1578
1579 /* Set `used' to zero, so that if we return an error, the pattern
1580 printer (for debugging) will think there's no pattern. We reset it
1581 at the end. */
1582 bufp->used = 0;
1583
1584 /* Always count groups, whether or not bufp->no_sub is set. */
1585 bufp->re_nsub = 0;
1586
1587#if !defined (emacs) && !defined (SYNTAX_TABLE)
1588 /* Initialize the syntax table. */
1589 init_syntax_once ();
1590#endif
1591
1592 if (bufp->allocated == 0)
1593 {
1594 if (bufp->buffer)
1595 { /* If zero allocated, but buffer is non-null, try to realloc
1596 enough space. This loses if buffer's address is bogus, but
1597 that is the user's responsibility. */
1598 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1599 }
1600 else
1601 { /* Caller did not allocate a buffer. Do it for them. */
1602 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1603 }
69c38b46 1604 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
bc78d348
KB
1605
1606 bufp->allocated = INIT_BUF_SIZE;
1607 }
1608
1609 begalt = b = bufp->buffer;
1610
1611 /* Loop through the uncompiled pattern until we're at the end. */
1612 while (p != pend)
1613 {
1614 PATFETCH (c);
1615
1616 switch (c)
1617 {
1618 case '^':
1619 {
1620 if ( /* If at start of pattern, it's an operator. */
1621 p == pattern + 1
1622 /* If context independent, it's an operator. */
1623 || syntax & RE_CONTEXT_INDEP_ANCHORS
1624 /* Otherwise, depends on what's come before. */
1625 || at_begline_loc_p (pattern, p, syntax))
1626 BUF_PUSH (begline);
1627 else
1628 goto normal_char;
1629 }
1630 break;
1631
1632
1633 case '$':
1634 {
1635 if ( /* If at end of pattern, it's an operator. */
1636 p == pend
1637 /* If context independent, it's an operator. */
1638 || syntax & RE_CONTEXT_INDEP_ANCHORS
1639 /* Otherwise, depends on what's next. */
1640 || at_endline_loc_p (p, pend, syntax))
1641 BUF_PUSH (endline);
1642 else
1643 goto normal_char;
1644 }
1645 break;
1646
1647
1648 case '+':
1649 case '?':
1650 if ((syntax & RE_BK_PLUS_QM)
1651 || (syntax & RE_LIMITED_OPS))
1652 goto normal_char;
1653 handle_plus:
1654 case '*':
1655 /* If there is no previous pattern... */
1656 if (!laststart)
1657 {
1658 if (syntax & RE_CONTEXT_INVALID_OPS)
69c38b46 1659 FREE_STACK_RETURN (REG_BADRPT);
bc78d348
KB
1660 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1661 goto normal_char;
1662 }
1663
1664 {
1665 /* Are we optimizing this jump? */
1666 boolean keep_string_p = false;
1667
1668 /* 1 means zero (many) matches is allowed. */
1669 char zero_times_ok = 0, many_times_ok = 0;
1670
1671 /* If there is a sequence of repetition chars, collapse it
1672 down to just one (the right one). We can't combine
1673 interval operators with these because of, e.g., `a{2}*',
1674 which should only match an even number of `a's. */
1675
1676 for (;;)
1677 {
1678 zero_times_ok |= c != '+';
1679 many_times_ok |= c != '?';
1680
1681 if (p == pend)
1682 break;
1683
1684 PATFETCH (c);
1685
1686 if (c == '*'
1687 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1688 ;
1689
1690 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1691 {
69c38b46 1692 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
bc78d348
KB
1693
1694 PATFETCH (c1);
1695 if (!(c1 == '+' || c1 == '?'))
1696 {
1697 PATUNFETCH;
1698 PATUNFETCH;
1699 break;
1700 }
1701
1702 c = c1;
1703 }
1704 else
1705 {
1706 PATUNFETCH;
1707 break;
1708 }
1709
1710 /* If we get here, we found another repeat character. */
1711 }
1712
1713 /* Star, etc. applied to an empty pattern is equivalent
1714 to an empty pattern. */
1715 if (!laststart)
1716 break;
1717
1718 /* Now we know whether or not zero matches is allowed
1719 and also whether or not two or more matches is allowed. */
1720 if (many_times_ok)
1721 { /* More than one repetition is allowed, so put in at the
1722 end a backward relative jump from `b' to before the next
1723 jump we're going to put in below (which jumps from
1724 laststart to after this jump).
1725
1726 But if we are at the `*' in the exact sequence `.*\n',
1727 insert an unconditional jump backwards to the .,
1728 instead of the beginning of the loop. This way we only
1729 push a failure point once, instead of every time
1730 through the loop. */
1731 assert (p - 1 > pattern);
1732
1733 /* Allocate the space for the jump. */
1734 GET_BUFFER_SPACE (3);
1735
1736 /* We know we are not at the first character of the pattern,
1737 because laststart was nonzero. And we've already
1738 incremented `p', by the way, to be the character after
1739 the `*'. Do we have to do something analogous here
1740 for null bytes, because of RE_DOT_NOT_NULL? */
1741 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
5745b086 1742 && zero_times_ok
bc78d348
KB
1743 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1744 && !(syntax & RE_DOT_NEWLINE))
1745 { /* We have .*\n. */
1746 STORE_JUMP (jump, b, laststart);
1747 keep_string_p = true;
1748 }
1749 else
1750 /* Anything else. */
1751 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1752
1753 /* We've added more stuff to the buffer. */
1754 b += 3;
1755 }
1756
1757 /* On failure, jump from laststart to b + 3, which will be the
1758 end of the buffer after this jump is inserted. */
1759 GET_BUFFER_SPACE (3);
1760 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1761 : on_failure_jump,
1762 laststart, b + 3);
1763 pending_exact = 0;
1764 b += 3;
1765
1766 if (!zero_times_ok)
1767 {
1768 /* At least one repetition is required, so insert a
1769 `dummy_failure_jump' before the initial
1770 `on_failure_jump' instruction of the loop. This
1771 effects a skip over that instruction the first time
1772 we hit that loop. */
1773 GET_BUFFER_SPACE (3);
1774 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1775 b += 3;
1776 }
1777 }
1778 break;
1779
1780
1781 case '.':
1782 laststart = b;
1783 BUF_PUSH (anychar);
1784 break;
1785
1786
1787 case '[':
1788 {
1789 boolean had_char_class = false;
1790
69c38b46 1791 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
bc78d348
KB
1792
1793 /* Ensure that we have enough space to push a charset: the
1794 opcode, the length count, and the bitset; 34 bytes in all. */
1795 GET_BUFFER_SPACE (34);
1796
1797 laststart = b;
1798
1799 /* We test `*p == '^' twice, instead of using an if
1800 statement, so we only need one BUF_PUSH. */
1801 BUF_PUSH (*p == '^' ? charset_not : charset);
1802 if (*p == '^')
1803 p++;
1804
1805 /* Remember the first position in the bracket expression. */
1806 p1 = p;
1807
1808 /* Push the number of bytes in the bitmap. */
1809 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1810
1811 /* Clear the whole map. */
1812 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1813
1814 /* charset_not matches newline according to a syntax bit. */
1815 if ((re_opcode_t) b[-2] == charset_not
1816 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1817 SET_LIST_BIT ('\n');
1818
1819 /* Read in characters and ranges, setting map bits. */
1820 for (;;)
1821 {
69c38b46 1822 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
bc78d348
KB
1823
1824 PATFETCH (c);
1825
1826 /* \ might escape characters inside [...] and [^...]. */
1827 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1828 {
69c38b46 1829 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
bc78d348
KB
1830
1831 PATFETCH (c1);
1832 SET_LIST_BIT (c1);
1833 continue;
1834 }
1835
1836 /* Could be the end of the bracket expression. If it's
1837 not (i.e., when the bracket expression is `[]' so
1838 far), the ']' character bit gets set way below. */
1839 if (c == ']' && p != p1 + 1)
1840 break;
1841
1842 /* Look ahead to see if it's a range when the last thing
1843 was a character class. */
1844 if (had_char_class && c == '-' && *p != ']')
69c38b46 1845 FREE_STACK_RETURN (REG_ERANGE);
bc78d348
KB
1846
1847 /* Look ahead to see if it's a range when the last thing
1848 was a character: if this is a hyphen not at the
1849 beginning or the end of a list, then it's the range
1850 operator. */
1851 if (c == '-'
1852 && !(p - 2 >= pattern && p[-2] == '[')
1853 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1854 && *p != ']')
1855 {
1856 reg_errcode_t ret
1857 = compile_range (&p, pend, translate, syntax, b);
69c38b46 1858 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
bc78d348
KB
1859 }
1860
1861 else if (p[0] == '-' && p[1] != ']')
1862 { /* This handles ranges made up of characters only. */
1863 reg_errcode_t ret;
1864
1865 /* Move past the `-'. */
1866 PATFETCH (c1);
1867
1868 ret = compile_range (&p, pend, translate, syntax, b);
69c38b46 1869 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
bc78d348
KB
1870 }
1871
1872 /* See if we're at the beginning of a possible character
1873 class. */
1874
1875 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1876 { /* Leave room for the null. */
1877 char str[CHAR_CLASS_MAX_LENGTH + 1];
1878
1879 PATFETCH (c);
1880 c1 = 0;
1881
1882 /* If pattern is `[[:'. */
69c38b46 1883 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
bc78d348
KB
1884
1885 for (;;)
1886 {
1887 PATFETCH (c);
1888 if (c == ':' || c == ']' || p == pend
1889 || c1 == CHAR_CLASS_MAX_LENGTH)
1890 break;
1891 str[c1++] = c;
1892 }
1893 str[c1] = '\0';
1894
1895 /* If isn't a word bracketed by `[:' and:`]':
1896 undo the ending character, the letters, and leave
1897 the leading `:' and `[' (but set bits for them). */
1898 if (c == ':' && *p == ']')
1899 {
1900 int ch;
1901 boolean is_alnum = STREQ (str, "alnum");
1902 boolean is_alpha = STREQ (str, "alpha");
1903 boolean is_blank = STREQ (str, "blank");
1904 boolean is_cntrl = STREQ (str, "cntrl");
1905 boolean is_digit = STREQ (str, "digit");
1906 boolean is_graph = STREQ (str, "graph");
1907 boolean is_lower = STREQ (str, "lower");
1908 boolean is_print = STREQ (str, "print");
1909 boolean is_punct = STREQ (str, "punct");
1910 boolean is_space = STREQ (str, "space");
1911 boolean is_upper = STREQ (str, "upper");
1912 boolean is_xdigit = STREQ (str, "xdigit");
1913
69c38b46
RS
1914 if (!IS_CHAR_CLASS (str))
1915 FREE_STACK_RETURN (REG_ECTYPE);
bc78d348
KB
1916
1917 /* Throw away the ] at the end of the character
1918 class. */
1919 PATFETCH (c);
1920
69c38b46 1921 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
bc78d348
KB
1922
1923 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1924 {
c6b40788
JM
1925 if ( (is_alnum && ISALNUM (ch))
1926 || (is_alpha && ISALPHA (ch))
1927 || (is_blank && ISBLANK (ch))
1928 || (is_cntrl && ISCNTRL (ch))
1929 || (is_digit && ISDIGIT (ch))
1930 || (is_graph && ISGRAPH (ch))
1931 || (is_lower && ISLOWER (ch))
1932 || (is_print && ISPRINT (ch))
1933 || (is_punct && ISPUNCT (ch))
1934 || (is_space && ISSPACE (ch))
1935 || (is_upper && ISUPPER (ch))
1936 || (is_xdigit && ISXDIGIT (ch)))
bc78d348
KB
1937 SET_LIST_BIT (ch);
1938 }
1939 had_char_class = true;
1940 }
1941 else
1942 {
1943 c1++;
1944 while (c1--)
1945 PATUNFETCH;
1946 SET_LIST_BIT ('[');
1947 SET_LIST_BIT (':');
1948 had_char_class = false;
1949 }
1950 }
1951 else
1952 {
1953 had_char_class = false;
1954 SET_LIST_BIT (c);
1955 }
1956 }
1957
1958 /* Discard any (non)matching list bytes that are all 0 at the
1959 end of the map. Decrease the map-length byte too. */
1960 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1961 b[-1]--;
1962 b += b[-1];
1963 }
1964 break;
1965
1966
1967 case '(':
1968 if (syntax & RE_NO_BK_PARENS)
1969 goto handle_open;
1970 else
1971 goto normal_char;
1972
1973
1974 case ')':
1975 if (syntax & RE_NO_BK_PARENS)
1976 goto handle_close;
1977 else
1978 goto normal_char;
1979
1980
1981 case '\n':
1982 if (syntax & RE_NEWLINE_ALT)
1983 goto handle_alt;
1984 else
1985 goto normal_char;
1986
1987
1988 case '|':
1989 if (syntax & RE_NO_BK_VBAR)
1990 goto handle_alt;
1991 else
1992 goto normal_char;
1993
1994
1995 case '{':
1996 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1997 goto handle_interval;
1998 else
1999 goto normal_char;
2000
2001
2002 case '\\':
69c38b46 2003 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
bc78d348
KB
2004
2005 /* Do not translate the character after the \, so that we can
2006 distinguish, e.g., \B from \b, even if we normally would
2007 translate, e.g., B to b. */
2008 PATFETCH_RAW (c);
2009
2010 switch (c)
2011 {
2012 case '(':
2013 if (syntax & RE_NO_BK_PARENS)
2014 goto normal_backslash;
2015
2016 handle_open:
2017 bufp->re_nsub++;
2018 regnum++;
2019
2020 if (COMPILE_STACK_FULL)
2021 {
2022 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2023 compile_stack_elt_t);
2024 if (compile_stack.stack == NULL) return REG_ESPACE;
2025
2026 compile_stack.size <<= 1;
2027 }
2028
2029 /* These are the values to restore when we hit end of this
2030 group. They are all relative offsets, so that if the
2031 whole pattern moves because of realloc, they will still
2032 be valid. */
2033 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2034 COMPILE_STACK_TOP.fixup_alt_jump
2035 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2036 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2037 COMPILE_STACK_TOP.regnum = regnum;
2038
2039 /* We will eventually replace the 0 with the number of
2040 groups inner to this one. But do not push a
2041 start_memory for groups beyond the last one we can
2042 represent in the compiled pattern. */
2043 if (regnum <= MAX_REGNUM)
2044 {
2045 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2046 BUF_PUSH_3 (start_memory, regnum, 0);
2047 }
2048
2049 compile_stack.avail++;
2050
2051 fixup_alt_jump = 0;
2052 laststart = 0;
2053 begalt = b;
5745b086
JB
2054 /* If we've reached MAX_REGNUM groups, then this open
2055 won't actually generate any code, so we'll have to
2056 clear pending_exact explicitly. */
2057 pending_exact = 0;
bc78d348
KB
2058 break;
2059
2060
2061 case ')':
2062 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2063
2064 if (COMPILE_STACK_EMPTY)
2065 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2066 goto normal_backslash;
2067 else
69c38b46 2068 FREE_STACK_RETURN (REG_ERPAREN);
bc78d348
KB
2069
2070 handle_close:
2071 if (fixup_alt_jump)
2072 { /* Push a dummy failure point at the end of the
2073 alternative for a possible future
2074 `pop_failure_jump' to pop. See comments at
2075 `push_dummy_failure' in `re_match_2'. */
2076 BUF_PUSH (push_dummy_failure);
2077
2078 /* We allocated space for this jump when we assigned
2079 to `fixup_alt_jump', in the `handle_alt' case below. */
2080 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2081 }
2082
2083 /* See similar code for backslashed left paren above. */
2084 if (COMPILE_STACK_EMPTY)
2085 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2086 goto normal_char;
2087 else
69c38b46 2088 FREE_STACK_RETURN (REG_ERPAREN);
bc78d348
KB
2089
2090 /* Since we just checked for an empty stack above, this
2091 ``can't happen''. */
2092 assert (compile_stack.avail != 0);
2093 {
2094 /* We don't just want to restore into `regnum', because
2095 later groups should continue to be numbered higher,
2096 as in `(ab)c(de)' -- the second group is #2. */
2097 regnum_t this_group_regnum;
2098
2099 compile_stack.avail--;
2100 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2101 fixup_alt_jump
2102 = COMPILE_STACK_TOP.fixup_alt_jump
2103 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2104 : 0;
2105 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2106 this_group_regnum = COMPILE_STACK_TOP.regnum;
5745b086
JB
2107 /* If we've reached MAX_REGNUM groups, then this open
2108 won't actually generate any code, so we'll have to
2109 clear pending_exact explicitly. */
2110 pending_exact = 0;
bc78d348
KB
2111
2112 /* We're at the end of the group, so now we know how many
2113 groups were inside this one. */
2114 if (this_group_regnum <= MAX_REGNUM)
2115 {
2116 unsigned char *inner_group_loc
2117 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2118
2119 *inner_group_loc = regnum - this_group_regnum;
2120 BUF_PUSH_3 (stop_memory, this_group_regnum,
2121 regnum - this_group_regnum);
2122 }
2123 }
2124 break;
2125
2126
2127 case '|': /* `\|'. */
2128 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2129 goto normal_backslash;
2130 handle_alt:
2131 if (syntax & RE_LIMITED_OPS)
2132 goto normal_char;
2133
2134 /* Insert before the previous alternative a jump which
2135 jumps to this alternative if the former fails. */
2136 GET_BUFFER_SPACE (3);
2137 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2138 pending_exact = 0;
2139 b += 3;
2140
2141 /* The alternative before this one has a jump after it
2142 which gets executed if it gets matched. Adjust that
2143 jump so it will jump to this alternative's analogous
2144 jump (put in below, which in turn will jump to the next
2145 (if any) alternative's such jump, etc.). The last such
2146 jump jumps to the correct final destination. A picture:
2147 _____ _____
2148 | | | |
2149 | v | v
2150 a | b | c
2151
9114e279
KB
2152 If we are at `b', then fixup_alt_jump right now points to a
2153 three-byte space after `a'. We'll put in the jump, set
2154 fixup_alt_jump to right after `b', and leave behind three
2155 bytes which we'll fill in when we get to after `c'. */
bc78d348
KB
2156
2157 if (fixup_alt_jump)
2158 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2159
2160 /* Mark and leave space for a jump after this alternative,
2161 to be filled in later either by next alternative or
2162 when know we're at the end of a series of alternatives. */
2163 fixup_alt_jump = b;
2164 GET_BUFFER_SPACE (3);
2165 b += 3;
2166
2167 laststart = 0;
2168 begalt = b;
2169 break;
2170
2171
2172 case '{':
2173 /* If \{ is a literal. */
2174 if (!(syntax & RE_INTERVALS)
2175 /* If we're at `\{' and it's not the open-interval
2176 operator. */
2177 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2178 || (p - 2 == pattern && p == pend))
2179 goto normal_backslash;
2180
2181 handle_interval:
2182 {
2183 /* If got here, then the syntax allows intervals. */
2184
2185 /* At least (most) this many matches must be made. */
2186 int lower_bound = -1, upper_bound = -1;
2187
2188 beg_interval = p - 1;
2189
2190 if (p == pend)
2191 {
2192 if (syntax & RE_NO_BK_BRACES)
2193 goto unfetch_interval;
2194 else
69c38b46 2195 FREE_STACK_RETURN (REG_EBRACE);
bc78d348
KB
2196 }
2197
2198 GET_UNSIGNED_NUMBER (lower_bound);
2199
2200 if (c == ',')
2201 {
2202 GET_UNSIGNED_NUMBER (upper_bound);
2203 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2204 }
2205 else
2206 /* Interval such as `{1}' => match exactly once. */
2207 upper_bound = lower_bound;
2208
2209 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2210 || lower_bound > upper_bound)
2211 {
2212 if (syntax & RE_NO_BK_BRACES)
2213 goto unfetch_interval;
2214 else
69c38b46 2215 FREE_STACK_RETURN (REG_BADBR);
bc78d348
KB
2216 }
2217
2218 if (!(syntax & RE_NO_BK_BRACES))
2219 {
69c38b46 2220 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
bc78d348
KB
2221
2222 PATFETCH (c);
2223 }
2224
2225 if (c != '}')
2226 {
2227 if (syntax & RE_NO_BK_BRACES)
2228 goto unfetch_interval;
2229 else
69c38b46 2230 FREE_STACK_RETURN (REG_BADBR);
bc78d348
KB
2231 }
2232
2233 /* We just parsed a valid interval. */
2234
2235 /* If it's invalid to have no preceding re. */
2236 if (!laststart)
2237 {
2238 if (syntax & RE_CONTEXT_INVALID_OPS)
69c38b46 2239 FREE_STACK_RETURN (REG_BADRPT);
bc78d348
KB
2240 else if (syntax & RE_CONTEXT_INDEP_OPS)
2241 laststart = b;
2242 else
2243 goto unfetch_interval;
2244 }
2245
2246 /* If the upper bound is zero, don't want to succeed at
2247 all; jump from `laststart' to `b + 3', which will be
2248 the end of the buffer after we insert the jump. */
2249 if (upper_bound == 0)
2250 {
2251 GET_BUFFER_SPACE (3);
2252 INSERT_JUMP (jump, laststart, b + 3);
2253 b += 3;
2254 }
2255
2256 /* Otherwise, we have a nontrivial interval. When
2257 we're all done, the pattern will look like:
2258 set_number_at <jump count> <upper bound>
2259 set_number_at <succeed_n count> <lower bound>
63268f76 2260 succeed_n <after jump addr> <succeed_n count>
bc78d348
KB
2261 <body of loop>
2262 jump_n <succeed_n addr> <jump count>
2263 (The upper bound and `jump_n' are omitted if
2264 `upper_bound' is 1, though.) */
2265 else
2266 { /* If the upper bound is > 1, we need to insert
2267 more at the end of the loop. */
2268 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2269
2270 GET_BUFFER_SPACE (nbytes);
2271
2272 /* Initialize lower bound of the `succeed_n', even
2273 though it will be set during matching by its
2274 attendant `set_number_at' (inserted next),
2275 because `re_compile_fastmap' needs to know.
2276 Jump to the `jump_n' we might insert below. */
2277 INSERT_JUMP2 (succeed_n, laststart,
2278 b + 5 + (upper_bound > 1) * 5,
2279 lower_bound);
2280 b += 5;
2281
2282 /* Code to initialize the lower bound. Insert
2283 before the `succeed_n'. The `5' is the last two
2284 bytes of this `set_number_at', plus 3 bytes of
2285 the following `succeed_n'. */
2286 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2287 b += 5;
2288
2289 if (upper_bound > 1)
2290 { /* More than one repetition is allowed, so
2291 append a backward jump to the `succeed_n'
2292 that starts this interval.
2293
2294 When we've reached this during matching,
2295 we'll have matched the interval once, so
2296 jump back only `upper_bound - 1' times. */
2297 STORE_JUMP2 (jump_n, b, laststart + 5,
2298 upper_bound - 1);
2299 b += 5;
2300
2301 /* The location we want to set is the second
2302 parameter of the `jump_n'; that is `b-2' as
2303 an absolute address. `laststart' will be
2304 the `set_number_at' we're about to insert;
2305 `laststart+3' the number to set, the source
2306 for the relative address. But we are
2307 inserting into the middle of the pattern --
2308 so everything is getting moved up by 5.
2309 Conclusion: (b - 2) - (laststart + 3) + 5,
2310 i.e., b - laststart.
2311
2312 We insert this at the beginning of the loop
2313 so that if we fail during matching, we'll
2314 reinitialize the bounds. */
2315 insert_op2 (set_number_at, laststart, b - laststart,
2316 upper_bound - 1, b);
2317 b += 5;
2318 }
2319 }
2320 pending_exact = 0;
2321 beg_interval = NULL;
2322 }
2323 break;
2324
2325 unfetch_interval:
2326 /* If an invalid interval, match the characters as literals. */
2327 assert (beg_interval);
2328 p = beg_interval;
2329 beg_interval = NULL;
2330
2331 /* normal_char and normal_backslash need `c'. */
2332 PATFETCH (c);
2333
2334 if (!(syntax & RE_NO_BK_BRACES))
2335 {
2336 if (p > pattern && p[-1] == '\\')
2337 goto normal_backslash;
2338 }
2339 goto normal_char;
2340
2341#ifdef emacs
2342 /* There is no way to specify the before_dot and after_dot
2343 operators. rms says this is ok. --karl */
2344 case '=':
2345 BUF_PUSH (at_dot);
2346 break;
2347
2348 case 's':
2349 laststart = b;
2350 PATFETCH (c);
2351 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2352 break;
2353
2354 case 'S':
2355 laststart = b;
2356 PATFETCH (c);
2357 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2358 break;
2359#endif /* emacs */
2360
2361
2362 case 'w':
2363 laststart = b;
2364 BUF_PUSH (wordchar);
2365 break;
2366
2367
2368 case 'W':
2369 laststart = b;
2370 BUF_PUSH (notwordchar);
2371 break;
2372
2373
2374 case '<':
2375 BUF_PUSH (wordbeg);
2376 break;
2377
2378 case '>':
2379 BUF_PUSH (wordend);
2380 break;
2381
2382 case 'b':
2383 BUF_PUSH (wordbound);
2384 break;
2385
2386 case 'B':
2387 BUF_PUSH (notwordbound);
2388 break;
2389
2390 case '`':
2391 BUF_PUSH (begbuf);
2392 break;
2393
2394 case '\'':
2395 BUF_PUSH (endbuf);
2396 break;
2397
2398 case '1': case '2': case '3': case '4': case '5':
2399 case '6': case '7': case '8': case '9':
2400 if (syntax & RE_NO_BK_REFS)
2401 goto normal_char;
2402
2403 c1 = c - '0';
2404
2405 if (c1 > regnum)
69c38b46 2406 FREE_STACK_RETURN (REG_ESUBREG);
bc78d348
KB
2407
2408 /* Can't back reference to a subexpression if inside of it. */
2409 if (group_in_compile_stack (compile_stack, c1))
2410 goto normal_char;
2411
2412 laststart = b;
2413 BUF_PUSH_2 (duplicate, c1);
2414 break;
2415
2416
2417 case '+':
2418 case '?':
2419 if (syntax & RE_BK_PLUS_QM)
2420 goto handle_plus;
2421 else
2422 goto normal_backslash;
2423
2424 default:
2425 normal_backslash:
2426 /* You might think it would be useful for \ to mean
2427 not to translate; but if we don't translate it
2428 it will never match anything. */
2429 c = TRANSLATE (c);
2430 goto normal_char;
2431 }
2432 break;
2433
2434
2435 default:
2436 /* Expects the character in `c'. */
2437 normal_char:
2438 /* If no exactn currently being built. */
2439 if (!pending_exact
2440
2441 /* If last exactn not at current position. */
2442 || pending_exact + *pending_exact + 1 != b
2443
2444 /* We have only one byte following the exactn for the count. */
2445 || *pending_exact == (1 << BYTEWIDTH) - 1
2446
2447 /* If followed by a repetition operator. */
2448 || *p == '*' || *p == '^'
2449 || ((syntax & RE_BK_PLUS_QM)
2450 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2451 : (*p == '+' || *p == '?'))
2452 || ((syntax & RE_INTERVALS)
2453 && ((syntax & RE_NO_BK_BRACES)
2454 ? *p == '{'
2455 : (p[0] == '\\' && p[1] == '{'))))
2456 {
2457 /* Start building a new exactn. */
2458
2459 laststart = b;
2460
2461 BUF_PUSH_2 (exactn, 0);
2462 pending_exact = b - 1;
2463 }
2464
2465 BUF_PUSH (c);
2466 (*pending_exact)++;
2467 break;
2468 } /* switch (c) */
e959bada 2469 } /* while p != pend */
4af46de6 2470
e959bada
JB
2471
2472 /* Through the pattern now. */
2473
2474 if (fixup_alt_jump)
2475 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
bc78d348 2476
e959bada 2477 if (!COMPILE_STACK_EMPTY)
69c38b46 2478 FREE_STACK_RETURN (REG_EPAREN);
bc78d348 2479
e959bada 2480 free (compile_stack.stack);
bc78d348 2481
e959bada
JB
2482 /* We have succeeded; set the length of the buffer. */
2483 bufp->used = b - bufp->buffer;
2484
2485#ifdef DEBUG
2486 if (debug)
bc78d348 2487 {
e959bada
JB
2488 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2489 print_compiled_pattern (bufp);
bc78d348 2490 }
e959bada 2491#endif /* DEBUG */
bc78d348 2492
a822d92f 2493#ifndef MATCH_MAY_ALLOCATE
e959bada
JB
2494 /* Initialize the failure stack to the largest possible stack. This
2495 isn't necessary unless we're trying to avoid calling alloca in
2496 the search and match routines. */
2497 {
2498 int num_regs = bufp->re_nsub + 1;
2499
2500 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2501 is strictly greater than re_max_failures, the largest possible stack
2502 is 2 * re_max_failures failure points. */
69fdec9e 2503 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
501b568d 2504 {
69fdec9e 2505 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
cbbe9053
RS
2506
2507#ifdef emacs
501b568d 2508 if (! fail_stack.stack)
cbbe9053
RS
2509 fail_stack.stack
2510 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2511 * sizeof (fail_stack_elt_t));
501b568d 2512 else
cbbe9053
RS
2513 fail_stack.stack
2514 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2515 (fail_stack.size
2516 * sizeof (fail_stack_elt_t)));
2517#else /* not emacs */
2518 if (! fail_stack.stack)
2519 fail_stack.stack
2520 = (fail_stack_elt_t *) malloc (fail_stack.size
2521 * sizeof (fail_stack_elt_t));
2522 else
2523 fail_stack.stack
2524 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2525 (fail_stack.size
2526 * sizeof (fail_stack_elt_t)));
2527#endif /* not emacs */
501b568d 2528 }
e959bada
JB
2529
2530 /* Initialize some other variables the matcher uses. */
2531 RETALLOC_IF (regstart, num_regs, const char *);
2532 RETALLOC_IF (regend, num_regs, const char *);
2533 RETALLOC_IF (old_regstart, num_regs, const char *);
2534 RETALLOC_IF (old_regend, num_regs, const char *);
2535 RETALLOC_IF (best_regstart, num_regs, const char *);
2536 RETALLOC_IF (best_regend, num_regs, const char *);
2537 RETALLOC_IF (reg_info, num_regs, register_info_type);
2538 RETALLOC_IF (reg_dummy, num_regs, const char *);
2539 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
2540 }
bc78d348
KB
2541#endif
2542
e959bada
JB
2543 return REG_NOERROR;
2544} /* regex_compile */
2545\f
2546/* Subroutines for `regex_compile'. */
bc78d348 2547
e959bada 2548/* Store OP at LOC followed by two-byte integer parameter ARG. */
bc78d348 2549
e959bada
JB
2550static void
2551store_op1 (op, loc, arg)
2552 re_opcode_t op;
2553 unsigned char *loc;
2554 int arg;
bc78d348 2555{
e959bada
JB
2556 *loc = (unsigned char) op;
2557 STORE_NUMBER (loc + 1, arg);
2558}
bc78d348 2559
bc78d348 2560
e959bada 2561/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
bc78d348 2562
e959bada
JB
2563static void
2564store_op2 (op, loc, arg1, arg2)
2565 re_opcode_t op;
2566 unsigned char *loc;
2567 int arg1, arg2;
2568{
2569 *loc = (unsigned char) op;
2570 STORE_NUMBER (loc + 1, arg1);
2571 STORE_NUMBER (loc + 3, arg2);
2572}
bc78d348 2573
bc78d348 2574
e959bada
JB
2575/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2576 for OP followed by two-byte integer parameter ARG. */
bc78d348 2577
e959bada
JB
2578static void
2579insert_op1 (op, loc, arg, end)
2580 re_opcode_t op;
2581 unsigned char *loc;
2582 int arg;
2583 unsigned char *end;
2584{
2585 register unsigned char *pfrom = end;
2586 register unsigned char *pto = end + 3;
bc78d348 2587
e959bada
JB
2588 while (pfrom != loc)
2589 *--pto = *--pfrom;
2590
2591 store_op1 (op, loc, arg);
2592}
bc78d348 2593
bc78d348 2594
e959bada 2595/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
bc78d348 2596
e959bada
JB
2597static void
2598insert_op2 (op, loc, arg1, arg2, end)
2599 re_opcode_t op;
2600 unsigned char *loc;
2601 int arg1, arg2;
2602 unsigned char *end;
2603{
2604 register unsigned char *pfrom = end;
2605 register unsigned char *pto = end + 5;
bc78d348 2606
e959bada
JB
2607 while (pfrom != loc)
2608 *--pto = *--pfrom;
2609
2610 store_op2 (op, loc, arg1, arg2);
2611}
bc78d348 2612
bc78d348 2613
e959bada
JB
2614/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2615 after an alternative or a begin-subexpression. We assume there is at
2616 least one character before the ^. */
bc78d348 2617
e959bada
JB
2618static boolean
2619at_begline_loc_p (pattern, p, syntax)
2620 const char *pattern, *p;
2621 reg_syntax_t syntax;
2622{
2623 const char *prev = p - 2;
2624 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2625
2626 return
2627 /* After a subexpression? */
2628 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2629 /* After an alternative? */
2630 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2631}
bc78d348 2632
bc78d348 2633
e959bada
JB
2634/* The dual of at_begline_loc_p. This one is for $. We assume there is
2635 at least one character after the $, i.e., `P < PEND'. */
2636
2637static boolean
2638at_endline_loc_p (p, pend, syntax)
2639 const char *p, *pend;
2640 int syntax;
2641{
2642 const char *next = p;
2643 boolean next_backslash = *next == '\\';
2644 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2645
2646 return
2647 /* Before a subexpression? */
2648 (syntax & RE_NO_BK_PARENS ? *next == ')'
2649 : next_backslash && next_next && *next_next == ')')
2650 /* Before an alternative? */
2651 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2652 : next_backslash && next_next && *next_next == '|');
2653}
bc78d348
KB
2654
2655
e959bada
JB
2656/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2657 false if it's not. */
bc78d348 2658
e959bada
JB
2659static boolean
2660group_in_compile_stack (compile_stack, regnum)
2661 compile_stack_type compile_stack;
2662 regnum_t regnum;
2663{
2664 int this_element;
2665
2666 for (this_element = compile_stack.avail - 1;
2667 this_element >= 0;
2668 this_element--)
2669 if (compile_stack.stack[this_element].regnum == regnum)
2670 return true;
2671
2672 return false;
2673}
2674
2675
2676/* Read the ending character of a range (in a bracket expression) from the
2677 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2678 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2679 Then we set the translation of all bits between the starting and
2680 ending characters (inclusive) in the compiled pattern B.
bc78d348 2681
e959bada
JB
2682 Return an error code.
2683
2684 We use these short variable names so we can use the same macros as
2685 `regex_compile' itself. */
bc78d348 2686
e959bada
JB
2687static reg_errcode_t
2688compile_range (p_ptr, pend, translate, syntax, b)
2689 const char **p_ptr, *pend;
2690 char *translate;
2691 reg_syntax_t syntax;
2692 unsigned char *b;
2693{
2694 unsigned this_char;
2695
2696 const char *p = *p_ptr;
2697 int range_start, range_end;
2698
2699 if (p == pend)
2700 return REG_ERANGE;
2701
2702 /* Even though the pattern is a signed `char *', we need to fetch
2703 with unsigned char *'s; if the high bit of the pattern character
2704 is set, the range endpoints will be negative if we fetch using a
2705 signed char *.
2706
2707 We also want to fetch the endpoints without translating them; the
2708 appropriate translation is done in the bit-setting loop below. */
2709 range_start = ((unsigned char *) p)[-2];
2710 range_end = ((unsigned char *) p)[0];
2711
2712 /* Have to increment the pointer into the pattern string, so the
2713 caller isn't still at the ending character. */
2714 (*p_ptr)++;
2715
2716 /* If the start is after the end, the range is empty. */
2717 if (range_start > range_end)
2718 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2719
2720 /* Here we see why `this_char' has to be larger than an `unsigned
2721 char' -- the range is inclusive, so if `range_end' == 0xff
2722 (assuming 8-bit characters), we would otherwise go into an infinite
2723 loop, since all characters <= 0xff. */
2724 for (this_char = range_start; this_char <= range_end; this_char++)
2725 {
2726 SET_LIST_BIT (TRANSLATE (this_char));
2727 }
2728
2729 return REG_NOERROR;
2730}
bc78d348
KB
2731\f
2732/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2733 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2734 characters can start a string that matches the pattern. This fastmap
2735 is used by re_search to skip quickly over impossible starting points.
2736
2737 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2738 area as BUFP->fastmap.
2739
2740 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2741 the pattern buffer.
2742
2743 Returns 0 if we succeed, -2 if an internal error. */
2744
2745int
2746re_compile_fastmap (bufp)
2747 struct re_pattern_buffer *bufp;
2748{
2749 int j, k;
a822d92f 2750#ifdef MATCH_MAY_ALLOCATE
bc78d348 2751 fail_stack_type fail_stack;
e959bada 2752#endif
bc78d348
KB
2753#ifndef REGEX_MALLOC
2754 char *destination;
2755#endif
2756 /* We don't push any register information onto the failure stack. */
2757 unsigned num_regs = 0;
2758
2759 register char *fastmap = bufp->fastmap;
2760 unsigned char *pattern = bufp->buffer;
2761 unsigned long size = bufp->used;
794ce2c1 2762 unsigned char *p = pattern;
bc78d348
KB
2763 register unsigned char *pend = pattern + size;
2764
2765 /* Assume that each path through the pattern can be null until
2766 proven otherwise. We set this false at the bottom of switch
2767 statement, to which we get only if a particular path doesn't
2768 match the empty string. */
2769 boolean path_can_be_null = true;
2770
2771 /* We aren't doing a `succeed_n' to begin with. */
2772 boolean succeed_n_p = false;
2773
2774 assert (fastmap != NULL && p != NULL);
2775
2776 INIT_FAIL_STACK ();
2777 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2778 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2779 bufp->can_be_null = 0;
2780
2781 while (p != pend || !FAIL_STACK_EMPTY ())
2782 {
2783 if (p == pend)
2784 {
2785 bufp->can_be_null |= path_can_be_null;
2786
2787 /* Reset for next path. */
2788 path_can_be_null = true;
2789
2790 p = fail_stack.stack[--fail_stack.avail];
2791 }
2792
2793 /* We should never be about to go beyond the end of the pattern. */
2794 assert (p < pend);
2795
2796#ifdef SWITCH_ENUM_BUG
2797 switch ((int) ((re_opcode_t) *p++))
2798#else
2799 switch ((re_opcode_t) *p++)
2800#endif
2801 {
2802
2803 /* I guess the idea here is to simply not bother with a fastmap
2804 if a backreference is used, since it's too hard to figure out
2805 the fastmap for the corresponding group. Setting
2806 `can_be_null' stops `re_search_2' from using the fastmap, so
2807 that is all we do. */
2808 case duplicate:
2809 bufp->can_be_null = 1;
2810 return 0;
2811
2812
2813 /* Following are the cases which match a character. These end
2814 with `break'. */
2815
2816 case exactn:
2817 fastmap[p[1]] = 1;
2818 break;
2819
2820
2821 case charset:
2822 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2823 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2824 fastmap[j] = 1;
2825 break;
2826
2827
2828 case charset_not:
2829 /* Chars beyond end of map must be allowed. */
2830 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2831 fastmap[j] = 1;
2832
2833 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2834 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2835 fastmap[j] = 1;
2836 break;
2837
2838
2839 case wordchar:
2840 for (j = 0; j < (1 << BYTEWIDTH); j++)
2841 if (SYNTAX (j) == Sword)
2842 fastmap[j] = 1;
2843 break;
2844
2845
2846 case notwordchar:
2847 for (j = 0; j < (1 << BYTEWIDTH); j++)
2848 if (SYNTAX (j) != Sword)
2849 fastmap[j] = 1;
2850 break;
2851
2852
2853 case anychar:
73e84c96
RS
2854 {
2855 int fastmap_newline = fastmap['\n'];
bc78d348 2856
73e84c96
RS
2857 /* `.' matches anything ... */
2858 for (j = 0; j < (1 << BYTEWIDTH); j++)
2859 fastmap[j] = 1;
bc78d348 2860
73e84c96
RS
2861 /* ... except perhaps newline. */
2862 if (!(bufp->syntax & RE_DOT_NEWLINE))
2863 fastmap['\n'] = fastmap_newline;
bc78d348 2864
73e84c96
RS
2865 /* Return if we have already set `can_be_null'; if we have,
2866 then the fastmap is irrelevant. Something's wrong here. */
2867 else if (bufp->can_be_null)
2868 return 0;
bc78d348 2869
73e84c96
RS
2870 /* Otherwise, have to check alternative paths. */
2871 break;
2872 }
bc78d348
KB
2873
2874#ifdef emacs
2875 case syntaxspec:
2876 k = *p++;
2877 for (j = 0; j < (1 << BYTEWIDTH); j++)
2878 if (SYNTAX (j) == (enum syntaxcode) k)
2879 fastmap[j] = 1;
2880 break;
2881
2882
2883 case notsyntaxspec:
2884 k = *p++;
2885 for (j = 0; j < (1 << BYTEWIDTH); j++)
2886 if (SYNTAX (j) != (enum syntaxcode) k)
2887 fastmap[j] = 1;
2888 break;
2889
2890
2891 /* All cases after this match the empty string. These end with
2892 `continue'. */
2893
2894
2895 case before_dot:
2896 case at_dot:
2897 case after_dot:
2898 continue;
2899#endif /* not emacs */
2900
2901
2902 case no_op:
2903 case begline:
2904 case endline:
2905 case begbuf:
2906 case endbuf:
2907 case wordbound:
2908 case notwordbound:
2909 case wordbeg:
2910 case wordend:
2911 case push_dummy_failure:
2912 continue;
2913
2914
2915 case jump_n:
2916 case pop_failure_jump:
2917 case maybe_pop_jump:
2918 case jump:
2919 case jump_past_alt:
2920 case dummy_failure_jump:
2921 EXTRACT_NUMBER_AND_INCR (j, p);
2922 p += j;
2923 if (j > 0)
2924 continue;
2925
2926 /* Jump backward implies we just went through the body of a
2927 loop and matched nothing. Opcode jumped to should be
2928 `on_failure_jump' or `succeed_n'. Just treat it like an
2929 ordinary jump. For a * loop, it has pushed its failure
2930 point already; if so, discard that as redundant. */
2931 if ((re_opcode_t) *p != on_failure_jump
2932 && (re_opcode_t) *p != succeed_n)
2933 continue;
2934
2935 p++;
2936 EXTRACT_NUMBER_AND_INCR (j, p);
2937 p += j;
2938
2939 /* If what's on the stack is where we are now, pop it. */
2940 if (!FAIL_STACK_EMPTY ()
2941 && fail_stack.stack[fail_stack.avail - 1] == p)
2942 fail_stack.avail--;
2943
2944 continue;
2945
2946
2947 case on_failure_jump:
2948 case on_failure_keep_string_jump:
2949 handle_on_failure_jump:
2950 EXTRACT_NUMBER_AND_INCR (j, p);
2951
2952 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2953 end of the pattern. We don't want to push such a point,
2954 since when we restore it above, entering the switch will
2955 increment `p' past the end of the pattern. We don't need
2956 to push such a point since we obviously won't find any more
2957 fastmap entries beyond `pend'. Such a pattern can match
2958 the null string, though. */
2959 if (p + j < pend)
2960 {
2961 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2962 return -2;
2963 }
2964 else
2965 bufp->can_be_null = 1;
2966
2967 if (succeed_n_p)
2968 {
2969 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2970 succeed_n_p = false;
2971 }
2972
2973 continue;
2974
2975
2976 case succeed_n:
2977 /* Get to the number of times to succeed. */
2978 p += 2;
2979
2980 /* Increment p past the n for when k != 0. */
2981 EXTRACT_NUMBER_AND_INCR (k, p);
2982 if (k == 0)
2983 {
2984 p -= 4;
2985 succeed_n_p = true; /* Spaghetti code alert. */
2986 goto handle_on_failure_jump;
2987 }
2988 continue;
2989
2990
2991 case set_number_at:
2992 p += 4;
2993 continue;
2994
2995
2996 case start_memory:
2997 case stop_memory:
2998 p += 2;
2999 continue;
3000
3001
3002 default:
3003 abort (); /* We have listed all the cases. */
3004 } /* switch *p++ */
3005
3006 /* Getting here means we have found the possible starting
3007 characters for one path of the pattern -- and that the empty
3008 string does not match. We need not follow this path further.
3009 Instead, look at the next alternative (remembered on the
3010 stack), or quit if no more. The test at the top of the loop
3011 does these things. */
3012 path_can_be_null = false;
3013 p = pend;
3014 } /* while p */
3015
3016 /* Set `can_be_null' for the last path (also the first path, if the
3017 pattern is empty). */
3018 bufp->can_be_null |= path_can_be_null;
3019 return 0;
3020} /* re_compile_fastmap */
3021\f
3022/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3023 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3024 this memory for recording register information. STARTS and ENDS
3025 must be allocated using the malloc library routine, and must each
3026 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3027
3028 If NUM_REGS == 0, then subsequent matches should allocate their own
3029 register data.
3030
3031 Unless this function is called, the first search or match using
3032 PATTERN_BUFFER will allocate its own register data, without
3033 freeing the old data. */
3034
3035void
3036re_set_registers (bufp, regs, num_regs, starts, ends)
3037 struct re_pattern_buffer *bufp;
3038 struct re_registers *regs;
3039 unsigned num_regs;
3040 regoff_t *starts, *ends;
3041{
3042 if (num_regs)
3043 {
3044 bufp->regs_allocated = REGS_REALLOCATE;
3045 regs->num_regs = num_regs;
3046 regs->start = starts;
3047 regs->end = ends;
3048 }
3049 else
3050 {
3051 bufp->regs_allocated = REGS_UNALLOCATED;
3052 regs->num_regs = 0;
368481a5 3053 regs->start = regs->end = (regoff_t *) 0;
bc78d348
KB
3054 }
3055}
3056\f
3057/* Searching routines. */
3058
3059/* Like re_search_2, below, but only one string is specified, and
3060 doesn't let you say where to stop matching. */
3061
3062int
3063re_search (bufp, string, size, startpos, range, regs)
3064 struct re_pattern_buffer *bufp;
3065 const char *string;
3066 int size, startpos, range;
3067 struct re_registers *regs;
3068{
3069 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3070 regs, size);
3071}
3072
3073
3074/* Using the compiled pattern in BUFP->buffer, first tries to match the
3075 virtual concatenation of STRING1 and STRING2, starting first at index
3076 STARTPOS, then at STARTPOS + 1, and so on.
3077
3078 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3079
3080 RANGE is how far to scan while trying to match. RANGE = 0 means try
3081 only at STARTPOS; in general, the last start tried is STARTPOS +
3082 RANGE.
3083
3084 In REGS, return the indices of the virtual concatenation of STRING1
3085 and STRING2 that matched the entire BUFP->buffer and its contained
3086 subexpressions.
3087
3088 Do not consider matching one past the index STOP in the virtual
3089 concatenation of STRING1 and STRING2.
3090
3091 We return either the position in the strings at which the match was
3092 found, -1 if no match, or -2 if error (such as failure
3093 stack overflow). */
3094
3095int
3096re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3097 struct re_pattern_buffer *bufp;
3098 const char *string1, *string2;
3099 int size1, size2;
3100 int startpos;
3101 int range;
3102 struct re_registers *regs;
3103 int stop;
3104{
3105 int val;
3106 register char *fastmap = bufp->fastmap;
3107 register char *translate = bufp->translate;
3108 int total_size = size1 + size2;
3109 int endpos = startpos + range;
3110
3111 /* Check for out-of-range STARTPOS. */
3112 if (startpos < 0 || startpos > total_size)
3113 return -1;
3114
3115 /* Fix up RANGE if it might eventually take us outside
3116 the virtual concatenation of STRING1 and STRING2. */
3117 if (endpos < -1)
3118 range = -1 - startpos;
3119 else if (endpos > total_size)
3120 range = total_size - startpos;
3121
bc78d348 3122 /* If the search isn't to be a backwards one, don't waste time in a
9114e279
KB
3123 search for a pattern that must be anchored. */
3124 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
bc78d348
KB
3125 {
3126 if (startpos > 0)
3127 return -1;
3128 else
3129 range = 1;
3130 }
3131
9114e279
KB
3132 /* Update the fastmap now if not correct already. */
3133 if (fastmap && !bufp->fastmap_accurate)
3134 if (re_compile_fastmap (bufp) == -2)
3135 return -2;
3136
3137 /* Loop through the string, looking for a place to start matching. */
bc78d348
KB
3138 for (;;)
3139 {
3140 /* If a fastmap is supplied, skip quickly over characters that
3141 cannot be the start of a match. If the pattern can match the
3142 null string, however, we don't need to skip characters; we want
3143 the first null string. */
3144 if (fastmap && startpos < total_size && !bufp->can_be_null)
3145 {
3146 if (range > 0) /* Searching forwards. */
3147 {
3148 register const char *d;
3149 register int lim = 0;
3150 int irange = range;
3151
3152 if (startpos < size1 && startpos + range >= size1)
3153 lim = range - (size1 - startpos);
3154
3155 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3156
3157 /* Written out as an if-else to avoid testing `translate'
3158 inside the loop. */
3159 if (translate)
3160 while (range > lim
11a364d9
JB
3161 && !fastmap[(unsigned char)
3162 translate[(unsigned char) *d++]])
bc78d348
KB
3163 range--;
3164 else
3165 while (range > lim && !fastmap[(unsigned char) *d++])
3166 range--;
3167
3168 startpos += irange - range;
3169 }
3170 else /* Searching backwards. */
3171 {
3172 register char c = (size1 == 0 || startpos >= size1
3173 ? string2[startpos - size1]
3174 : string1[startpos]);
3175
9114e279 3176 if (!fastmap[(unsigned char) TRANSLATE (c)])
bc78d348
KB
3177 goto advance;
3178 }
3179 }
3180
3181 /* If can't match the null string, and that's all we have left, fail. */
3182 if (range >= 0 && startpos == total_size && fastmap
3183 && !bufp->can_be_null)
3184 return -1;
3185
f765858e
KH
3186 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3187 startpos, regs, stop);
f46831b0
RS
3188#ifndef REGEX_MALLOC
3189#ifdef C_ALLOCA
f765858e 3190 alloca (0);
f46831b0
RS
3191#endif
3192#endif
f765858e 3193
bc78d348
KB
3194 if (val >= 0)
3195 return startpos;
3196
3197 if (val == -2)
3198 return -2;
3199
3200 advance:
3201 if (!range)
3202 break;
3203 else if (range > 0)
3204 {
3205 range--;
3206 startpos++;
3207 }
3208 else
3209 {
3210 range++;
3211 startpos--;
3212 }
3213 }
3214 return -1;
3215} /* re_search_2 */
3216\f
3217/* Declarations and macros for re_match_2. */
3218
3219static int bcmp_translate ();
3220static boolean alt_match_null_string_p (),
3221 common_op_match_null_string_p (),
3222 group_match_null_string_p ();
3223
bc78d348
KB
3224/* This converts PTR, a pointer into one of the search strings `string1'
3225 and `string2' into an offset from the beginning of that string. */
794ce2c1
RS
3226#define POINTER_TO_OFFSET(ptr) \
3227 (FIRST_STRING_P (ptr) \
3228 ? ((regoff_t) ((ptr) - string1)) \
3229 : ((regoff_t) ((ptr) - string2 + size1)))
bc78d348 3230
bc78d348
KB
3231/* Macros for dealing with the split strings in re_match_2. */
3232
3233#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3234
3235/* Call before fetching a character with *d. This switches over to
3236 string2 if necessary. */
3237#define PREFETCH() \
3238 while (d == dend) \
3239 { \
3240 /* End of string2 => fail. */ \
3241 if (dend == end_match_2) \
3242 goto fail; \
3243 /* End of string1 => advance to string2. */ \
3244 d = string2; \
3245 dend = end_match_2; \
3246 }
3247
3248
3249/* Test if at very beginning or at very end of the virtual concatenation
3250 of `string1' and `string2'. If only one string, it's `string2'. */
9114e279
KB
3251#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3252#define AT_STRINGS_END(d) ((d) == end2)
bc78d348
KB
3253
3254
3255/* Test if D points to a character which is word-constituent. We have
3256 two special cases to check for: if past the end of string1, look at
3257 the first character in string2; and if before the beginning of
9114e279
KB
3258 string2, look at the last character in string1. */
3259#define WORDCHAR_P(d) \
bc78d348 3260 (SYNTAX ((d) == end1 ? *string2 \
9114e279
KB
3261 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3262 == Sword)
bc78d348
KB
3263
3264/* Test if the character before D and the one at D differ with respect
3265 to being word-constituent. */
3266#define AT_WORD_BOUNDARY(d) \
9114e279
KB
3267 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3268 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
bc78d348
KB
3269
3270
3271/* Free everything we malloc. */
a822d92f 3272#ifdef MATCH_MAY_ALLOCATE
bc78d348
KB
3273#ifdef REGEX_MALLOC
3274#define FREE_VAR(var) if (var) free (var); var = NULL
3275#define FREE_VARIABLES() \
3276 do { \
3277 FREE_VAR (fail_stack.stack); \
3278 FREE_VAR (regstart); \
3279 FREE_VAR (regend); \
3280 FREE_VAR (old_regstart); \
3281 FREE_VAR (old_regend); \
3282 FREE_VAR (best_regstart); \
3283 FREE_VAR (best_regend); \
3284 FREE_VAR (reg_info); \
3285 FREE_VAR (reg_dummy); \
3286 FREE_VAR (reg_info_dummy); \
3287 } while (0)
3288#else /* not REGEX_MALLOC */
f765858e
KH
3289/* This used to do alloca (0), but now we do that in the caller. */
3290#define FREE_VARIABLES() /* Nothing */
bc78d348 3291#endif /* not REGEX_MALLOC */
a822d92f
JB
3292#else
3293#define FREE_VARIABLES() /* Do nothing! */
3294#endif /* not MATCH_MAY_ALLOCATE */
bc78d348
KB
3295
3296/* These values must meet several constraints. They must not be valid
3297 register values; since we have a limit of 255 registers (because
3298 we use only one byte in the pattern for the register number), we can
3299 use numbers larger than 255. They must differ by 1, because of
3300 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3301 be larger than the value for the highest register, so we do not try
3302 to actually save any registers when none are active. */
3303#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3304#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3305\f
3306/* Matching routines. */
3307
3308#ifndef emacs /* Emacs never uses this. */
3309/* re_match is like re_match_2 except it takes only a single string. */
3310
3311int
3312re_match (bufp, string, size, pos, regs)
3313 struct re_pattern_buffer *bufp;
3314 const char *string;
3315 int size, pos;
3316 struct re_registers *regs;
f765858e
KH
3317{
3318 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3319 pos, regs, size);
3320 alloca (0);
3321 return result;
bc78d348
KB
3322}
3323#endif /* not emacs */
3324
3325
3326/* re_match_2 matches the compiled pattern in BUFP against the
3327 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3328 and SIZE2, respectively). We start matching at POS, and stop
3329 matching at STOP.
3330
3331 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3332 store offsets for the substring each group matched in REGS. See the
3333 documentation for exactly how many groups we fill.
3334
3335 We return -1 if no match, -2 if an internal error (such as the
3336 failure stack overflowing). Otherwise, we return the length of the
3337 matched substring. */
3338
3339int
3340re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3341 struct re_pattern_buffer *bufp;
3342 const char *string1, *string2;
3343 int size1, size2;
3344 int pos;
3345 struct re_registers *regs;
3346 int stop;
f765858e
KH
3347{
3348 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3349 pos, regs, stop);
3350 alloca (0);
3351 return result;
3352}
3353
3354/* This is a separate function so that we can force an alloca cleanup
3355 afterwards. */
3356static int
3357re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3358 struct re_pattern_buffer *bufp;
3359 const char *string1, *string2;
3360 int size1, size2;
3361 int pos;
3362 struct re_registers *regs;
3363 int stop;
bc78d348
KB
3364{
3365 /* General temporaries. */
3366 int mcnt;
3367 unsigned char *p1;
3368
3369 /* Just past the end of the corresponding string. */
3370 const char *end1, *end2;
3371
3372 /* Pointers into string1 and string2, just past the last characters in
3373 each to consider matching. */
3374 const char *end_match_1, *end_match_2;
3375
3376 /* Where we are in the data, and the end of the current string. */
3377 const char *d, *dend;
3378
3379 /* Where we are in the pattern, and the end of the pattern. */
3380 unsigned char *p = bufp->buffer;
3381 register unsigned char *pend = p + bufp->used;
3382
b391d2bf
JM
3383 /* Mark the opcode just after a start_memory, so we can test for an
3384 empty subpattern when we get to the stop_memory. */
3385 unsigned char *just_past_start_mem = 0;
3386
bc78d348
KB
3387 /* We use this to map every character in the string. */
3388 char *translate = bufp->translate;
3389
3390 /* Failure point stack. Each place that can handle a failure further
3391 down the line pushes a failure point on this stack. It consists of
3392 restart, regend, and reg_info for all registers corresponding to
3393 the subexpressions we're currently inside, plus the number of such
3394 registers, and, finally, two char *'s. The first char * is where
3395 to resume scanning the pattern; the second one is where to resume
3396 scanning the strings. If the latter is zero, the failure point is
3397 a ``dummy''; if a failure happens and the failure point is a dummy,
3398 it gets discarded and the next next one is tried. */
a822d92f 3399#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
bc78d348 3400 fail_stack_type fail_stack;
e959bada 3401#endif
bc78d348
KB
3402#ifdef DEBUG
3403 static unsigned failure_id = 0;
9114e279 3404 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
bc78d348
KB
3405#endif
3406
3407 /* We fill all the registers internally, independent of what we
3408 return, for use in backreferences. The number here includes
3409 an element for register zero. */
3410 unsigned num_regs = bufp->re_nsub + 1;
3411
3412 /* The currently active registers. */
3413 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3414 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3415
3416 /* Information on the contents of registers. These are pointers into
3417 the input strings; they record just what was matched (on this
3418 attempt) by a subexpression part of the pattern, that is, the
3419 regnum-th regstart pointer points to where in the pattern we began
3420 matching and the regnum-th regend points to right after where we
3421 stopped matching the regnum-th subexpression. (The zeroth register
3422 keeps track of what the whole pattern matches.) */
a822d92f 3423#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348 3424 const char **regstart, **regend;
e959bada 3425#endif
bc78d348
KB
3426
3427 /* If a group that's operated upon by a repetition operator fails to
3428 match anything, then the register for its start will need to be
3429 restored because it will have been set to wherever in the string we
3430 are when we last see its open-group operator. Similarly for a
3431 register's end. */
a822d92f 3432#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348 3433 const char **old_regstart, **old_regend;
e959bada 3434#endif
bc78d348
KB
3435
3436 /* The is_active field of reg_info helps us keep track of which (possibly
3437 nested) subexpressions we are currently in. The matched_something
3438 field of reg_info[reg_num] helps us tell whether or not we have
3439 matched any of the pattern so far this time through the reg_num-th
3440 subexpression. These two fields get reset each time through any
3441 loop their register is in. */
a822d92f 3442#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
bc78d348 3443 register_info_type *reg_info;
e959bada 3444#endif
bc78d348
KB
3445
3446 /* The following record the register info as found in the above
3447 variables when we find a match better than any we've seen before.
3448 This happens as we backtrack through the failure points, which in
3449 turn happens only if we have not yet matched the entire string. */
3450 unsigned best_regs_set = false;
a822d92f 3451#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348 3452 const char **best_regstart, **best_regend;
e959bada 3453#endif
bc78d348
KB
3454
3455 /* Logically, this is `best_regend[0]'. But we don't want to have to
3456 allocate space for that if we're not allocating space for anything
3457 else (see below). Also, we never need info about register 0 for
3458 any of the other register vectors, and it seems rather a kludge to
3459 treat `best_regend' differently than the rest. So we keep track of
3460 the end of the best match so far in a separate variable. We
3461 initialize this to NULL so that when we backtrack the first time
3462 and need to test it, it's not garbage. */
3463 const char *match_end = NULL;
3464
3465 /* Used when we pop values we don't care about. */
a822d92f 3466#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348
KB
3467 const char **reg_dummy;
3468 register_info_type *reg_info_dummy;
e959bada 3469#endif
bc78d348
KB
3470
3471#ifdef DEBUG
3472 /* Counts the total number of registers pushed. */
3473 unsigned num_regs_pushed = 0;
3474#endif
3475
3476 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3477
3478 INIT_FAIL_STACK ();
3479
a822d92f 3480#ifdef MATCH_MAY_ALLOCATE
bc78d348
KB
3481 /* Do not bother to initialize all the register variables if there are
3482 no groups in the pattern, as it takes a fair amount of time. If
3483 there are groups, we include space for register 0 (the whole
3484 pattern), even though we never use it, since it simplifies the
3485 array indexing. We should fix this. */
3486 if (bufp->re_nsub)
3487 {
3488 regstart = REGEX_TALLOC (num_regs, const char *);
3489 regend = REGEX_TALLOC (num_regs, const char *);
3490 old_regstart = REGEX_TALLOC (num_regs, const char *);
3491 old_regend = REGEX_TALLOC (num_regs, const char *);
3492 best_regstart = REGEX_TALLOC (num_regs, const char *);
3493 best_regend = REGEX_TALLOC (num_regs, const char *);
3494 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3495 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3496 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3497
3498 if (!(regstart && regend && old_regstart && old_regend && reg_info
3499 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3500 {
3501 FREE_VARIABLES ();
3502 return -2;
3503 }
3504 }
e959bada 3505#if defined (REGEX_MALLOC)
bc78d348
KB
3506 else
3507 {
3508 /* We must initialize all our variables to NULL, so that
9114e279 3509 `FREE_VARIABLES' doesn't try to free them. */
bc78d348
KB
3510 regstart = regend = old_regstart = old_regend = best_regstart
3511 = best_regend = reg_dummy = NULL;
3512 reg_info = reg_info_dummy = (register_info_type *) NULL;
3513 }
3514#endif /* REGEX_MALLOC */
a822d92f 3515#endif /* MATCH_MAY_ALLOCATE */
bc78d348
KB
3516
3517 /* The starting position is bogus. */
3518 if (pos < 0 || pos > size1 + size2)
3519 {
3520 FREE_VARIABLES ();
3521 return -1;
3522 }
3523
3524 /* Initialize subexpression text positions to -1 to mark ones that no
3525 start_memory/stop_memory has been seen for. Also initialize the
3526 register information struct. */
3527 for (mcnt = 1; mcnt < num_regs; mcnt++)
3528 {
3529 regstart[mcnt] = regend[mcnt]
3530 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3531
3532 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3533 IS_ACTIVE (reg_info[mcnt]) = 0;
3534 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3535 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3536 }
3537
3538 /* We move `string1' into `string2' if the latter's empty -- but not if
3539 `string1' is null. */
3540 if (size2 == 0 && string1 != NULL)
3541 {
3542 string2 = string1;
3543 size2 = size1;
3544 string1 = 0;
3545 size1 = 0;
3546 }
3547 end1 = string1 + size1;
3548 end2 = string2 + size2;
3549
3550 /* Compute where to stop matching, within the two strings. */
3551 if (stop <= size1)
3552 {
3553 end_match_1 = string1 + stop;
3554 end_match_2 = string2;
3555 }
3556 else
3557 {
3558 end_match_1 = end1;
3559 end_match_2 = string2 + stop - size1;
3560 }
3561
3562 /* `p' scans through the pattern as `d' scans through the data.
3563 `dend' is the end of the input string that `d' points within. `d'
3564 is advanced into the following input string whenever necessary, but
3565 this happens before fetching; therefore, at the beginning of the
3566 loop, `d' can be pointing at the end of a string, but it cannot
3567 equal `string2'. */
3568 if (size1 > 0 && pos <= size1)
3569 {
3570 d = string1 + pos;
3571 dend = end_match_1;
3572 }
3573 else
3574 {
3575 d = string2 + pos - size1;
3576 dend = end_match_2;
3577 }
3578
3579 DEBUG_PRINT1 ("The compiled pattern is: ");
3580 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3581 DEBUG_PRINT1 ("The string to match is: `");
3582 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3583 DEBUG_PRINT1 ("'\n");
3584
3585 /* This loops over pattern commands. It exits by returning from the
3586 function if the match is complete, or it drops through if the match
3587 fails at this starting point in the input data. */
3588 for (;;)
3589 {
3590 DEBUG_PRINT2 ("\n0x%x: ", p);
3591
3592 if (p == pend)
3593 { /* End of pattern means we might have succeeded. */
9114e279
KB
3594 DEBUG_PRINT1 ("end of pattern ... ");
3595
3596 /* If we haven't matched the entire string, and we want the
3597 longest match, try backtracking. */
bc78d348
KB
3598 if (d != end_match_2)
3599 {
73e84c96
RS
3600 /* 1 if this match ends in the same string (string1 or string2)
3601 as the best previous match. */
3602 boolean same_str_p = (FIRST_STRING_P (match_end)
3603 == MATCHING_IN_FIRST_STRING);
3604 /* 1 if this match is the best seen so far. */
3605 boolean best_match_p = (same_str_p ? d > match_end
3606 : !MATCHING_IN_FIRST_STRING);
3607
bc78d348
KB
3608 DEBUG_PRINT1 ("backtracking.\n");
3609
3610 if (!FAIL_STACK_EMPTY ())
3611 { /* More failure points to try. */
bc78d348
KB
3612
3613 /* If exceeds best match so far, save it. */
73e84c96 3614 if (!best_regs_set || best_match_p)
bc78d348
KB
3615 {
3616 best_regs_set = true;
3617 match_end = d;
3618
3619 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3620
3621 for (mcnt = 1; mcnt < num_regs; mcnt++)
3622 {
3623 best_regstart[mcnt] = regstart[mcnt];
3624 best_regend[mcnt] = regend[mcnt];
3625 }
3626 }
3627 goto fail;
3628 }
3629
73e84c96
RS
3630 /* If no failure points, don't restore garbage. And if
3631 last match is real best match, don't restore second
3632 best one. */
3633 else if (best_regs_set && !best_match_p)
bc78d348
KB
3634 {
3635 restore_best_regs:
3636 /* Restore best match. It may happen that `dend ==
3637 end_match_1' while the restored d is in string2.
3638 For example, the pattern `x.*y.*z' against the
3639 strings `x-' and `y-z-', if the two strings are
3640 not consecutive in memory. */
9114e279
KB
3641 DEBUG_PRINT1 ("Restoring best registers.\n");
3642
bc78d348
KB
3643 d = match_end;
3644 dend = ((d >= string1 && d <= end1)
3645 ? end_match_1 : end_match_2);
3646
3647 for (mcnt = 1; mcnt < num_regs; mcnt++)
3648 {
3649 regstart[mcnt] = best_regstart[mcnt];
3650 regend[mcnt] = best_regend[mcnt];
3651 }
3652 }
3653 } /* d != end_match_2 */
3654
9114e279 3655 DEBUG_PRINT1 ("Accepting match.\n");
bc78d348
KB
3656
3657 /* If caller wants register contents data back, do it. */
3658 if (regs && !bufp->no_sub)
3659 {
3660 /* Have the register data arrays been allocated? */
3661 if (bufp->regs_allocated == REGS_UNALLOCATED)
3662 { /* No. So allocate them with malloc. We need one
3663 extra element beyond `num_regs' for the `-1' marker
3664 GNU code uses. */
3665 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3666 regs->start = TALLOC (regs->num_regs, regoff_t);
3667 regs->end = TALLOC (regs->num_regs, regoff_t);
3668 if (regs->start == NULL || regs->end == NULL)
3669 return -2;
3670 bufp->regs_allocated = REGS_REALLOCATE;
3671 }
3672 else if (bufp->regs_allocated == REGS_REALLOCATE)
3673 { /* Yes. If we need more elements than were already
3674 allocated, reallocate them. If we need fewer, just
3675 leave it alone. */
3676 if (regs->num_regs < num_regs + 1)
3677 {
3678 regs->num_regs = num_regs + 1;
3679 RETALLOC (regs->start, regs->num_regs, regoff_t);
3680 RETALLOC (regs->end, regs->num_regs, regoff_t);
3681 if (regs->start == NULL || regs->end == NULL)
3682 return -2;
3683 }
3684 }
3685 else
a1dd004b
JB
3686 {
3687 /* These braces fend off a "empty body in an else-statement"
3688 warning under GCC when assert expands to nothing. */
3689 assert (bufp->regs_allocated == REGS_FIXED);
3690 }
bc78d348
KB
3691
3692 /* Convert the pointer data in `regstart' and `regend' to
3693 indices. Register zero has to be set differently,
3694 since we haven't kept track of any info for it. */
3695 if (regs->num_regs > 0)
3696 {
3697 regs->start[0] = pos;
794ce2c1
RS
3698 regs->end[0] = (MATCHING_IN_FIRST_STRING
3699 ? ((regoff_t) (d - string1))
3700 : ((regoff_t) (d - string2 + size1)));
bc78d348
KB
3701 }
3702
3703 /* Go through the first `min (num_regs, regs->num_regs)'
3704 registers, since that is all we initialized. */
3705 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3706 {
3707 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3708 regs->start[mcnt] = regs->end[mcnt] = -1;
3709 else
3710 {
794ce2c1
RS
3711 regs->start[mcnt]
3712 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3713 regs->end[mcnt]
3714 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
bc78d348
KB
3715 }
3716 }
3717
3718 /* If the regs structure we return has more elements than
3719 were in the pattern, set the extra elements to -1. If
3720 we (re)allocated the registers, this is the case,
3721 because we always allocate enough to have at least one
3722 -1 at the end. */
3723 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3724 regs->start[mcnt] = regs->end[mcnt] = -1;
3725 } /* regs && !bufp->no_sub */
3726
3727 FREE_VARIABLES ();
9114e279
KB
3728 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3729 nfailure_points_pushed, nfailure_points_popped,
3730 nfailure_points_pushed - nfailure_points_popped);
3731 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
bc78d348
KB
3732
3733 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3734 ? string1
3735 : string2 - size1);
3736
3737 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3738
3739 return mcnt;
3740 }
3741
3742 /* Otherwise match next pattern command. */
3743#ifdef SWITCH_ENUM_BUG
3744 switch ((int) ((re_opcode_t) *p++))
3745#else
3746 switch ((re_opcode_t) *p++)
3747#endif
3748 {
3749 /* Ignore these. Used to ignore the n of succeed_n's which
3750 currently have n == 0. */
3751 case no_op:
3752 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3753 break;
3754
3755
3756 /* Match the next n pattern characters exactly. The following
3757 byte in the pattern defines n, and the n bytes after that
3758 are the characters to match. */
3759 case exactn:
3760 mcnt = *p++;
3761 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3762
3763 /* This is written out as an if-else so we don't waste time
3764 testing `translate' inside the loop. */
3765 if (translate)
3766 {
3767 do
3768 {
3769 PREFETCH ();
3770 if (translate[(unsigned char) *d++] != (char) *p++)
3771 goto fail;
3772 }
3773 while (--mcnt);
3774 }
3775 else
3776 {
3777 do
3778 {
3779 PREFETCH ();
3780 if (*d++ != (char) *p++) goto fail;
3781 }
3782 while (--mcnt);
3783 }
3784 SET_REGS_MATCHED ();
3785 break;
3786
3787
3788 /* Match any character except possibly a newline or a null. */
3789 case anychar:
3790 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3791
3792 PREFETCH ();
3793
3794 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3795 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3796 goto fail;
3797
3798 SET_REGS_MATCHED ();
3799 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3800 d++;
3801 break;
3802
3803
3804 case charset:
3805 case charset_not:
3806 {
3807 register unsigned char c;
3808 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3809
3810 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3811
3812 PREFETCH ();
3813 c = TRANSLATE (*d); /* The character to match. */
3814
3815 /* Cast to `unsigned' instead of `unsigned char' in case the
3816 bit list is a full 32 bytes long. */
3817 if (c < (unsigned) (*p * BYTEWIDTH)
3818 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3819 not = !not;
3820
3821 p += 1 + *p;
3822
3823 if (!not) goto fail;
3824
3825 SET_REGS_MATCHED ();
3826 d++;
3827 break;
3828 }
3829
3830
3831 /* The beginning of a group is represented by start_memory.
3832 The arguments are the register number in the next byte, and the
3833 number of groups inner to this one in the next. The text
3834 matched within the group is recorded (in the internal
3835 registers data structure) under the register number. */
3836 case start_memory:
3837 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3838
3839 /* Find out if this group can match the empty string. */
3840 p1 = p; /* To send to group_match_null_string_p. */
3841
3842 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3843 REG_MATCH_NULL_STRING_P (reg_info[*p])
3844 = group_match_null_string_p (&p1, pend, reg_info);
3845
3846 /* Save the position in the string where we were the last time
3847 we were at this open-group operator in case the group is
3848 operated upon by a repetition operator, e.g., with `(a*)*b'
3849 against `ab'; then we want to ignore where we are now in
3850 the string in case this attempt to match fails. */
3851 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3852 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3853 : regstart[*p];
3854 DEBUG_PRINT2 (" old_regstart: %d\n",
3855 POINTER_TO_OFFSET (old_regstart[*p]));
3856
3857 regstart[*p] = d;
3858 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3859
3860 IS_ACTIVE (reg_info[*p]) = 1;
3861 MATCHED_SOMETHING (reg_info[*p]) = 0;
3862
3863 /* This is the new highest active register. */
3864 highest_active_reg = *p;
3865
3866 /* If nothing was active before, this is the new lowest active
3867 register. */
3868 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3869 lowest_active_reg = *p;
3870
3871 /* Move past the register number and inner group count. */
3872 p += 2;
b391d2bf 3873 just_past_start_mem = p;
bc78d348
KB
3874 break;
3875
3876
3877 /* The stop_memory opcode represents the end of a group. Its
3878 arguments are the same as start_memory's: the register
3879 number, and the number of inner groups. */
3880 case stop_memory:
3881 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3882
3883 /* We need to save the string position the last time we were at
3884 this close-group operator in case the group is operated
3885 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3886 against `aba'; then we want to ignore where we are now in
3887 the string in case this attempt to match fails. */
3888 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3889 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3890 : regend[*p];
3891 DEBUG_PRINT2 (" old_regend: %d\n",
3892 POINTER_TO_OFFSET (old_regend[*p]));
3893
3894 regend[*p] = d;
3895 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3896
3897 /* This register isn't active anymore. */
3898 IS_ACTIVE (reg_info[*p]) = 0;
3899
3900 /* If this was the only register active, nothing is active
3901 anymore. */
3902 if (lowest_active_reg == highest_active_reg)
3903 {
3904 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3905 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3906 }
3907 else
3908 { /* We must scan for the new highest active register, since
3909 it isn't necessarily one less than now: consider
3910 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3911 new highest active register is 1. */
3912 unsigned char r = *p - 1;
3913 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3914 r--;
3915
3916 /* If we end up at register zero, that means that we saved
3917 the registers as the result of an `on_failure_jump', not
3918 a `start_memory', and we jumped to past the innermost
3919 `stop_memory'. For example, in ((.)*) we save
3920 registers 1 and 2 as a result of the *, but when we pop
3921 back to the second ), we are at the stop_memory 1.
3922 Thus, nothing is active. */
3923 if (r == 0)
3924 {
3925 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3926 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3927 }
3928 else
3929 highest_active_reg = r;
3930 }
3931
3932 /* If just failed to match something this time around with a
3933 group that's operated on by a repetition operator, try to
9114e279 3934 force exit from the ``loop'', and restore the register
bc78d348
KB
3935 information for this group that we had before trying this
3936 last match. */
3937 if ((!MATCHED_SOMETHING (reg_info[*p])
b391d2bf 3938 || just_past_start_mem == p - 1)
bc78d348
KB
3939 && (p + 2) < pend)
3940 {
3941 boolean is_a_jump_n = false;
3942
3943 p1 = p + 2;
3944 mcnt = 0;
3945 switch ((re_opcode_t) *p1++)
3946 {
3947 case jump_n:
3948 is_a_jump_n = true;
3949 case pop_failure_jump:
3950 case maybe_pop_jump:
3951 case jump:
3952 case dummy_failure_jump:
3953 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3954 if (is_a_jump_n)
3955 p1 += 2;
3956 break;
3957
3958 default:
3959 /* do nothing */ ;
3960 }
3961 p1 += mcnt;
3962
3963 /* If the next operation is a jump backwards in the pattern
3964 to an on_failure_jump right before the start_memory
3965 corresponding to this stop_memory, exit from the loop
3966 by forcing a failure after pushing on the stack the
3967 on_failure_jump's jump in the pattern, and d. */
3968 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3969 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3970 {
3971 /* If this group ever matched anything, then restore
3972 what its registers were before trying this last
3973 failed match, e.g., with `(a*)*b' against `ab' for
3974 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3975 against `aba' for regend[3].
3976
3977 Also restore the registers for inner groups for,
3978 e.g., `((a*)(b*))*' against `aba' (register 3 would
3979 otherwise get trashed). */
3980
3981 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3982 {
3983 unsigned r;
3984
3985 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3986
3987 /* Restore this and inner groups' (if any) registers. */
3988 for (r = *p; r < *p + *(p + 1); r++)
3989 {
3990 regstart[r] = old_regstart[r];
3991
3992 /* xx why this test? */
3993 if ((int) old_regend[r] >= (int) regstart[r])
3994 regend[r] = old_regend[r];
3995 }
3996 }
3997 p1++;
3998 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3999 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4000
4001 goto fail;
4002 }
4003 }
4004
4005 /* Move past the register number and the inner group count. */
4006 p += 2;
4007 break;
4008
4009
4010 /* \<digit> has been turned into a `duplicate' command which is
4011 followed by the numeric value of <digit> as the register number. */
4012 case duplicate:
4013 {
4014 register const char *d2, *dend2;
4015 int regno = *p++; /* Get which register to match against. */
4016 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4017
4018 /* Can't back reference a group which we've never matched. */
4019 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4020 goto fail;
4021
4022 /* Where in input to try to start matching. */
4023 d2 = regstart[regno];
4024
4025 /* Where to stop matching; if both the place to start and
4026 the place to stop matching are in the same string, then
4027 set to the place to stop, otherwise, for now have to use
4028 the end of the first string. */
4029
4030 dend2 = ((FIRST_STRING_P (regstart[regno])
4031 == FIRST_STRING_P (regend[regno]))
4032 ? regend[regno] : end_match_1);
4033 for (;;)
4034 {
4035 /* If necessary, advance to next segment in register
4036 contents. */
4037 while (d2 == dend2)
4038 {
4039 if (dend2 == end_match_2) break;
4040 if (dend2 == regend[regno]) break;
4041
4042 /* End of string1 => advance to string2. */
4043 d2 = string2;
4044 dend2 = regend[regno];
4045 }
4046 /* At end of register contents => success */
4047 if (d2 == dend2) break;
4048
4049 /* If necessary, advance to next segment in data. */
4050 PREFETCH ();
4051
4052 /* How many characters left in this segment to match. */
4053 mcnt = dend - d;
4054
4055 /* Want how many consecutive characters we can match in
4056 one shot, so, if necessary, adjust the count. */
4057 if (mcnt > dend2 - d2)
4058 mcnt = dend2 - d2;
4059
4060 /* Compare that many; failure if mismatch, else move
4061 past them. */
4062 if (translate
4063 ? bcmp_translate (d, d2, mcnt, translate)
4064 : bcmp (d, d2, mcnt))
4065 goto fail;
4066 d += mcnt, d2 += mcnt;
4067 }
4068 }
4069 break;
4070
4071
4072 /* begline matches the empty string at the beginning of the string
4073 (unless `not_bol' is set in `bufp'), and, if
4074 `newline_anchor' is set, after newlines. */
4075 case begline:
4076 DEBUG_PRINT1 ("EXECUTING begline.\n");
4077
9114e279 4078 if (AT_STRINGS_BEG (d))
bc78d348
KB
4079 {
4080 if (!bufp->not_bol) break;
4081 }
4082 else if (d[-1] == '\n' && bufp->newline_anchor)
4083 {
4084 break;
4085 }
4086 /* In all other cases, we fail. */
4087 goto fail;
4088
4089
4090 /* endline is the dual of begline. */
4091 case endline:
4092 DEBUG_PRINT1 ("EXECUTING endline.\n");
4093
9114e279 4094 if (AT_STRINGS_END (d))
bc78d348
KB
4095 {
4096 if (!bufp->not_eol) break;
4097 }
4098
4099 /* We have to ``prefetch'' the next character. */
4100 else if ((d == end1 ? *string2 : *d) == '\n'
4101 && bufp->newline_anchor)
4102 {
4103 break;
4104 }
4105 goto fail;
4106
4107
4108 /* Match at the very beginning of the data. */
4109 case begbuf:
4110 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
9114e279 4111 if (AT_STRINGS_BEG (d))
bc78d348
KB
4112 break;
4113 goto fail;
4114
4115
4116 /* Match at the very end of the data. */
4117 case endbuf:
4118 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
9114e279 4119 if (AT_STRINGS_END (d))
bc78d348
KB
4120 break;
4121 goto fail;
4122
4123
4124 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4125 pushes NULL as the value for the string on the stack. Then
4126 `pop_failure_point' will keep the current value for the
4127 string, instead of restoring it. To see why, consider
4128 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4129 then the . fails against the \n. But the next thing we want
4130 to do is match the \n against the \n; if we restored the
4131 string value, we would be back at the foo.
4132
4133 Because this is used only in specific cases, we don't need to
4134 check all the things that `on_failure_jump' does, to make
4135 sure the right things get saved on the stack. Hence we don't
4136 share its code. The only reason to push anything on the
4137 stack at all is that otherwise we would have to change
4138 `anychar's code to do something besides goto fail in this
4139 case; that seems worse than this. */
4140 case on_failure_keep_string_jump:
4141 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4142
4143 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4144 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4145
4146 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4147 break;
4148
4149
4150 /* Uses of on_failure_jump:
4151
4152 Each alternative starts with an on_failure_jump that points
4153 to the beginning of the next alternative. Each alternative
4154 except the last ends with a jump that in effect jumps past
4155 the rest of the alternatives. (They really jump to the
4156 ending jump of the following alternative, because tensioning
4157 these jumps is a hassle.)
4158
4159 Repeats start with an on_failure_jump that points past both
4160 the repetition text and either the following jump or
4161 pop_failure_jump back to this on_failure_jump. */
4162 case on_failure_jump:
4163 on_failure:
4164 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4165
4166 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4167 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4168
4169 /* If this on_failure_jump comes right before a group (i.e.,
4170 the original * applied to a group), save the information
4171 for that group and all inner ones, so that if we fail back
4172 to this point, the group's information will be correct.
9114e279 4173 For example, in \(a*\)*\1, we need the preceding group,
bc78d348
KB
4174 and in \(\(a*\)b*\)\2, we need the inner group. */
4175
4176 /* We can't use `p' to check ahead because we push
4177 a failure point to `p + mcnt' after we do this. */
4178 p1 = p;
4179
4180 /* We need to skip no_op's before we look for the
4181 start_memory in case this on_failure_jump is happening as
4182 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4183 against aba. */
4184 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4185 p1++;
4186
4187 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4188 {
4189 /* We have a new highest active register now. This will
4190 get reset at the start_memory we are about to get to,
4191 but we will have saved all the registers relevant to
4192 this repetition op, as described above. */
4193 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4194 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4195 lowest_active_reg = *(p1 + 1);
4196 }
4197
4198 DEBUG_PRINT1 (":\n");
4199 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4200 break;
4201
4202
9114e279
KB
4203 /* A smart repeat ends with `maybe_pop_jump'.
4204 We change it to either `pop_failure_jump' or `jump'. */
bc78d348
KB
4205 case maybe_pop_jump:
4206 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4207 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4208 {
4209 register unsigned char *p2 = p;
4210
4211 /* Compare the beginning of the repeat with what in the
4212 pattern follows its end. If we can establish that there
4213 is nothing that they would both match, i.e., that we
4214 would have to backtrack because of (as in, e.g., `a*a')
4215 then we can change to pop_failure_jump, because we'll
4216 never have to backtrack.
4217
4218 This is not true in the case of alternatives: in
4219 `(a|ab)*' we do need to backtrack to the `ab' alternative
4220 (e.g., if the string was `ab'). But instead of trying to
4221 detect that here, the alternative has put on a dummy
4222 failure point which is what we will end up popping. */
4223
4f9d3ad8
RS
4224 /* Skip over open/close-group commands.
4225 If what follows this loop is a ...+ construct,
4226 look at what begins its body, since we will have to
4227 match at least one of that. */
4228 while (1)
4229 {
4230 if (p2 + 2 < pend
4231 && ((re_opcode_t) *p2 == stop_memory
4232 || (re_opcode_t) *p2 == start_memory))
4233 p2 += 3;
4234 else if (p2 + 6 < pend
4235 && (re_opcode_t) *p2 == dummy_failure_jump)
4236 p2 += 6;
4237 else
4238 break;
4239 }
4240
4241 p1 = p + mcnt;
4242 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4243 to the `maybe_finalize_jump' of this case. Examine what
4244 follows. */
bc78d348
KB
4245
4246 /* If we're at the end of the pattern, we can change. */
4247 if (p2 == pend)
71715da9
JB
4248 {
4249 /* Consider what happens when matching ":\(.*\)"
4250 against ":/". I don't really understand this code
4251 yet. */
bc78d348 4252 p[-3] = (unsigned char) pop_failure_jump;
71715da9
JB
4253 DEBUG_PRINT1
4254 (" End of pattern: change to `pop_failure_jump'.\n");
bc78d348
KB
4255 }
4256
4257 else if ((re_opcode_t) *p2 == exactn
4258 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4259 {
4260 register unsigned char c
4261 = *p2 == (unsigned char) endline ? '\n' : p2[2];
bc78d348 4262
bc78d348 4263 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
9114e279
KB
4264 {
4265 p[-3] = (unsigned char) pop_failure_jump;
4266 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4267 c, p1[5]);
4268 }
4269
bc78d348
KB
4270 else if ((re_opcode_t) p1[3] == charset
4271 || (re_opcode_t) p1[3] == charset_not)
4272 {
4273 int not = (re_opcode_t) p1[3] == charset_not;
4274
4275 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4276 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4277 not = !not;
4278
4279 /* `not' is equal to 1 if c would match, which means
4280 that we can't change to pop_failure_jump. */
4281 if (!not)
4282 {
4283 p[-3] = (unsigned char) pop_failure_jump;
9114e279 4284 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
bc78d348
KB
4285 }
4286 }
4287 }
4f9d3ad8
RS
4288 else if ((re_opcode_t) *p2 == charset)
4289 {
7babf5f6 4290#ifdef DEBUG
4f9d3ad8
RS
4291 register unsigned char c
4292 = *p2 == (unsigned char) endline ? '\n' : p2[2];
7babf5f6 4293#endif
4f9d3ad8
RS
4294
4295 if ((re_opcode_t) p1[3] == exactn
5330e99c 4296 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4f9d3ad8
RS
4297 && (p2[1 + p1[4] / BYTEWIDTH]
4298 & (1 << (p1[4] % BYTEWIDTH)))))
4299 {
4300 p[-3] = (unsigned char) pop_failure_jump;
4301 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4302 c, p1[5]);
4303 }
4304
4305 else if ((re_opcode_t) p1[3] == charset_not)
4306 {
4307 int idx;
4308 /* We win if the charset_not inside the loop
4309 lists every character listed in the charset after. */
5330e99c 4310 for (idx = 0; idx < (int) p2[1]; idx++)
4f9d3ad8 4311 if (! (p2[2 + idx] == 0
5330e99c 4312 || (idx < (int) p1[4]
4f9d3ad8
RS
4313 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4314 break;
4315
4316 if (idx == p2[1])
4317 {
4318 p[-3] = (unsigned char) pop_failure_jump;
4319 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4320 }
4321 }
4322 else if ((re_opcode_t) p1[3] == charset)
4323 {
4324 int idx;
4325 /* We win if the charset inside the loop
4326 has no overlap with the one after the loop. */
5330e99c
RS
4327 for (idx = 0;
4328 idx < (int) p2[1] && idx < (int) p1[4];
4329 idx++)
4f9d3ad8
RS
4330 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4331 break;
4332
4333 if (idx == p2[1] || idx == p1[4])
4334 {
4335 p[-3] = (unsigned char) pop_failure_jump;
4336 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4337 }
4338 }
4339 }
bc78d348
KB
4340 }
4341 p -= 2; /* Point at relative address again. */
4342 if ((re_opcode_t) p[-1] != pop_failure_jump)
4343 {
4344 p[-1] = (unsigned char) jump;
9114e279 4345 DEBUG_PRINT1 (" Match => jump.\n");
bc78d348
KB
4346 goto unconditional_jump;
4347 }
4348 /* Note fall through. */
4349
4350
4351 /* The end of a simple repeat has a pop_failure_jump back to
4352 its matching on_failure_jump, where the latter will push a
4353 failure point. The pop_failure_jump takes off failure
4354 points put on by this pop_failure_jump's matching
4355 on_failure_jump; we got through the pattern to here from the
4356 matching on_failure_jump, so didn't fail. */
4357 case pop_failure_jump:
4358 {
4359 /* We need to pass separate storage for the lowest and
4360 highest registers, even though we don't care about the
4361 actual values. Otherwise, we will restore only one
4362 register from the stack, since lowest will == highest in
4363 `pop_failure_point'. */
4364 unsigned dummy_low_reg, dummy_high_reg;
4365 unsigned char *pdummy;
4366 const char *sdummy;
4367
4368 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4369 POP_FAILURE_POINT (sdummy, pdummy,
4370 dummy_low_reg, dummy_high_reg,
4371 reg_dummy, reg_dummy, reg_info_dummy);
4372 }
4373 /* Note fall through. */
4374
4375
4376 /* Unconditionally jump (without popping any failure points). */
4377 case jump:
4378 unconditional_jump:
4379 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4380 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4381 p += mcnt; /* Do the jump. */
4382 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4383 break;
4384
4385
4386 /* We need this opcode so we can detect where alternatives end
4387 in `group_match_null_string_p' et al. */
4388 case jump_past_alt:
4389 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4390 goto unconditional_jump;
4391
4392
4393 /* Normally, the on_failure_jump pushes a failure point, which
4394 then gets popped at pop_failure_jump. We will end up at
4395 pop_failure_jump, also, and with a pattern of, say, `a+', we
4396 are skipping over the on_failure_jump, so we have to push
4397 something meaningless for pop_failure_jump to pop. */
4398 case dummy_failure_jump:
4399 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4400 /* It doesn't matter what we push for the string here. What
4401 the code at `fail' tests is the value for the pattern. */
4402 PUSH_FAILURE_POINT (0, 0, -2);
4403 goto unconditional_jump;
4404
4405
4406 /* At the end of an alternative, we need to push a dummy failure
9114e279 4407 point in case we are followed by a `pop_failure_jump', because
bc78d348
KB
4408 we don't want the failure point for the alternative to be
4409 popped. For example, matching `(a|ab)*' against `aab'
4410 requires that we match the `ab' alternative. */
4411 case push_dummy_failure:
4412 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4413 /* See comments just above at `dummy_failure_jump' about the
4414 two zeroes. */
4415 PUSH_FAILURE_POINT (0, 0, -2);
4416 break;
4417
4418 /* Have to succeed matching what follows at least n times.
4419 After that, handle like `on_failure_jump'. */
4420 case succeed_n:
4421 EXTRACT_NUMBER (mcnt, p + 2);
4422 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4423
4424 assert (mcnt >= 0);
4425 /* Originally, this is how many times we HAVE to succeed. */
4426 if (mcnt > 0)
4427 {
4428 mcnt--;
4429 p += 2;
4430 STORE_NUMBER_AND_INCR (p, mcnt);
4431 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4432 }
4433 else if (mcnt == 0)
4434 {
4435 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4436 p[2] = (unsigned char) no_op;
4437 p[3] = (unsigned char) no_op;
4438 goto on_failure;
4439 }
4440 break;
4441
4442 case jump_n:
4443 EXTRACT_NUMBER (mcnt, p + 2);
4444 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4445
4446 /* Originally, this is how many times we CAN jump. */
4447 if (mcnt)
4448 {
4449 mcnt--;
4450 STORE_NUMBER (p + 2, mcnt);
4451 goto unconditional_jump;
4452 }
4453 /* If don't have to jump any more, skip over the rest of command. */
4454 else
4455 p += 4;
4456 break;
4457
4458 case set_number_at:
4459 {
4460 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4461
4462 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4463 p1 = p + mcnt;
4464 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4465 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4466 STORE_NUMBER (p1, mcnt);
4467 break;
4468 }
4469
4470 case wordbound:
4471 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4472 if (AT_WORD_BOUNDARY (d))
4473 break;
4474 goto fail;
4475
4476 case notwordbound:
4477 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4478 if (AT_WORD_BOUNDARY (d))
4479 goto fail;
4480 break;
4481
4482 case wordbeg:
4483 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
9114e279 4484 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
bc78d348
KB
4485 break;
4486 goto fail;
4487
4488 case wordend:
4489 DEBUG_PRINT1 ("EXECUTING wordend.\n");
9114e279
KB
4490 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4491 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
bc78d348
KB
4492 break;
4493 goto fail;
4494
4495#ifdef emacs
bc78d348
KB
4496 case before_dot:
4497 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4498 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4499 goto fail;
4500 break;
4501
4502 case at_dot:
4503 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4504 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4505 goto fail;
4506 break;
4507
4508 case after_dot:
4509 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4510 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4511 goto fail;
4512 break;
5b5bb5e4 4513#if 0 /* not emacs19 */
bc78d348
KB
4514 case at_dot:
4515 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4516 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4517 goto fail;
4518 break;
4519#endif /* not emacs19 */
4520
4521 case syntaxspec:
4522 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4523 mcnt = *p++;
4524 goto matchsyntax;
4525
4526 case wordchar:
9114e279 4527 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
bc78d348
KB
4528 mcnt = (int) Sword;
4529 matchsyntax:
4530 PREFETCH ();
165c6714
KH
4531 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4532 d++;
4533 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4534 goto fail;
bc78d348
KB
4535 SET_REGS_MATCHED ();
4536 break;
4537
4538 case notsyntaxspec:
4539 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4540 mcnt = *p++;
4541 goto matchnotsyntax;
4542
4543 case notwordchar:
9114e279 4544 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
bc78d348 4545 mcnt = (int) Sword;
9114e279 4546 matchnotsyntax:
bc78d348 4547 PREFETCH ();
165c6714
KH
4548 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4549 d++;
4550 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4551 goto fail;
bc78d348
KB
4552 SET_REGS_MATCHED ();
4553 break;
4554
4555#else /* not emacs */
4556 case wordchar:
4557 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4558 PREFETCH ();
9114e279 4559 if (!WORDCHAR_P (d))
bc78d348
KB
4560 goto fail;
4561 SET_REGS_MATCHED ();
9114e279 4562 d++;
bc78d348
KB
4563 break;
4564
4565 case notwordchar:
4566 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4567 PREFETCH ();
9114e279 4568 if (WORDCHAR_P (d))
bc78d348
KB
4569 goto fail;
4570 SET_REGS_MATCHED ();
9114e279 4571 d++;
bc78d348
KB
4572 break;
4573#endif /* not emacs */
4574
4575 default:
4576 abort ();
4577 }
4578 continue; /* Successfully executed one pattern command; keep going. */
4579
4580
4581 /* We goto here if a matching operation fails. */
4582 fail:
4583 if (!FAIL_STACK_EMPTY ())
4584 { /* A restart point is known. Restore to that state. */
4585 DEBUG_PRINT1 ("\nFAIL:\n");
4586 POP_FAILURE_POINT (d, p,
4587 lowest_active_reg, highest_active_reg,
4588 regstart, regend, reg_info);
4589
4590 /* If this failure point is a dummy, try the next one. */
4591 if (!p)
4592 goto fail;
4593
4594 /* If we failed to the end of the pattern, don't examine *p. */
4595 assert (p <= pend);
4596 if (p < pend)
4597 {
4598 boolean is_a_jump_n = false;
4599
4600 /* If failed to a backwards jump that's part of a repetition
4601 loop, need to pop this failure point and use the next one. */
4602 switch ((re_opcode_t) *p)
4603 {
4604 case jump_n:
4605 is_a_jump_n = true;
4606 case maybe_pop_jump:
4607 case pop_failure_jump:
4608 case jump:
4609 p1 = p + 1;
4610 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4611 p1 += mcnt;
4612
4613 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4614 || (!is_a_jump_n
4615 && (re_opcode_t) *p1 == on_failure_jump))
4616 goto fail;
4617 break;
4618 default:
4619 /* do nothing */ ;
4620 }
4621 }
4622
4623 if (d >= string1 && d <= end1)
4624 dend = end_match_1;
4625 }
4626 else
4627 break; /* Matching at this starting point really fails. */
4628 } /* for (;;) */
4629
4630 if (best_regs_set)
4631 goto restore_best_regs;
4632
4633 FREE_VARIABLES ();
4634
4635 return -1; /* Failure to match. */
4636} /* re_match_2 */
4637\f
4638/* Subroutine definitions for re_match_2. */
4639
4640
4641/* We are passed P pointing to a register number after a start_memory.
4642
4643 Return true if the pattern up to the corresponding stop_memory can
4644 match the empty string, and false otherwise.
4645
4646 If we find the matching stop_memory, sets P to point to one past its number.
4647 Otherwise, sets P to an undefined byte less than or equal to END.
4648
4649 We don't handle duplicates properly (yet). */
4650
4651static boolean
4652group_match_null_string_p (p, end, reg_info)
4653 unsigned char **p, *end;
4654 register_info_type *reg_info;
4655{
4656 int mcnt;
4657 /* Point to after the args to the start_memory. */
4658 unsigned char *p1 = *p + 2;
4659
4660 while (p1 < end)
4661 {
4662 /* Skip over opcodes that can match nothing, and return true or
4663 false, as appropriate, when we get to one that can't, or to the
4664 matching stop_memory. */
4665
4666 switch ((re_opcode_t) *p1)
4667 {
4668 /* Could be either a loop or a series of alternatives. */
4669 case on_failure_jump:
4670 p1++;
4671 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4672
4673 /* If the next operation is not a jump backwards in the
4674 pattern. */
4675
4676 if (mcnt >= 0)
4677 {
4678 /* Go through the on_failure_jumps of the alternatives,
4679 seeing if any of the alternatives cannot match nothing.
4680 The last alternative starts with only a jump,
4681 whereas the rest start with on_failure_jump and end
4682 with a jump, e.g., here is the pattern for `a|b|c':
4683
4684 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4685 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4686 /exactn/1/c
4687
4688 So, we have to first go through the first (n-1)
4689 alternatives and then deal with the last one separately. */
4690
4691
4692 /* Deal with the first (n-1) alternatives, which start
4693 with an on_failure_jump (see above) that jumps to right
4694 past a jump_past_alt. */
4695
4696 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4697 {
4698 /* `mcnt' holds how many bytes long the alternative
4699 is, including the ending `jump_past_alt' and
4700 its number. */
4701
4702 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4703 reg_info))
4704 return false;
4705
4706 /* Move to right after this alternative, including the
4707 jump_past_alt. */
4708 p1 += mcnt;
4709
4710 /* Break if it's the beginning of an n-th alternative
4711 that doesn't begin with an on_failure_jump. */
4712 if ((re_opcode_t) *p1 != on_failure_jump)
4713 break;
4714
4715 /* Still have to check that it's not an n-th
4716 alternative that starts with an on_failure_jump. */
4717 p1++;
4718 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4719 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4720 {
4721 /* Get to the beginning of the n-th alternative. */
4722 p1 -= 3;
4723 break;
4724 }
4725 }
4726
4727 /* Deal with the last alternative: go back and get number
4728 of the `jump_past_alt' just before it. `mcnt' contains
4729 the length of the alternative. */
4730 EXTRACT_NUMBER (mcnt, p1 - 2);
4731
4732 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4733 return false;
4734
4735 p1 += mcnt; /* Get past the n-th alternative. */
4736 } /* if mcnt > 0 */
4737 break;
4738
4739
4740 case stop_memory:
4741 assert (p1[1] == **p);
4742 *p = p1 + 2;
4743 return true;
4744
4745
4746 default:
4747 if (!common_op_match_null_string_p (&p1, end, reg_info))
4748 return false;
4749 }
4750 } /* while p1 < end */
4751
4752 return false;
4753} /* group_match_null_string_p */
4754
4755
4756/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4757 It expects P to be the first byte of a single alternative and END one
4758 byte past the last. The alternative can contain groups. */
4759
4760static boolean
4761alt_match_null_string_p (p, end, reg_info)
4762 unsigned char *p, *end;
4763 register_info_type *reg_info;
4764{
4765 int mcnt;
4766 unsigned char *p1 = p;
4767
4768 while (p1 < end)
4769 {
4770 /* Skip over opcodes that can match nothing, and break when we get
4771 to one that can't. */
4772
4773 switch ((re_opcode_t) *p1)
4774 {
4775 /* It's a loop. */
4776 case on_failure_jump:
4777 p1++;
4778 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4779 p1 += mcnt;
4780 break;
4781
4782 default:
4783 if (!common_op_match_null_string_p (&p1, end, reg_info))
4784 return false;
4785 }
4786 } /* while p1 < end */
4787
4788 return true;
4789} /* alt_match_null_string_p */
4790
4791
4792/* Deals with the ops common to group_match_null_string_p and
4793 alt_match_null_string_p.
4794
4795 Sets P to one after the op and its arguments, if any. */
4796
4797static boolean
4798common_op_match_null_string_p (p, end, reg_info)
4799 unsigned char **p, *end;
4800 register_info_type *reg_info;
4801{
4802 int mcnt;
4803 boolean ret;
4804 int reg_no;
4805 unsigned char *p1 = *p;
4806
4807 switch ((re_opcode_t) *p1++)
4808 {
4809 case no_op:
4810 case begline:
4811 case endline:
4812 case begbuf:
4813 case endbuf:
4814 case wordbeg:
4815 case wordend:
4816 case wordbound:
4817 case notwordbound:
4818#ifdef emacs
4819 case before_dot:
4820 case at_dot:
4821 case after_dot:
4822#endif
4823 break;
4824
4825 case start_memory:
4826 reg_no = *p1;
4827 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4828 ret = group_match_null_string_p (&p1, end, reg_info);
4829
4830 /* Have to set this here in case we're checking a group which
4831 contains a group and a back reference to it. */
4832
4833 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4834 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4835
4836 if (!ret)
4837 return false;
4838 break;
4839
4840 /* If this is an optimized succeed_n for zero times, make the jump. */
4841 case jump:
4842 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4843 if (mcnt >= 0)
4844 p1 += mcnt;
4845 else
4846 return false;
4847 break;
4848
4849 case succeed_n:
4850 /* Get to the number of times to succeed. */
4851 p1 += 2;
4852 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4853
4854 if (mcnt == 0)
4855 {
4856 p1 -= 4;
4857 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4858 p1 += mcnt;
4859 }
4860 else
4861 return false;
4862 break;
4863
4864 case duplicate:
4865 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4866 return false;
4867 break;
4868
4869 case set_number_at:
4870 p1 += 4;
4871
4872 default:
4873 /* All other opcodes mean we cannot match the empty string. */
4874 return false;
4875 }
4876
4877 *p = p1;
4878 return true;
4879} /* common_op_match_null_string_p */
4880
4881
4882/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4883 bytes; nonzero otherwise. */
4884
4885static int
4886bcmp_translate (s1, s2, len, translate)
4887 unsigned char *s1, *s2;
4888 register int len;
4889 char *translate;
4890{
4891 register unsigned char *p1 = s1, *p2 = s2;
4892 while (len)
4893 {
4894 if (translate[*p1++] != translate[*p2++]) return 1;
4895 len--;
4896 }
4897 return 0;
4898}
4899\f
4900/* Entry points for GNU code. */
4901
4902/* re_compile_pattern is the GNU regular expression compiler: it
4903 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4904 Returns 0 if the pattern was valid, otherwise an error string.
4905
4906 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4907 are set in BUFP on entry.
4908
4909 We call regex_compile to do the actual compilation. */
4910
4911const char *
4912re_compile_pattern (pattern, length, bufp)
4913 const char *pattern;
4914 int length;
4915 struct re_pattern_buffer *bufp;
4916{
4917 reg_errcode_t ret;
4918
4919 /* GNU code is written to assume at least RE_NREGS registers will be set
4920 (and at least one extra will be -1). */
4921 bufp->regs_allocated = REGS_UNALLOCATED;
4922
4923 /* And GNU code determines whether or not to get register information
4924 by passing null for the REGS argument to re_match, etc., not by
4925 setting no_sub. */
4926 bufp->no_sub = 0;
4927
4928 /* Match anchors at newline. */
4929 bufp->newline_anchor = 1;
4930
4931 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4932
4933 return re_error_msg[(int) ret];
4934}
4935\f
4936/* Entry points compatible with 4.2 BSD regex library. We don't define
4937 them if this is an Emacs or POSIX compilation. */
4938
4939#if !defined (emacs) && !defined (_POSIX_SOURCE)
4940
4941/* BSD has one and only one pattern buffer. */
4942static struct re_pattern_buffer re_comp_buf;
4943
4944char *
4945re_comp (s)
4946 const char *s;
4947{
4948 reg_errcode_t ret;
4949
4950 if (!s)
4951 {
4952 if (!re_comp_buf.buffer)
4953 return "No previous regular expression";
4954 return 0;
4955 }
4956
4957 if (!re_comp_buf.buffer)
4958 {
4959 re_comp_buf.buffer = (unsigned char *) malloc (200);
4960 if (re_comp_buf.buffer == NULL)
4961 return "Memory exhausted";
4962 re_comp_buf.allocated = 200;
4963
4964 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4965 if (re_comp_buf.fastmap == NULL)
4966 return "Memory exhausted";
4967 }
4968
4969 /* Since `re_exec' always passes NULL for the `regs' argument, we
4970 don't need to initialize the pattern buffer fields which affect it. */
4971
4972 /* Match anchors at newlines. */
4973 re_comp_buf.newline_anchor = 1;
4974
4975 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4976
4977 /* Yes, we're discarding `const' here. */
4978 return (char *) re_error_msg[(int) ret];
4979}
4980
4981
4982int
4983re_exec (s)
4984 const char *s;
4985{
4986 const int len = strlen (s);
4987 return
4988 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4989}
4990#endif /* not emacs and not _POSIX_SOURCE */
4991\f
4992/* POSIX.2 functions. Don't define these for Emacs. */
4993
4994#ifndef emacs
4995
4996/* regcomp takes a regular expression as a string and compiles it.
4997
4998 PREG is a regex_t *. We do not expect any fields to be initialized,
4999 since POSIX says we shouldn't. Thus, we set
5000
5001 `buffer' to the compiled pattern;
5002 `used' to the length of the compiled pattern;
5003 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5004 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5005 RE_SYNTAX_POSIX_BASIC;
5006 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5007 `fastmap' and `fastmap_accurate' to zero;
5008 `re_nsub' to the number of subexpressions in PATTERN.
5009
5010 PATTERN is the address of the pattern string.
5011
5012 CFLAGS is a series of bits which affect compilation.
5013
5014 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5015 use POSIX basic syntax.
5016
5017 If REG_NEWLINE is set, then . and [^...] don't match newline.
5018 Also, regexec will try a match beginning after every newline.
5019
5020 If REG_ICASE is set, then we considers upper- and lowercase
5021 versions of letters to be equivalent when matching.
5022
5023 If REG_NOSUB is set, then when PREG is passed to regexec, that
5024 routine will report only success or failure, and nothing about the
5025 registers.
5026
5027 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5028 the return codes and their meanings.) */
5029
5030int
5031regcomp (preg, pattern, cflags)
5032 regex_t *preg;
5033 const char *pattern;
5034 int cflags;
5035{
5036 reg_errcode_t ret;
5037 unsigned syntax
d9088577
DM
5038 = (cflags & REG_EXTENDED) ?
5039 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
bc78d348
KB
5040
5041 /* regex_compile will allocate the space for the compiled pattern. */
5042 preg->buffer = 0;
d9088577 5043 preg->allocated = 0;
8b4cc189 5044 preg->used = 0;
bc78d348
KB
5045
5046 /* Don't bother to use a fastmap when searching. This simplifies the
5047 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5048 characters after newlines into the fastmap. This way, we just try
5049 every character. */
5050 preg->fastmap = 0;
5051
5052 if (cflags & REG_ICASE)
5053 {
5054 unsigned i;
5055
5056 preg->translate = (char *) malloc (CHAR_SET_SIZE);
5057 if (preg->translate == NULL)
5058 return (int) REG_ESPACE;
5059
5060 /* Map uppercase characters to corresponding lowercase ones. */
5061 for (i = 0; i < CHAR_SET_SIZE; i++)
c6b40788 5062 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
bc78d348
KB
5063 }
5064 else
5065 preg->translate = NULL;
5066
5067 /* If REG_NEWLINE is set, newlines are treated differently. */
5068 if (cflags & REG_NEWLINE)
5069 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5070 syntax &= ~RE_DOT_NEWLINE;
5071 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5072 /* It also changes the matching behavior. */
5073 preg->newline_anchor = 1;
5074 }
5075 else
5076 preg->newline_anchor = 0;
5077
5078 preg->no_sub = !!(cflags & REG_NOSUB);
5079
5080 /* POSIX says a null character in the pattern terminates it, so we
5081 can use strlen here in compiling the pattern. */
5082 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5083
5084 /* POSIX doesn't distinguish between an unmatched open-group and an
5085 unmatched close-group: both are REG_EPAREN. */
5086 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5087
5088 return (int) ret;
5089}
5090
5091
5092/* regexec searches for a given pattern, specified by PREG, in the
5093 string STRING.
5094
5095 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5096 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5097 least NMATCH elements, and we set them to the offsets of the
5098 corresponding matched substrings.
5099
5100 EFLAGS specifies `execution flags' which affect matching: if
5101 REG_NOTBOL is set, then ^ does not match at the beginning of the
5102 string; if REG_NOTEOL is set, then $ does not match at the end.
5103
5104 We return 0 if we find a match and REG_NOMATCH if not. */
5105
5106int
5107regexec (preg, string, nmatch, pmatch, eflags)
5108 const regex_t *preg;
5109 const char *string;
5110 size_t nmatch;
5111 regmatch_t pmatch[];
5112 int eflags;
5113{
5114 int ret;
5115 struct re_registers regs;
5116 regex_t private_preg;
5117 int len = strlen (string);
5118 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5119
5120 private_preg = *preg;
5121
5122 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5123 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5124
5125 /* The user has told us exactly how many registers to return
5126 information about, via `nmatch'. We have to pass that on to the
5127 matching routines. */
5128 private_preg.regs_allocated = REGS_FIXED;
5129
5130 if (want_reg_info)
5131 {
5132 regs.num_regs = nmatch;
5133 regs.start = TALLOC (nmatch, regoff_t);
5134 regs.end = TALLOC (nmatch, regoff_t);
5135 if (regs.start == NULL || regs.end == NULL)
5136 return (int) REG_NOMATCH;
5137 }
5138
5139 /* Perform the searching operation. */
5140 ret = re_search (&private_preg, string, len,
5141 /* start: */ 0, /* range: */ len,
5142 want_reg_info ? &regs : (struct re_registers *) 0);
5143
5144 /* Copy the register information to the POSIX structure. */
5145 if (want_reg_info)
5146 {
5147 if (ret >= 0)
5148 {
5149 unsigned r;
5150
5151 for (r = 0; r < nmatch; r++)
5152 {
5153 pmatch[r].rm_so = regs.start[r];
5154 pmatch[r].rm_eo = regs.end[r];
5155 }
5156 }
5157
5158 /* If we needed the temporary register info, free the space now. */
5159 free (regs.start);
5160 free (regs.end);
5161 }
5162
5163 /* We want zero return to mean success, unlike `re_search'. */
5164 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5165}
5166
5167
5168/* Returns a message corresponding to an error code, ERRCODE, returned
9114e279 5169 from either regcomp or regexec. We don't use PREG here. */
bc78d348
KB
5170
5171size_t
5172regerror (errcode, preg, errbuf, errbuf_size)
5173 int errcode;
5174 const regex_t *preg;
5175 char *errbuf;
5176 size_t errbuf_size;
5177{
85586484
JB
5178 const char *msg;
5179 size_t msg_size;
5180
5181 if (errcode < 0
5182 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
5183 /* Only error codes returned by the rest of the code should be passed
5184 to this routine. If we are given anything else, or if other regex
5185 code generates an invalid error code, then the program has a bug.
5186 Dump core so we can fix it. */
5187 abort ();
5188
5745b086
JB
5189 msg = re_error_msg[errcode];
5190
5191 /* POSIX doesn't require that we do anything in this case, but why
5192 not be nice. */
5193 if (! msg)
5194 msg = "Success";
5195
85586484 5196 msg_size = strlen (msg) + 1; /* Includes the null. */
bc78d348
KB
5197
5198 if (errbuf_size != 0)
5199 {
5200 if (msg_size > errbuf_size)
5201 {
5202 strncpy (errbuf, msg, errbuf_size - 1);
5203 errbuf[errbuf_size - 1] = 0;
5204 }
5205 else
5206 strcpy (errbuf, msg);
5207 }
5208
5209 return msg_size;
5210}
5211
5212
5213/* Free dynamically allocated space used by PREG. */
5214
5215void
5216regfree (preg)
5217 regex_t *preg;
5218{
5219 if (preg->buffer != NULL)
5220 free (preg->buffer);
5221 preg->buffer = NULL;
5222
5223 preg->allocated = 0;
5224 preg->used = 0;
5225
5226 if (preg->fastmap != NULL)
5227 free (preg->fastmap);
5228 preg->fastmap = NULL;
5229 preg->fastmap_accurate = 0;
5230
5231 if (preg->translate != NULL)
5232 free (preg->translate);
5233 preg->translate = NULL;
5234}
5235
5236#endif /* not emacs */
5237\f
5238/*
5239Local variables:
5240make-backup-files: t
5241version-control: t
5242trim-versions-without-asking: nil
5243End:
5244*/