(CHECK_FRAME, CHECK_LIVE_FRAME): Remove unused argument `i' in macros.
[bpt/emacs.git] / src / floatfns.c
CommitLineData
b70021f4 1/* Primitive operations on floating point for GNU Emacs Lisp interpreter.
68c45bf0 2 Copyright (C) 1988, 1993, 1994, 1999 Free Software Foundation, Inc.
b70021f4
MR
3
4This file is part of GNU Emacs.
5
6GNU Emacs is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
4746118a 8the Free Software Foundation; either version 2, or (at your option)
b70021f4
MR
9any later version.
10
11GNU Emacs is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Emacs; see the file COPYING. If not, write to
3b7ad313
EN
18the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
b70021f4
MR
20
21
4b6baf5f
RS
22/* ANSI C requires only these float functions:
23 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
24 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
25
26 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
27 Define HAVE_CBRT if you have cbrt.
dca6c914 28 Define HAVE_RINT if you have a working rint.
4b6baf5f
RS
29 If you don't define these, then the appropriate routines will be simulated.
30
31 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
32 (This should happen automatically.)
33
34 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
35 This has no effect if HAVE_MATHERR is defined.
36
37 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
38 (What systems actually do this? Please let us know.)
39
40 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
8e6208c5 41 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
4b6baf5f
RS
42 range checking will happen before calling the float routines. This has
43 no effect if HAVE_MATHERR is defined (since matherr will be called when
44 a domain error occurs.)
45 */
46
18160b98 47#include <config.h>
68c45bf0 48#include <signal.h>
523e9291
RS
49#include "lisp.h"
50#include "syssignal.h"
51
2f261542
PE
52#if STDC_HEADERS
53#include <float.h>
54#endif
55
d137ae2f
PE
56/* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
57#ifndef IEEE_FLOATING_POINT
58#if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
59 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
60#define IEEE_FLOATING_POINT 1
61#else
62#define IEEE_FLOATING_POINT 0
63#endif
64#endif
65
4cd7a373
RS
66/* Work around a problem that happens because math.h on hpux 7
67 defines two static variables--which, in Emacs, are not really static,
68 because `static' is defined as nothing. The problem is that they are
69 defined both here and in lread.c.
70 These macros prevent the name conflict. */
71#if defined (HPUX) && !defined (HPUX8)
72#define _MAXLDBL floatfns_maxldbl
73#define _NMAXLDBL floatfns_nmaxldbl
74#endif
75
b70021f4 76#include <math.h>
4b6baf5f 77
32085e8e 78/* This declaration is omitted on some systems, like Ultrix. */
7a4720e2 79#if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
c26406fe 80extern double logb ();
7a4720e2 81#endif /* not HPUX and HAVE_LOGB and no logb macro */
c26406fe 82
4b6baf5f
RS
83#if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
84 /* If those are defined, then this is probably a `matherr' machine. */
85# ifndef HAVE_MATHERR
86# define HAVE_MATHERR
87# endif
88#endif
89
c0f0a4a2 90#ifdef NO_MATHERR
f89182a2
RS
91#undef HAVE_MATHERR
92#endif
93
4b6baf5f
RS
94#ifdef HAVE_MATHERR
95# ifdef FLOAT_CHECK_ERRNO
96# undef FLOAT_CHECK_ERRNO
97# endif
98# ifdef FLOAT_CHECK_DOMAIN
99# undef FLOAT_CHECK_DOMAIN
100# endif
101#endif
102
103#ifndef NO_FLOAT_CHECK_ERRNO
104#define FLOAT_CHECK_ERRNO
105#endif
106
107#ifdef FLOAT_CHECK_ERRNO
108# include <errno.h>
265a9e55 109
f12ef5eb 110#ifndef USE_CRT_DLL
265a9e55 111extern int errno;
4b6baf5f 112#endif
f12ef5eb 113#endif
265a9e55
JB
114
115/* Avoid traps on VMS from sinh and cosh.
116 All the other functions set errno instead. */
117
118#ifdef VMS
119#undef cosh
120#undef sinh
121#define cosh(x) ((exp(x)+exp(-x))*0.5)
122#define sinh(x) ((exp(x)-exp(-x))*0.5)
123#endif /* VMS */
124
311346bb 125#ifdef FLOAT_CATCH_SIGILL
4746118a 126static SIGTYPE float_error ();
311346bb 127#endif
b70021f4
MR
128
129/* Nonzero while executing in floating point.
130 This tells float_error what to do. */
131
132static int in_float;
133
134/* If an argument is out of range for a mathematical function,
21876236
RS
135 here is the actual argument value to use in the error message.
136 These variables are used only across the floating point library call
137 so there is no need to staticpro them. */
b70021f4 138
4b6baf5f
RS
139static Lisp_Object float_error_arg, float_error_arg2;
140
141static char *float_error_fn_name;
b70021f4 142
265a9e55
JB
143/* Evaluate the floating point expression D, recording NUM
144 as the original argument for error messages.
145 D is normally an assignment expression.
f8d83099
JB
146 Handle errors which may result in signals or may set errno.
147
148 Note that float_error may be declared to return void, so you can't
149 just cast the zero after the colon to (SIGTYPE) to make the types
150 check properly. */
265a9e55 151
4b6baf5f
RS
152#ifdef FLOAT_CHECK_ERRNO
153#define IN_FLOAT(d, name, num) \
154 do { \
155 float_error_arg = num; \
156 float_error_fn_name = name; \
157 in_float = 1; errno = 0; (d); in_float = 0; \
158 switch (errno) { \
159 case 0: break; \
160 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
161 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
162 default: arith_error (float_error_fn_name, float_error_arg); \
163 } \
164 } while (0)
165#define IN_FLOAT2(d, name, num, num2) \
166 do { \
167 float_error_arg = num; \
168 float_error_arg2 = num2; \
169 float_error_fn_name = name; \
170 in_float = 1; errno = 0; (d); in_float = 0; \
171 switch (errno) { \
172 case 0: break; \
173 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
174 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
175 default: arith_error (float_error_fn_name, float_error_arg); \
176 } \
177 } while (0)
178#else
f8131ed2 179#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
4b6baf5f
RS
180#define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
181#endif
182
81a63ccc
KH
183/* Convert float to Lisp_Int if it fits, else signal a range error
184 using the given arguments. */
185#define FLOAT_TO_INT(x, i, name, num) \
186 do \
187 { \
29d823d6 188 if (FIXNUM_OVERFLOW_P (x)) \
81a63ccc 189 range_error (name, num); \
e0cb2a68 190 XSETINT (i, (EMACS_INT)(x)); \
81a63ccc
KH
191 } \
192 while (0)
193#define FLOAT_TO_INT2(x, i, name, num1, num2) \
194 do \
195 { \
29d823d6 196 if (FIXNUM_OVERFLOW_P (x)) \
81a63ccc 197 range_error2 (name, num1, num2); \
e0cb2a68 198 XSETINT (i, (EMACS_INT)(x)); \
81a63ccc
KH
199 } \
200 while (0)
201
4b6baf5f
RS
202#define arith_error(op,arg) \
203 Fsignal (Qarith_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
204#define range_error(op,arg) \
205 Fsignal (Qrange_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
81a63ccc
KH
206#define range_error2(op,a1,a2) \
207 Fsignal (Qrange_error, Fcons (build_string ((op)), \
208 Fcons ((a1), Fcons ((a2), Qnil))))
4b6baf5f
RS
209#define domain_error(op,arg) \
210 Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
211#define domain_error2(op,a1,a2) \
81a63ccc
KH
212 Fsignal (Qdomain_error, Fcons (build_string ((op)), \
213 Fcons ((a1), Fcons ((a2), Qnil))))
b70021f4
MR
214
215/* Extract a Lisp number as a `double', or signal an error. */
216
217double
218extract_float (num)
219 Lisp_Object num;
220{
221 CHECK_NUMBER_OR_FLOAT (num, 0);
222
207a45c1 223 if (FLOATP (num))
70949dac 224 return XFLOAT_DATA (num);
b70021f4
MR
225 return (double) XINT (num);
226}
c2d4ea74
RS
227\f
228/* Trig functions. */
b70021f4
MR
229
230DEFUN ("acos", Facos, Sacos, 1, 1, 0,
231 "Return the inverse cosine of ARG.")
4b6baf5f
RS
232 (arg)
233 register Lisp_Object arg;
b70021f4 234{
4b6baf5f
RS
235 double d = extract_float (arg);
236#ifdef FLOAT_CHECK_DOMAIN
237 if (d > 1.0 || d < -1.0)
238 domain_error ("acos", arg);
239#endif
240 IN_FLOAT (d = acos (d), "acos", arg);
b70021f4
MR
241 return make_float (d);
242}
243
c2d4ea74
RS
244DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
245 "Return the inverse sine of ARG.")
4b6baf5f
RS
246 (arg)
247 register Lisp_Object arg;
b70021f4 248{
4b6baf5f
RS
249 double d = extract_float (arg);
250#ifdef FLOAT_CHECK_DOMAIN
251 if (d > 1.0 || d < -1.0)
252 domain_error ("asin", arg);
253#endif
254 IN_FLOAT (d = asin (d), "asin", arg);
b70021f4
MR
255 return make_float (d);
256}
257
c2d4ea74
RS
258DEFUN ("atan", Fatan, Satan, 1, 1, 0,
259 "Return the inverse tangent of ARG.")
4b6baf5f
RS
260 (arg)
261 register Lisp_Object arg;
b70021f4 262{
4b6baf5f
RS
263 double d = extract_float (arg);
264 IN_FLOAT (d = atan (d), "atan", arg);
b70021f4
MR
265 return make_float (d);
266}
267
c2d4ea74
RS
268DEFUN ("cos", Fcos, Scos, 1, 1, 0,
269 "Return the cosine of ARG.")
4b6baf5f
RS
270 (arg)
271 register Lisp_Object arg;
b70021f4 272{
4b6baf5f
RS
273 double d = extract_float (arg);
274 IN_FLOAT (d = cos (d), "cos", arg);
b70021f4
MR
275 return make_float (d);
276}
277
c2d4ea74
RS
278DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
279 "Return the sine of ARG.")
4b6baf5f
RS
280 (arg)
281 register Lisp_Object arg;
b70021f4 282{
4b6baf5f
RS
283 double d = extract_float (arg);
284 IN_FLOAT (d = sin (d), "sin", arg);
b70021f4
MR
285 return make_float (d);
286}
287
c2d4ea74
RS
288DEFUN ("tan", Ftan, Stan, 1, 1, 0,
289 "Return the tangent of ARG.")
4b6baf5f
RS
290 (arg)
291 register Lisp_Object arg;
292{
293 double d = extract_float (arg);
294 double c = cos (d);
295#ifdef FLOAT_CHECK_DOMAIN
296 if (c == 0.0)
297 domain_error ("tan", arg);
298#endif
299 IN_FLOAT (d = sin (d) / c, "tan", arg);
b70021f4
MR
300 return make_float (d);
301}
302\f
c2d4ea74
RS
303#if 0 /* Leave these out unless we find there's a reason for them. */
304
b70021f4
MR
305DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
306 "Return the bessel function j0 of ARG.")
4b6baf5f
RS
307 (arg)
308 register Lisp_Object arg;
b70021f4 309{
4b6baf5f
RS
310 double d = extract_float (arg);
311 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
b70021f4
MR
312 return make_float (d);
313}
314
315DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
316 "Return the bessel function j1 of ARG.")
4b6baf5f
RS
317 (arg)
318 register Lisp_Object arg;
b70021f4 319{
4b6baf5f
RS
320 double d = extract_float (arg);
321 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
b70021f4
MR
322 return make_float (d);
323}
324
325DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
326 "Return the order N bessel function output jn of ARG.\n\
327The first arg (the order) is truncated to an integer.")
3e670702
EN
328 (n, arg)
329 register Lisp_Object n, arg;
b70021f4 330{
3e670702
EN
331 int i1 = extract_float (n);
332 double f2 = extract_float (arg);
b70021f4 333
3e670702 334 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n);
b70021f4
MR
335 return make_float (f2);
336}
337
338DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
339 "Return the bessel function y0 of ARG.")
4b6baf5f
RS
340 (arg)
341 register Lisp_Object arg;
b70021f4 342{
4b6baf5f
RS
343 double d = extract_float (arg);
344 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
b70021f4
MR
345 return make_float (d);
346}
347
348DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
349 "Return the bessel function y1 of ARG.")
4b6baf5f
RS
350 (arg)
351 register Lisp_Object arg;
b70021f4 352{
4b6baf5f
RS
353 double d = extract_float (arg);
354 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
b70021f4
MR
355 return make_float (d);
356}
357
358DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
359 "Return the order N bessel function output yn of ARG.\n\
360The first arg (the order) is truncated to an integer.")
3e670702
EN
361 (n, arg)
362 register Lisp_Object n, arg;
b70021f4 363{
3e670702
EN
364 int i1 = extract_float (n);
365 double f2 = extract_float (arg);
b70021f4 366
3e670702 367 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n);
b70021f4
MR
368 return make_float (f2);
369}
b70021f4 370
c2d4ea74
RS
371#endif
372\f
373#if 0 /* Leave these out unless we see they are worth having. */
b70021f4
MR
374
375DEFUN ("erf", Ferf, Serf, 1, 1, 0,
376 "Return the mathematical error function of ARG.")
4b6baf5f
RS
377 (arg)
378 register Lisp_Object arg;
b70021f4 379{
4b6baf5f
RS
380 double d = extract_float (arg);
381 IN_FLOAT (d = erf (d), "erf", arg);
b70021f4
MR
382 return make_float (d);
383}
384
385DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
386 "Return the complementary error function of ARG.")
4b6baf5f
RS
387 (arg)
388 register Lisp_Object arg;
b70021f4 389{
4b6baf5f
RS
390 double d = extract_float (arg);
391 IN_FLOAT (d = erfc (d), "erfc", arg);
b70021f4
MR
392 return make_float (d);
393}
394
b70021f4
MR
395DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
396 "Return the log gamma of ARG.")
4b6baf5f
RS
397 (arg)
398 register Lisp_Object arg;
b70021f4 399{
4b6baf5f
RS
400 double d = extract_float (arg);
401 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
b70021f4
MR
402 return make_float (d);
403}
404
4b6baf5f 405DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
c2d4ea74 406 "Return the cube root of ARG.")
4b6baf5f
RS
407 (arg)
408 register Lisp_Object arg;
b70021f4 409{
4b6baf5f
RS
410 double d = extract_float (arg);
411#ifdef HAVE_CBRT
412 IN_FLOAT (d = cbrt (d), "cube-root", arg);
413#else
414 if (d >= 0.0)
415 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
416 else
417 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
418#endif
b70021f4
MR
419 return make_float (d);
420}
421
706ac90d
RS
422#endif
423\f
c2d4ea74
RS
424DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
425 "Return the exponential base e of ARG.")
4b6baf5f
RS
426 (arg)
427 register Lisp_Object arg;
428{
429 double d = extract_float (arg);
430#ifdef FLOAT_CHECK_DOMAIN
431 if (d > 709.7827) /* Assume IEEE doubles here */
432 range_error ("exp", arg);
433 else if (d < -709.0)
434 return make_float (0.0);
435 else
436#endif
437 IN_FLOAT (d = exp (d), "exp", arg);
b70021f4
MR
438 return make_float (d);
439}
440
b70021f4 441DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
4fd72a6a 442 "Return the exponential ARG1 ** ARG2.")
4b6baf5f
RS
443 (arg1, arg2)
444 register Lisp_Object arg1, arg2;
b70021f4
MR
445{
446 double f1, f2;
447
4b6baf5f
RS
448 CHECK_NUMBER_OR_FLOAT (arg1, 0);
449 CHECK_NUMBER_OR_FLOAT (arg2, 0);
207a45c1
KH
450 if (INTEGERP (arg1) /* common lisp spec */
451 && INTEGERP (arg2)) /* don't promote, if both are ints */
b70021f4 452 { /* this can be improved by pre-calculating */
9a51b24a 453 EMACS_INT acc, x, y; /* some binary powers of x then accumulating */
4be1d460
RS
454 Lisp_Object val;
455
4b6baf5f
RS
456 x = XINT (arg1);
457 y = XINT (arg2);
b70021f4
MR
458 acc = 1;
459
460 if (y < 0)
461 {
4b6baf5f
RS
462 if (x == 1)
463 acc = 1;
464 else if (x == -1)
465 acc = (y & 1) ? -1 : 1;
466 else
467 acc = 0;
b70021f4
MR
468 }
469 else
470 {
4b6baf5f
RS
471 while (y > 0)
472 {
473 if (y & 1)
474 acc *= x;
475 x *= x;
476 y = (unsigned)y >> 1;
477 }
b70021f4 478 }
e0cb2a68 479 XSETINT (val, acc);
4be1d460 480 return val;
b70021f4 481 }
70949dac
KR
482 f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
483 f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
4b6baf5f
RS
484 /* Really should check for overflow, too */
485 if (f1 == 0.0 && f2 == 0.0)
486 f1 = 1.0;
487#ifdef FLOAT_CHECK_DOMAIN
488 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
489 domain_error2 ("expt", arg1, arg2);
490#endif
28d849db 491 IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2);
b70021f4
MR
492 return make_float (f1);
493}
c2d4ea74 494
56abb480 495DEFUN ("log", Flog, Slog, 1, 2, 0,
4b6baf5f
RS
496 "Return the natural logarithm of ARG.\n\
497If second optional argument BASE is given, return log ARG using that base.")
498 (arg, base)
499 register Lisp_Object arg, base;
b70021f4 500{
4b6baf5f 501 double d = extract_float (arg);
56abb480 502
4b6baf5f
RS
503#ifdef FLOAT_CHECK_DOMAIN
504 if (d <= 0.0)
505 domain_error2 ("log", arg, base);
506#endif
56abb480 507 if (NILP (base))
4b6baf5f 508 IN_FLOAT (d = log (d), "log", arg);
56abb480
JB
509 else
510 {
511 double b = extract_float (base);
512
4b6baf5f
RS
513#ifdef FLOAT_CHECK_DOMAIN
514 if (b <= 0.0 || b == 1.0)
515 domain_error2 ("log", arg, base);
516#endif
517 if (b == 10.0)
518 IN_FLOAT2 (d = log10 (d), "log", arg, base);
519 else
f8131ed2 520 IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
56abb480 521 }
b70021f4
MR
522 return make_float (d);
523}
524
c2d4ea74
RS
525DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
526 "Return the logarithm base 10 of ARG.")
4b6baf5f
RS
527 (arg)
528 register Lisp_Object arg;
b70021f4 529{
4b6baf5f
RS
530 double d = extract_float (arg);
531#ifdef FLOAT_CHECK_DOMAIN
532 if (d <= 0.0)
533 domain_error ("log10", arg);
534#endif
535 IN_FLOAT (d = log10 (d), "log10", arg);
c2d4ea74
RS
536 return make_float (d);
537}
538
b70021f4
MR
539DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
540 "Return the square root of ARG.")
4b6baf5f
RS
541 (arg)
542 register Lisp_Object arg;
b70021f4 543{
4b6baf5f
RS
544 double d = extract_float (arg);
545#ifdef FLOAT_CHECK_DOMAIN
546 if (d < 0.0)
547 domain_error ("sqrt", arg);
548#endif
549 IN_FLOAT (d = sqrt (d), "sqrt", arg);
b70021f4
MR
550 return make_float (d);
551}
c2d4ea74 552\f
706ac90d 553#if 0 /* Not clearly worth adding. */
b70021f4 554
c2d4ea74
RS
555DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
556 "Return the inverse hyperbolic cosine of ARG.")
4b6baf5f
RS
557 (arg)
558 register Lisp_Object arg;
b70021f4 559{
4b6baf5f
RS
560 double d = extract_float (arg);
561#ifdef FLOAT_CHECK_DOMAIN
562 if (d < 1.0)
563 domain_error ("acosh", arg);
564#endif
565#ifdef HAVE_INVERSE_HYPERBOLIC
566 IN_FLOAT (d = acosh (d), "acosh", arg);
567#else
568 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
569#endif
c2d4ea74
RS
570 return make_float (d);
571}
572
573DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
574 "Return the inverse hyperbolic sine of ARG.")
4b6baf5f
RS
575 (arg)
576 register Lisp_Object arg;
c2d4ea74 577{
4b6baf5f
RS
578 double d = extract_float (arg);
579#ifdef HAVE_INVERSE_HYPERBOLIC
580 IN_FLOAT (d = asinh (d), "asinh", arg);
581#else
582 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
583#endif
c2d4ea74
RS
584 return make_float (d);
585}
586
587DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
588 "Return the inverse hyperbolic tangent of ARG.")
4b6baf5f
RS
589 (arg)
590 register Lisp_Object arg;
c2d4ea74 591{
4b6baf5f
RS
592 double d = extract_float (arg);
593#ifdef FLOAT_CHECK_DOMAIN
594 if (d >= 1.0 || d <= -1.0)
595 domain_error ("atanh", arg);
596#endif
597#ifdef HAVE_INVERSE_HYPERBOLIC
598 IN_FLOAT (d = atanh (d), "atanh", arg);
599#else
600 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
601#endif
c2d4ea74
RS
602 return make_float (d);
603}
604
605DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
606 "Return the hyperbolic cosine of ARG.")
4b6baf5f
RS
607 (arg)
608 register Lisp_Object arg;
c2d4ea74 609{
4b6baf5f
RS
610 double d = extract_float (arg);
611#ifdef FLOAT_CHECK_DOMAIN
612 if (d > 710.0 || d < -710.0)
613 range_error ("cosh", arg);
614#endif
615 IN_FLOAT (d = cosh (d), "cosh", arg);
c2d4ea74
RS
616 return make_float (d);
617}
618
619DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
620 "Return the hyperbolic sine of ARG.")
4b6baf5f
RS
621 (arg)
622 register Lisp_Object arg;
c2d4ea74 623{
4b6baf5f
RS
624 double d = extract_float (arg);
625#ifdef FLOAT_CHECK_DOMAIN
626 if (d > 710.0 || d < -710.0)
627 range_error ("sinh", arg);
628#endif
629 IN_FLOAT (d = sinh (d), "sinh", arg);
b70021f4
MR
630 return make_float (d);
631}
632
633DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
634 "Return the hyperbolic tangent of ARG.")
4b6baf5f
RS
635 (arg)
636 register Lisp_Object arg;
b70021f4 637{
4b6baf5f
RS
638 double d = extract_float (arg);
639 IN_FLOAT (d = tanh (d), "tanh", arg);
b70021f4
MR
640 return make_float (d);
641}
c2d4ea74 642#endif
b70021f4
MR
643\f
644DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
645 "Return the absolute value of ARG.")
4b6baf5f
RS
646 (arg)
647 register Lisp_Object arg;
b70021f4 648{
4b6baf5f 649 CHECK_NUMBER_OR_FLOAT (arg, 0);
b70021f4 650
207a45c1 651 if (FLOATP (arg))
70949dac 652 IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))), "abs", arg);
4b6baf5f 653 else if (XINT (arg) < 0)
db37cb37 654 XSETINT (arg, - XINT (arg));
b70021f4 655
4b6baf5f 656 return arg;
b70021f4
MR
657}
658
659DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
660 "Return the floating point number equal to ARG.")
4b6baf5f
RS
661 (arg)
662 register Lisp_Object arg;
b70021f4 663{
4b6baf5f 664 CHECK_NUMBER_OR_FLOAT (arg, 0);
b70021f4 665
207a45c1 666 if (INTEGERP (arg))
4b6baf5f 667 return make_float ((double) XINT (arg));
b70021f4 668 else /* give 'em the same float back */
4b6baf5f 669 return arg;
b70021f4
MR
670}
671
672DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
1a3ac8b9 673 "Returns largest integer <= the base 2 log of the magnitude of ARG.\n\
b70021f4 674This is the same as the exponent of a float.")
4b6baf5f
RS
675 (arg)
676 Lisp_Object arg;
b70021f4 677{
340176df 678 Lisp_Object val;
a7bf3c54 679 EMACS_INT value;
5bf54166 680 double f = extract_float (arg);
340176df 681
6694b327
KH
682 if (f == 0.0)
683 value = -(VALMASK >> 1);
684 else
685 {
6d3c6adb 686#ifdef HAVE_LOGB
6694b327 687 IN_FLOAT (value = logb (f), "logb", arg);
6d3c6adb
JB
688#else
689#ifdef HAVE_FREXP
c8bf6cf3
KH
690 int ivalue;
691 IN_FLOAT (frexp (f, &ivalue), "logb", arg);
692 value = ivalue - 1;
c26406fe 693#else
6694b327
KH
694 int i;
695 double d;
696 if (f < 0.0)
697 f = -f;
698 value = -1;
699 while (f < 0.5)
700 {
701 for (i = 1, d = 0.5; d * d >= f; i += i)
702 d *= d;
703 f /= d;
704 value -= i;
705 }
706 while (f >= 1.0)
707 {
708 for (i = 1, d = 2.0; d * d <= f; i += i)
709 d *= d;
710 f /= d;
711 value += i;
712 }
6d3c6adb 713#endif
340176df 714#endif
6694b327 715 }
e0cb2a68 716 XSETINT (val, value);
c26406fe 717 return val;
b70021f4
MR
718}
719
fc2157cb 720
acbbacbe
PE
721/* the rounding functions */
722
723static Lisp_Object
724rounding_driver (arg, divisor, double_round, int_round2, name)
fc2157cb 725 register Lisp_Object arg, divisor;
acbbacbe
PE
726 double (*double_round) ();
727 EMACS_INT (*int_round2) ();
728 char *name;
b70021f4 729{
4b6baf5f 730 CHECK_NUMBER_OR_FLOAT (arg, 0);
b70021f4 731
fc2157cb
PE
732 if (! NILP (divisor))
733 {
9a51b24a 734 EMACS_INT i1, i2;
fc2157cb
PE
735
736 CHECK_NUMBER_OR_FLOAT (divisor, 1);
737
207a45c1 738 if (FLOATP (arg) || FLOATP (divisor))
fc2157cb
PE
739 {
740 double f1, f2;
741
70949dac
KR
742 f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
743 f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
d137ae2f 744 if (! IEEE_FLOATING_POINT && f2 == 0)
fc2157cb
PE
745 Fsignal (Qarith_error, Qnil);
746
acbbacbe
PE
747 IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
748 FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
fc2157cb
PE
749 return arg;
750 }
fc2157cb
PE
751
752 i1 = XINT (arg);
753 i2 = XINT (divisor);
754
755 if (i2 == 0)
756 Fsignal (Qarith_error, Qnil);
757
acbbacbe 758 XSETINT (arg, (*int_round2) (i1, i2));
fc2157cb
PE
759 return arg;
760 }
761
207a45c1 762 if (FLOATP (arg))
81a63ccc
KH
763 {
764 double d;
acbbacbe 765
70949dac 766 IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg);
acbbacbe 767 FLOAT_TO_INT (d, arg, name, arg);
81a63ccc 768 }
b70021f4 769
4b6baf5f 770 return arg;
b70021f4
MR
771}
772
acbbacbe
PE
773/* With C's /, the result is implementation-defined if either operand
774 is negative, so take care with negative operands in the following
775 integer functions. */
776
777static EMACS_INT
778ceiling2 (i1, i2)
779 EMACS_INT i1, i2;
780{
781 return (i2 < 0
782 ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
783 : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
784}
785
786static EMACS_INT
787floor2 (i1, i2)
788 EMACS_INT i1, i2;
789{
790 return (i2 < 0
791 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
792 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
793}
794
795static EMACS_INT
796truncate2 (i1, i2)
797 EMACS_INT i1, i2;
798{
799 return (i2 < 0
800 ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
801 : (i1 < 0 ? - (-i1 / i2) : i1 / i2));
802}
803
804static EMACS_INT
805round2 (i1, i2)
806 EMACS_INT i1, i2;
807{
808 /* The C language's division operator gives us one remainder R, but
809 we want the remainder R1 on the other side of 0 if R1 is closer
810 to 0 than R is; because we want to round to even, we also want R1
811 if R and R1 are the same distance from 0 and if C's quotient is
812 odd. */
813 EMACS_INT q = i1 / i2;
814 EMACS_INT r = i1 % i2;
815 EMACS_INT abs_r = r < 0 ? -r : r;
816 EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
817 return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
818}
819
dca6c914
RS
820/* The code uses emacs_rint, so that it works to undefine HAVE_RINT
821 if `rint' exists but does not work right. */
822#ifdef HAVE_RINT
823#define emacs_rint rint
824#else
4b5878a8 825static double
dca6c914 826emacs_rint (d)
4b5878a8
KH
827 double d;
828{
1b65c684 829 return floor (d + 0.5);
4b5878a8
KH
830}
831#endif
832
acbbacbe
PE
833static double
834double_identity (d)
835 double d;
836{
837 return d;
838}
839
840DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
841 "Return the smallest integer no less than ARG. (Round toward +inf.)\n\
842With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR.")
843 (arg, divisor)
844 Lisp_Object arg, divisor;
845{
846 return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
847}
848
849DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
850 "Return the largest integer no greater than ARG. (Round towards -inf.)\n\
851With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR.")
852 (arg, divisor)
853 Lisp_Object arg, divisor;
854{
855 return rounding_driver (arg, divisor, floor, floor2, "floor");
856}
857
858DEFUN ("round", Fround, Sround, 1, 2, 0,
859 "Return the nearest integer to ARG.\n\
860With optional DIVISOR, return the nearest integer to ARG/DIVISOR.")
861 (arg, divisor)
862 Lisp_Object arg, divisor;
863{
dca6c914 864 return rounding_driver (arg, divisor, emacs_rint, round2, "round");
acbbacbe
PE
865}
866
867DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
868 "Truncate a floating point number to an int.\n\
869Rounds ARG toward zero.\n\
870With optional DIVISOR, truncate ARG/DIVISOR.")
871 (arg, divisor)
872 Lisp_Object arg, divisor;
873{
874 return rounding_driver (arg, divisor, double_identity, truncate2,
875 "truncate");
876}
877
fc2157cb 878
d137ae2f
PE
879Lisp_Object
880fmod_float (x, y)
881 register Lisp_Object x, y;
882{
883 double f1, f2;
884
70949dac
KR
885 f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
886 f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
d137ae2f
PE
887
888 if (! IEEE_FLOATING_POINT && f2 == 0)
889 Fsignal (Qarith_error, Qnil);
890
891 /* If the "remainder" comes out with the wrong sign, fix it. */
892 IN_FLOAT2 ((f1 = fmod (f1, f2),
893 f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1),
894 "mod", x, y);
895 return make_float (f1);
896}
4b6baf5f 897\f
4b6baf5f
RS
898/* It's not clear these are worth adding. */
899
900DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
901 "Return the smallest integer no less than ARG, as a float.\n\
902\(Round toward +inf.\)")
903 (arg)
904 register Lisp_Object arg;
905{
906 double d = extract_float (arg);
907 IN_FLOAT (d = ceil (d), "fceiling", arg);
908 return make_float (d);
909}
910
911DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
912 "Return the largest integer no greater than ARG, as a float.\n\
913\(Round towards -inf.\)")
914 (arg)
915 register Lisp_Object arg;
916{
917 double d = extract_float (arg);
918 IN_FLOAT (d = floor (d), "ffloor", arg);
919 return make_float (d);
920}
b70021f4 921
4b6baf5f
RS
922DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
923 "Return the nearest integer to ARG, as a float.")
924 (arg)
925 register Lisp_Object arg;
926{
927 double d = extract_float (arg);
dca6c914 928 IN_FLOAT (d = emacs_rint (d), "fround", arg);
4b6baf5f
RS
929 return make_float (d);
930}
931
932DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
dca6c914 933 "Truncate a floating point number to an integral float value.\n\
4b6baf5f
RS
934Rounds the value toward zero.")
935 (arg)
936 register Lisp_Object arg;
937{
938 double d = extract_float (arg);
939 if (d >= 0.0)
940 IN_FLOAT (d = floor (d), "ftruncate", arg);
941 else
a3fc5236 942 IN_FLOAT (d = ceil (d), "ftruncate", arg);
4b6baf5f 943 return make_float (d);
b70021f4
MR
944}
945\f
4b6baf5f 946#ifdef FLOAT_CATCH_SIGILL
4746118a 947static SIGTYPE
b70021f4
MR
948float_error (signo)
949 int signo;
950{
951 if (! in_float)
952 fatal_error_signal (signo);
953
6df54671 954#ifdef BSD_SYSTEM
b70021f4
MR
955#ifdef BSD4_1
956 sigrelse (SIGILL);
957#else /* not BSD4_1 */
e065a56e 958 sigsetmask (SIGEMPTYMASK);
b70021f4 959#endif /* not BSD4_1 */
265a9e55
JB
960#else
961 /* Must reestablish handler each time it is called. */
962 signal (SIGILL, float_error);
6df54671 963#endif /* BSD_SYSTEM */
b70021f4
MR
964
965 in_float = 0;
966
967 Fsignal (Qarith_error, Fcons (float_error_arg, Qnil));
968}
969
4b6baf5f
RS
970/* Another idea was to replace the library function `infnan'
971 where SIGILL is signaled. */
972
973#endif /* FLOAT_CATCH_SIGILL */
974
975#ifdef HAVE_MATHERR
976int
977matherr (x)
978 struct exception *x;
979{
980 Lisp_Object args;
981 if (! in_float)
982 /* Not called from emacs-lisp float routines; do the default thing. */
983 return 0;
984 if (!strcmp (x->name, "pow"))
985 x->name = "expt";
986
987 args
988 = Fcons (build_string (x->name),
989 Fcons (make_float (x->arg1),
990 ((!strcmp (x->name, "log") || !strcmp (x->name, "pow"))
991 ? Fcons (make_float (x->arg2), Qnil)
992 : Qnil)));
993 switch (x->type)
994 {
995 case DOMAIN: Fsignal (Qdomain_error, args); break;
996 case SING: Fsignal (Qsingularity_error, args); break;
997 case OVERFLOW: Fsignal (Qoverflow_error, args); break;
998 case UNDERFLOW: Fsignal (Qunderflow_error, args); break;
999 default: Fsignal (Qarith_error, args); break;
1000 }
1001 return (1); /* don't set errno or print a message */
1002}
1003#endif /* HAVE_MATHERR */
1004
dfcf069d 1005void
b70021f4
MR
1006init_floatfns ()
1007{
4b6baf5f 1008#ifdef FLOAT_CATCH_SIGILL
b70021f4 1009 signal (SIGILL, float_error);
4b6baf5f 1010#endif
b70021f4
MR
1011 in_float = 0;
1012}
1013
dfcf069d 1014void
b70021f4
MR
1015syms_of_floatfns ()
1016{
1017 defsubr (&Sacos);
b70021f4 1018 defsubr (&Sasin);
b70021f4 1019 defsubr (&Satan);
c2d4ea74
RS
1020 defsubr (&Scos);
1021 defsubr (&Ssin);
1022 defsubr (&Stan);
1023#if 0
1024 defsubr (&Sacosh);
1025 defsubr (&Sasinh);
b70021f4 1026 defsubr (&Satanh);
c2d4ea74
RS
1027 defsubr (&Scosh);
1028 defsubr (&Ssinh);
1029 defsubr (&Stanh);
b70021f4
MR
1030 defsubr (&Sbessel_y0);
1031 defsubr (&Sbessel_y1);
1032 defsubr (&Sbessel_yn);
1033 defsubr (&Sbessel_j0);
1034 defsubr (&Sbessel_j1);
1035 defsubr (&Sbessel_jn);
b70021f4
MR
1036 defsubr (&Serf);
1037 defsubr (&Serfc);
c2d4ea74 1038 defsubr (&Slog_gamma);
4b6baf5f 1039 defsubr (&Scube_root);
892ed7e0 1040#endif
4b6baf5f
RS
1041 defsubr (&Sfceiling);
1042 defsubr (&Sffloor);
1043 defsubr (&Sfround);
1044 defsubr (&Sftruncate);
b70021f4 1045 defsubr (&Sexp);
c2d4ea74 1046 defsubr (&Sexpt);
b70021f4
MR
1047 defsubr (&Slog);
1048 defsubr (&Slog10);
b70021f4 1049 defsubr (&Ssqrt);
b70021f4
MR
1050
1051 defsubr (&Sabs);
1052 defsubr (&Sfloat);
1053 defsubr (&Slogb);
1054 defsubr (&Sceiling);
acbbacbe 1055 defsubr (&Sfloor);
b70021f4
MR
1056 defsubr (&Sround);
1057 defsubr (&Struncate);
1058}