lisp/ansi-color.el: Convert to lexical binding.
[bpt/emacs.git] / src / floatfns.c
CommitLineData
b70021f4 1/* Primitive operations on floating point for GNU Emacs Lisp interpreter.
95df8112 2
ab422c4d
PE
3Copyright (C) 1988, 1993-1994, 1999, 2001-2013 Free Software Foundation,
4Inc.
b70021f4 5
0a9dd3a7
GM
6Author: Wolfgang Rupprecht
7(according to ack.texi)
8
b70021f4
MR
9This file is part of GNU Emacs.
10
9ec0b715 11GNU Emacs is free software: you can redistribute it and/or modify
b70021f4 12it under the terms of the GNU General Public License as published by
9ec0b715
GM
13the Free Software Foundation, either version 3 of the License, or
14(at your option) any later version.
b70021f4
MR
15
16GNU Emacs is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
9ec0b715 22along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
b70021f4
MR
23
24
c990426a
PE
25/* C89 requires only the following math.h functions, and Emacs omits
26 the starred functions since we haven't found a use for them:
27 acos, asin, atan, atan2, ceil, cos, *cosh, exp, fabs, floor, fmod,
28 frexp, ldexp, log, log10, *modf, pow, sin, *sinh, sqrt, tan, *tanh.
4b6baf5f
RS
29 */
30
18160b98 31#include <config.h>
0328b6de 32
523e9291 33#include "lisp.h"
d137ae2f 34
b70021f4 35#include <math.h>
4b6baf5f 36
c990426a
PE
37#ifndef isfinite
38# define isfinite(x) ((x) - (x) == 0)
39#endif
40#ifndef isnan
41# define isnan(x) ((x) != (x))
42#endif
c26406fe 43
84575e67
PE
44/* Check that X is a floating point number. */
45
46static void
47CHECK_FLOAT (Lisp_Object x)
48{
49 CHECK_TYPE (FLOATP (x), Qfloatp, x);
50}
51
b70021f4
MR
52/* Extract a Lisp number as a `double', or signal an error. */
53
54double
d5a3eaaf 55extract_float (Lisp_Object num)
b70021f4 56{
b7826503 57 CHECK_NUMBER_OR_FLOAT (num);
b70021f4 58
207a45c1 59 if (FLOATP (num))
70949dac 60 return XFLOAT_DATA (num);
b70021f4
MR
61 return (double) XINT (num);
62}
c2d4ea74
RS
63\f
64/* Trig functions. */
b70021f4
MR
65
66DEFUN ("acos", Facos, Sacos, 1, 1, 0,
335c5470 67 doc: /* Return the inverse cosine of ARG. */)
f6196b87 68 (Lisp_Object arg)
b70021f4 69{
4b6baf5f 70 double d = extract_float (arg);
f6196b87 71 d = acos (d);
b70021f4
MR
72 return make_float (d);
73}
74
c2d4ea74 75DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
335c5470 76 doc: /* Return the inverse sine of ARG. */)
f6196b87 77 (Lisp_Object arg)
b70021f4 78{
4b6baf5f 79 double d = extract_float (arg);
f6196b87 80 d = asin (d);
b70021f4
MR
81 return make_float (d);
82}
83
250ffca6
EZ
84DEFUN ("atan", Fatan, Satan, 1, 2, 0,
85 doc: /* Return the inverse tangent of the arguments.
86If only one argument Y is given, return the inverse tangent of Y.
87If two arguments Y and X are given, return the inverse tangent of Y
88divided by X, i.e. the angle in radians between the vector (X, Y)
89and the x-axis. */)
f6196b87 90 (Lisp_Object y, Lisp_Object x)
b70021f4 91{
250ffca6
EZ
92 double d = extract_float (y);
93
94 if (NILP (x))
f6196b87 95 d = atan (d);
250ffca6
EZ
96 else
97 {
98 double d2 = extract_float (x);
f6196b87 99 d = atan2 (d, d2);
250ffca6 100 }
b70021f4
MR
101 return make_float (d);
102}
103
c2d4ea74 104DEFUN ("cos", Fcos, Scos, 1, 1, 0,
335c5470 105 doc: /* Return the cosine of ARG. */)
f6196b87 106 (Lisp_Object arg)
b70021f4 107{
4b6baf5f 108 double d = extract_float (arg);
f6196b87 109 d = cos (d);
b70021f4
MR
110 return make_float (d);
111}
112
c2d4ea74 113DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
335c5470 114 doc: /* Return the sine of ARG. */)
f6196b87 115 (Lisp_Object arg)
b70021f4 116{
4b6baf5f 117 double d = extract_float (arg);
f6196b87 118 d = sin (d);
b70021f4
MR
119 return make_float (d);
120}
121
c2d4ea74 122DEFUN ("tan", Ftan, Stan, 1, 1, 0,
335c5470 123 doc: /* Return the tangent of ARG. */)
f6196b87 124 (Lisp_Object arg)
4b6baf5f
RS
125{
126 double d = extract_float (arg);
f6196b87 127 d = tan (d);
b70021f4
MR
128 return make_float (d);
129}
15e12598 130
15e12598
VB
131DEFUN ("isnan", Fisnan, Sisnan, 1, 1, 0,
132 doc: /* Return non nil iff argument X is a NaN. */)
5842a27b 133 (Lisp_Object x)
15e12598
VB
134{
135 CHECK_FLOAT (x);
136 return isnan (XFLOAT_DATA (x)) ? Qt : Qnil;
137}
138
c8199d0f 139#ifdef HAVE_COPYSIGN
3c2907f7 140DEFUN ("copysign", Fcopysign, Scopysign, 2, 2, 0,
15e12598
VB
141 doc: /* Copy sign of X2 to value of X1, and return the result.
142Cause an error if X1 or X2 is not a float. */)
5842a27b 143 (Lisp_Object x1, Lisp_Object x2)
15e12598
VB
144{
145 double f1, f2;
146
147 CHECK_FLOAT (x1);
148 CHECK_FLOAT (x2);
149
150 f1 = XFLOAT_DATA (x1);
151 f2 = XFLOAT_DATA (x2);
152
153 return make_float (copysign (f1, f2));
154}
c990426a 155#endif
15e12598
VB
156
157DEFUN ("frexp", Ffrexp, Sfrexp, 1, 1, 0,
158 doc: /* Get significand and exponent of a floating point number.
159Breaks the floating point number X into its binary significand SGNFCAND
160\(a floating point value between 0.5 (included) and 1.0 (excluded))
161and an integral exponent EXP for 2, such that:
162
163 X = SGNFCAND * 2^EXP
164
165The function returns the cons cell (SGNFCAND . EXP).
166If X is zero, both parts (SGNFCAND and EXP) are zero. */)
5842a27b 167 (Lisp_Object x)
15e12598
VB
168{
169 double f = XFLOATINT (x);
c990426a
PE
170 int exponent;
171 double sgnfcand = frexp (f, &exponent);
172 return Fcons (make_float (sgnfcand), make_number (exponent));
15e12598
VB
173}
174
175DEFUN ("ldexp", Fldexp, Sldexp, 1, 2, 0,
176 doc: /* Construct number X from significand SGNFCAND and exponent EXP.
177Returns the floating point value resulting from multiplying SGNFCAND
178(the significand) by 2 raised to the power of EXP (the exponent). */)
a885e2ed 179 (Lisp_Object sgnfcand, Lisp_Object exponent)
15e12598 180{
a885e2ed
PE
181 CHECK_NUMBER (exponent);
182 return make_float (ldexp (XFLOATINT (sgnfcand), XINT (exponent)));
15e12598 183}
706ac90d 184\f
c2d4ea74 185DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
335c5470 186 doc: /* Return the exponential base e of ARG. */)
f6196b87 187 (Lisp_Object arg)
4b6baf5f
RS
188{
189 double d = extract_float (arg);
f6196b87 190 d = exp (d);
b70021f4
MR
191 return make_float (d);
192}
193
b70021f4 194DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
335c5470 195 doc: /* Return the exponential ARG1 ** ARG2. */)
f6196b87 196 (Lisp_Object arg1, Lisp_Object arg2)
b70021f4 197{
2742fe30 198 double f1, f2, f3;
b70021f4 199
b7826503
PJ
200 CHECK_NUMBER_OR_FLOAT (arg1);
201 CHECK_NUMBER_OR_FLOAT (arg2);
207a45c1 202 if (INTEGERP (arg1) /* common lisp spec */
5a9807a8 203 && INTEGERP (arg2) /* don't promote, if both are ints, and */
908589fd 204 && XINT (arg2) >= 0) /* we are sure the result is not fractional */
b70021f4 205 { /* this can be improved by pre-calculating */
125b3835
PE
206 EMACS_INT y; /* some binary powers of x then accumulating */
207 EMACS_UINT acc, x; /* Unsigned so that overflow is well defined. */
4be1d460
RS
208 Lisp_Object val;
209
4b6baf5f
RS
210 x = XINT (arg1);
211 y = XINT (arg2);
8d1da888 212 acc = (y & 1 ? x : 1);
177c0ea7 213
8d1da888 214 while ((y >>= 1) != 0)
b70021f4 215 {
8d1da888
PE
216 x *= x;
217 if (y & 1)
218 acc *= x;
b70021f4 219 }
e0cb2a68 220 XSETINT (val, acc);
4be1d460 221 return val;
b70021f4 222 }
70949dac
KR
223 f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
224 f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
f6196b87 225 f3 = pow (f1, f2);
2742fe30 226 return make_float (f3);
b70021f4 227}
c2d4ea74 228
56abb480 229DEFUN ("log", Flog, Slog, 1, 2, 0,
335c5470 230 doc: /* Return the natural logarithm of ARG.
356e6d8d 231If the optional argument BASE is given, return log ARG using that base. */)
f6196b87 232 (Lisp_Object arg, Lisp_Object base)
b70021f4 233{
4b6baf5f 234 double d = extract_float (arg);
56abb480
JB
235
236 if (NILP (base))
f6196b87 237 d = log (d);
56abb480
JB
238 else
239 {
240 double b = extract_float (base);
241
4b6baf5f 242 if (b == 10.0)
f6196b87 243 d = log10 (d);
4b6baf5f 244 else
f6196b87 245 d = log (d) / log (b);
56abb480 246 }
b70021f4
MR
247 return make_float (d);
248}
249
c2d4ea74 250DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
335c5470 251 doc: /* Return the logarithm base 10 of ARG. */)
f6196b87 252 (Lisp_Object arg)
b70021f4 253{
4b6baf5f 254 double d = extract_float (arg);
f6196b87 255 d = log10 (d);
c2d4ea74
RS
256 return make_float (d);
257}
258
b70021f4 259DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
335c5470 260 doc: /* Return the square root of ARG. */)
f6196b87 261 (Lisp_Object arg)
b70021f4 262{
4b6baf5f 263 double d = extract_float (arg);
f6196b87 264 d = sqrt (d);
b70021f4
MR
265 return make_float (d);
266}
c2d4ea74 267\f
b70021f4 268DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
335c5470 269 doc: /* Return the absolute value of ARG. */)
5842a27b 270 (register Lisp_Object arg)
b70021f4 271{
b7826503 272 CHECK_NUMBER_OR_FLOAT (arg);
b70021f4 273
207a45c1 274 if (FLOATP (arg))
7c26cf3c 275 arg = make_float (fabs (XFLOAT_DATA (arg)));
4b6baf5f 276 else if (XINT (arg) < 0)
db37cb37 277 XSETINT (arg, - XINT (arg));
b70021f4 278
4b6baf5f 279 return arg;
b70021f4
MR
280}
281
a7ca3326 282DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
335c5470 283 doc: /* Return the floating point number equal to ARG. */)
5842a27b 284 (register Lisp_Object arg)
b70021f4 285{
b7826503 286 CHECK_NUMBER_OR_FLOAT (arg);
b70021f4 287
207a45c1 288 if (INTEGERP (arg))
4b6baf5f 289 return make_float ((double) XINT (arg));
b70021f4 290 else /* give 'em the same float back */
4b6baf5f 291 return arg;
b70021f4
MR
292}
293
294DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
335c5470
PJ
295 doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
296This is the same as the exponent of a float. */)
5842a27b 297 (Lisp_Object arg)
b70021f4 298{
340176df 299 Lisp_Object val;
a7bf3c54 300 EMACS_INT value;
5bf54166 301 double f = extract_float (arg);
340176df 302
6694b327 303 if (f == 0.0)
b916d672 304 value = MOST_NEGATIVE_FIXNUM;
c990426a 305 else if (isfinite (f))
6694b327 306 {
c8bf6cf3 307 int ivalue;
f6196b87 308 frexp (f, &ivalue);
c8bf6cf3 309 value = ivalue - 1;
6694b327 310 }
c990426a
PE
311 else
312 value = MOST_POSITIVE_FIXNUM;
313
e0cb2a68 314 XSETINT (val, value);
c26406fe 315 return val;
b70021f4
MR
316}
317
fc2157cb 318
acbbacbe
PE
319/* the rounding functions */
320
321static Lisp_Object
d2aa42f8
DN
322rounding_driver (Lisp_Object arg, Lisp_Object divisor,
323 double (*double_round) (double),
324 EMACS_INT (*int_round2) (EMACS_INT, EMACS_INT),
8ea90aa3 325 const char *name)
b70021f4 326{
b7826503 327 CHECK_NUMBER_OR_FLOAT (arg);
b70021f4 328
fc2157cb
PE
329 if (! NILP (divisor))
330 {
9a51b24a 331 EMACS_INT i1, i2;
fc2157cb 332
b7826503 333 CHECK_NUMBER_OR_FLOAT (divisor);
fc2157cb 334
207a45c1 335 if (FLOATP (arg) || FLOATP (divisor))
fc2157cb
PE
336 {
337 double f1, f2;
338
70949dac
KR
339 f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
340 f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
d137ae2f 341 if (! IEEE_FLOATING_POINT && f2 == 0)
edef1631 342 xsignal0 (Qarith_error);
fc2157cb 343
f6196b87
PE
344 f1 = (*double_round) (f1 / f2);
345 if (FIXNUM_OVERFLOW_P (f1))
346 xsignal3 (Qrange_error, build_string (name), arg, divisor);
347 arg = make_number (f1);
fc2157cb
PE
348 return arg;
349 }
fc2157cb
PE
350
351 i1 = XINT (arg);
352 i2 = XINT (divisor);
353
354 if (i2 == 0)
edef1631 355 xsignal0 (Qarith_error);
fc2157cb 356
acbbacbe 357 XSETINT (arg, (*int_round2) (i1, i2));
fc2157cb
PE
358 return arg;
359 }
360
207a45c1 361 if (FLOATP (arg))
81a63ccc 362 {
f6196b87
PE
363 double d = (*double_round) (XFLOAT_DATA (arg));
364 if (FIXNUM_OVERFLOW_P (d))
365 xsignal2 (Qrange_error, build_string (name), arg);
366 arg = make_number (d);
81a63ccc 367 }
b70021f4 368
4b6baf5f 369 return arg;
b70021f4
MR
370}
371
acbbacbe
PE
372/* With C's /, the result is implementation-defined if either operand
373 is negative, so take care with negative operands in the following
374 integer functions. */
375
376static EMACS_INT
d2aa42f8 377ceiling2 (EMACS_INT i1, EMACS_INT i2)
acbbacbe
PE
378{
379 return (i2 < 0
380 ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
381 : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
382}
383
384static EMACS_INT
d2aa42f8 385floor2 (EMACS_INT i1, EMACS_INT i2)
acbbacbe
PE
386{
387 return (i2 < 0
388 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
389 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
390}
391
392static EMACS_INT
d2aa42f8 393truncate2 (EMACS_INT i1, EMACS_INT i2)
acbbacbe
PE
394{
395 return (i2 < 0
396 ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
397 : (i1 < 0 ? - (-i1 / i2) : i1 / i2));
398}
399
400static EMACS_INT
d2aa42f8 401round2 (EMACS_INT i1, EMACS_INT i2)
acbbacbe
PE
402{
403 /* The C language's division operator gives us one remainder R, but
404 we want the remainder R1 on the other side of 0 if R1 is closer
405 to 0 than R is; because we want to round to even, we also want R1
406 if R and R1 are the same distance from 0 and if C's quotient is
407 odd. */
408 EMACS_INT q = i1 / i2;
409 EMACS_INT r = i1 % i2;
71376d4b
PE
410 EMACS_INT abs_r = eabs (r);
411 EMACS_INT abs_r1 = eabs (i2) - abs_r;
acbbacbe
PE
412 return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
413}
414
dca6c914
RS
415/* The code uses emacs_rint, so that it works to undefine HAVE_RINT
416 if `rint' exists but does not work right. */
417#ifdef HAVE_RINT
418#define emacs_rint rint
419#else
4b5878a8 420static double
d2aa42f8 421emacs_rint (double d)
4b5878a8 422{
1b65c684 423 return floor (d + 0.5);
4b5878a8
KH
424}
425#endif
426
acbbacbe 427static double
d2aa42f8 428double_identity (double d)
acbbacbe
PE
429{
430 return d;
431}
432
433DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
1d6ea92f
RS
434 doc: /* Return the smallest integer no less than ARG.
435This rounds the value towards +inf.
335c5470 436With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
5842a27b 437 (Lisp_Object arg, Lisp_Object divisor)
acbbacbe
PE
438{
439 return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
440}
441
442DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
1d6ea92f 443 doc: /* Return the largest integer no greater than ARG.
568b6e41 444This rounds the value towards -inf.
335c5470 445With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
5842a27b 446 (Lisp_Object arg, Lisp_Object divisor)
acbbacbe
PE
447{
448 return rounding_driver (arg, divisor, floor, floor2, "floor");
449}
450
451DEFUN ("round", Fround, Sround, 1, 2, 0,
335c5470 452 doc: /* Return the nearest integer to ARG.
6ded2c89
EZ
453With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
454
a32a4857
EZ
455Rounding a value equidistant between two integers may choose the
456integer closer to zero, or it may prefer an even integer, depending on
457your machine. For example, \(round 2.5\) can return 3 on some
59fe0cee 458systems, but 2 on others. */)
5842a27b 459 (Lisp_Object arg, Lisp_Object divisor)
acbbacbe 460{
dca6c914 461 return rounding_driver (arg, divisor, emacs_rint, round2, "round");
acbbacbe
PE
462}
463
a7ca3326 464DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
335c5470
PJ
465 doc: /* Truncate a floating point number to an int.
466Rounds ARG toward zero.
467With optional DIVISOR, truncate ARG/DIVISOR. */)
5842a27b 468 (Lisp_Object arg, Lisp_Object divisor)
acbbacbe
PE
469{
470 return rounding_driver (arg, divisor, double_identity, truncate2,
471 "truncate");
472}
473
fc2157cb 474
d137ae2f 475Lisp_Object
dd4c5104 476fmod_float (Lisp_Object x, Lisp_Object y)
d137ae2f
PE
477{
478 double f1, f2;
479
70949dac
KR
480 f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
481 f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
d137ae2f 482
f6196b87 483 f1 = fmod (f1, f2);
d137ae2f
PE
484
485 /* If the "remainder" comes out with the wrong sign, fix it. */
908589fd 486 if (f2 < 0 ? f1 > 0 : f1 < 0)
f6196b87
PE
487 f1 += f2;
488
d137ae2f
PE
489 return make_float (f1);
490}
4b6baf5f 491\f
4b6baf5f 492DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
335c5470
PJ
493 doc: /* Return the smallest integer no less than ARG, as a float.
494\(Round toward +inf.\) */)
f6196b87 495 (Lisp_Object arg)
4b6baf5f
RS
496{
497 double d = extract_float (arg);
f6196b87 498 d = ceil (d);
4b6baf5f
RS
499 return make_float (d);
500}
501
502DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
335c5470
PJ
503 doc: /* Return the largest integer no greater than ARG, as a float.
504\(Round towards -inf.\) */)
f6196b87 505 (Lisp_Object arg)
4b6baf5f
RS
506{
507 double d = extract_float (arg);
f6196b87 508 d = floor (d);
4b6baf5f
RS
509 return make_float (d);
510}
b70021f4 511
4b6baf5f 512DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
335c5470 513 doc: /* Return the nearest integer to ARG, as a float. */)
f6196b87 514 (Lisp_Object arg)
4b6baf5f
RS
515{
516 double d = extract_float (arg);
f6196b87 517 d = emacs_rint (d);
4b6baf5f
RS
518 return make_float (d);
519}
520
521DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
335c5470
PJ
522 doc: /* Truncate a floating point number to an integral float value.
523Rounds the value toward zero. */)
f6196b87 524 (Lisp_Object arg)
4b6baf5f
RS
525{
526 double d = extract_float (arg);
527 if (d >= 0.0)
f6196b87 528 d = floor (d);
4b6baf5f 529 else
f6196b87 530 d = ceil (d);
4b6baf5f 531 return make_float (d);
b70021f4
MR
532}
533\f
dfcf069d 534void
d5a3eaaf 535syms_of_floatfns (void)
b70021f4
MR
536{
537 defsubr (&Sacos);
b70021f4 538 defsubr (&Sasin);
b70021f4 539 defsubr (&Satan);
c2d4ea74
RS
540 defsubr (&Scos);
541 defsubr (&Ssin);
542 defsubr (&Stan);
15e12598 543 defsubr (&Sisnan);
c8199d0f 544#ifdef HAVE_COPYSIGN
15e12598 545 defsubr (&Scopysign);
c990426a 546#endif
15e12598
VB
547 defsubr (&Sfrexp);
548 defsubr (&Sldexp);
4b6baf5f
RS
549 defsubr (&Sfceiling);
550 defsubr (&Sffloor);
551 defsubr (&Sfround);
552 defsubr (&Sftruncate);
b70021f4 553 defsubr (&Sexp);
c2d4ea74 554 defsubr (&Sexpt);
b70021f4
MR
555 defsubr (&Slog);
556 defsubr (&Slog10);
b70021f4 557 defsubr (&Ssqrt);
b70021f4
MR
558
559 defsubr (&Sabs);
560 defsubr (&Sfloat);
561 defsubr (&Slogb);
562 defsubr (&Sceiling);
acbbacbe 563 defsubr (&Sfloor);
b70021f4
MR
564 defsubr (&Sround);
565 defsubr (&Struncate);
566}