(get_lim_data): Handle NO_LIM_DATA.
[bpt/emacs.git] / src / regex.c
CommitLineData
bc78d348 1/* Extended regular expression matching and search library,
8b20806d 2 version 0.12.
bc78d348
KB
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
85586484 6 Copyright (C) 1993 Free Software Foundation, Inc.
bc78d348
KB
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
27#define _GNU_SOURCE
28
2f4e547f 29#ifdef HAVE_CONFIG_H
972a693a 30#if defined (emacs) || defined (CONFIG_BROKETS)
2f4e547f
JM
31/* We use <config.h> instead of "config.h" so that a compilation
32 using -I. -I$srcdir will use ./config.h rather than $srcdir/config.h
33 (which it would do because it found this file in $srcdir). */
34#include <config.h>
35#else
36#include "config.h"
37#endif
38#endif
39
bc78d348
KB
40/* We need this for `regex.h', and perhaps for the Emacs include files. */
41#include <sys/types.h>
42
43/* The `emacs' switch turns on certain matching commands
44 that make sense only in Emacs. */
45#ifdef emacs
46
bc78d348
KB
47#include "lisp.h"
48#include "buffer.h"
49#include "syntax.h"
50
51/* Emacs uses `NULL' as a predicate. */
52#undef NULL
53
54#else /* not emacs */
55
74da5007
JB
56#ifdef STDC_HEADERS
57#include <stdlib.h>
58#else
59char *malloc ();
60char *realloc ();
61#endif
62
63
bc78d348
KB
64/* We used to test for `BSTRING' here, but only GCC and Emacs define
65 `BSTRING', as far as I know, and neither of them use this code. */
18ec5b05 66#if HAVE_STRING_H || STDC_HEADERS
bc78d348 67#include <string.h>
9114e279 68#ifndef bcmp
bc78d348 69#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
9114e279
KB
70#endif
71#ifndef bcopy
bc78d348 72#define bcopy(s, d, n) memcpy ((d), (s), (n))
9114e279
KB
73#endif
74#ifndef bzero
bc78d348 75#define bzero(s, n) memset ((s), 0, (n))
9114e279 76#endif
bc78d348
KB
77#else
78#include <strings.h>
79#endif
80
bc78d348
KB
81/* Define the syntax stuff for \<, \>, etc. */
82
83/* This must be nonzero for the wordchar and notwordchar pattern
84 commands in re_match_2. */
85#ifndef Sword
86#define Sword 1
87#endif
88
89#ifdef SYNTAX_TABLE
90
91extern char *re_syntax_table;
92
93#else /* not SYNTAX_TABLE */
94
95/* How many characters in the character set. */
96#define CHAR_SET_SIZE 256
97
98static char re_syntax_table[CHAR_SET_SIZE];
99
100static void
101init_syntax_once ()
102{
103 register int c;
104 static int done = 0;
105
106 if (done)
107 return;
108
109 bzero (re_syntax_table, sizeof re_syntax_table);
110
111 for (c = 'a'; c <= 'z'; c++)
112 re_syntax_table[c] = Sword;
113
114 for (c = 'A'; c <= 'Z'; c++)
115 re_syntax_table[c] = Sword;
116
117 for (c = '0'; c <= '9'; c++)
118 re_syntax_table[c] = Sword;
119
120 re_syntax_table['_'] = Sword;
121
122 done = 1;
123}
124
125#endif /* not SYNTAX_TABLE */
126
127#define SYNTAX(c) re_syntax_table[c]
128
129#endif /* not emacs */
130\f
131/* Get the interface, including the syntax bits. */
132#include "regex.h"
133
bc78d348
KB
134/* isalpha etc. are used for the character classes. */
135#include <ctype.h>
c6b40788 136
a1dd004b
JB
137/* Jim Meyering writes:
138
139 "... Some ctype macros are valid only for character codes that
140 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
141 using /bin/cc or gcc but without giving an ansi option). So, all
142 ctype uses should be through macros like ISPRINT... If
143 STDC_HEADERS is defined, then autoconf has verified that the ctype
144 macros don't need to be guarded with references to isascii. ...
145 Defining isascii to 1 should let any compiler worth its salt
146 eliminate the && through constant folding." */
6b528f2f
KH
147
148#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
149#define ISASCII(c) 1
150#else
151#define ISASCII(c) isascii(c)
bc78d348 152#endif
c6b40788
JM
153
154#ifdef isblank
6b528f2f 155#define ISBLANK(c) (ISASCII (c) && isblank (c))
c6b40788
JM
156#else
157#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
bc78d348 158#endif
c6b40788 159#ifdef isgraph
6b528f2f 160#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
c6b40788 161#else
6b528f2f 162#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
c6b40788
JM
163#endif
164
6b528f2f
KH
165#define ISPRINT(c) (ISASCII (c) && isprint (c))
166#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
167#define ISALNUM(c) (ISASCII (c) && isalnum (c))
168#define ISALPHA(c) (ISASCII (c) && isalpha (c))
169#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
170#define ISLOWER(c) (ISASCII (c) && islower (c))
171#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
172#define ISSPACE(c) (ISASCII (c) && isspace (c))
173#define ISUPPER(c) (ISASCII (c) && isupper (c))
174#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
bc78d348
KB
175
176#ifndef NULL
177#define NULL 0
178#endif
179
180/* We remove any previous definition of `SIGN_EXTEND_CHAR',
181 since ours (we hope) works properly with all combinations of
182 machines, compilers, `char' and `unsigned char' argument types.
183 (Per Bothner suggested the basic approach.) */
184#undef SIGN_EXTEND_CHAR
185#if __STDC__
186#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
9114e279 187#else /* not __STDC__ */
bc78d348
KB
188/* As in Harbison and Steele. */
189#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
190#endif
191\f
192/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
193 use `alloca' instead of `malloc'. This is because using malloc in
194 re_search* or re_match* could cause memory leaks when C-g is used in
195 Emacs; also, malloc is slower and causes storage fragmentation. On
196 the other hand, malloc is more portable, and easier to debug.
197
198 Because we sometimes use alloca, some routines have to be macros,
199 not functions -- `alloca'-allocated space disappears at the end of the
200 function it is called in. */
201
202#ifdef REGEX_MALLOC
203
204#define REGEX_ALLOCATE malloc
205#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
206
207#else /* not REGEX_MALLOC */
208
209/* Emacs already defines alloca, sometimes. */
210#ifndef alloca
211
212/* Make alloca work the best possible way. */
213#ifdef __GNUC__
214#define alloca __builtin_alloca
215#else /* not __GNUC__ */
216#if HAVE_ALLOCA_H
217#include <alloca.h>
218#else /* not __GNUC__ or HAVE_ALLOCA_H */
219#ifndef _AIX /* Already did AIX, up at the top. */
220char *alloca ();
221#endif /* not _AIX */
222#endif /* not HAVE_ALLOCA_H */
223#endif /* not __GNUC__ */
224
225#endif /* not alloca */
226
227#define REGEX_ALLOCATE alloca
228
229/* Assumes a `char *destination' variable. */
230#define REGEX_REALLOCATE(source, osize, nsize) \
231 (destination = (char *) alloca (nsize), \
232 bcopy (source, destination, osize), \
233 destination)
234
235#endif /* not REGEX_MALLOC */
236
237
238/* True if `size1' is non-NULL and PTR is pointing anywhere inside
239 `string1' or just past its end. This works if PTR is NULL, which is
240 a good thing. */
241#define FIRST_STRING_P(ptr) \
242 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
243
244/* (Re)Allocate N items of type T using malloc, or fail. */
245#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
246#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
e959bada
JB
247#define RETALLOC_IF(addr, n, t) \
248 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
bc78d348
KB
249#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
250
251#define BYTEWIDTH 8 /* In bits. */
252
253#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
254
63268f76
KH
255#undef MAX
256#undef MIN
bc78d348
KB
257#define MAX(a, b) ((a) > (b) ? (a) : (b))
258#define MIN(a, b) ((a) < (b) ? (a) : (b))
259
260typedef char boolean;
261#define false 0
262#define true 1
f765858e
KH
263
264static int re_match_2_internal ();
bc78d348
KB
265\f
266/* These are the command codes that appear in compiled regular
267 expressions. Some opcodes are followed by argument bytes. A
268 command code can specify any interpretation whatsoever for its
269 arguments. Zero bytes may appear in the compiled regular expression.
270
271 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
272 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
273 `exactn' we use here must also be 1. */
274
275typedef enum
276{
277 no_op = 0,
278
279 /* Followed by one byte giving n, then by n literal bytes. */
280 exactn = 1,
281
282 /* Matches any (more or less) character. */
283 anychar,
284
285 /* Matches any one char belonging to specified set. First
286 following byte is number of bitmap bytes. Then come bytes
287 for a bitmap saying which chars are in. Bits in each byte
288 are ordered low-bit-first. A character is in the set if its
289 bit is 1. A character too large to have a bit in the map is
290 automatically not in the set. */
291 charset,
292
293 /* Same parameters as charset, but match any character that is
294 not one of those specified. */
295 charset_not,
296
297 /* Start remembering the text that is matched, for storing in a
298 register. Followed by one byte with the register number, in
299 the range 0 to one less than the pattern buffer's re_nsub
300 field. Then followed by one byte with the number of groups
301 inner to this one. (This last has to be part of the
302 start_memory only because we need it in the on_failure_jump
303 of re_match_2.) */
304 start_memory,
305
306 /* Stop remembering the text that is matched and store it in a
307 memory register. Followed by one byte with the register
308 number, in the range 0 to one less than `re_nsub' in the
309 pattern buffer, and one byte with the number of inner groups,
310 just like `start_memory'. (We need the number of inner
311 groups here because we don't have any easy way of finding the
312 corresponding start_memory when we're at a stop_memory.) */
313 stop_memory,
314
315 /* Match a duplicate of something remembered. Followed by one
316 byte containing the register number. */
317 duplicate,
318
319 /* Fail unless at beginning of line. */
320 begline,
321
322 /* Fail unless at end of line. */
323 endline,
324
325 /* Succeeds if at beginning of buffer (if emacs) or at beginning
326 of string to be matched (if not). */
327 begbuf,
328
329 /* Analogously, for end of buffer/string. */
330 endbuf,
331
332 /* Followed by two byte relative address to which to jump. */
333 jump,
334
335 /* Same as jump, but marks the end of an alternative. */
336 jump_past_alt,
337
338 /* Followed by two-byte relative address of place to resume at
339 in case of failure. */
340 on_failure_jump,
341
342 /* Like on_failure_jump, but pushes a placeholder instead of the
343 current string position when executed. */
344 on_failure_keep_string_jump,
345
346 /* Throw away latest failure point and then jump to following
347 two-byte relative address. */
348 pop_failure_jump,
349
350 /* Change to pop_failure_jump if know won't have to backtrack to
351 match; otherwise change to jump. This is used to jump
352 back to the beginning of a repeat. If what follows this jump
353 clearly won't match what the repeat does, such that we can be
354 sure that there is no use backtracking out of repetitions
355 already matched, then we change it to a pop_failure_jump.
356 Followed by two-byte address. */
357 maybe_pop_jump,
358
359 /* Jump to following two-byte address, and push a dummy failure
360 point. This failure point will be thrown away if an attempt
361 is made to use it for a failure. A `+' construct makes this
362 before the first repeat. Also used as an intermediary kind
363 of jump when compiling an alternative. */
364 dummy_failure_jump,
365
366 /* Push a dummy failure point and continue. Used at the end of
367 alternatives. */
368 push_dummy_failure,
369
370 /* Followed by two-byte relative address and two-byte number n.
371 After matching N times, jump to the address upon failure. */
372 succeed_n,
373
374 /* Followed by two-byte relative address, and two-byte number n.
375 Jump to the address N times, then fail. */
376 jump_n,
377
378 /* Set the following two-byte relative address to the
379 subsequent two-byte number. The address *includes* the two
380 bytes of number. */
381 set_number_at,
382
383 wordchar, /* Matches any word-constituent character. */
384 notwordchar, /* Matches any char that is not a word-constituent. */
385
386 wordbeg, /* Succeeds if at word beginning. */
387 wordend, /* Succeeds if at word end. */
388
389 wordbound, /* Succeeds if at a word boundary. */
390 notwordbound /* Succeeds if not at a word boundary. */
391
392#ifdef emacs
393 ,before_dot, /* Succeeds if before point. */
394 at_dot, /* Succeeds if at point. */
395 after_dot, /* Succeeds if after point. */
396
397 /* Matches any character whose syntax is specified. Followed by
398 a byte which contains a syntax code, e.g., Sword. */
399 syntaxspec,
400
401 /* Matches any character whose syntax is not that specified. */
402 notsyntaxspec
403#endif /* emacs */
404} re_opcode_t;
405\f
406/* Common operations on the compiled pattern. */
407
408/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
409
410#define STORE_NUMBER(destination, number) \
411 do { \
412 (destination)[0] = (number) & 0377; \
413 (destination)[1] = (number) >> 8; \
414 } while (0)
415
416/* Same as STORE_NUMBER, except increment DESTINATION to
417 the byte after where the number is stored. Therefore, DESTINATION
418 must be an lvalue. */
419
420#define STORE_NUMBER_AND_INCR(destination, number) \
421 do { \
422 STORE_NUMBER (destination, number); \
423 (destination) += 2; \
424 } while (0)
425
426/* Put into DESTINATION a number stored in two contiguous bytes starting
427 at SOURCE. */
428
429#define EXTRACT_NUMBER(destination, source) \
430 do { \
431 (destination) = *(source) & 0377; \
432 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
433 } while (0)
434
435#ifdef DEBUG
436static void
437extract_number (dest, source)
438 int *dest;
439 unsigned char *source;
440{
441 int temp = SIGN_EXTEND_CHAR (*(source + 1));
442 *dest = *source & 0377;
443 *dest += temp << 8;
444}
445
446#ifndef EXTRACT_MACROS /* To debug the macros. */
447#undef EXTRACT_NUMBER
448#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
449#endif /* not EXTRACT_MACROS */
450
451#endif /* DEBUG */
452
453/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
454 SOURCE must be an lvalue. */
455
456#define EXTRACT_NUMBER_AND_INCR(destination, source) \
457 do { \
458 EXTRACT_NUMBER (destination, source); \
459 (source) += 2; \
460 } while (0)
461
462#ifdef DEBUG
463static void
464extract_number_and_incr (destination, source)
465 int *destination;
466 unsigned char **source;
467{
468 extract_number (destination, *source);
469 *source += 2;
470}
471
472#ifndef EXTRACT_MACROS
473#undef EXTRACT_NUMBER_AND_INCR
474#define EXTRACT_NUMBER_AND_INCR(dest, src) \
475 extract_number_and_incr (&dest, &src)
476#endif /* not EXTRACT_MACROS */
477
478#endif /* DEBUG */
479\f
480/* If DEBUG is defined, Regex prints many voluminous messages about what
481 it is doing (if the variable `debug' is nonzero). If linked with the
482 main program in `iregex.c', you can enter patterns and strings
483 interactively. And if linked with the main program in `main.c' and
484 the other test files, you can run the already-written tests. */
485
486#ifdef DEBUG
487
488/* We use standard I/O for debugging. */
489#include <stdio.h>
490
491/* It is useful to test things that ``must'' be true when debugging. */
492#include <assert.h>
493
494static int debug = 0;
495
496#define DEBUG_STATEMENT(e) e
497#define DEBUG_PRINT1(x) if (debug) printf (x)
498#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
499#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
9114e279 500#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
bc78d348
KB
501#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
502 if (debug) print_partial_compiled_pattern (s, e)
503#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
504 if (debug) print_double_string (w, s1, sz1, s2, sz2)
505
506
507extern void printchar ();
508
509/* Print the fastmap in human-readable form. */
510
511void
512print_fastmap (fastmap)
513 char *fastmap;
514{
515 unsigned was_a_range = 0;
516 unsigned i = 0;
517
518 while (i < (1 << BYTEWIDTH))
519 {
520 if (fastmap[i++])
521 {
522 was_a_range = 0;
523 printchar (i - 1);
524 while (i < (1 << BYTEWIDTH) && fastmap[i])
525 {
526 was_a_range = 1;
527 i++;
528 }
529 if (was_a_range)
530 {
531 printf ("-");
532 printchar (i - 1);
533 }
534 }
535 }
536 putchar ('\n');
537}
538
539
540/* Print a compiled pattern string in human-readable form, starting at
541 the START pointer into it and ending just before the pointer END. */
542
543void
544print_partial_compiled_pattern (start, end)
545 unsigned char *start;
546 unsigned char *end;
547{
548 int mcnt, mcnt2;
549 unsigned char *p = start;
550 unsigned char *pend = end;
551
552 if (start == NULL)
553 {
554 printf ("(null)\n");
555 return;
556 }
557
558 /* Loop over pattern commands. */
559 while (p < pend)
560 {
b0bef8c5
JB
561 printf ("%d:\t", p - start);
562
bc78d348
KB
563 switch ((re_opcode_t) *p++)
564 {
565 case no_op:
566 printf ("/no_op");
567 break;
568
569 case exactn:
570 mcnt = *p++;
571 printf ("/exactn/%d", mcnt);
572 do
573 {
574 putchar ('/');
575 printchar (*p++);
576 }
577 while (--mcnt);
578 break;
579
580 case start_memory:
581 mcnt = *p++;
582 printf ("/start_memory/%d/%d", mcnt, *p++);
583 break;
584
585 case stop_memory:
586 mcnt = *p++;
587 printf ("/stop_memory/%d/%d", mcnt, *p++);
588 break;
589
590 case duplicate:
591 printf ("/duplicate/%d", *p++);
592 break;
593
594 case anychar:
595 printf ("/anychar");
596 break;
597
598 case charset:
599 case charset_not:
600 {
b0bef8c5
JB
601 register int c, last = -100;
602 register int in_range = 0;
bc78d348 603
b0bef8c5
JB
604 printf ("/charset [%s",
605 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
bc78d348
KB
606
607 assert (p + *p < pend);
608
b0bef8c5
JB
609 for (c = 0; c < 256; c++)
610 if (c / 8 < *p
611 && (p[1 + (c/8)] & (1 << (c % 8))))
612 {
613 /* Are we starting a range? */
614 if (last + 1 == c && ! in_range)
615 {
616 putchar ('-');
617 in_range = 1;
618 }
619 /* Have we broken a range? */
620 else if (last + 1 != c && in_range)
bc78d348 621 {
b0bef8c5
JB
622 printchar (last);
623 in_range = 0;
624 }
bc78d348 625
b0bef8c5
JB
626 if (! in_range)
627 printchar (c);
bc78d348 628
b0bef8c5 629 last = c;
bc78d348 630 }
b0bef8c5
JB
631
632 if (in_range)
633 printchar (last);
634
635 putchar (']');
636
bc78d348 637 p += 1 + *p;
bc78d348 638 }
b0bef8c5 639 break;
bc78d348
KB
640
641 case begline:
642 printf ("/begline");
643 break;
644
645 case endline:
646 printf ("/endline");
647 break;
648
649 case on_failure_jump:
650 extract_number_and_incr (&mcnt, &p);
b0bef8c5 651 printf ("/on_failure_jump to %d", p + mcnt - start);
bc78d348
KB
652 break;
653
654 case on_failure_keep_string_jump:
655 extract_number_and_incr (&mcnt, &p);
b0bef8c5 656 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
bc78d348
KB
657 break;
658
659 case dummy_failure_jump:
660 extract_number_and_incr (&mcnt, &p);
b0bef8c5 661 printf ("/dummy_failure_jump to %d", p + mcnt - start);
bc78d348
KB
662 break;
663
664 case push_dummy_failure:
665 printf ("/push_dummy_failure");
666 break;
667
668 case maybe_pop_jump:
669 extract_number_and_incr (&mcnt, &p);
b0bef8c5 670 printf ("/maybe_pop_jump to %d", p + mcnt - start);
bc78d348
KB
671 break;
672
673 case pop_failure_jump:
674 extract_number_and_incr (&mcnt, &p);
b0bef8c5 675 printf ("/pop_failure_jump to %d", p + mcnt - start);
bc78d348
KB
676 break;
677
678 case jump_past_alt:
679 extract_number_and_incr (&mcnt, &p);
b0bef8c5 680 printf ("/jump_past_alt to %d", p + mcnt - start);
bc78d348
KB
681 break;
682
683 case jump:
684 extract_number_and_incr (&mcnt, &p);
b0bef8c5 685 printf ("/jump to %d", p + mcnt - start);
bc78d348
KB
686 break;
687
688 case succeed_n:
689 extract_number_and_incr (&mcnt, &p);
690 extract_number_and_incr (&mcnt2, &p);
b0bef8c5 691 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
bc78d348
KB
692 break;
693
694 case jump_n:
695 extract_number_and_incr (&mcnt, &p);
696 extract_number_and_incr (&mcnt2, &p);
b0bef8c5 697 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
bc78d348
KB
698 break;
699
700 case set_number_at:
701 extract_number_and_incr (&mcnt, &p);
702 extract_number_and_incr (&mcnt2, &p);
b0bef8c5 703 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
bc78d348
KB
704 break;
705
706 case wordbound:
707 printf ("/wordbound");
708 break;
709
710 case notwordbound:
711 printf ("/notwordbound");
712 break;
713
714 case wordbeg:
715 printf ("/wordbeg");
716 break;
717
718 case wordend:
719 printf ("/wordend");
720
721#ifdef emacs
722 case before_dot:
723 printf ("/before_dot");
724 break;
725
726 case at_dot:
727 printf ("/at_dot");
728 break;
729
730 case after_dot:
731 printf ("/after_dot");
732 break;
733
734 case syntaxspec:
735 printf ("/syntaxspec");
736 mcnt = *p++;
737 printf ("/%d", mcnt);
738 break;
739
740 case notsyntaxspec:
741 printf ("/notsyntaxspec");
742 mcnt = *p++;
743 printf ("/%d", mcnt);
744 break;
745#endif /* emacs */
746
747 case wordchar:
748 printf ("/wordchar");
749 break;
750
751 case notwordchar:
752 printf ("/notwordchar");
753 break;
754
755 case begbuf:
756 printf ("/begbuf");
757 break;
758
759 case endbuf:
760 printf ("/endbuf");
761 break;
762
763 default:
764 printf ("?%d", *(p-1));
765 }
b0bef8c5
JB
766
767 putchar ('\n');
bc78d348 768 }
b0bef8c5
JB
769
770 printf ("%d:\tend of pattern.\n", p - start);
bc78d348
KB
771}
772
773
774void
775print_compiled_pattern (bufp)
776 struct re_pattern_buffer *bufp;
777{
778 unsigned char *buffer = bufp->buffer;
779
780 print_partial_compiled_pattern (buffer, buffer + bufp->used);
781 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
782
783 if (bufp->fastmap_accurate && bufp->fastmap)
784 {
785 printf ("fastmap: ");
786 print_fastmap (bufp->fastmap);
787 }
788
789 printf ("re_nsub: %d\t", bufp->re_nsub);
790 printf ("regs_alloc: %d\t", bufp->regs_allocated);
791 printf ("can_be_null: %d\t", bufp->can_be_null);
792 printf ("newline_anchor: %d\n", bufp->newline_anchor);
793 printf ("no_sub: %d\t", bufp->no_sub);
794 printf ("not_bol: %d\t", bufp->not_bol);
795 printf ("not_eol: %d\t", bufp->not_eol);
796 printf ("syntax: %d\n", bufp->syntax);
797 /* Perhaps we should print the translate table? */
798}
799
800
801void
802print_double_string (where, string1, size1, string2, size2)
803 const char *where;
804 const char *string1;
805 const char *string2;
806 int size1;
807 int size2;
808{
809 unsigned this_char;
810
811 if (where == NULL)
812 printf ("(null)");
813 else
814 {
815 if (FIRST_STRING_P (where))
816 {
817 for (this_char = where - string1; this_char < size1; this_char++)
818 printchar (string1[this_char]);
819
820 where = string2;
821 }
822
823 for (this_char = where - string2; this_char < size2; this_char++)
824 printchar (string2[this_char]);
825 }
826}
827
828#else /* not DEBUG */
829
830#undef assert
831#define assert(e)
832
833#define DEBUG_STATEMENT(e)
834#define DEBUG_PRINT1(x)
835#define DEBUG_PRINT2(x1, x2)
836#define DEBUG_PRINT3(x1, x2, x3)
9114e279 837#define DEBUG_PRINT4(x1, x2, x3, x4)
bc78d348
KB
838#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
839#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
840
841#endif /* not DEBUG */
842\f
843/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
844 also be assigned to arbitrarily: each pattern buffer stores its own
845 syntax, so it can be changed between regex compilations. */
846reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
847
848
849/* Specify the precise syntax of regexps for compilation. This provides
850 for compatibility for various utilities which historically have
851 different, incompatible syntaxes.
852
853 The argument SYNTAX is a bit mask comprised of the various bits
854 defined in regex.h. We return the old syntax. */
855
856reg_syntax_t
857re_set_syntax (syntax)
858 reg_syntax_t syntax;
859{
860 reg_syntax_t ret = re_syntax_options;
861
862 re_syntax_options = syntax;
863 return ret;
864}
865\f
866/* This table gives an error message for each of the error codes listed
867 in regex.h. Obviously the order here has to be same as there. */
868
869static const char *re_error_msg[] =
870 { NULL, /* REG_NOERROR */
871 "No match", /* REG_NOMATCH */
872 "Invalid regular expression", /* REG_BADPAT */
873 "Invalid collation character", /* REG_ECOLLATE */
874 "Invalid character class name", /* REG_ECTYPE */
875 "Trailing backslash", /* REG_EESCAPE */
876 "Invalid back reference", /* REG_ESUBREG */
877 "Unmatched [ or [^", /* REG_EBRACK */
878 "Unmatched ( or \\(", /* REG_EPAREN */
879 "Unmatched \\{", /* REG_EBRACE */
880 "Invalid content of \\{\\}", /* REG_BADBR */
881 "Invalid range end", /* REG_ERANGE */
882 "Memory exhausted", /* REG_ESPACE */
883 "Invalid preceding regular expression", /* REG_BADRPT */
884 "Premature end of regular expression", /* REG_EEND */
885 "Regular expression too big", /* REG_ESIZE */
886 "Unmatched ) or \\)", /* REG_ERPAREN */
887 };
888\f
e959bada
JB
889/* Avoiding alloca during matching, to placate r_alloc. */
890
a822d92f 891/* Define MATCH_MAY_ALLOCATE if we need to make sure that the
e959bada
JB
892 searching and matching functions should not call alloca. On some
893 systems, alloca is implemented in terms of malloc, and if we're
894 using the relocating allocator routines, then malloc could cause a
895 relocation, which might (if the strings being searched are in the
896 ralloc heap) shift the data out from underneath the regexp
85be3101
JB
897 routines.
898
899 Here's another reason to avoid allocation: Emacs insists on
900 processing input from X in a signal handler; processing X input may
901 call malloc; if input arrives while a matching routine is calling
902 malloc, then we're scrod. But Emacs can't just block input while
903 calling matching routines; then we don't notice interrupts when
904 they come in. So, Emacs blocks input around all regexp calls
905 except the matching calls, which it leaves unprotected, in the
906 faith that they will not malloc. */
a822d92f
JB
907
908/* Normally, this is fine. */
909#define MATCH_MAY_ALLOCATE
910
911/* But under some circumstances, it's not. */
85be3101 912#if defined (emacs) || (defined (REL_ALLOC) && defined (C_ALLOCA))
a822d92f 913#undef MATCH_MAY_ALLOCATE
e959bada 914#endif
bc78d348 915
e959bada
JB
916\f
917/* Failure stack declarations and macros; both re_compile_fastmap and
918 re_match_2 use a failure stack. These have to be macros because of
919 REGEX_ALLOCATE. */
920
bc78d348 921
e959bada
JB
922/* Number of failure points for which to initially allocate space
923 when matching. If this number is exceeded, we allocate more
924 space, so it is not a hard limit. */
925#ifndef INIT_FAILURE_ALLOC
926#define INIT_FAILURE_ALLOC 5
927#endif
bc78d348 928
e959bada
JB
929/* Roughly the maximum number of failure points on the stack. Would be
930 exactly that if always used MAX_FAILURE_SPACE each time we failed.
931 This is a variable only so users of regex can assign to it; we never
932 change it ourselves. */
933int re_max_failures = 2000;
bc78d348 934
794ce2c1 935typedef unsigned char *fail_stack_elt_t;
bc78d348 936
e959bada
JB
937typedef struct
938{
939 fail_stack_elt_t *stack;
940 unsigned size;
941 unsigned avail; /* Offset of next open position. */
942} fail_stack_type;
bc78d348 943
e959bada
JB
944#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
945#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
946#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
947#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
bc78d348 948
bc78d348 949
e959bada 950/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
bc78d348 951
a822d92f 952#ifdef MATCH_MAY_ALLOCATE
e959bada 953#define INIT_FAIL_STACK() \
bc78d348 954 do { \
e959bada
JB
955 fail_stack.stack = (fail_stack_elt_t *) \
956 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
957 \
958 if (fail_stack.stack == NULL) \
959 return -2; \
960 \
961 fail_stack.size = INIT_FAILURE_ALLOC; \
962 fail_stack.avail = 0; \
bc78d348 963 } while (0)
e959bada
JB
964#else
965#define INIT_FAIL_STACK() \
bc78d348 966 do { \
e959bada 967 fail_stack.avail = 0; \
bc78d348 968 } while (0)
e959bada 969#endif
bc78d348
KB
970
971
e959bada 972/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
bc78d348 973
e959bada
JB
974 Return 1 if succeeds, and 0 if either ran out of memory
975 allocating space for it or it was already too large.
976
977 REGEX_REALLOCATE requires `destination' be declared. */
bc78d348 978
e959bada
JB
979#define DOUBLE_FAIL_STACK(fail_stack) \
980 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
981 ? 0 \
982 : ((fail_stack).stack = (fail_stack_elt_t *) \
983 REGEX_REALLOCATE ((fail_stack).stack, \
984 (fail_stack).size * sizeof (fail_stack_elt_t), \
985 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
986 \
987 (fail_stack).stack == NULL \
988 ? 0 \
989 : ((fail_stack).size <<= 1, \
990 1)))
bc78d348 991
bc78d348 992
e959bada 993/* Push PATTERN_OP on FAIL_STACK.
bc78d348 994
e959bada
JB
995 Return 1 if was able to do so and 0 if ran out of memory allocating
996 space to do so. */
997#define PUSH_PATTERN_OP(pattern_op, fail_stack) \
998 ((FAIL_STACK_FULL () \
999 && !DOUBLE_FAIL_STACK (fail_stack)) \
1000 ? 0 \
1001 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
1002 1))
bc78d348 1003
e959bada
JB
1004/* This pushes an item onto the failure stack. Must be a four-byte
1005 value. Assumes the variable `fail_stack'. Probably should only
1006 be called from within `PUSH_FAILURE_POINT'. */
1007#define PUSH_FAILURE_ITEM(item) \
1008 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
bc78d348 1009
e959bada
JB
1010/* The complement operation. Assumes `fail_stack' is nonempty. */
1011#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
bc78d348 1012
e959bada
JB
1013/* Used to omit pushing failure point id's when we're not debugging. */
1014#ifdef DEBUG
1015#define DEBUG_PUSH PUSH_FAILURE_ITEM
1016#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
1017#else
1018#define DEBUG_PUSH(item)
1019#define DEBUG_POP(item_addr)
1020#endif
bc78d348 1021
bc78d348 1022
e959bada
JB
1023/* Push the information about the state we will need
1024 if we ever fail back to it.
1025
1026 Requires variables fail_stack, regstart, regend, reg_info, and
1027 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1028 declared.
1029
1030 Does `return FAILURE_CODE' if runs out of memory. */
bc78d348 1031
e959bada
JB
1032#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1033 do { \
1034 char *destination; \
1035 /* Must be int, so when we don't save any registers, the arithmetic \
1036 of 0 + -1 isn't done as unsigned. */ \
1037 int this_reg; \
1038 \
1039 DEBUG_STATEMENT (failure_id++); \
1040 DEBUG_STATEMENT (nfailure_points_pushed++); \
1041 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1042 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1043 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1044 \
1045 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1046 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1047 \
1048 /* Ensure we have enough space allocated for what we will push. */ \
1049 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1050 { \
1051 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1052 return failure_code; \
1053 \
1054 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1055 (fail_stack).size); \
1056 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1057 } \
1058 \
1059 /* Push the info, starting with the registers. */ \
1060 DEBUG_PRINT1 ("\n"); \
1061 \
1062 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1063 this_reg++) \
1064 { \
1065 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1066 DEBUG_STATEMENT (num_regs_pushed++); \
1067 \
1068 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1069 PUSH_FAILURE_ITEM (regstart[this_reg]); \
1070 \
1071 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1072 PUSH_FAILURE_ITEM (regend[this_reg]); \
1073 \
1074 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1075 DEBUG_PRINT2 (" match_null=%d", \
1076 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1077 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1078 DEBUG_PRINT2 (" matched_something=%d", \
1079 MATCHED_SOMETHING (reg_info[this_reg])); \
1080 DEBUG_PRINT2 (" ever_matched=%d", \
1081 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1082 DEBUG_PRINT1 ("\n"); \
1083 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
1084 } \
1085 \
1086 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1087 PUSH_FAILURE_ITEM (lowest_active_reg); \
1088 \
1089 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1090 PUSH_FAILURE_ITEM (highest_active_reg); \
1091 \
1092 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1093 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1094 PUSH_FAILURE_ITEM (pattern_place); \
1095 \
1096 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1097 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1098 size2); \
1099 DEBUG_PRINT1 ("'\n"); \
1100 PUSH_FAILURE_ITEM (string_place); \
1101 \
1102 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1103 DEBUG_PUSH (failure_id); \
1104 } while (0)
1105
1106/* This is the number of items that are pushed and popped on the stack
1107 for each register. */
1108#define NUM_REG_ITEMS 3
1109
1110/* Individual items aside from the registers. */
1111#ifdef DEBUG
1112#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1113#else
1114#define NUM_NONREG_ITEMS 4
1115#endif
1116
1117/* We push at most this many items on the stack. */
1118#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1119
1120/* We actually push this many items. */
1121#define NUM_FAILURE_ITEMS \
1122 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1123 + NUM_NONREG_ITEMS)
1124
1125/* How many items can still be added to the stack without overflowing it. */
1126#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1127
1128
1129/* Pops what PUSH_FAIL_STACK pushes.
1130
1131 We restore into the parameters, all of which should be lvalues:
1132 STR -- the saved data position.
1133 PAT -- the saved pattern position.
1134 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1135 REGSTART, REGEND -- arrays of string positions.
1136 REG_INFO -- array of information about each subexpression.
1137
1138 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1139 `pend', `string1', `size1', `string2', and `size2'. */
1140
1141#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1142{ \
1143 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1144 int this_reg; \
1145 const unsigned char *string_temp; \
1146 \
1147 assert (!FAIL_STACK_EMPTY ()); \
1148 \
1149 /* Remove failure points and point to how many regs pushed. */ \
1150 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1151 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1152 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1153 \
1154 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1155 \
1156 DEBUG_POP (&failure_id); \
1157 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1158 \
1159 /* If the saved string location is NULL, it came from an \
1160 on_failure_keep_string_jump opcode, and we want to throw away the \
1161 saved NULL, thus retaining our current position in the string. */ \
1162 string_temp = POP_FAILURE_ITEM (); \
1163 if (string_temp != NULL) \
1164 str = (const char *) string_temp; \
1165 \
1166 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1167 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1168 DEBUG_PRINT1 ("'\n"); \
1169 \
1170 pat = (unsigned char *) POP_FAILURE_ITEM (); \
1171 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1172 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1173 \
1174 /* Restore register info. */ \
1175 high_reg = (unsigned) POP_FAILURE_ITEM (); \
1176 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1177 \
1178 low_reg = (unsigned) POP_FAILURE_ITEM (); \
1179 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1180 \
1181 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1182 { \
1183 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1184 \
1185 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
1186 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1187 \
1188 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1189 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1190 \
1191 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1192 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1193 } \
1194 \
1195 DEBUG_STATEMENT (nfailure_points_popped++); \
1196} /* POP_FAILURE_POINT */
1197
1198
1199\f
1200/* Structure for per-register (a.k.a. per-group) information.
1201 This must not be longer than one word, because we push this value
1202 onto the failure stack. Other register information, such as the
1203 starting and ending positions (which are addresses), and the list of
1204 inner groups (which is a bits list) are maintained in separate
1205 variables.
1206
1207 We are making a (strictly speaking) nonportable assumption here: that
1208 the compiler will pack our bit fields into something that fits into
1209 the type of `word', i.e., is something that fits into one item on the
1210 failure stack. */
1211typedef union
1212{
1213 fail_stack_elt_t word;
1214 struct
1215 {
1216 /* This field is one if this group can match the empty string,
1217 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1218#define MATCH_NULL_UNSET_VALUE 3
1219 unsigned match_null_string_p : 2;
1220 unsigned is_active : 1;
1221 unsigned matched_something : 1;
1222 unsigned ever_matched_something : 1;
1223 } bits;
1224} register_info_type;
1225
1226#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1227#define IS_ACTIVE(R) ((R).bits.is_active)
1228#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1229#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1230
1231
1232/* Call this when have matched a real character; it sets `matched' flags
1233 for the subexpressions which we are currently inside. Also records
1234 that those subexprs have matched. */
1235#define SET_REGS_MATCHED() \
1236 do \
1237 { \
1238 unsigned r; \
1239 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1240 { \
1241 MATCHED_SOMETHING (reg_info[r]) \
1242 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1243 = 1; \
1244 } \
1245 } \
1246 while (0)
1247
1248
1249/* Registers are set to a sentinel when they haven't yet matched. */
1250#define REG_UNSET_VALUE ((char *) -1)
1251#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1252
1253
1254\f
a822d92f 1255/* How do we implement a missing MATCH_MAY_ALLOCATE?
e959bada
JB
1256 We make the fail stack a global thing, and then grow it to
1257 re_max_failures when we compile. */
a822d92f 1258#ifndef MATCH_MAY_ALLOCATE
e959bada
JB
1259static fail_stack_type fail_stack;
1260
1261static const char ** regstart, ** regend;
1262static const char ** old_regstart, ** old_regend;
1263static const char **best_regstart, **best_regend;
1264static register_info_type *reg_info;
1265static const char **reg_dummy;
1266static register_info_type *reg_info_dummy;
1267#endif
1268
1269\f
1270/* Subroutine declarations and macros for regex_compile. */
1271
1272static void store_op1 (), store_op2 ();
1273static void insert_op1 (), insert_op2 ();
1274static boolean at_begline_loc_p (), at_endline_loc_p ();
1275static boolean group_in_compile_stack ();
1276static reg_errcode_t compile_range ();
1277
1278/* Fetch the next character in the uncompiled pattern---translating it
1279 if necessary. Also cast from a signed character in the constant
1280 string passed to us by the user to an unsigned char that we can use
1281 as an array index (in, e.g., `translate'). */
1282#define PATFETCH(c) \
1283 do {if (p == pend) return REG_EEND; \
1284 c = (unsigned char) *p++; \
1285 if (translate) c = translate[c]; \
1286 } while (0)
1287
1288/* Fetch the next character in the uncompiled pattern, with no
1289 translation. */
1290#define PATFETCH_RAW(c) \
1291 do {if (p == pend) return REG_EEND; \
1292 c = (unsigned char) *p++; \
1293 } while (0)
1294
1295/* Go backwards one character in the pattern. */
1296#define PATUNFETCH p--
1297
1298
1299/* If `translate' is non-null, return translate[D], else just D. We
1300 cast the subscript to translate because some data is declared as
1301 `char *', to avoid warnings when a string constant is passed. But
1302 when we use a character as a subscript we must make it unsigned. */
1303#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1304
1305
1306/* Macros for outputting the compiled pattern into `buffer'. */
1307
1308/* If the buffer isn't allocated when it comes in, use this. */
1309#define INIT_BUF_SIZE 32
1310
1311/* Make sure we have at least N more bytes of space in buffer. */
1312#define GET_BUFFER_SPACE(n) \
1313 while (b - bufp->buffer + (n) > bufp->allocated) \
1314 EXTEND_BUFFER ()
1315
1316/* Make sure we have one more byte of buffer space and then add C to it. */
1317#define BUF_PUSH(c) \
1318 do { \
1319 GET_BUFFER_SPACE (1); \
1320 *b++ = (unsigned char) (c); \
1321 } while (0)
1322
1323
1324/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1325#define BUF_PUSH_2(c1, c2) \
1326 do { \
1327 GET_BUFFER_SPACE (2); \
1328 *b++ = (unsigned char) (c1); \
1329 *b++ = (unsigned char) (c2); \
1330 } while (0)
1331
1332
1333/* As with BUF_PUSH_2, except for three bytes. */
1334#define BUF_PUSH_3(c1, c2, c3) \
1335 do { \
1336 GET_BUFFER_SPACE (3); \
1337 *b++ = (unsigned char) (c1); \
1338 *b++ = (unsigned char) (c2); \
1339 *b++ = (unsigned char) (c3); \
1340 } while (0)
1341
1342
1343/* Store a jump with opcode OP at LOC to location TO. We store a
1344 relative address offset by the three bytes the jump itself occupies. */
1345#define STORE_JUMP(op, loc, to) \
1346 store_op1 (op, loc, (to) - (loc) - 3)
1347
1348/* Likewise, for a two-argument jump. */
1349#define STORE_JUMP2(op, loc, to, arg) \
1350 store_op2 (op, loc, (to) - (loc) - 3, arg)
1351
1352/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1353#define INSERT_JUMP(op, loc, to) \
1354 insert_op1 (op, loc, (to) - (loc) - 3, b)
1355
1356/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1357#define INSERT_JUMP2(op, loc, to, arg) \
1358 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1359
1360
1361/* This is not an arbitrary limit: the arguments which represent offsets
1362 into the pattern are two bytes long. So if 2^16 bytes turns out to
1363 be too small, many things would have to change. */
1364#define MAX_BUF_SIZE (1L << 16)
1365
1366
1367/* Extend the buffer by twice its current size via realloc and
1368 reset the pointers that pointed into the old block to point to the
1369 correct places in the new one. If extending the buffer results in it
1370 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1371#define EXTEND_BUFFER() \
1372 do { \
1373 unsigned char *old_buffer = bufp->buffer; \
1374 if (bufp->allocated == MAX_BUF_SIZE) \
1375 return REG_ESIZE; \
1376 bufp->allocated <<= 1; \
1377 if (bufp->allocated > MAX_BUF_SIZE) \
1378 bufp->allocated = MAX_BUF_SIZE; \
1379 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1380 if (bufp->buffer == NULL) \
1381 return REG_ESPACE; \
1382 /* If the buffer moved, move all the pointers into it. */ \
1383 if (old_buffer != bufp->buffer) \
1384 { \
1385 b = (b - old_buffer) + bufp->buffer; \
1386 begalt = (begalt - old_buffer) + bufp->buffer; \
1387 if (fixup_alt_jump) \
1388 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1389 if (laststart) \
1390 laststart = (laststart - old_buffer) + bufp->buffer; \
1391 if (pending_exact) \
1392 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1393 } \
1394 } while (0)
1395
1396
1397/* Since we have one byte reserved for the register number argument to
1398 {start,stop}_memory, the maximum number of groups we can report
1399 things about is what fits in that byte. */
1400#define MAX_REGNUM 255
1401
1402/* But patterns can have more than `MAX_REGNUM' registers. We just
1403 ignore the excess. */
1404typedef unsigned regnum_t;
1405
1406
1407/* Macros for the compile stack. */
1408
1409/* Since offsets can go either forwards or backwards, this type needs to
1410 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1411typedef int pattern_offset_t;
1412
1413typedef struct
1414{
1415 pattern_offset_t begalt_offset;
1416 pattern_offset_t fixup_alt_jump;
1417 pattern_offset_t inner_group_offset;
1418 pattern_offset_t laststart_offset;
1419 regnum_t regnum;
1420} compile_stack_elt_t;
1421
1422
1423typedef struct
1424{
1425 compile_stack_elt_t *stack;
1426 unsigned size;
1427 unsigned avail; /* Offset of next open position. */
1428} compile_stack_type;
1429
1430
1431#define INIT_COMPILE_STACK_SIZE 32
1432
1433#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1434#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1435
1436/* The next available element. */
1437#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1438
1439
1440/* Set the bit for character C in a list. */
1441#define SET_LIST_BIT(c) \
1442 (b[((unsigned char) (c)) / BYTEWIDTH] \
1443 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1444
1445
1446/* Get the next unsigned number in the uncompiled pattern. */
1447#define GET_UNSIGNED_NUMBER(num) \
1448 { if (p != pend) \
1449 { \
1450 PATFETCH (c); \
1451 while (ISDIGIT (c)) \
1452 { \
1453 if (num < 0) \
1454 num = 0; \
1455 num = num * 10 + c - '0'; \
1456 if (p == pend) \
1457 break; \
1458 PATFETCH (c); \
1459 } \
bc78d348
KB
1460 } \
1461 }
1462
1463#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1464
1465#define IS_CHAR_CLASS(string) \
1466 (STREQ (string, "alpha") || STREQ (string, "upper") \
1467 || STREQ (string, "lower") || STREQ (string, "digit") \
1468 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1469 || STREQ (string, "space") || STREQ (string, "print") \
1470 || STREQ (string, "punct") || STREQ (string, "graph") \
1471 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1472\f
1473/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1474 Returns one of error codes defined in `regex.h', or zero for success.
1475
1476 Assumes the `allocated' (and perhaps `buffer') and `translate'
1477 fields are set in BUFP on entry.
1478
1479 If it succeeds, results are put in BUFP (if it returns an error, the
1480 contents of BUFP are undefined):
1481 `buffer' is the compiled pattern;
1482 `syntax' is set to SYNTAX;
1483 `used' is set to the length of the compiled pattern;
9114e279
KB
1484 `fastmap_accurate' is zero;
1485 `re_nsub' is the number of subexpressions in PATTERN;
1486 `not_bol' and `not_eol' are zero;
bc78d348
KB
1487
1488 The `fastmap' and `newline_anchor' fields are neither
1489 examined nor set. */
1490
1491static reg_errcode_t
1492regex_compile (pattern, size, syntax, bufp)
1493 const char *pattern;
1494 int size;
1495 reg_syntax_t syntax;
1496 struct re_pattern_buffer *bufp;
1497{
1498 /* We fetch characters from PATTERN here. Even though PATTERN is
1499 `char *' (i.e., signed), we declare these variables as unsigned, so
1500 they can be reliably used as array indices. */
1501 register unsigned char c, c1;
1502
63268f76 1503 /* A random temporary spot in PATTERN. */
bc78d348
KB
1504 const char *p1;
1505
1506 /* Points to the end of the buffer, where we should append. */
1507 register unsigned char *b;
1508
1509 /* Keeps track of unclosed groups. */
1510 compile_stack_type compile_stack;
1511
1512 /* Points to the current (ending) position in the pattern. */
1513 const char *p = pattern;
1514 const char *pend = pattern + size;
1515
1516 /* How to translate the characters in the pattern. */
1517 char *translate = bufp->translate;
1518
1519 /* Address of the count-byte of the most recently inserted `exactn'
1520 command. This makes it possible to tell if a new exact-match
1521 character can be added to that command or if the character requires
1522 a new `exactn' command. */
1523 unsigned char *pending_exact = 0;
1524
1525 /* Address of start of the most recently finished expression.
1526 This tells, e.g., postfix * where to find the start of its
1527 operand. Reset at the beginning of groups and alternatives. */
1528 unsigned char *laststart = 0;
1529
1530 /* Address of beginning of regexp, or inside of last group. */
1531 unsigned char *begalt;
1532
1533 /* Place in the uncompiled pattern (i.e., the {) to
1534 which to go back if the interval is invalid. */
1535 const char *beg_interval;
1536
1537 /* Address of the place where a forward jump should go to the end of
1538 the containing expression. Each alternative of an `or' -- except the
1539 last -- ends with a forward jump of this sort. */
1540 unsigned char *fixup_alt_jump = 0;
1541
1542 /* Counts open-groups as they are encountered. Remembered for the
1543 matching close-group on the compile stack, so the same register
1544 number is put in the stop_memory as the start_memory. */
1545 regnum_t regnum = 0;
1546
1547#ifdef DEBUG
1548 DEBUG_PRINT1 ("\nCompiling pattern: ");
1549 if (debug)
1550 {
1551 unsigned debug_count;
1552
1553 for (debug_count = 0; debug_count < size; debug_count++)
1554 printchar (pattern[debug_count]);
1555 putchar ('\n');
1556 }
1557#endif /* DEBUG */
1558
1559 /* Initialize the compile stack. */
1560 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1561 if (compile_stack.stack == NULL)
1562 return REG_ESPACE;
1563
1564 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1565 compile_stack.avail = 0;
1566
1567 /* Initialize the pattern buffer. */
1568 bufp->syntax = syntax;
1569 bufp->fastmap_accurate = 0;
1570 bufp->not_bol = bufp->not_eol = 0;
1571
1572 /* Set `used' to zero, so that if we return an error, the pattern
1573 printer (for debugging) will think there's no pattern. We reset it
1574 at the end. */
1575 bufp->used = 0;
1576
1577 /* Always count groups, whether or not bufp->no_sub is set. */
1578 bufp->re_nsub = 0;
1579
1580#if !defined (emacs) && !defined (SYNTAX_TABLE)
1581 /* Initialize the syntax table. */
1582 init_syntax_once ();
1583#endif
1584
1585 if (bufp->allocated == 0)
1586 {
1587 if (bufp->buffer)
1588 { /* If zero allocated, but buffer is non-null, try to realloc
1589 enough space. This loses if buffer's address is bogus, but
1590 that is the user's responsibility. */
1591 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1592 }
1593 else
1594 { /* Caller did not allocate a buffer. Do it for them. */
1595 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1596 }
1597 if (!bufp->buffer) return REG_ESPACE;
1598
1599 bufp->allocated = INIT_BUF_SIZE;
1600 }
1601
1602 begalt = b = bufp->buffer;
1603
1604 /* Loop through the uncompiled pattern until we're at the end. */
1605 while (p != pend)
1606 {
1607 PATFETCH (c);
1608
1609 switch (c)
1610 {
1611 case '^':
1612 {
1613 if ( /* If at start of pattern, it's an operator. */
1614 p == pattern + 1
1615 /* If context independent, it's an operator. */
1616 || syntax & RE_CONTEXT_INDEP_ANCHORS
1617 /* Otherwise, depends on what's come before. */
1618 || at_begline_loc_p (pattern, p, syntax))
1619 BUF_PUSH (begline);
1620 else
1621 goto normal_char;
1622 }
1623 break;
1624
1625
1626 case '$':
1627 {
1628 if ( /* If at end of pattern, it's an operator. */
1629 p == pend
1630 /* If context independent, it's an operator. */
1631 || syntax & RE_CONTEXT_INDEP_ANCHORS
1632 /* Otherwise, depends on what's next. */
1633 || at_endline_loc_p (p, pend, syntax))
1634 BUF_PUSH (endline);
1635 else
1636 goto normal_char;
1637 }
1638 break;
1639
1640
1641 case '+':
1642 case '?':
1643 if ((syntax & RE_BK_PLUS_QM)
1644 || (syntax & RE_LIMITED_OPS))
1645 goto normal_char;
1646 handle_plus:
1647 case '*':
1648 /* If there is no previous pattern... */
1649 if (!laststart)
1650 {
1651 if (syntax & RE_CONTEXT_INVALID_OPS)
1652 return REG_BADRPT;
1653 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1654 goto normal_char;
1655 }
1656
1657 {
1658 /* Are we optimizing this jump? */
1659 boolean keep_string_p = false;
1660
1661 /* 1 means zero (many) matches is allowed. */
1662 char zero_times_ok = 0, many_times_ok = 0;
1663
1664 /* If there is a sequence of repetition chars, collapse it
1665 down to just one (the right one). We can't combine
1666 interval operators with these because of, e.g., `a{2}*',
1667 which should only match an even number of `a's. */
1668
1669 for (;;)
1670 {
1671 zero_times_ok |= c != '+';
1672 many_times_ok |= c != '?';
1673
1674 if (p == pend)
1675 break;
1676
1677 PATFETCH (c);
1678
1679 if (c == '*'
1680 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1681 ;
1682
1683 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1684 {
1685 if (p == pend) return REG_EESCAPE;
1686
1687 PATFETCH (c1);
1688 if (!(c1 == '+' || c1 == '?'))
1689 {
1690 PATUNFETCH;
1691 PATUNFETCH;
1692 break;
1693 }
1694
1695 c = c1;
1696 }
1697 else
1698 {
1699 PATUNFETCH;
1700 break;
1701 }
1702
1703 /* If we get here, we found another repeat character. */
1704 }
1705
1706 /* Star, etc. applied to an empty pattern is equivalent
1707 to an empty pattern. */
1708 if (!laststart)
1709 break;
1710
1711 /* Now we know whether or not zero matches is allowed
1712 and also whether or not two or more matches is allowed. */
1713 if (many_times_ok)
1714 { /* More than one repetition is allowed, so put in at the
1715 end a backward relative jump from `b' to before the next
1716 jump we're going to put in below (which jumps from
1717 laststart to after this jump).
1718
1719 But if we are at the `*' in the exact sequence `.*\n',
1720 insert an unconditional jump backwards to the .,
1721 instead of the beginning of the loop. This way we only
1722 push a failure point once, instead of every time
1723 through the loop. */
1724 assert (p - 1 > pattern);
1725
1726 /* Allocate the space for the jump. */
1727 GET_BUFFER_SPACE (3);
1728
1729 /* We know we are not at the first character of the pattern,
1730 because laststart was nonzero. And we've already
1731 incremented `p', by the way, to be the character after
1732 the `*'. Do we have to do something analogous here
1733 for null bytes, because of RE_DOT_NOT_NULL? */
1734 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
5745b086 1735 && zero_times_ok
bc78d348
KB
1736 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1737 && !(syntax & RE_DOT_NEWLINE))
1738 { /* We have .*\n. */
1739 STORE_JUMP (jump, b, laststart);
1740 keep_string_p = true;
1741 }
1742 else
1743 /* Anything else. */
1744 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1745
1746 /* We've added more stuff to the buffer. */
1747 b += 3;
1748 }
1749
1750 /* On failure, jump from laststart to b + 3, which will be the
1751 end of the buffer after this jump is inserted. */
1752 GET_BUFFER_SPACE (3);
1753 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1754 : on_failure_jump,
1755 laststart, b + 3);
1756 pending_exact = 0;
1757 b += 3;
1758
1759 if (!zero_times_ok)
1760 {
1761 /* At least one repetition is required, so insert a
1762 `dummy_failure_jump' before the initial
1763 `on_failure_jump' instruction of the loop. This
1764 effects a skip over that instruction the first time
1765 we hit that loop. */
1766 GET_BUFFER_SPACE (3);
1767 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1768 b += 3;
1769 }
1770 }
1771 break;
1772
1773
1774 case '.':
1775 laststart = b;
1776 BUF_PUSH (anychar);
1777 break;
1778
1779
1780 case '[':
1781 {
1782 boolean had_char_class = false;
1783
1784 if (p == pend) return REG_EBRACK;
1785
1786 /* Ensure that we have enough space to push a charset: the
1787 opcode, the length count, and the bitset; 34 bytes in all. */
1788 GET_BUFFER_SPACE (34);
1789
1790 laststart = b;
1791
1792 /* We test `*p == '^' twice, instead of using an if
1793 statement, so we only need one BUF_PUSH. */
1794 BUF_PUSH (*p == '^' ? charset_not : charset);
1795 if (*p == '^')
1796 p++;
1797
1798 /* Remember the first position in the bracket expression. */
1799 p1 = p;
1800
1801 /* Push the number of bytes in the bitmap. */
1802 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1803
1804 /* Clear the whole map. */
1805 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1806
1807 /* charset_not matches newline according to a syntax bit. */
1808 if ((re_opcode_t) b[-2] == charset_not
1809 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1810 SET_LIST_BIT ('\n');
1811
1812 /* Read in characters and ranges, setting map bits. */
1813 for (;;)
1814 {
1815 if (p == pend) return REG_EBRACK;
1816
1817 PATFETCH (c);
1818
1819 /* \ might escape characters inside [...] and [^...]. */
1820 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1821 {
1822 if (p == pend) return REG_EESCAPE;
1823
1824 PATFETCH (c1);
1825 SET_LIST_BIT (c1);
1826 continue;
1827 }
1828
1829 /* Could be the end of the bracket expression. If it's
1830 not (i.e., when the bracket expression is `[]' so
1831 far), the ']' character bit gets set way below. */
1832 if (c == ']' && p != p1 + 1)
1833 break;
1834
1835 /* Look ahead to see if it's a range when the last thing
1836 was a character class. */
1837 if (had_char_class && c == '-' && *p != ']')
1838 return REG_ERANGE;
1839
1840 /* Look ahead to see if it's a range when the last thing
1841 was a character: if this is a hyphen not at the
1842 beginning or the end of a list, then it's the range
1843 operator. */
1844 if (c == '-'
1845 && !(p - 2 >= pattern && p[-2] == '[')
1846 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1847 && *p != ']')
1848 {
1849 reg_errcode_t ret
1850 = compile_range (&p, pend, translate, syntax, b);
1851 if (ret != REG_NOERROR) return ret;
1852 }
1853
1854 else if (p[0] == '-' && p[1] != ']')
1855 { /* This handles ranges made up of characters only. */
1856 reg_errcode_t ret;
1857
1858 /* Move past the `-'. */
1859 PATFETCH (c1);
1860
1861 ret = compile_range (&p, pend, translate, syntax, b);
1862 if (ret != REG_NOERROR) return ret;
1863 }
1864
1865 /* See if we're at the beginning of a possible character
1866 class. */
1867
1868 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1869 { /* Leave room for the null. */
1870 char str[CHAR_CLASS_MAX_LENGTH + 1];
1871
1872 PATFETCH (c);
1873 c1 = 0;
1874
1875 /* If pattern is `[[:'. */
1876 if (p == pend) return REG_EBRACK;
1877
1878 for (;;)
1879 {
1880 PATFETCH (c);
1881 if (c == ':' || c == ']' || p == pend
1882 || c1 == CHAR_CLASS_MAX_LENGTH)
1883 break;
1884 str[c1++] = c;
1885 }
1886 str[c1] = '\0';
1887
1888 /* If isn't a word bracketed by `[:' and:`]':
1889 undo the ending character, the letters, and leave
1890 the leading `:' and `[' (but set bits for them). */
1891 if (c == ':' && *p == ']')
1892 {
1893 int ch;
1894 boolean is_alnum = STREQ (str, "alnum");
1895 boolean is_alpha = STREQ (str, "alpha");
1896 boolean is_blank = STREQ (str, "blank");
1897 boolean is_cntrl = STREQ (str, "cntrl");
1898 boolean is_digit = STREQ (str, "digit");
1899 boolean is_graph = STREQ (str, "graph");
1900 boolean is_lower = STREQ (str, "lower");
1901 boolean is_print = STREQ (str, "print");
1902 boolean is_punct = STREQ (str, "punct");
1903 boolean is_space = STREQ (str, "space");
1904 boolean is_upper = STREQ (str, "upper");
1905 boolean is_xdigit = STREQ (str, "xdigit");
1906
1907 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1908
1909 /* Throw away the ] at the end of the character
1910 class. */
1911 PATFETCH (c);
1912
1913 if (p == pend) return REG_EBRACK;
1914
1915 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1916 {
c6b40788
JM
1917 if ( (is_alnum && ISALNUM (ch))
1918 || (is_alpha && ISALPHA (ch))
1919 || (is_blank && ISBLANK (ch))
1920 || (is_cntrl && ISCNTRL (ch))
1921 || (is_digit && ISDIGIT (ch))
1922 || (is_graph && ISGRAPH (ch))
1923 || (is_lower && ISLOWER (ch))
1924 || (is_print && ISPRINT (ch))
1925 || (is_punct && ISPUNCT (ch))
1926 || (is_space && ISSPACE (ch))
1927 || (is_upper && ISUPPER (ch))
1928 || (is_xdigit && ISXDIGIT (ch)))
bc78d348
KB
1929 SET_LIST_BIT (ch);
1930 }
1931 had_char_class = true;
1932 }
1933 else
1934 {
1935 c1++;
1936 while (c1--)
1937 PATUNFETCH;
1938 SET_LIST_BIT ('[');
1939 SET_LIST_BIT (':');
1940 had_char_class = false;
1941 }
1942 }
1943 else
1944 {
1945 had_char_class = false;
1946 SET_LIST_BIT (c);
1947 }
1948 }
1949
1950 /* Discard any (non)matching list bytes that are all 0 at the
1951 end of the map. Decrease the map-length byte too. */
1952 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1953 b[-1]--;
1954 b += b[-1];
1955 }
1956 break;
1957
1958
1959 case '(':
1960 if (syntax & RE_NO_BK_PARENS)
1961 goto handle_open;
1962 else
1963 goto normal_char;
1964
1965
1966 case ')':
1967 if (syntax & RE_NO_BK_PARENS)
1968 goto handle_close;
1969 else
1970 goto normal_char;
1971
1972
1973 case '\n':
1974 if (syntax & RE_NEWLINE_ALT)
1975 goto handle_alt;
1976 else
1977 goto normal_char;
1978
1979
1980 case '|':
1981 if (syntax & RE_NO_BK_VBAR)
1982 goto handle_alt;
1983 else
1984 goto normal_char;
1985
1986
1987 case '{':
1988 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1989 goto handle_interval;
1990 else
1991 goto normal_char;
1992
1993
1994 case '\\':
1995 if (p == pend) return REG_EESCAPE;
1996
1997 /* Do not translate the character after the \, so that we can
1998 distinguish, e.g., \B from \b, even if we normally would
1999 translate, e.g., B to b. */
2000 PATFETCH_RAW (c);
2001
2002 switch (c)
2003 {
2004 case '(':
2005 if (syntax & RE_NO_BK_PARENS)
2006 goto normal_backslash;
2007
2008 handle_open:
2009 bufp->re_nsub++;
2010 regnum++;
2011
2012 if (COMPILE_STACK_FULL)
2013 {
2014 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2015 compile_stack_elt_t);
2016 if (compile_stack.stack == NULL) return REG_ESPACE;
2017
2018 compile_stack.size <<= 1;
2019 }
2020
2021 /* These are the values to restore when we hit end of this
2022 group. They are all relative offsets, so that if the
2023 whole pattern moves because of realloc, they will still
2024 be valid. */
2025 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2026 COMPILE_STACK_TOP.fixup_alt_jump
2027 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2028 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2029 COMPILE_STACK_TOP.regnum = regnum;
2030
2031 /* We will eventually replace the 0 with the number of
2032 groups inner to this one. But do not push a
2033 start_memory for groups beyond the last one we can
2034 represent in the compiled pattern. */
2035 if (regnum <= MAX_REGNUM)
2036 {
2037 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2038 BUF_PUSH_3 (start_memory, regnum, 0);
2039 }
2040
2041 compile_stack.avail++;
2042
2043 fixup_alt_jump = 0;
2044 laststart = 0;
2045 begalt = b;
5745b086
JB
2046 /* If we've reached MAX_REGNUM groups, then this open
2047 won't actually generate any code, so we'll have to
2048 clear pending_exact explicitly. */
2049 pending_exact = 0;
bc78d348
KB
2050 break;
2051
2052
2053 case ')':
2054 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2055
2056 if (COMPILE_STACK_EMPTY)
2057 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2058 goto normal_backslash;
2059 else
2060 return REG_ERPAREN;
2061
2062 handle_close:
2063 if (fixup_alt_jump)
2064 { /* Push a dummy failure point at the end of the
2065 alternative for a possible future
2066 `pop_failure_jump' to pop. See comments at
2067 `push_dummy_failure' in `re_match_2'. */
2068 BUF_PUSH (push_dummy_failure);
2069
2070 /* We allocated space for this jump when we assigned
2071 to `fixup_alt_jump', in the `handle_alt' case below. */
2072 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2073 }
2074
2075 /* See similar code for backslashed left paren above. */
2076 if (COMPILE_STACK_EMPTY)
2077 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2078 goto normal_char;
2079 else
2080 return REG_ERPAREN;
2081
2082 /* Since we just checked for an empty stack above, this
2083 ``can't happen''. */
2084 assert (compile_stack.avail != 0);
2085 {
2086 /* We don't just want to restore into `regnum', because
2087 later groups should continue to be numbered higher,
2088 as in `(ab)c(de)' -- the second group is #2. */
2089 regnum_t this_group_regnum;
2090
2091 compile_stack.avail--;
2092 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2093 fixup_alt_jump
2094 = COMPILE_STACK_TOP.fixup_alt_jump
2095 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2096 : 0;
2097 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2098 this_group_regnum = COMPILE_STACK_TOP.regnum;
5745b086
JB
2099 /* If we've reached MAX_REGNUM groups, then this open
2100 won't actually generate any code, so we'll have to
2101 clear pending_exact explicitly. */
2102 pending_exact = 0;
bc78d348
KB
2103
2104 /* We're at the end of the group, so now we know how many
2105 groups were inside this one. */
2106 if (this_group_regnum <= MAX_REGNUM)
2107 {
2108 unsigned char *inner_group_loc
2109 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2110
2111 *inner_group_loc = regnum - this_group_regnum;
2112 BUF_PUSH_3 (stop_memory, this_group_regnum,
2113 regnum - this_group_regnum);
2114 }
2115 }
2116 break;
2117
2118
2119 case '|': /* `\|'. */
2120 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2121 goto normal_backslash;
2122 handle_alt:
2123 if (syntax & RE_LIMITED_OPS)
2124 goto normal_char;
2125
2126 /* Insert before the previous alternative a jump which
2127 jumps to this alternative if the former fails. */
2128 GET_BUFFER_SPACE (3);
2129 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2130 pending_exact = 0;
2131 b += 3;
2132
2133 /* The alternative before this one has a jump after it
2134 which gets executed if it gets matched. Adjust that
2135 jump so it will jump to this alternative's analogous
2136 jump (put in below, which in turn will jump to the next
2137 (if any) alternative's such jump, etc.). The last such
2138 jump jumps to the correct final destination. A picture:
2139 _____ _____
2140 | | | |
2141 | v | v
2142 a | b | c
2143
9114e279
KB
2144 If we are at `b', then fixup_alt_jump right now points to a
2145 three-byte space after `a'. We'll put in the jump, set
2146 fixup_alt_jump to right after `b', and leave behind three
2147 bytes which we'll fill in when we get to after `c'. */
bc78d348
KB
2148
2149 if (fixup_alt_jump)
2150 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2151
2152 /* Mark and leave space for a jump after this alternative,
2153 to be filled in later either by next alternative or
2154 when know we're at the end of a series of alternatives. */
2155 fixup_alt_jump = b;
2156 GET_BUFFER_SPACE (3);
2157 b += 3;
2158
2159 laststart = 0;
2160 begalt = b;
2161 break;
2162
2163
2164 case '{':
2165 /* If \{ is a literal. */
2166 if (!(syntax & RE_INTERVALS)
2167 /* If we're at `\{' and it's not the open-interval
2168 operator. */
2169 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2170 || (p - 2 == pattern && p == pend))
2171 goto normal_backslash;
2172
2173 handle_interval:
2174 {
2175 /* If got here, then the syntax allows intervals. */
2176
2177 /* At least (most) this many matches must be made. */
2178 int lower_bound = -1, upper_bound = -1;
2179
2180 beg_interval = p - 1;
2181
2182 if (p == pend)
2183 {
2184 if (syntax & RE_NO_BK_BRACES)
2185 goto unfetch_interval;
2186 else
2187 return REG_EBRACE;
2188 }
2189
2190 GET_UNSIGNED_NUMBER (lower_bound);
2191
2192 if (c == ',')
2193 {
2194 GET_UNSIGNED_NUMBER (upper_bound);
2195 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2196 }
2197 else
2198 /* Interval such as `{1}' => match exactly once. */
2199 upper_bound = lower_bound;
2200
2201 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2202 || lower_bound > upper_bound)
2203 {
2204 if (syntax & RE_NO_BK_BRACES)
2205 goto unfetch_interval;
2206 else
2207 return REG_BADBR;
2208 }
2209
2210 if (!(syntax & RE_NO_BK_BRACES))
2211 {
2212 if (c != '\\') return REG_EBRACE;
2213
2214 PATFETCH (c);
2215 }
2216
2217 if (c != '}')
2218 {
2219 if (syntax & RE_NO_BK_BRACES)
2220 goto unfetch_interval;
2221 else
2222 return REG_BADBR;
2223 }
2224
2225 /* We just parsed a valid interval. */
2226
2227 /* If it's invalid to have no preceding re. */
2228 if (!laststart)
2229 {
2230 if (syntax & RE_CONTEXT_INVALID_OPS)
2231 return REG_BADRPT;
2232 else if (syntax & RE_CONTEXT_INDEP_OPS)
2233 laststart = b;
2234 else
2235 goto unfetch_interval;
2236 }
2237
2238 /* If the upper bound is zero, don't want to succeed at
2239 all; jump from `laststart' to `b + 3', which will be
2240 the end of the buffer after we insert the jump. */
2241 if (upper_bound == 0)
2242 {
2243 GET_BUFFER_SPACE (3);
2244 INSERT_JUMP (jump, laststart, b + 3);
2245 b += 3;
2246 }
2247
2248 /* Otherwise, we have a nontrivial interval. When
2249 we're all done, the pattern will look like:
2250 set_number_at <jump count> <upper bound>
2251 set_number_at <succeed_n count> <lower bound>
63268f76 2252 succeed_n <after jump addr> <succeed_n count>
bc78d348
KB
2253 <body of loop>
2254 jump_n <succeed_n addr> <jump count>
2255 (The upper bound and `jump_n' are omitted if
2256 `upper_bound' is 1, though.) */
2257 else
2258 { /* If the upper bound is > 1, we need to insert
2259 more at the end of the loop. */
2260 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2261
2262 GET_BUFFER_SPACE (nbytes);
2263
2264 /* Initialize lower bound of the `succeed_n', even
2265 though it will be set during matching by its
2266 attendant `set_number_at' (inserted next),
2267 because `re_compile_fastmap' needs to know.
2268 Jump to the `jump_n' we might insert below. */
2269 INSERT_JUMP2 (succeed_n, laststart,
2270 b + 5 + (upper_bound > 1) * 5,
2271 lower_bound);
2272 b += 5;
2273
2274 /* Code to initialize the lower bound. Insert
2275 before the `succeed_n'. The `5' is the last two
2276 bytes of this `set_number_at', plus 3 bytes of
2277 the following `succeed_n'. */
2278 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2279 b += 5;
2280
2281 if (upper_bound > 1)
2282 { /* More than one repetition is allowed, so
2283 append a backward jump to the `succeed_n'
2284 that starts this interval.
2285
2286 When we've reached this during matching,
2287 we'll have matched the interval once, so
2288 jump back only `upper_bound - 1' times. */
2289 STORE_JUMP2 (jump_n, b, laststart + 5,
2290 upper_bound - 1);
2291 b += 5;
2292
2293 /* The location we want to set is the second
2294 parameter of the `jump_n'; that is `b-2' as
2295 an absolute address. `laststart' will be
2296 the `set_number_at' we're about to insert;
2297 `laststart+3' the number to set, the source
2298 for the relative address. But we are
2299 inserting into the middle of the pattern --
2300 so everything is getting moved up by 5.
2301 Conclusion: (b - 2) - (laststart + 3) + 5,
2302 i.e., b - laststart.
2303
2304 We insert this at the beginning of the loop
2305 so that if we fail during matching, we'll
2306 reinitialize the bounds. */
2307 insert_op2 (set_number_at, laststart, b - laststart,
2308 upper_bound - 1, b);
2309 b += 5;
2310 }
2311 }
2312 pending_exact = 0;
2313 beg_interval = NULL;
2314 }
2315 break;
2316
2317 unfetch_interval:
2318 /* If an invalid interval, match the characters as literals. */
2319 assert (beg_interval);
2320 p = beg_interval;
2321 beg_interval = NULL;
2322
2323 /* normal_char and normal_backslash need `c'. */
2324 PATFETCH (c);
2325
2326 if (!(syntax & RE_NO_BK_BRACES))
2327 {
2328 if (p > pattern && p[-1] == '\\')
2329 goto normal_backslash;
2330 }
2331 goto normal_char;
2332
2333#ifdef emacs
2334 /* There is no way to specify the before_dot and after_dot
2335 operators. rms says this is ok. --karl */
2336 case '=':
2337 BUF_PUSH (at_dot);
2338 break;
2339
2340 case 's':
2341 laststart = b;
2342 PATFETCH (c);
2343 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2344 break;
2345
2346 case 'S':
2347 laststart = b;
2348 PATFETCH (c);
2349 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2350 break;
2351#endif /* emacs */
2352
2353
2354 case 'w':
2355 laststart = b;
2356 BUF_PUSH (wordchar);
2357 break;
2358
2359
2360 case 'W':
2361 laststart = b;
2362 BUF_PUSH (notwordchar);
2363 break;
2364
2365
2366 case '<':
2367 BUF_PUSH (wordbeg);
2368 break;
2369
2370 case '>':
2371 BUF_PUSH (wordend);
2372 break;
2373
2374 case 'b':
2375 BUF_PUSH (wordbound);
2376 break;
2377
2378 case 'B':
2379 BUF_PUSH (notwordbound);
2380 break;
2381
2382 case '`':
2383 BUF_PUSH (begbuf);
2384 break;
2385
2386 case '\'':
2387 BUF_PUSH (endbuf);
2388 break;
2389
2390 case '1': case '2': case '3': case '4': case '5':
2391 case '6': case '7': case '8': case '9':
2392 if (syntax & RE_NO_BK_REFS)
2393 goto normal_char;
2394
2395 c1 = c - '0';
2396
2397 if (c1 > regnum)
2398 return REG_ESUBREG;
2399
2400 /* Can't back reference to a subexpression if inside of it. */
2401 if (group_in_compile_stack (compile_stack, c1))
2402 goto normal_char;
2403
2404 laststart = b;
2405 BUF_PUSH_2 (duplicate, c1);
2406 break;
2407
2408
2409 case '+':
2410 case '?':
2411 if (syntax & RE_BK_PLUS_QM)
2412 goto handle_plus;
2413 else
2414 goto normal_backslash;
2415
2416 default:
2417 normal_backslash:
2418 /* You might think it would be useful for \ to mean
2419 not to translate; but if we don't translate it
2420 it will never match anything. */
2421 c = TRANSLATE (c);
2422 goto normal_char;
2423 }
2424 break;
2425
2426
2427 default:
2428 /* Expects the character in `c'. */
2429 normal_char:
2430 /* If no exactn currently being built. */
2431 if (!pending_exact
2432
2433 /* If last exactn not at current position. */
2434 || pending_exact + *pending_exact + 1 != b
2435
2436 /* We have only one byte following the exactn for the count. */
2437 || *pending_exact == (1 << BYTEWIDTH) - 1
2438
2439 /* If followed by a repetition operator. */
2440 || *p == '*' || *p == '^'
2441 || ((syntax & RE_BK_PLUS_QM)
2442 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2443 : (*p == '+' || *p == '?'))
2444 || ((syntax & RE_INTERVALS)
2445 && ((syntax & RE_NO_BK_BRACES)
2446 ? *p == '{'
2447 : (p[0] == '\\' && p[1] == '{'))))
2448 {
2449 /* Start building a new exactn. */
2450
2451 laststart = b;
2452
2453 BUF_PUSH_2 (exactn, 0);
2454 pending_exact = b - 1;
2455 }
2456
2457 BUF_PUSH (c);
2458 (*pending_exact)++;
2459 break;
2460 } /* switch (c) */
e959bada 2461 } /* while p != pend */
4af46de6 2462
e959bada
JB
2463
2464 /* Through the pattern now. */
2465
2466 if (fixup_alt_jump)
2467 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
bc78d348 2468
e959bada
JB
2469 if (!COMPILE_STACK_EMPTY)
2470 return REG_EPAREN;
bc78d348 2471
e959bada 2472 free (compile_stack.stack);
bc78d348 2473
e959bada
JB
2474 /* We have succeeded; set the length of the buffer. */
2475 bufp->used = b - bufp->buffer;
2476
2477#ifdef DEBUG
2478 if (debug)
bc78d348 2479 {
e959bada
JB
2480 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2481 print_compiled_pattern (bufp);
bc78d348 2482 }
e959bada 2483#endif /* DEBUG */
bc78d348 2484
a822d92f 2485#ifndef MATCH_MAY_ALLOCATE
e959bada
JB
2486 /* Initialize the failure stack to the largest possible stack. This
2487 isn't necessary unless we're trying to avoid calling alloca in
2488 the search and match routines. */
2489 {
2490 int num_regs = bufp->re_nsub + 1;
2491
2492 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2493 is strictly greater than re_max_failures, the largest possible stack
2494 is 2 * re_max_failures failure points. */
2495 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
63268f76 2496 if (! fail_stack.stack)
e959bada
JB
2497 fail_stack.stack =
2498 (fail_stack_elt_t *) malloc (fail_stack.size
2499 * sizeof (fail_stack_elt_t));
2500
2501 /* Initialize some other variables the matcher uses. */
2502 RETALLOC_IF (regstart, num_regs, const char *);
2503 RETALLOC_IF (regend, num_regs, const char *);
2504 RETALLOC_IF (old_regstart, num_regs, const char *);
2505 RETALLOC_IF (old_regend, num_regs, const char *);
2506 RETALLOC_IF (best_regstart, num_regs, const char *);
2507 RETALLOC_IF (best_regend, num_regs, const char *);
2508 RETALLOC_IF (reg_info, num_regs, register_info_type);
2509 RETALLOC_IF (reg_dummy, num_regs, const char *);
2510 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
2511 }
bc78d348
KB
2512#endif
2513
e959bada
JB
2514 return REG_NOERROR;
2515} /* regex_compile */
2516\f
2517/* Subroutines for `regex_compile'. */
bc78d348 2518
e959bada 2519/* Store OP at LOC followed by two-byte integer parameter ARG. */
bc78d348 2520
e959bada
JB
2521static void
2522store_op1 (op, loc, arg)
2523 re_opcode_t op;
2524 unsigned char *loc;
2525 int arg;
bc78d348 2526{
e959bada
JB
2527 *loc = (unsigned char) op;
2528 STORE_NUMBER (loc + 1, arg);
2529}
bc78d348 2530
bc78d348 2531
e959bada 2532/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
bc78d348 2533
e959bada
JB
2534static void
2535store_op2 (op, loc, arg1, arg2)
2536 re_opcode_t op;
2537 unsigned char *loc;
2538 int arg1, arg2;
2539{
2540 *loc = (unsigned char) op;
2541 STORE_NUMBER (loc + 1, arg1);
2542 STORE_NUMBER (loc + 3, arg2);
2543}
bc78d348 2544
bc78d348 2545
e959bada
JB
2546/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2547 for OP followed by two-byte integer parameter ARG. */
bc78d348 2548
e959bada
JB
2549static void
2550insert_op1 (op, loc, arg, end)
2551 re_opcode_t op;
2552 unsigned char *loc;
2553 int arg;
2554 unsigned char *end;
2555{
2556 register unsigned char *pfrom = end;
2557 register unsigned char *pto = end + 3;
bc78d348 2558
e959bada
JB
2559 while (pfrom != loc)
2560 *--pto = *--pfrom;
2561
2562 store_op1 (op, loc, arg);
2563}
bc78d348 2564
bc78d348 2565
e959bada 2566/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
bc78d348 2567
e959bada
JB
2568static void
2569insert_op2 (op, loc, arg1, arg2, end)
2570 re_opcode_t op;
2571 unsigned char *loc;
2572 int arg1, arg2;
2573 unsigned char *end;
2574{
2575 register unsigned char *pfrom = end;
2576 register unsigned char *pto = end + 5;
bc78d348 2577
e959bada
JB
2578 while (pfrom != loc)
2579 *--pto = *--pfrom;
2580
2581 store_op2 (op, loc, arg1, arg2);
2582}
bc78d348 2583
bc78d348 2584
e959bada
JB
2585/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2586 after an alternative or a begin-subexpression. We assume there is at
2587 least one character before the ^. */
bc78d348 2588
e959bada
JB
2589static boolean
2590at_begline_loc_p (pattern, p, syntax)
2591 const char *pattern, *p;
2592 reg_syntax_t syntax;
2593{
2594 const char *prev = p - 2;
2595 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2596
2597 return
2598 /* After a subexpression? */
2599 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2600 /* After an alternative? */
2601 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2602}
bc78d348 2603
bc78d348 2604
e959bada
JB
2605/* The dual of at_begline_loc_p. This one is for $. We assume there is
2606 at least one character after the $, i.e., `P < PEND'. */
2607
2608static boolean
2609at_endline_loc_p (p, pend, syntax)
2610 const char *p, *pend;
2611 int syntax;
2612{
2613 const char *next = p;
2614 boolean next_backslash = *next == '\\';
2615 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2616
2617 return
2618 /* Before a subexpression? */
2619 (syntax & RE_NO_BK_PARENS ? *next == ')'
2620 : next_backslash && next_next && *next_next == ')')
2621 /* Before an alternative? */
2622 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2623 : next_backslash && next_next && *next_next == '|');
2624}
bc78d348
KB
2625
2626
e959bada
JB
2627/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2628 false if it's not. */
bc78d348 2629
e959bada
JB
2630static boolean
2631group_in_compile_stack (compile_stack, regnum)
2632 compile_stack_type compile_stack;
2633 regnum_t regnum;
2634{
2635 int this_element;
2636
2637 for (this_element = compile_stack.avail - 1;
2638 this_element >= 0;
2639 this_element--)
2640 if (compile_stack.stack[this_element].regnum == regnum)
2641 return true;
2642
2643 return false;
2644}
2645
2646
2647/* Read the ending character of a range (in a bracket expression) from the
2648 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2649 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2650 Then we set the translation of all bits between the starting and
2651 ending characters (inclusive) in the compiled pattern B.
bc78d348 2652
e959bada
JB
2653 Return an error code.
2654
2655 We use these short variable names so we can use the same macros as
2656 `regex_compile' itself. */
bc78d348 2657
e959bada
JB
2658static reg_errcode_t
2659compile_range (p_ptr, pend, translate, syntax, b)
2660 const char **p_ptr, *pend;
2661 char *translate;
2662 reg_syntax_t syntax;
2663 unsigned char *b;
2664{
2665 unsigned this_char;
2666
2667 const char *p = *p_ptr;
2668 int range_start, range_end;
2669
2670 if (p == pend)
2671 return REG_ERANGE;
2672
2673 /* Even though the pattern is a signed `char *', we need to fetch
2674 with unsigned char *'s; if the high bit of the pattern character
2675 is set, the range endpoints will be negative if we fetch using a
2676 signed char *.
2677
2678 We also want to fetch the endpoints without translating them; the
2679 appropriate translation is done in the bit-setting loop below. */
2680 range_start = ((unsigned char *) p)[-2];
2681 range_end = ((unsigned char *) p)[0];
2682
2683 /* Have to increment the pointer into the pattern string, so the
2684 caller isn't still at the ending character. */
2685 (*p_ptr)++;
2686
2687 /* If the start is after the end, the range is empty. */
2688 if (range_start > range_end)
2689 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2690
2691 /* Here we see why `this_char' has to be larger than an `unsigned
2692 char' -- the range is inclusive, so if `range_end' == 0xff
2693 (assuming 8-bit characters), we would otherwise go into an infinite
2694 loop, since all characters <= 0xff. */
2695 for (this_char = range_start; this_char <= range_end; this_char++)
2696 {
2697 SET_LIST_BIT (TRANSLATE (this_char));
2698 }
2699
2700 return REG_NOERROR;
2701}
bc78d348
KB
2702\f
2703/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2704 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2705 characters can start a string that matches the pattern. This fastmap
2706 is used by re_search to skip quickly over impossible starting points.
2707
2708 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2709 area as BUFP->fastmap.
2710
2711 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2712 the pattern buffer.
2713
2714 Returns 0 if we succeed, -2 if an internal error. */
2715
2716int
2717re_compile_fastmap (bufp)
2718 struct re_pattern_buffer *bufp;
2719{
2720 int j, k;
a822d92f 2721#ifdef MATCH_MAY_ALLOCATE
bc78d348 2722 fail_stack_type fail_stack;
e959bada 2723#endif
bc78d348
KB
2724#ifndef REGEX_MALLOC
2725 char *destination;
2726#endif
2727 /* We don't push any register information onto the failure stack. */
2728 unsigned num_regs = 0;
2729
2730 register char *fastmap = bufp->fastmap;
2731 unsigned char *pattern = bufp->buffer;
2732 unsigned long size = bufp->used;
794ce2c1 2733 unsigned char *p = pattern;
bc78d348
KB
2734 register unsigned char *pend = pattern + size;
2735
2736 /* Assume that each path through the pattern can be null until
2737 proven otherwise. We set this false at the bottom of switch
2738 statement, to which we get only if a particular path doesn't
2739 match the empty string. */
2740 boolean path_can_be_null = true;
2741
2742 /* We aren't doing a `succeed_n' to begin with. */
2743 boolean succeed_n_p = false;
2744
2745 assert (fastmap != NULL && p != NULL);
2746
2747 INIT_FAIL_STACK ();
2748 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2749 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2750 bufp->can_be_null = 0;
2751
2752 while (p != pend || !FAIL_STACK_EMPTY ())
2753 {
2754 if (p == pend)
2755 {
2756 bufp->can_be_null |= path_can_be_null;
2757
2758 /* Reset for next path. */
2759 path_can_be_null = true;
2760
2761 p = fail_stack.stack[--fail_stack.avail];
2762 }
2763
2764 /* We should never be about to go beyond the end of the pattern. */
2765 assert (p < pend);
2766
2767#ifdef SWITCH_ENUM_BUG
2768 switch ((int) ((re_opcode_t) *p++))
2769#else
2770 switch ((re_opcode_t) *p++)
2771#endif
2772 {
2773
2774 /* I guess the idea here is to simply not bother with a fastmap
2775 if a backreference is used, since it's too hard to figure out
2776 the fastmap for the corresponding group. Setting
2777 `can_be_null' stops `re_search_2' from using the fastmap, so
2778 that is all we do. */
2779 case duplicate:
2780 bufp->can_be_null = 1;
2781 return 0;
2782
2783
2784 /* Following are the cases which match a character. These end
2785 with `break'. */
2786
2787 case exactn:
2788 fastmap[p[1]] = 1;
2789 break;
2790
2791
2792 case charset:
2793 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2794 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2795 fastmap[j] = 1;
2796 break;
2797
2798
2799 case charset_not:
2800 /* Chars beyond end of map must be allowed. */
2801 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2802 fastmap[j] = 1;
2803
2804 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2805 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2806 fastmap[j] = 1;
2807 break;
2808
2809
2810 case wordchar:
2811 for (j = 0; j < (1 << BYTEWIDTH); j++)
2812 if (SYNTAX (j) == Sword)
2813 fastmap[j] = 1;
2814 break;
2815
2816
2817 case notwordchar:
2818 for (j = 0; j < (1 << BYTEWIDTH); j++)
2819 if (SYNTAX (j) != Sword)
2820 fastmap[j] = 1;
2821 break;
2822
2823
2824 case anychar:
2825 /* `.' matches anything ... */
2826 for (j = 0; j < (1 << BYTEWIDTH); j++)
2827 fastmap[j] = 1;
2828
2829 /* ... except perhaps newline. */
2830 if (!(bufp->syntax & RE_DOT_NEWLINE))
2831 fastmap['\n'] = 0;
2832
2833 /* Return if we have already set `can_be_null'; if we have,
2834 then the fastmap is irrelevant. Something's wrong here. */
2835 else if (bufp->can_be_null)
2836 return 0;
2837
2838 /* Otherwise, have to check alternative paths. */
2839 break;
2840
2841
2842#ifdef emacs
2843 case syntaxspec:
2844 k = *p++;
2845 for (j = 0; j < (1 << BYTEWIDTH); j++)
2846 if (SYNTAX (j) == (enum syntaxcode) k)
2847 fastmap[j] = 1;
2848 break;
2849
2850
2851 case notsyntaxspec:
2852 k = *p++;
2853 for (j = 0; j < (1 << BYTEWIDTH); j++)
2854 if (SYNTAX (j) != (enum syntaxcode) k)
2855 fastmap[j] = 1;
2856 break;
2857
2858
2859 /* All cases after this match the empty string. These end with
2860 `continue'. */
2861
2862
2863 case before_dot:
2864 case at_dot:
2865 case after_dot:
2866 continue;
2867#endif /* not emacs */
2868
2869
2870 case no_op:
2871 case begline:
2872 case endline:
2873 case begbuf:
2874 case endbuf:
2875 case wordbound:
2876 case notwordbound:
2877 case wordbeg:
2878 case wordend:
2879 case push_dummy_failure:
2880 continue;
2881
2882
2883 case jump_n:
2884 case pop_failure_jump:
2885 case maybe_pop_jump:
2886 case jump:
2887 case jump_past_alt:
2888 case dummy_failure_jump:
2889 EXTRACT_NUMBER_AND_INCR (j, p);
2890 p += j;
2891 if (j > 0)
2892 continue;
2893
2894 /* Jump backward implies we just went through the body of a
2895 loop and matched nothing. Opcode jumped to should be
2896 `on_failure_jump' or `succeed_n'. Just treat it like an
2897 ordinary jump. For a * loop, it has pushed its failure
2898 point already; if so, discard that as redundant. */
2899 if ((re_opcode_t) *p != on_failure_jump
2900 && (re_opcode_t) *p != succeed_n)
2901 continue;
2902
2903 p++;
2904 EXTRACT_NUMBER_AND_INCR (j, p);
2905 p += j;
2906
2907 /* If what's on the stack is where we are now, pop it. */
2908 if (!FAIL_STACK_EMPTY ()
2909 && fail_stack.stack[fail_stack.avail - 1] == p)
2910 fail_stack.avail--;
2911
2912 continue;
2913
2914
2915 case on_failure_jump:
2916 case on_failure_keep_string_jump:
2917 handle_on_failure_jump:
2918 EXTRACT_NUMBER_AND_INCR (j, p);
2919
2920 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2921 end of the pattern. We don't want to push such a point,
2922 since when we restore it above, entering the switch will
2923 increment `p' past the end of the pattern. We don't need
2924 to push such a point since we obviously won't find any more
2925 fastmap entries beyond `pend'. Such a pattern can match
2926 the null string, though. */
2927 if (p + j < pend)
2928 {
2929 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2930 return -2;
2931 }
2932 else
2933 bufp->can_be_null = 1;
2934
2935 if (succeed_n_p)
2936 {
2937 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2938 succeed_n_p = false;
2939 }
2940
2941 continue;
2942
2943
2944 case succeed_n:
2945 /* Get to the number of times to succeed. */
2946 p += 2;
2947
2948 /* Increment p past the n for when k != 0. */
2949 EXTRACT_NUMBER_AND_INCR (k, p);
2950 if (k == 0)
2951 {
2952 p -= 4;
2953 succeed_n_p = true; /* Spaghetti code alert. */
2954 goto handle_on_failure_jump;
2955 }
2956 continue;
2957
2958
2959 case set_number_at:
2960 p += 4;
2961 continue;
2962
2963
2964 case start_memory:
2965 case stop_memory:
2966 p += 2;
2967 continue;
2968
2969
2970 default:
2971 abort (); /* We have listed all the cases. */
2972 } /* switch *p++ */
2973
2974 /* Getting here means we have found the possible starting
2975 characters for one path of the pattern -- and that the empty
2976 string does not match. We need not follow this path further.
2977 Instead, look at the next alternative (remembered on the
2978 stack), or quit if no more. The test at the top of the loop
2979 does these things. */
2980 path_can_be_null = false;
2981 p = pend;
2982 } /* while p */
2983
2984 /* Set `can_be_null' for the last path (also the first path, if the
2985 pattern is empty). */
2986 bufp->can_be_null |= path_can_be_null;
2987 return 0;
2988} /* re_compile_fastmap */
2989\f
2990/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2991 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2992 this memory for recording register information. STARTS and ENDS
2993 must be allocated using the malloc library routine, and must each
2994 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2995
2996 If NUM_REGS == 0, then subsequent matches should allocate their own
2997 register data.
2998
2999 Unless this function is called, the first search or match using
3000 PATTERN_BUFFER will allocate its own register data, without
3001 freeing the old data. */
3002
3003void
3004re_set_registers (bufp, regs, num_regs, starts, ends)
3005 struct re_pattern_buffer *bufp;
3006 struct re_registers *regs;
3007 unsigned num_regs;
3008 regoff_t *starts, *ends;
3009{
3010 if (num_regs)
3011 {
3012 bufp->regs_allocated = REGS_REALLOCATE;
3013 regs->num_regs = num_regs;
3014 regs->start = starts;
3015 regs->end = ends;
3016 }
3017 else
3018 {
3019 bufp->regs_allocated = REGS_UNALLOCATED;
3020 regs->num_regs = 0;
368481a5 3021 regs->start = regs->end = (regoff_t *) 0;
bc78d348
KB
3022 }
3023}
3024\f
3025/* Searching routines. */
3026
3027/* Like re_search_2, below, but only one string is specified, and
3028 doesn't let you say where to stop matching. */
3029
3030int
3031re_search (bufp, string, size, startpos, range, regs)
3032 struct re_pattern_buffer *bufp;
3033 const char *string;
3034 int size, startpos, range;
3035 struct re_registers *regs;
3036{
3037 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3038 regs, size);
3039}
3040
3041
3042/* Using the compiled pattern in BUFP->buffer, first tries to match the
3043 virtual concatenation of STRING1 and STRING2, starting first at index
3044 STARTPOS, then at STARTPOS + 1, and so on.
3045
3046 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3047
3048 RANGE is how far to scan while trying to match. RANGE = 0 means try
3049 only at STARTPOS; in general, the last start tried is STARTPOS +
3050 RANGE.
3051
3052 In REGS, return the indices of the virtual concatenation of STRING1
3053 and STRING2 that matched the entire BUFP->buffer and its contained
3054 subexpressions.
3055
3056 Do not consider matching one past the index STOP in the virtual
3057 concatenation of STRING1 and STRING2.
3058
3059 We return either the position in the strings at which the match was
3060 found, -1 if no match, or -2 if error (such as failure
3061 stack overflow). */
3062
3063int
3064re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3065 struct re_pattern_buffer *bufp;
3066 const char *string1, *string2;
3067 int size1, size2;
3068 int startpos;
3069 int range;
3070 struct re_registers *regs;
3071 int stop;
3072{
3073 int val;
3074 register char *fastmap = bufp->fastmap;
3075 register char *translate = bufp->translate;
3076 int total_size = size1 + size2;
3077 int endpos = startpos + range;
3078
3079 /* Check for out-of-range STARTPOS. */
3080 if (startpos < 0 || startpos > total_size)
3081 return -1;
3082
3083 /* Fix up RANGE if it might eventually take us outside
3084 the virtual concatenation of STRING1 and STRING2. */
3085 if (endpos < -1)
3086 range = -1 - startpos;
3087 else if (endpos > total_size)
3088 range = total_size - startpos;
3089
bc78d348 3090 /* If the search isn't to be a backwards one, don't waste time in a
9114e279
KB
3091 search for a pattern that must be anchored. */
3092 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
bc78d348
KB
3093 {
3094 if (startpos > 0)
3095 return -1;
3096 else
3097 range = 1;
3098 }
3099
9114e279
KB
3100 /* Update the fastmap now if not correct already. */
3101 if (fastmap && !bufp->fastmap_accurate)
3102 if (re_compile_fastmap (bufp) == -2)
3103 return -2;
3104
3105 /* Loop through the string, looking for a place to start matching. */
bc78d348
KB
3106 for (;;)
3107 {
3108 /* If a fastmap is supplied, skip quickly over characters that
3109 cannot be the start of a match. If the pattern can match the
3110 null string, however, we don't need to skip characters; we want
3111 the first null string. */
3112 if (fastmap && startpos < total_size && !bufp->can_be_null)
3113 {
3114 if (range > 0) /* Searching forwards. */
3115 {
3116 register const char *d;
3117 register int lim = 0;
3118 int irange = range;
3119
3120 if (startpos < size1 && startpos + range >= size1)
3121 lim = range - (size1 - startpos);
3122
3123 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3124
3125 /* Written out as an if-else to avoid testing `translate'
3126 inside the loop. */
3127 if (translate)
3128 while (range > lim
11a364d9
JB
3129 && !fastmap[(unsigned char)
3130 translate[(unsigned char) *d++]])
bc78d348
KB
3131 range--;
3132 else
3133 while (range > lim && !fastmap[(unsigned char) *d++])
3134 range--;
3135
3136 startpos += irange - range;
3137 }
3138 else /* Searching backwards. */
3139 {
3140 register char c = (size1 == 0 || startpos >= size1
3141 ? string2[startpos - size1]
3142 : string1[startpos]);
3143
9114e279 3144 if (!fastmap[(unsigned char) TRANSLATE (c)])
bc78d348
KB
3145 goto advance;
3146 }
3147 }
3148
3149 /* If can't match the null string, and that's all we have left, fail. */
3150 if (range >= 0 && startpos == total_size && fastmap
3151 && !bufp->can_be_null)
3152 return -1;
3153
f765858e
KH
3154 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3155 startpos, regs, stop);
3156 alloca (0);
3157
bc78d348
KB
3158 if (val >= 0)
3159 return startpos;
3160
3161 if (val == -2)
3162 return -2;
3163
3164 advance:
3165 if (!range)
3166 break;
3167 else if (range > 0)
3168 {
3169 range--;
3170 startpos++;
3171 }
3172 else
3173 {
3174 range++;
3175 startpos--;
3176 }
3177 }
3178 return -1;
3179} /* re_search_2 */
3180\f
3181/* Declarations and macros for re_match_2. */
3182
3183static int bcmp_translate ();
3184static boolean alt_match_null_string_p (),
3185 common_op_match_null_string_p (),
3186 group_match_null_string_p ();
3187
bc78d348
KB
3188/* This converts PTR, a pointer into one of the search strings `string1'
3189 and `string2' into an offset from the beginning of that string. */
794ce2c1
RS
3190#define POINTER_TO_OFFSET(ptr) \
3191 (FIRST_STRING_P (ptr) \
3192 ? ((regoff_t) ((ptr) - string1)) \
3193 : ((regoff_t) ((ptr) - string2 + size1)))
bc78d348 3194
bc78d348
KB
3195/* Macros for dealing with the split strings in re_match_2. */
3196
3197#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3198
3199/* Call before fetching a character with *d. This switches over to
3200 string2 if necessary. */
3201#define PREFETCH() \
3202 while (d == dend) \
3203 { \
3204 /* End of string2 => fail. */ \
3205 if (dend == end_match_2) \
3206 goto fail; \
3207 /* End of string1 => advance to string2. */ \
3208 d = string2; \
3209 dend = end_match_2; \
3210 }
3211
3212
3213/* Test if at very beginning or at very end of the virtual concatenation
3214 of `string1' and `string2'. If only one string, it's `string2'. */
9114e279
KB
3215#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3216#define AT_STRINGS_END(d) ((d) == end2)
bc78d348
KB
3217
3218
3219/* Test if D points to a character which is word-constituent. We have
3220 two special cases to check for: if past the end of string1, look at
3221 the first character in string2; and if before the beginning of
9114e279
KB
3222 string2, look at the last character in string1. */
3223#define WORDCHAR_P(d) \
bc78d348 3224 (SYNTAX ((d) == end1 ? *string2 \
9114e279
KB
3225 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3226 == Sword)
bc78d348
KB
3227
3228/* Test if the character before D and the one at D differ with respect
3229 to being word-constituent. */
3230#define AT_WORD_BOUNDARY(d) \
9114e279
KB
3231 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3232 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
bc78d348
KB
3233
3234
3235/* Free everything we malloc. */
a822d92f 3236#ifdef MATCH_MAY_ALLOCATE
bc78d348
KB
3237#ifdef REGEX_MALLOC
3238#define FREE_VAR(var) if (var) free (var); var = NULL
3239#define FREE_VARIABLES() \
3240 do { \
3241 FREE_VAR (fail_stack.stack); \
3242 FREE_VAR (regstart); \
3243 FREE_VAR (regend); \
3244 FREE_VAR (old_regstart); \
3245 FREE_VAR (old_regend); \
3246 FREE_VAR (best_regstart); \
3247 FREE_VAR (best_regend); \
3248 FREE_VAR (reg_info); \
3249 FREE_VAR (reg_dummy); \
3250 FREE_VAR (reg_info_dummy); \
3251 } while (0)
3252#else /* not REGEX_MALLOC */
f765858e
KH
3253/* This used to do alloca (0), but now we do that in the caller. */
3254#define FREE_VARIABLES() /* Nothing */
bc78d348 3255#endif /* not REGEX_MALLOC */
a822d92f
JB
3256#else
3257#define FREE_VARIABLES() /* Do nothing! */
3258#endif /* not MATCH_MAY_ALLOCATE */
bc78d348
KB
3259
3260/* These values must meet several constraints. They must not be valid
3261 register values; since we have a limit of 255 registers (because
3262 we use only one byte in the pattern for the register number), we can
3263 use numbers larger than 255. They must differ by 1, because of
3264 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3265 be larger than the value for the highest register, so we do not try
3266 to actually save any registers when none are active. */
3267#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3268#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3269\f
3270/* Matching routines. */
3271
3272#ifndef emacs /* Emacs never uses this. */
3273/* re_match is like re_match_2 except it takes only a single string. */
3274
3275int
3276re_match (bufp, string, size, pos, regs)
3277 struct re_pattern_buffer *bufp;
3278 const char *string;
3279 int size, pos;
3280 struct re_registers *regs;
f765858e
KH
3281{
3282 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3283 pos, regs, size);
3284 alloca (0);
3285 return result;
bc78d348
KB
3286}
3287#endif /* not emacs */
3288
3289
3290/* re_match_2 matches the compiled pattern in BUFP against the
3291 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3292 and SIZE2, respectively). We start matching at POS, and stop
3293 matching at STOP.
3294
3295 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3296 store offsets for the substring each group matched in REGS. See the
3297 documentation for exactly how many groups we fill.
3298
3299 We return -1 if no match, -2 if an internal error (such as the
3300 failure stack overflowing). Otherwise, we return the length of the
3301 matched substring. */
3302
3303int
3304re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3305 struct re_pattern_buffer *bufp;
3306 const char *string1, *string2;
3307 int size1, size2;
3308 int pos;
3309 struct re_registers *regs;
3310 int stop;
f765858e
KH
3311{
3312 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3313 pos, regs, stop);
3314 alloca (0);
3315 return result;
3316}
3317
3318/* This is a separate function so that we can force an alloca cleanup
3319 afterwards. */
3320static int
3321re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3322 struct re_pattern_buffer *bufp;
3323 const char *string1, *string2;
3324 int size1, size2;
3325 int pos;
3326 struct re_registers *regs;
3327 int stop;
bc78d348
KB
3328{
3329 /* General temporaries. */
3330 int mcnt;
3331 unsigned char *p1;
3332
3333 /* Just past the end of the corresponding string. */
3334 const char *end1, *end2;
3335
3336 /* Pointers into string1 and string2, just past the last characters in
3337 each to consider matching. */
3338 const char *end_match_1, *end_match_2;
3339
3340 /* Where we are in the data, and the end of the current string. */
3341 const char *d, *dend;
3342
3343 /* Where we are in the pattern, and the end of the pattern. */
3344 unsigned char *p = bufp->buffer;
3345 register unsigned char *pend = p + bufp->used;
3346
b391d2bf
JM
3347 /* Mark the opcode just after a start_memory, so we can test for an
3348 empty subpattern when we get to the stop_memory. */
3349 unsigned char *just_past_start_mem = 0;
3350
bc78d348
KB
3351 /* We use this to map every character in the string. */
3352 char *translate = bufp->translate;
3353
3354 /* Failure point stack. Each place that can handle a failure further
3355 down the line pushes a failure point on this stack. It consists of
3356 restart, regend, and reg_info for all registers corresponding to
3357 the subexpressions we're currently inside, plus the number of such
3358 registers, and, finally, two char *'s. The first char * is where
3359 to resume scanning the pattern; the second one is where to resume
3360 scanning the strings. If the latter is zero, the failure point is
3361 a ``dummy''; if a failure happens and the failure point is a dummy,
3362 it gets discarded and the next next one is tried. */
a822d92f 3363#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
bc78d348 3364 fail_stack_type fail_stack;
e959bada 3365#endif
bc78d348
KB
3366#ifdef DEBUG
3367 static unsigned failure_id = 0;
9114e279 3368 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
bc78d348
KB
3369#endif
3370
3371 /* We fill all the registers internally, independent of what we
3372 return, for use in backreferences. The number here includes
3373 an element for register zero. */
3374 unsigned num_regs = bufp->re_nsub + 1;
3375
3376 /* The currently active registers. */
3377 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3378 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3379
3380 /* Information on the contents of registers. These are pointers into
3381 the input strings; they record just what was matched (on this
3382 attempt) by a subexpression part of the pattern, that is, the
3383 regnum-th regstart pointer points to where in the pattern we began
3384 matching and the regnum-th regend points to right after where we
3385 stopped matching the regnum-th subexpression. (The zeroth register
3386 keeps track of what the whole pattern matches.) */
a822d92f 3387#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348 3388 const char **regstart, **regend;
e959bada 3389#endif
bc78d348
KB
3390
3391 /* If a group that's operated upon by a repetition operator fails to
3392 match anything, then the register for its start will need to be
3393 restored because it will have been set to wherever in the string we
3394 are when we last see its open-group operator. Similarly for a
3395 register's end. */
a822d92f 3396#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348 3397 const char **old_regstart, **old_regend;
e959bada 3398#endif
bc78d348
KB
3399
3400 /* The is_active field of reg_info helps us keep track of which (possibly
3401 nested) subexpressions we are currently in. The matched_something
3402 field of reg_info[reg_num] helps us tell whether or not we have
3403 matched any of the pattern so far this time through the reg_num-th
3404 subexpression. These two fields get reset each time through any
3405 loop their register is in. */
a822d92f 3406#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
bc78d348 3407 register_info_type *reg_info;
e959bada 3408#endif
bc78d348
KB
3409
3410 /* The following record the register info as found in the above
3411 variables when we find a match better than any we've seen before.
3412 This happens as we backtrack through the failure points, which in
3413 turn happens only if we have not yet matched the entire string. */
3414 unsigned best_regs_set = false;
a822d92f 3415#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348 3416 const char **best_regstart, **best_regend;
e959bada 3417#endif
bc78d348
KB
3418
3419 /* Logically, this is `best_regend[0]'. But we don't want to have to
3420 allocate space for that if we're not allocating space for anything
3421 else (see below). Also, we never need info about register 0 for
3422 any of the other register vectors, and it seems rather a kludge to
3423 treat `best_regend' differently than the rest. So we keep track of
3424 the end of the best match so far in a separate variable. We
3425 initialize this to NULL so that when we backtrack the first time
3426 and need to test it, it's not garbage. */
3427 const char *match_end = NULL;
3428
3429 /* Used when we pop values we don't care about. */
a822d92f 3430#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348
KB
3431 const char **reg_dummy;
3432 register_info_type *reg_info_dummy;
e959bada 3433#endif
bc78d348
KB
3434
3435#ifdef DEBUG
3436 /* Counts the total number of registers pushed. */
3437 unsigned num_regs_pushed = 0;
3438#endif
3439
3440 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3441
3442 INIT_FAIL_STACK ();
3443
a822d92f 3444#ifdef MATCH_MAY_ALLOCATE
bc78d348
KB
3445 /* Do not bother to initialize all the register variables if there are
3446 no groups in the pattern, as it takes a fair amount of time. If
3447 there are groups, we include space for register 0 (the whole
3448 pattern), even though we never use it, since it simplifies the
3449 array indexing. We should fix this. */
3450 if (bufp->re_nsub)
3451 {
3452 regstart = REGEX_TALLOC (num_regs, const char *);
3453 regend = REGEX_TALLOC (num_regs, const char *);
3454 old_regstart = REGEX_TALLOC (num_regs, const char *);
3455 old_regend = REGEX_TALLOC (num_regs, const char *);
3456 best_regstart = REGEX_TALLOC (num_regs, const char *);
3457 best_regend = REGEX_TALLOC (num_regs, const char *);
3458 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3459 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3460 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3461
3462 if (!(regstart && regend && old_regstart && old_regend && reg_info
3463 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3464 {
3465 FREE_VARIABLES ();
3466 return -2;
3467 }
3468 }
e959bada 3469#if defined (REGEX_MALLOC)
bc78d348
KB
3470 else
3471 {
3472 /* We must initialize all our variables to NULL, so that
9114e279 3473 `FREE_VARIABLES' doesn't try to free them. */
bc78d348
KB
3474 regstart = regend = old_regstart = old_regend = best_regstart
3475 = best_regend = reg_dummy = NULL;
3476 reg_info = reg_info_dummy = (register_info_type *) NULL;
3477 }
3478#endif /* REGEX_MALLOC */
a822d92f 3479#endif /* MATCH_MAY_ALLOCATE */
bc78d348
KB
3480
3481 /* The starting position is bogus. */
3482 if (pos < 0 || pos > size1 + size2)
3483 {
3484 FREE_VARIABLES ();
3485 return -1;
3486 }
3487
3488 /* Initialize subexpression text positions to -1 to mark ones that no
3489 start_memory/stop_memory has been seen for. Also initialize the
3490 register information struct. */
3491 for (mcnt = 1; mcnt < num_regs; mcnt++)
3492 {
3493 regstart[mcnt] = regend[mcnt]
3494 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3495
3496 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3497 IS_ACTIVE (reg_info[mcnt]) = 0;
3498 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3499 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3500 }
3501
3502 /* We move `string1' into `string2' if the latter's empty -- but not if
3503 `string1' is null. */
3504 if (size2 == 0 && string1 != NULL)
3505 {
3506 string2 = string1;
3507 size2 = size1;
3508 string1 = 0;
3509 size1 = 0;
3510 }
3511 end1 = string1 + size1;
3512 end2 = string2 + size2;
3513
3514 /* Compute where to stop matching, within the two strings. */
3515 if (stop <= size1)
3516 {
3517 end_match_1 = string1 + stop;
3518 end_match_2 = string2;
3519 }
3520 else
3521 {
3522 end_match_1 = end1;
3523 end_match_2 = string2 + stop - size1;
3524 }
3525
3526 /* `p' scans through the pattern as `d' scans through the data.
3527 `dend' is the end of the input string that `d' points within. `d'
3528 is advanced into the following input string whenever necessary, but
3529 this happens before fetching; therefore, at the beginning of the
3530 loop, `d' can be pointing at the end of a string, but it cannot
3531 equal `string2'. */
3532 if (size1 > 0 && pos <= size1)
3533 {
3534 d = string1 + pos;
3535 dend = end_match_1;
3536 }
3537 else
3538 {
3539 d = string2 + pos - size1;
3540 dend = end_match_2;
3541 }
3542
3543 DEBUG_PRINT1 ("The compiled pattern is: ");
3544 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3545 DEBUG_PRINT1 ("The string to match is: `");
3546 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3547 DEBUG_PRINT1 ("'\n");
3548
3549 /* This loops over pattern commands. It exits by returning from the
3550 function if the match is complete, or it drops through if the match
3551 fails at this starting point in the input data. */
3552 for (;;)
3553 {
3554 DEBUG_PRINT2 ("\n0x%x: ", p);
3555
3556 if (p == pend)
3557 { /* End of pattern means we might have succeeded. */
9114e279
KB
3558 DEBUG_PRINT1 ("end of pattern ... ");
3559
3560 /* If we haven't matched the entire string, and we want the
3561 longest match, try backtracking. */
bc78d348
KB
3562 if (d != end_match_2)
3563 {
3564 DEBUG_PRINT1 ("backtracking.\n");
3565
3566 if (!FAIL_STACK_EMPTY ())
3567 { /* More failure points to try. */
3568 boolean same_str_p = (FIRST_STRING_P (match_end)
3569 == MATCHING_IN_FIRST_STRING);
3570
3571 /* If exceeds best match so far, save it. */
3572 if (!best_regs_set
3573 || (same_str_p && d > match_end)
3574 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3575 {
3576 best_regs_set = true;
3577 match_end = d;
3578
3579 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3580
3581 for (mcnt = 1; mcnt < num_regs; mcnt++)
3582 {
3583 best_regstart[mcnt] = regstart[mcnt];
3584 best_regend[mcnt] = regend[mcnt];
3585 }
3586 }
3587 goto fail;
3588 }
3589
3590 /* If no failure points, don't restore garbage. */
3591 else if (best_regs_set)
3592 {
3593 restore_best_regs:
3594 /* Restore best match. It may happen that `dend ==
3595 end_match_1' while the restored d is in string2.
3596 For example, the pattern `x.*y.*z' against the
3597 strings `x-' and `y-z-', if the two strings are
3598 not consecutive in memory. */
9114e279
KB
3599 DEBUG_PRINT1 ("Restoring best registers.\n");
3600
bc78d348
KB
3601 d = match_end;
3602 dend = ((d >= string1 && d <= end1)
3603 ? end_match_1 : end_match_2);
3604
3605 for (mcnt = 1; mcnt < num_regs; mcnt++)
3606 {
3607 regstart[mcnt] = best_regstart[mcnt];
3608 regend[mcnt] = best_regend[mcnt];
3609 }
3610 }
3611 } /* d != end_match_2 */
3612
9114e279 3613 DEBUG_PRINT1 ("Accepting match.\n");
bc78d348
KB
3614
3615 /* If caller wants register contents data back, do it. */
3616 if (regs && !bufp->no_sub)
3617 {
3618 /* Have the register data arrays been allocated? */
3619 if (bufp->regs_allocated == REGS_UNALLOCATED)
3620 { /* No. So allocate them with malloc. We need one
3621 extra element beyond `num_regs' for the `-1' marker
3622 GNU code uses. */
3623 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3624 regs->start = TALLOC (regs->num_regs, regoff_t);
3625 regs->end = TALLOC (regs->num_regs, regoff_t);
3626 if (regs->start == NULL || regs->end == NULL)
3627 return -2;
3628 bufp->regs_allocated = REGS_REALLOCATE;
3629 }
3630 else if (bufp->regs_allocated == REGS_REALLOCATE)
3631 { /* Yes. If we need more elements than were already
3632 allocated, reallocate them. If we need fewer, just
3633 leave it alone. */
3634 if (regs->num_regs < num_regs + 1)
3635 {
3636 regs->num_regs = num_regs + 1;
3637 RETALLOC (regs->start, regs->num_regs, regoff_t);
3638 RETALLOC (regs->end, regs->num_regs, regoff_t);
3639 if (regs->start == NULL || regs->end == NULL)
3640 return -2;
3641 }
3642 }
3643 else
a1dd004b
JB
3644 {
3645 /* These braces fend off a "empty body in an else-statement"
3646 warning under GCC when assert expands to nothing. */
3647 assert (bufp->regs_allocated == REGS_FIXED);
3648 }
bc78d348
KB
3649
3650 /* Convert the pointer data in `regstart' and `regend' to
3651 indices. Register zero has to be set differently,
3652 since we haven't kept track of any info for it. */
3653 if (regs->num_regs > 0)
3654 {
3655 regs->start[0] = pos;
794ce2c1
RS
3656 regs->end[0] = (MATCHING_IN_FIRST_STRING
3657 ? ((regoff_t) (d - string1))
3658 : ((regoff_t) (d - string2 + size1)));
bc78d348
KB
3659 }
3660
3661 /* Go through the first `min (num_regs, regs->num_regs)'
3662 registers, since that is all we initialized. */
3663 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3664 {
3665 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3666 regs->start[mcnt] = regs->end[mcnt] = -1;
3667 else
3668 {
794ce2c1
RS
3669 regs->start[mcnt]
3670 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3671 regs->end[mcnt]
3672 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
bc78d348
KB
3673 }
3674 }
3675
3676 /* If the regs structure we return has more elements than
3677 were in the pattern, set the extra elements to -1. If
3678 we (re)allocated the registers, this is the case,
3679 because we always allocate enough to have at least one
3680 -1 at the end. */
3681 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3682 regs->start[mcnt] = regs->end[mcnt] = -1;
3683 } /* regs && !bufp->no_sub */
3684
3685 FREE_VARIABLES ();
9114e279
KB
3686 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3687 nfailure_points_pushed, nfailure_points_popped,
3688 nfailure_points_pushed - nfailure_points_popped);
3689 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
bc78d348
KB
3690
3691 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3692 ? string1
3693 : string2 - size1);
3694
3695 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3696
3697 return mcnt;
3698 }
3699
3700 /* Otherwise match next pattern command. */
3701#ifdef SWITCH_ENUM_BUG
3702 switch ((int) ((re_opcode_t) *p++))
3703#else
3704 switch ((re_opcode_t) *p++)
3705#endif
3706 {
3707 /* Ignore these. Used to ignore the n of succeed_n's which
3708 currently have n == 0. */
3709 case no_op:
3710 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3711 break;
3712
3713
3714 /* Match the next n pattern characters exactly. The following
3715 byte in the pattern defines n, and the n bytes after that
3716 are the characters to match. */
3717 case exactn:
3718 mcnt = *p++;
3719 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3720
3721 /* This is written out as an if-else so we don't waste time
3722 testing `translate' inside the loop. */
3723 if (translate)
3724 {
3725 do
3726 {
3727 PREFETCH ();
3728 if (translate[(unsigned char) *d++] != (char) *p++)
3729 goto fail;
3730 }
3731 while (--mcnt);
3732 }
3733 else
3734 {
3735 do
3736 {
3737 PREFETCH ();
3738 if (*d++ != (char) *p++) goto fail;
3739 }
3740 while (--mcnt);
3741 }
3742 SET_REGS_MATCHED ();
3743 break;
3744
3745
3746 /* Match any character except possibly a newline or a null. */
3747 case anychar:
3748 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3749
3750 PREFETCH ();
3751
3752 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3753 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3754 goto fail;
3755
3756 SET_REGS_MATCHED ();
3757 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3758 d++;
3759 break;
3760
3761
3762 case charset:
3763 case charset_not:
3764 {
3765 register unsigned char c;
3766 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3767
3768 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3769
3770 PREFETCH ();
3771 c = TRANSLATE (*d); /* The character to match. */
3772
3773 /* Cast to `unsigned' instead of `unsigned char' in case the
3774 bit list is a full 32 bytes long. */
3775 if (c < (unsigned) (*p * BYTEWIDTH)
3776 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3777 not = !not;
3778
3779 p += 1 + *p;
3780
3781 if (!not) goto fail;
3782
3783 SET_REGS_MATCHED ();
3784 d++;
3785 break;
3786 }
3787
3788
3789 /* The beginning of a group is represented by start_memory.
3790 The arguments are the register number in the next byte, and the
3791 number of groups inner to this one in the next. The text
3792 matched within the group is recorded (in the internal
3793 registers data structure) under the register number. */
3794 case start_memory:
3795 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3796
3797 /* Find out if this group can match the empty string. */
3798 p1 = p; /* To send to group_match_null_string_p. */
3799
3800 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3801 REG_MATCH_NULL_STRING_P (reg_info[*p])
3802 = group_match_null_string_p (&p1, pend, reg_info);
3803
3804 /* Save the position in the string where we were the last time
3805 we were at this open-group operator in case the group is
3806 operated upon by a repetition operator, e.g., with `(a*)*b'
3807 against `ab'; then we want to ignore where we are now in
3808 the string in case this attempt to match fails. */
3809 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3810 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3811 : regstart[*p];
3812 DEBUG_PRINT2 (" old_regstart: %d\n",
3813 POINTER_TO_OFFSET (old_regstart[*p]));
3814
3815 regstart[*p] = d;
3816 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3817
3818 IS_ACTIVE (reg_info[*p]) = 1;
3819 MATCHED_SOMETHING (reg_info[*p]) = 0;
3820
3821 /* This is the new highest active register. */
3822 highest_active_reg = *p;
3823
3824 /* If nothing was active before, this is the new lowest active
3825 register. */
3826 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3827 lowest_active_reg = *p;
3828
3829 /* Move past the register number and inner group count. */
3830 p += 2;
b391d2bf 3831 just_past_start_mem = p;
bc78d348
KB
3832 break;
3833
3834
3835 /* The stop_memory opcode represents the end of a group. Its
3836 arguments are the same as start_memory's: the register
3837 number, and the number of inner groups. */
3838 case stop_memory:
3839 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3840
3841 /* We need to save the string position the last time we were at
3842 this close-group operator in case the group is operated
3843 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3844 against `aba'; then we want to ignore where we are now in
3845 the string in case this attempt to match fails. */
3846 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3847 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3848 : regend[*p];
3849 DEBUG_PRINT2 (" old_regend: %d\n",
3850 POINTER_TO_OFFSET (old_regend[*p]));
3851
3852 regend[*p] = d;
3853 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3854
3855 /* This register isn't active anymore. */
3856 IS_ACTIVE (reg_info[*p]) = 0;
3857
3858 /* If this was the only register active, nothing is active
3859 anymore. */
3860 if (lowest_active_reg == highest_active_reg)
3861 {
3862 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3863 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3864 }
3865 else
3866 { /* We must scan for the new highest active register, since
3867 it isn't necessarily one less than now: consider
3868 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3869 new highest active register is 1. */
3870 unsigned char r = *p - 1;
3871 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3872 r--;
3873
3874 /* If we end up at register zero, that means that we saved
3875 the registers as the result of an `on_failure_jump', not
3876 a `start_memory', and we jumped to past the innermost
3877 `stop_memory'. For example, in ((.)*) we save
3878 registers 1 and 2 as a result of the *, but when we pop
3879 back to the second ), we are at the stop_memory 1.
3880 Thus, nothing is active. */
3881 if (r == 0)
3882 {
3883 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3884 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3885 }
3886 else
3887 highest_active_reg = r;
3888 }
3889
3890 /* If just failed to match something this time around with a
3891 group that's operated on by a repetition operator, try to
9114e279 3892 force exit from the ``loop'', and restore the register
bc78d348
KB
3893 information for this group that we had before trying this
3894 last match. */
3895 if ((!MATCHED_SOMETHING (reg_info[*p])
b391d2bf 3896 || just_past_start_mem == p - 1)
bc78d348
KB
3897 && (p + 2) < pend)
3898 {
3899 boolean is_a_jump_n = false;
3900
3901 p1 = p + 2;
3902 mcnt = 0;
3903 switch ((re_opcode_t) *p1++)
3904 {
3905 case jump_n:
3906 is_a_jump_n = true;
3907 case pop_failure_jump:
3908 case maybe_pop_jump:
3909 case jump:
3910 case dummy_failure_jump:
3911 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3912 if (is_a_jump_n)
3913 p1 += 2;
3914 break;
3915
3916 default:
3917 /* do nothing */ ;
3918 }
3919 p1 += mcnt;
3920
3921 /* If the next operation is a jump backwards in the pattern
3922 to an on_failure_jump right before the start_memory
3923 corresponding to this stop_memory, exit from the loop
3924 by forcing a failure after pushing on the stack the
3925 on_failure_jump's jump in the pattern, and d. */
3926 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3927 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3928 {
3929 /* If this group ever matched anything, then restore
3930 what its registers were before trying this last
3931 failed match, e.g., with `(a*)*b' against `ab' for
3932 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3933 against `aba' for regend[3].
3934
3935 Also restore the registers for inner groups for,
3936 e.g., `((a*)(b*))*' against `aba' (register 3 would
3937 otherwise get trashed). */
3938
3939 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3940 {
3941 unsigned r;
3942
3943 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3944
3945 /* Restore this and inner groups' (if any) registers. */
3946 for (r = *p; r < *p + *(p + 1); r++)
3947 {
3948 regstart[r] = old_regstart[r];
3949
3950 /* xx why this test? */
3951 if ((int) old_regend[r] >= (int) regstart[r])
3952 regend[r] = old_regend[r];
3953 }
3954 }
3955 p1++;
3956 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3957 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3958
3959 goto fail;
3960 }
3961 }
3962
3963 /* Move past the register number and the inner group count. */
3964 p += 2;
3965 break;
3966
3967
3968 /* \<digit> has been turned into a `duplicate' command which is
3969 followed by the numeric value of <digit> as the register number. */
3970 case duplicate:
3971 {
3972 register const char *d2, *dend2;
3973 int regno = *p++; /* Get which register to match against. */
3974 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3975
3976 /* Can't back reference a group which we've never matched. */
3977 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3978 goto fail;
3979
3980 /* Where in input to try to start matching. */
3981 d2 = regstart[regno];
3982
3983 /* Where to stop matching; if both the place to start and
3984 the place to stop matching are in the same string, then
3985 set to the place to stop, otherwise, for now have to use
3986 the end of the first string. */
3987
3988 dend2 = ((FIRST_STRING_P (regstart[regno])
3989 == FIRST_STRING_P (regend[regno]))
3990 ? regend[regno] : end_match_1);
3991 for (;;)
3992 {
3993 /* If necessary, advance to next segment in register
3994 contents. */
3995 while (d2 == dend2)
3996 {
3997 if (dend2 == end_match_2) break;
3998 if (dend2 == regend[regno]) break;
3999
4000 /* End of string1 => advance to string2. */
4001 d2 = string2;
4002 dend2 = regend[regno];
4003 }
4004 /* At end of register contents => success */
4005 if (d2 == dend2) break;
4006
4007 /* If necessary, advance to next segment in data. */
4008 PREFETCH ();
4009
4010 /* How many characters left in this segment to match. */
4011 mcnt = dend - d;
4012
4013 /* Want how many consecutive characters we can match in
4014 one shot, so, if necessary, adjust the count. */
4015 if (mcnt > dend2 - d2)
4016 mcnt = dend2 - d2;
4017
4018 /* Compare that many; failure if mismatch, else move
4019 past them. */
4020 if (translate
4021 ? bcmp_translate (d, d2, mcnt, translate)
4022 : bcmp (d, d2, mcnt))
4023 goto fail;
4024 d += mcnt, d2 += mcnt;
4025 }
4026 }
4027 break;
4028
4029
4030 /* begline matches the empty string at the beginning of the string
4031 (unless `not_bol' is set in `bufp'), and, if
4032 `newline_anchor' is set, after newlines. */
4033 case begline:
4034 DEBUG_PRINT1 ("EXECUTING begline.\n");
4035
9114e279 4036 if (AT_STRINGS_BEG (d))
bc78d348
KB
4037 {
4038 if (!bufp->not_bol) break;
4039 }
4040 else if (d[-1] == '\n' && bufp->newline_anchor)
4041 {
4042 break;
4043 }
4044 /* In all other cases, we fail. */
4045 goto fail;
4046
4047
4048 /* endline is the dual of begline. */
4049 case endline:
4050 DEBUG_PRINT1 ("EXECUTING endline.\n");
4051
9114e279 4052 if (AT_STRINGS_END (d))
bc78d348
KB
4053 {
4054 if (!bufp->not_eol) break;
4055 }
4056
4057 /* We have to ``prefetch'' the next character. */
4058 else if ((d == end1 ? *string2 : *d) == '\n'
4059 && bufp->newline_anchor)
4060 {
4061 break;
4062 }
4063 goto fail;
4064
4065
4066 /* Match at the very beginning of the data. */
4067 case begbuf:
4068 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
9114e279 4069 if (AT_STRINGS_BEG (d))
bc78d348
KB
4070 break;
4071 goto fail;
4072
4073
4074 /* Match at the very end of the data. */
4075 case endbuf:
4076 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
9114e279 4077 if (AT_STRINGS_END (d))
bc78d348
KB
4078 break;
4079 goto fail;
4080
4081
4082 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4083 pushes NULL as the value for the string on the stack. Then
4084 `pop_failure_point' will keep the current value for the
4085 string, instead of restoring it. To see why, consider
4086 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4087 then the . fails against the \n. But the next thing we want
4088 to do is match the \n against the \n; if we restored the
4089 string value, we would be back at the foo.
4090
4091 Because this is used only in specific cases, we don't need to
4092 check all the things that `on_failure_jump' does, to make
4093 sure the right things get saved on the stack. Hence we don't
4094 share its code. The only reason to push anything on the
4095 stack at all is that otherwise we would have to change
4096 `anychar's code to do something besides goto fail in this
4097 case; that seems worse than this. */
4098 case on_failure_keep_string_jump:
4099 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4100
4101 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4102 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4103
4104 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4105 break;
4106
4107
4108 /* Uses of on_failure_jump:
4109
4110 Each alternative starts with an on_failure_jump that points
4111 to the beginning of the next alternative. Each alternative
4112 except the last ends with a jump that in effect jumps past
4113 the rest of the alternatives. (They really jump to the
4114 ending jump of the following alternative, because tensioning
4115 these jumps is a hassle.)
4116
4117 Repeats start with an on_failure_jump that points past both
4118 the repetition text and either the following jump or
4119 pop_failure_jump back to this on_failure_jump. */
4120 case on_failure_jump:
4121 on_failure:
4122 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4123
4124 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4125 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4126
4127 /* If this on_failure_jump comes right before a group (i.e.,
4128 the original * applied to a group), save the information
4129 for that group and all inner ones, so that if we fail back
4130 to this point, the group's information will be correct.
9114e279 4131 For example, in \(a*\)*\1, we need the preceding group,
bc78d348
KB
4132 and in \(\(a*\)b*\)\2, we need the inner group. */
4133
4134 /* We can't use `p' to check ahead because we push
4135 a failure point to `p + mcnt' after we do this. */
4136 p1 = p;
4137
4138 /* We need to skip no_op's before we look for the
4139 start_memory in case this on_failure_jump is happening as
4140 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4141 against aba. */
4142 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4143 p1++;
4144
4145 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4146 {
4147 /* We have a new highest active register now. This will
4148 get reset at the start_memory we are about to get to,
4149 but we will have saved all the registers relevant to
4150 this repetition op, as described above. */
4151 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4152 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4153 lowest_active_reg = *(p1 + 1);
4154 }
4155
4156 DEBUG_PRINT1 (":\n");
4157 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4158 break;
4159
4160
9114e279
KB
4161 /* A smart repeat ends with `maybe_pop_jump'.
4162 We change it to either `pop_failure_jump' or `jump'. */
bc78d348
KB
4163 case maybe_pop_jump:
4164 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4165 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4166 {
4167 register unsigned char *p2 = p;
4168
4169 /* Compare the beginning of the repeat with what in the
4170 pattern follows its end. If we can establish that there
4171 is nothing that they would both match, i.e., that we
4172 would have to backtrack because of (as in, e.g., `a*a')
4173 then we can change to pop_failure_jump, because we'll
4174 never have to backtrack.
4175
4176 This is not true in the case of alternatives: in
4177 `(a|ab)*' we do need to backtrack to the `ab' alternative
4178 (e.g., if the string was `ab'). But instead of trying to
4179 detect that here, the alternative has put on a dummy
4180 failure point which is what we will end up popping. */
4181
4f9d3ad8
RS
4182 /* Skip over open/close-group commands.
4183 If what follows this loop is a ...+ construct,
4184 look at what begins its body, since we will have to
4185 match at least one of that. */
4186 while (1)
4187 {
4188 if (p2 + 2 < pend
4189 && ((re_opcode_t) *p2 == stop_memory
4190 || (re_opcode_t) *p2 == start_memory))
4191 p2 += 3;
4192 else if (p2 + 6 < pend
4193 && (re_opcode_t) *p2 == dummy_failure_jump)
4194 p2 += 6;
4195 else
4196 break;
4197 }
4198
4199 p1 = p + mcnt;
4200 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4201 to the `maybe_finalize_jump' of this case. Examine what
4202 follows. */
bc78d348
KB
4203
4204 /* If we're at the end of the pattern, we can change. */
4205 if (p2 == pend)
71715da9
JB
4206 {
4207 /* Consider what happens when matching ":\(.*\)"
4208 against ":/". I don't really understand this code
4209 yet. */
bc78d348 4210 p[-3] = (unsigned char) pop_failure_jump;
71715da9
JB
4211 DEBUG_PRINT1
4212 (" End of pattern: change to `pop_failure_jump'.\n");
bc78d348
KB
4213 }
4214
4215 else if ((re_opcode_t) *p2 == exactn
4216 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4217 {
4218 register unsigned char c
4219 = *p2 == (unsigned char) endline ? '\n' : p2[2];
bc78d348 4220
bc78d348 4221 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
9114e279
KB
4222 {
4223 p[-3] = (unsigned char) pop_failure_jump;
4224 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4225 c, p1[5]);
4226 }
4227
bc78d348
KB
4228 else if ((re_opcode_t) p1[3] == charset
4229 || (re_opcode_t) p1[3] == charset_not)
4230 {
4231 int not = (re_opcode_t) p1[3] == charset_not;
4232
4233 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4234 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4235 not = !not;
4236
4237 /* `not' is equal to 1 if c would match, which means
4238 that we can't change to pop_failure_jump. */
4239 if (!not)
4240 {
4241 p[-3] = (unsigned char) pop_failure_jump;
9114e279 4242 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
bc78d348
KB
4243 }
4244 }
4245 }
4f9d3ad8
RS
4246 else if ((re_opcode_t) *p2 == charset)
4247 {
4248 register unsigned char c
4249 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4250
4251 if ((re_opcode_t) p1[3] == exactn
4252 && ! (p2[1] * BYTEWIDTH > p1[4]
4253 && (p2[1 + p1[4] / BYTEWIDTH]
4254 & (1 << (p1[4] % BYTEWIDTH)))))
4255 {
4256 p[-3] = (unsigned char) pop_failure_jump;
4257 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4258 c, p1[5]);
4259 }
4260
4261 else if ((re_opcode_t) p1[3] == charset_not)
4262 {
4263 int idx;
4264 /* We win if the charset_not inside the loop
4265 lists every character listed in the charset after. */
4266 for (idx = 0; idx < p2[1]; idx++)
4267 if (! (p2[2 + idx] == 0
4268 || (idx < p1[4]
4269 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4270 break;
4271
4272 if (idx == p2[1])
4273 {
4274 p[-3] = (unsigned char) pop_failure_jump;
4275 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4276 }
4277 }
4278 else if ((re_opcode_t) p1[3] == charset)
4279 {
4280 int idx;
4281 /* We win if the charset inside the loop
4282 has no overlap with the one after the loop. */
4283 for (idx = 0; idx < p2[1] && idx < p1[4]; idx++)
4284 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4285 break;
4286
4287 if (idx == p2[1] || idx == p1[4])
4288 {
4289 p[-3] = (unsigned char) pop_failure_jump;
4290 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4291 }
4292 }
4293 }
bc78d348
KB
4294 }
4295 p -= 2; /* Point at relative address again. */
4296 if ((re_opcode_t) p[-1] != pop_failure_jump)
4297 {
4298 p[-1] = (unsigned char) jump;
9114e279 4299 DEBUG_PRINT1 (" Match => jump.\n");
bc78d348
KB
4300 goto unconditional_jump;
4301 }
4302 /* Note fall through. */
4303
4304
4305 /* The end of a simple repeat has a pop_failure_jump back to
4306 its matching on_failure_jump, where the latter will push a
4307 failure point. The pop_failure_jump takes off failure
4308 points put on by this pop_failure_jump's matching
4309 on_failure_jump; we got through the pattern to here from the
4310 matching on_failure_jump, so didn't fail. */
4311 case pop_failure_jump:
4312 {
4313 /* We need to pass separate storage for the lowest and
4314 highest registers, even though we don't care about the
4315 actual values. Otherwise, we will restore only one
4316 register from the stack, since lowest will == highest in
4317 `pop_failure_point'. */
4318 unsigned dummy_low_reg, dummy_high_reg;
4319 unsigned char *pdummy;
4320 const char *sdummy;
4321
4322 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4323 POP_FAILURE_POINT (sdummy, pdummy,
4324 dummy_low_reg, dummy_high_reg,
4325 reg_dummy, reg_dummy, reg_info_dummy);
4326 }
4327 /* Note fall through. */
4328
4329
4330 /* Unconditionally jump (without popping any failure points). */
4331 case jump:
4332 unconditional_jump:
4333 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4334 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4335 p += mcnt; /* Do the jump. */
4336 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4337 break;
4338
4339
4340 /* We need this opcode so we can detect where alternatives end
4341 in `group_match_null_string_p' et al. */
4342 case jump_past_alt:
4343 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4344 goto unconditional_jump;
4345
4346
4347 /* Normally, the on_failure_jump pushes a failure point, which
4348 then gets popped at pop_failure_jump. We will end up at
4349 pop_failure_jump, also, and with a pattern of, say, `a+', we
4350 are skipping over the on_failure_jump, so we have to push
4351 something meaningless for pop_failure_jump to pop. */
4352 case dummy_failure_jump:
4353 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4354 /* It doesn't matter what we push for the string here. What
4355 the code at `fail' tests is the value for the pattern. */
4356 PUSH_FAILURE_POINT (0, 0, -2);
4357 goto unconditional_jump;
4358
4359
4360 /* At the end of an alternative, we need to push a dummy failure
9114e279 4361 point in case we are followed by a `pop_failure_jump', because
bc78d348
KB
4362 we don't want the failure point for the alternative to be
4363 popped. For example, matching `(a|ab)*' against `aab'
4364 requires that we match the `ab' alternative. */
4365 case push_dummy_failure:
4366 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4367 /* See comments just above at `dummy_failure_jump' about the
4368 two zeroes. */
4369 PUSH_FAILURE_POINT (0, 0, -2);
4370 break;
4371
4372 /* Have to succeed matching what follows at least n times.
4373 After that, handle like `on_failure_jump'. */
4374 case succeed_n:
4375 EXTRACT_NUMBER (mcnt, p + 2);
4376 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4377
4378 assert (mcnt >= 0);
4379 /* Originally, this is how many times we HAVE to succeed. */
4380 if (mcnt > 0)
4381 {
4382 mcnt--;
4383 p += 2;
4384 STORE_NUMBER_AND_INCR (p, mcnt);
4385 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4386 }
4387 else if (mcnt == 0)
4388 {
4389 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4390 p[2] = (unsigned char) no_op;
4391 p[3] = (unsigned char) no_op;
4392 goto on_failure;
4393 }
4394 break;
4395
4396 case jump_n:
4397 EXTRACT_NUMBER (mcnt, p + 2);
4398 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4399
4400 /* Originally, this is how many times we CAN jump. */
4401 if (mcnt)
4402 {
4403 mcnt--;
4404 STORE_NUMBER (p + 2, mcnt);
4405 goto unconditional_jump;
4406 }
4407 /* If don't have to jump any more, skip over the rest of command. */
4408 else
4409 p += 4;
4410 break;
4411
4412 case set_number_at:
4413 {
4414 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4415
4416 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4417 p1 = p + mcnt;
4418 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4419 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4420 STORE_NUMBER (p1, mcnt);
4421 break;
4422 }
4423
4424 case wordbound:
4425 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4426 if (AT_WORD_BOUNDARY (d))
4427 break;
4428 goto fail;
4429
4430 case notwordbound:
4431 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4432 if (AT_WORD_BOUNDARY (d))
4433 goto fail;
4434 break;
4435
4436 case wordbeg:
4437 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
9114e279 4438 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
bc78d348
KB
4439 break;
4440 goto fail;
4441
4442 case wordend:
4443 DEBUG_PRINT1 ("EXECUTING wordend.\n");
9114e279
KB
4444 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4445 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
bc78d348
KB
4446 break;
4447 goto fail;
4448
4449#ifdef emacs
bc78d348
KB
4450 case before_dot:
4451 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4452 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4453 goto fail;
4454 break;
4455
4456 case at_dot:
4457 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4458 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4459 goto fail;
4460 break;
4461
4462 case after_dot:
4463 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4464 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4465 goto fail;
4466 break;
5b5bb5e4 4467#if 0 /* not emacs19 */
bc78d348
KB
4468 case at_dot:
4469 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4470 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4471 goto fail;
4472 break;
4473#endif /* not emacs19 */
4474
4475 case syntaxspec:
4476 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4477 mcnt = *p++;
4478 goto matchsyntax;
4479
4480 case wordchar:
9114e279 4481 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
bc78d348
KB
4482 mcnt = (int) Sword;
4483 matchsyntax:
4484 PREFETCH ();
165c6714
KH
4485 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4486 d++;
4487 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4488 goto fail;
bc78d348
KB
4489 SET_REGS_MATCHED ();
4490 break;
4491
4492 case notsyntaxspec:
4493 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4494 mcnt = *p++;
4495 goto matchnotsyntax;
4496
4497 case notwordchar:
9114e279 4498 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
bc78d348 4499 mcnt = (int) Sword;
9114e279 4500 matchnotsyntax:
bc78d348 4501 PREFETCH ();
165c6714
KH
4502 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4503 d++;
4504 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4505 goto fail;
bc78d348
KB
4506 SET_REGS_MATCHED ();
4507 break;
4508
4509#else /* not emacs */
4510 case wordchar:
4511 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4512 PREFETCH ();
9114e279 4513 if (!WORDCHAR_P (d))
bc78d348
KB
4514 goto fail;
4515 SET_REGS_MATCHED ();
9114e279 4516 d++;
bc78d348
KB
4517 break;
4518
4519 case notwordchar:
4520 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4521 PREFETCH ();
9114e279 4522 if (WORDCHAR_P (d))
bc78d348
KB
4523 goto fail;
4524 SET_REGS_MATCHED ();
9114e279 4525 d++;
bc78d348
KB
4526 break;
4527#endif /* not emacs */
4528
4529 default:
4530 abort ();
4531 }
4532 continue; /* Successfully executed one pattern command; keep going. */
4533
4534
4535 /* We goto here if a matching operation fails. */
4536 fail:
4537 if (!FAIL_STACK_EMPTY ())
4538 { /* A restart point is known. Restore to that state. */
4539 DEBUG_PRINT1 ("\nFAIL:\n");
4540 POP_FAILURE_POINT (d, p,
4541 lowest_active_reg, highest_active_reg,
4542 regstart, regend, reg_info);
4543
4544 /* If this failure point is a dummy, try the next one. */
4545 if (!p)
4546 goto fail;
4547
4548 /* If we failed to the end of the pattern, don't examine *p. */
4549 assert (p <= pend);
4550 if (p < pend)
4551 {
4552 boolean is_a_jump_n = false;
4553
4554 /* If failed to a backwards jump that's part of a repetition
4555 loop, need to pop this failure point and use the next one. */
4556 switch ((re_opcode_t) *p)
4557 {
4558 case jump_n:
4559 is_a_jump_n = true;
4560 case maybe_pop_jump:
4561 case pop_failure_jump:
4562 case jump:
4563 p1 = p + 1;
4564 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4565 p1 += mcnt;
4566
4567 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4568 || (!is_a_jump_n
4569 && (re_opcode_t) *p1 == on_failure_jump))
4570 goto fail;
4571 break;
4572 default:
4573 /* do nothing */ ;
4574 }
4575 }
4576
4577 if (d >= string1 && d <= end1)
4578 dend = end_match_1;
4579 }
4580 else
4581 break; /* Matching at this starting point really fails. */
4582 } /* for (;;) */
4583
4584 if (best_regs_set)
4585 goto restore_best_regs;
4586
4587 FREE_VARIABLES ();
4588
4589 return -1; /* Failure to match. */
4590} /* re_match_2 */
4591\f
4592/* Subroutine definitions for re_match_2. */
4593
4594
4595/* We are passed P pointing to a register number after a start_memory.
4596
4597 Return true if the pattern up to the corresponding stop_memory can
4598 match the empty string, and false otherwise.
4599
4600 If we find the matching stop_memory, sets P to point to one past its number.
4601 Otherwise, sets P to an undefined byte less than or equal to END.
4602
4603 We don't handle duplicates properly (yet). */
4604
4605static boolean
4606group_match_null_string_p (p, end, reg_info)
4607 unsigned char **p, *end;
4608 register_info_type *reg_info;
4609{
4610 int mcnt;
4611 /* Point to after the args to the start_memory. */
4612 unsigned char *p1 = *p + 2;
4613
4614 while (p1 < end)
4615 {
4616 /* Skip over opcodes that can match nothing, and return true or
4617 false, as appropriate, when we get to one that can't, or to the
4618 matching stop_memory. */
4619
4620 switch ((re_opcode_t) *p1)
4621 {
4622 /* Could be either a loop or a series of alternatives. */
4623 case on_failure_jump:
4624 p1++;
4625 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4626
4627 /* If the next operation is not a jump backwards in the
4628 pattern. */
4629
4630 if (mcnt >= 0)
4631 {
4632 /* Go through the on_failure_jumps of the alternatives,
4633 seeing if any of the alternatives cannot match nothing.
4634 The last alternative starts with only a jump,
4635 whereas the rest start with on_failure_jump and end
4636 with a jump, e.g., here is the pattern for `a|b|c':
4637
4638 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4639 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4640 /exactn/1/c
4641
4642 So, we have to first go through the first (n-1)
4643 alternatives and then deal with the last one separately. */
4644
4645
4646 /* Deal with the first (n-1) alternatives, which start
4647 with an on_failure_jump (see above) that jumps to right
4648 past a jump_past_alt. */
4649
4650 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4651 {
4652 /* `mcnt' holds how many bytes long the alternative
4653 is, including the ending `jump_past_alt' and
4654 its number. */
4655
4656 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4657 reg_info))
4658 return false;
4659
4660 /* Move to right after this alternative, including the
4661 jump_past_alt. */
4662 p1 += mcnt;
4663
4664 /* Break if it's the beginning of an n-th alternative
4665 that doesn't begin with an on_failure_jump. */
4666 if ((re_opcode_t) *p1 != on_failure_jump)
4667 break;
4668
4669 /* Still have to check that it's not an n-th
4670 alternative that starts with an on_failure_jump. */
4671 p1++;
4672 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4673 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4674 {
4675 /* Get to the beginning of the n-th alternative. */
4676 p1 -= 3;
4677 break;
4678 }
4679 }
4680
4681 /* Deal with the last alternative: go back and get number
4682 of the `jump_past_alt' just before it. `mcnt' contains
4683 the length of the alternative. */
4684 EXTRACT_NUMBER (mcnt, p1 - 2);
4685
4686 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4687 return false;
4688
4689 p1 += mcnt; /* Get past the n-th alternative. */
4690 } /* if mcnt > 0 */
4691 break;
4692
4693
4694 case stop_memory:
4695 assert (p1[1] == **p);
4696 *p = p1 + 2;
4697 return true;
4698
4699
4700 default:
4701 if (!common_op_match_null_string_p (&p1, end, reg_info))
4702 return false;
4703 }
4704 } /* while p1 < end */
4705
4706 return false;
4707} /* group_match_null_string_p */
4708
4709
4710/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4711 It expects P to be the first byte of a single alternative and END one
4712 byte past the last. The alternative can contain groups. */
4713
4714static boolean
4715alt_match_null_string_p (p, end, reg_info)
4716 unsigned char *p, *end;
4717 register_info_type *reg_info;
4718{
4719 int mcnt;
4720 unsigned char *p1 = p;
4721
4722 while (p1 < end)
4723 {
4724 /* Skip over opcodes that can match nothing, and break when we get
4725 to one that can't. */
4726
4727 switch ((re_opcode_t) *p1)
4728 {
4729 /* It's a loop. */
4730 case on_failure_jump:
4731 p1++;
4732 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4733 p1 += mcnt;
4734 break;
4735
4736 default:
4737 if (!common_op_match_null_string_p (&p1, end, reg_info))
4738 return false;
4739 }
4740 } /* while p1 < end */
4741
4742 return true;
4743} /* alt_match_null_string_p */
4744
4745
4746/* Deals with the ops common to group_match_null_string_p and
4747 alt_match_null_string_p.
4748
4749 Sets P to one after the op and its arguments, if any. */
4750
4751static boolean
4752common_op_match_null_string_p (p, end, reg_info)
4753 unsigned char **p, *end;
4754 register_info_type *reg_info;
4755{
4756 int mcnt;
4757 boolean ret;
4758 int reg_no;
4759 unsigned char *p1 = *p;
4760
4761 switch ((re_opcode_t) *p1++)
4762 {
4763 case no_op:
4764 case begline:
4765 case endline:
4766 case begbuf:
4767 case endbuf:
4768 case wordbeg:
4769 case wordend:
4770 case wordbound:
4771 case notwordbound:
4772#ifdef emacs
4773 case before_dot:
4774 case at_dot:
4775 case after_dot:
4776#endif
4777 break;
4778
4779 case start_memory:
4780 reg_no = *p1;
4781 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4782 ret = group_match_null_string_p (&p1, end, reg_info);
4783
4784 /* Have to set this here in case we're checking a group which
4785 contains a group and a back reference to it. */
4786
4787 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4788 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4789
4790 if (!ret)
4791 return false;
4792 break;
4793
4794 /* If this is an optimized succeed_n for zero times, make the jump. */
4795 case jump:
4796 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4797 if (mcnt >= 0)
4798 p1 += mcnt;
4799 else
4800 return false;
4801 break;
4802
4803 case succeed_n:
4804 /* Get to the number of times to succeed. */
4805 p1 += 2;
4806 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4807
4808 if (mcnt == 0)
4809 {
4810 p1 -= 4;
4811 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4812 p1 += mcnt;
4813 }
4814 else
4815 return false;
4816 break;
4817
4818 case duplicate:
4819 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4820 return false;
4821 break;
4822
4823 case set_number_at:
4824 p1 += 4;
4825
4826 default:
4827 /* All other opcodes mean we cannot match the empty string. */
4828 return false;
4829 }
4830
4831 *p = p1;
4832 return true;
4833} /* common_op_match_null_string_p */
4834
4835
4836/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4837 bytes; nonzero otherwise. */
4838
4839static int
4840bcmp_translate (s1, s2, len, translate)
4841 unsigned char *s1, *s2;
4842 register int len;
4843 char *translate;
4844{
4845 register unsigned char *p1 = s1, *p2 = s2;
4846 while (len)
4847 {
4848 if (translate[*p1++] != translate[*p2++]) return 1;
4849 len--;
4850 }
4851 return 0;
4852}
4853\f
4854/* Entry points for GNU code. */
4855
4856/* re_compile_pattern is the GNU regular expression compiler: it
4857 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4858 Returns 0 if the pattern was valid, otherwise an error string.
4859
4860 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4861 are set in BUFP on entry.
4862
4863 We call regex_compile to do the actual compilation. */
4864
4865const char *
4866re_compile_pattern (pattern, length, bufp)
4867 const char *pattern;
4868 int length;
4869 struct re_pattern_buffer *bufp;
4870{
4871 reg_errcode_t ret;
4872
4873 /* GNU code is written to assume at least RE_NREGS registers will be set
4874 (and at least one extra will be -1). */
4875 bufp->regs_allocated = REGS_UNALLOCATED;
4876
4877 /* And GNU code determines whether or not to get register information
4878 by passing null for the REGS argument to re_match, etc., not by
4879 setting no_sub. */
4880 bufp->no_sub = 0;
4881
4882 /* Match anchors at newline. */
4883 bufp->newline_anchor = 1;
4884
4885 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4886
4887 return re_error_msg[(int) ret];
4888}
4889\f
4890/* Entry points compatible with 4.2 BSD regex library. We don't define
4891 them if this is an Emacs or POSIX compilation. */
4892
4893#if !defined (emacs) && !defined (_POSIX_SOURCE)
4894
4895/* BSD has one and only one pattern buffer. */
4896static struct re_pattern_buffer re_comp_buf;
4897
4898char *
4899re_comp (s)
4900 const char *s;
4901{
4902 reg_errcode_t ret;
4903
4904 if (!s)
4905 {
4906 if (!re_comp_buf.buffer)
4907 return "No previous regular expression";
4908 return 0;
4909 }
4910
4911 if (!re_comp_buf.buffer)
4912 {
4913 re_comp_buf.buffer = (unsigned char *) malloc (200);
4914 if (re_comp_buf.buffer == NULL)
4915 return "Memory exhausted";
4916 re_comp_buf.allocated = 200;
4917
4918 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4919 if (re_comp_buf.fastmap == NULL)
4920 return "Memory exhausted";
4921 }
4922
4923 /* Since `re_exec' always passes NULL for the `regs' argument, we
4924 don't need to initialize the pattern buffer fields which affect it. */
4925
4926 /* Match anchors at newlines. */
4927 re_comp_buf.newline_anchor = 1;
4928
4929 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4930
4931 /* Yes, we're discarding `const' here. */
4932 return (char *) re_error_msg[(int) ret];
4933}
4934
4935
4936int
4937re_exec (s)
4938 const char *s;
4939{
4940 const int len = strlen (s);
4941 return
4942 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4943}
4944#endif /* not emacs and not _POSIX_SOURCE */
4945\f
4946/* POSIX.2 functions. Don't define these for Emacs. */
4947
4948#ifndef emacs
4949
4950/* regcomp takes a regular expression as a string and compiles it.
4951
4952 PREG is a regex_t *. We do not expect any fields to be initialized,
4953 since POSIX says we shouldn't. Thus, we set
4954
4955 `buffer' to the compiled pattern;
4956 `used' to the length of the compiled pattern;
4957 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4958 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4959 RE_SYNTAX_POSIX_BASIC;
4960 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4961 `fastmap' and `fastmap_accurate' to zero;
4962 `re_nsub' to the number of subexpressions in PATTERN.
4963
4964 PATTERN is the address of the pattern string.
4965
4966 CFLAGS is a series of bits which affect compilation.
4967
4968 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4969 use POSIX basic syntax.
4970
4971 If REG_NEWLINE is set, then . and [^...] don't match newline.
4972 Also, regexec will try a match beginning after every newline.
4973
4974 If REG_ICASE is set, then we considers upper- and lowercase
4975 versions of letters to be equivalent when matching.
4976
4977 If REG_NOSUB is set, then when PREG is passed to regexec, that
4978 routine will report only success or failure, and nothing about the
4979 registers.
4980
4981 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4982 the return codes and their meanings.) */
4983
4984int
4985regcomp (preg, pattern, cflags)
4986 regex_t *preg;
4987 const char *pattern;
4988 int cflags;
4989{
4990 reg_errcode_t ret;
4991 unsigned syntax
d9088577
DM
4992 = (cflags & REG_EXTENDED) ?
4993 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
bc78d348
KB
4994
4995 /* regex_compile will allocate the space for the compiled pattern. */
4996 preg->buffer = 0;
d9088577 4997 preg->allocated = 0;
8b4cc189 4998 preg->used = 0;
bc78d348
KB
4999
5000 /* Don't bother to use a fastmap when searching. This simplifies the
5001 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5002 characters after newlines into the fastmap. This way, we just try
5003 every character. */
5004 preg->fastmap = 0;
5005
5006 if (cflags & REG_ICASE)
5007 {
5008 unsigned i;
5009
5010 preg->translate = (char *) malloc (CHAR_SET_SIZE);
5011 if (preg->translate == NULL)
5012 return (int) REG_ESPACE;
5013
5014 /* Map uppercase characters to corresponding lowercase ones. */
5015 for (i = 0; i < CHAR_SET_SIZE; i++)
c6b40788 5016 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
bc78d348
KB
5017 }
5018 else
5019 preg->translate = NULL;
5020
5021 /* If REG_NEWLINE is set, newlines are treated differently. */
5022 if (cflags & REG_NEWLINE)
5023 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5024 syntax &= ~RE_DOT_NEWLINE;
5025 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5026 /* It also changes the matching behavior. */
5027 preg->newline_anchor = 1;
5028 }
5029 else
5030 preg->newline_anchor = 0;
5031
5032 preg->no_sub = !!(cflags & REG_NOSUB);
5033
5034 /* POSIX says a null character in the pattern terminates it, so we
5035 can use strlen here in compiling the pattern. */
5036 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5037
5038 /* POSIX doesn't distinguish between an unmatched open-group and an
5039 unmatched close-group: both are REG_EPAREN. */
5040 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5041
5042 return (int) ret;
5043}
5044
5045
5046/* regexec searches for a given pattern, specified by PREG, in the
5047 string STRING.
5048
5049 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5050 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5051 least NMATCH elements, and we set them to the offsets of the
5052 corresponding matched substrings.
5053
5054 EFLAGS specifies `execution flags' which affect matching: if
5055 REG_NOTBOL is set, then ^ does not match at the beginning of the
5056 string; if REG_NOTEOL is set, then $ does not match at the end.
5057
5058 We return 0 if we find a match and REG_NOMATCH if not. */
5059
5060int
5061regexec (preg, string, nmatch, pmatch, eflags)
5062 const regex_t *preg;
5063 const char *string;
5064 size_t nmatch;
5065 regmatch_t pmatch[];
5066 int eflags;
5067{
5068 int ret;
5069 struct re_registers regs;
5070 regex_t private_preg;
5071 int len = strlen (string);
5072 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5073
5074 private_preg = *preg;
5075
5076 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5077 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5078
5079 /* The user has told us exactly how many registers to return
5080 information about, via `nmatch'. We have to pass that on to the
5081 matching routines. */
5082 private_preg.regs_allocated = REGS_FIXED;
5083
5084 if (want_reg_info)
5085 {
5086 regs.num_regs = nmatch;
5087 regs.start = TALLOC (nmatch, regoff_t);
5088 regs.end = TALLOC (nmatch, regoff_t);
5089 if (regs.start == NULL || regs.end == NULL)
5090 return (int) REG_NOMATCH;
5091 }
5092
5093 /* Perform the searching operation. */
5094 ret = re_search (&private_preg, string, len,
5095 /* start: */ 0, /* range: */ len,
5096 want_reg_info ? &regs : (struct re_registers *) 0);
5097
5098 /* Copy the register information to the POSIX structure. */
5099 if (want_reg_info)
5100 {
5101 if (ret >= 0)
5102 {
5103 unsigned r;
5104
5105 for (r = 0; r < nmatch; r++)
5106 {
5107 pmatch[r].rm_so = regs.start[r];
5108 pmatch[r].rm_eo = regs.end[r];
5109 }
5110 }
5111
5112 /* If we needed the temporary register info, free the space now. */
5113 free (regs.start);
5114 free (regs.end);
5115 }
5116
5117 /* We want zero return to mean success, unlike `re_search'. */
5118 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5119}
5120
5121
5122/* Returns a message corresponding to an error code, ERRCODE, returned
9114e279 5123 from either regcomp or regexec. We don't use PREG here. */
bc78d348
KB
5124
5125size_t
5126regerror (errcode, preg, errbuf, errbuf_size)
5127 int errcode;
5128 const regex_t *preg;
5129 char *errbuf;
5130 size_t errbuf_size;
5131{
85586484
JB
5132 const char *msg;
5133 size_t msg_size;
5134
5135 if (errcode < 0
5136 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
5137 /* Only error codes returned by the rest of the code should be passed
5138 to this routine. If we are given anything else, or if other regex
5139 code generates an invalid error code, then the program has a bug.
5140 Dump core so we can fix it. */
5141 abort ();
5142
5745b086
JB
5143 msg = re_error_msg[errcode];
5144
5145 /* POSIX doesn't require that we do anything in this case, but why
5146 not be nice. */
5147 if (! msg)
5148 msg = "Success";
5149
85586484 5150 msg_size = strlen (msg) + 1; /* Includes the null. */
bc78d348
KB
5151
5152 if (errbuf_size != 0)
5153 {
5154 if (msg_size > errbuf_size)
5155 {
5156 strncpy (errbuf, msg, errbuf_size - 1);
5157 errbuf[errbuf_size - 1] = 0;
5158 }
5159 else
5160 strcpy (errbuf, msg);
5161 }
5162
5163 return msg_size;
5164}
5165
5166
5167/* Free dynamically allocated space used by PREG. */
5168
5169void
5170regfree (preg)
5171 regex_t *preg;
5172{
5173 if (preg->buffer != NULL)
5174 free (preg->buffer);
5175 preg->buffer = NULL;
5176
5177 preg->allocated = 0;
5178 preg->used = 0;
5179
5180 if (preg->fastmap != NULL)
5181 free (preg->fastmap);
5182 preg->fastmap = NULL;
5183 preg->fastmap_accurate = 0;
5184
5185 if (preg->translate != NULL)
5186 free (preg->translate);
5187 preg->translate = NULL;
5188}
5189
5190#endif /* not emacs */
5191\f
5192/*
5193Local variables:
5194make-backup-files: t
5195version-control: t
5196trim-versions-without-asking: nil
5197End:
5198*/