(unexec): Add casts for some comparisons.
[bpt/emacs.git] / src / floatfns.c
CommitLineData
b70021f4 1/* Primitive operations on floating point for GNU Emacs Lisp interpreter.
c6c5df7f 2 Copyright (C) 1988, 1993 Free Software Foundation, Inc.
b70021f4
MR
3
4This file is part of GNU Emacs.
5
6GNU Emacs is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
4746118a 8the Free Software Foundation; either version 2, or (at your option)
b70021f4
MR
9any later version.
10
11GNU Emacs is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Emacs; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
4b6baf5f
RS
21/* ANSI C requires only these float functions:
22 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
23 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
24
25 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
26 Define HAVE_CBRT if you have cbrt.
27 Define HAVE_RINT if you have rint.
28 If you don't define these, then the appropriate routines will be simulated.
29
30 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
31 (This should happen automatically.)
32
33 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
34 This has no effect if HAVE_MATHERR is defined.
35
36 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
37 (What systems actually do this? Please let us know.)
38
39 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
40 either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and
41 range checking will happen before calling the float routines. This has
42 no effect if HAVE_MATHERR is defined (since matherr will be called when
43 a domain error occurs.)
44 */
45
b70021f4
MR
46#include <signal.h>
47
48#include "config.h"
49#include "lisp.h"
e065a56e 50#include "syssignal.h"
b70021f4
MR
51
52Lisp_Object Qarith_error;
53
54#ifdef LISP_FLOAT_TYPE
265a9e55 55
b70021f4 56#include <math.h>
4b6baf5f 57
bbc4efeb 58#ifndef hpux
c26406fe
JB
59/* These declarations are omitted on some systems, like Ultrix. */
60extern double logb ();
bbc4efeb 61#endif
c26406fe 62
4b6baf5f
RS
63#if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
64 /* If those are defined, then this is probably a `matherr' machine. */
65# ifndef HAVE_MATHERR
66# define HAVE_MATHERR
67# endif
68#endif
69
c0f0a4a2 70#ifdef NO_MATHERR
f89182a2
RS
71#undef HAVE_MATHERR
72#endif
73
4b6baf5f
RS
74#ifdef HAVE_MATHERR
75# ifdef FLOAT_CHECK_ERRNO
76# undef FLOAT_CHECK_ERRNO
77# endif
78# ifdef FLOAT_CHECK_DOMAIN
79# undef FLOAT_CHECK_DOMAIN
80# endif
81#endif
82
83#ifndef NO_FLOAT_CHECK_ERRNO
84#define FLOAT_CHECK_ERRNO
85#endif
86
87#ifdef FLOAT_CHECK_ERRNO
88# include <errno.h>
265a9e55
JB
89
90extern int errno;
4b6baf5f 91#endif
265a9e55
JB
92
93/* Avoid traps on VMS from sinh and cosh.
94 All the other functions set errno instead. */
95
96#ifdef VMS
97#undef cosh
98#undef sinh
99#define cosh(x) ((exp(x)+exp(-x))*0.5)
100#define sinh(x) ((exp(x)-exp(-x))*0.5)
101#endif /* VMS */
102
4b6baf5f
RS
103#ifndef HAVE_RINT
104#define rint(x) (floor((x)+0.5))
105#endif
106
4746118a 107static SIGTYPE float_error ();
b70021f4
MR
108
109/* Nonzero while executing in floating point.
110 This tells float_error what to do. */
111
112static int in_float;
113
114/* If an argument is out of range for a mathematical function,
265a9e55 115 here is the actual argument value to use in the error message. */
b70021f4 116
4b6baf5f
RS
117static Lisp_Object float_error_arg, float_error_arg2;
118
119static char *float_error_fn_name;
b70021f4 120
265a9e55
JB
121/* Evaluate the floating point expression D, recording NUM
122 as the original argument for error messages.
123 D is normally an assignment expression.
f8d83099
JB
124 Handle errors which may result in signals or may set errno.
125
126 Note that float_error may be declared to return void, so you can't
127 just cast the zero after the colon to (SIGTYPE) to make the types
128 check properly. */
265a9e55 129
4b6baf5f
RS
130#ifdef FLOAT_CHECK_ERRNO
131#define IN_FLOAT(d, name, num) \
132 do { \
133 float_error_arg = num; \
134 float_error_fn_name = name; \
135 in_float = 1; errno = 0; (d); in_float = 0; \
136 switch (errno) { \
137 case 0: break; \
138 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
139 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
140 default: arith_error (float_error_fn_name, float_error_arg); \
141 } \
142 } while (0)
143#define IN_FLOAT2(d, name, num, num2) \
144 do { \
145 float_error_arg = num; \
146 float_error_arg2 = num2; \
147 float_error_fn_name = name; \
148 in_float = 1; errno = 0; (d); in_float = 0; \
149 switch (errno) { \
150 case 0: break; \
151 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
152 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
153 default: arith_error (float_error_fn_name, float_error_arg); \
154 } \
155 } while (0)
156#else
f8131ed2 157#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
4b6baf5f
RS
158#define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
159#endif
160
161#define arith_error(op,arg) \
162 Fsignal (Qarith_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
163#define range_error(op,arg) \
164 Fsignal (Qrange_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
165#define domain_error(op,arg) \
166 Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
167#define domain_error2(op,a1,a2) \
168 Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((a1), Fcons ((a2), Qnil))))
b70021f4
MR
169
170/* Extract a Lisp number as a `double', or signal an error. */
171
172double
173extract_float (num)
174 Lisp_Object num;
175{
176 CHECK_NUMBER_OR_FLOAT (num, 0);
177
178 if (XTYPE (num) == Lisp_Float)
179 return XFLOAT (num)->data;
180 return (double) XINT (num);
181}
c2d4ea74
RS
182\f
183/* Trig functions. */
b70021f4
MR
184
185DEFUN ("acos", Facos, Sacos, 1, 1, 0,
186 "Return the inverse cosine of ARG.")
4b6baf5f
RS
187 (arg)
188 register Lisp_Object arg;
b70021f4 189{
4b6baf5f
RS
190 double d = extract_float (arg);
191#ifdef FLOAT_CHECK_DOMAIN
192 if (d > 1.0 || d < -1.0)
193 domain_error ("acos", arg);
194#endif
195 IN_FLOAT (d = acos (d), "acos", arg);
b70021f4
MR
196 return make_float (d);
197}
198
c2d4ea74
RS
199DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
200 "Return the inverse sine of ARG.")
4b6baf5f
RS
201 (arg)
202 register Lisp_Object arg;
b70021f4 203{
4b6baf5f
RS
204 double d = extract_float (arg);
205#ifdef FLOAT_CHECK_DOMAIN
206 if (d > 1.0 || d < -1.0)
207 domain_error ("asin", arg);
208#endif
209 IN_FLOAT (d = asin (d), "asin", arg);
b70021f4
MR
210 return make_float (d);
211}
212
c2d4ea74
RS
213DEFUN ("atan", Fatan, Satan, 1, 1, 0,
214 "Return the inverse tangent of ARG.")
4b6baf5f
RS
215 (arg)
216 register Lisp_Object arg;
b70021f4 217{
4b6baf5f
RS
218 double d = extract_float (arg);
219 IN_FLOAT (d = atan (d), "atan", arg);
b70021f4
MR
220 return make_float (d);
221}
222
c2d4ea74
RS
223DEFUN ("cos", Fcos, Scos, 1, 1, 0,
224 "Return the cosine of ARG.")
4b6baf5f
RS
225 (arg)
226 register Lisp_Object arg;
b70021f4 227{
4b6baf5f
RS
228 double d = extract_float (arg);
229 IN_FLOAT (d = cos (d), "cos", arg);
b70021f4
MR
230 return make_float (d);
231}
232
c2d4ea74
RS
233DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
234 "Return the sine of ARG.")
4b6baf5f
RS
235 (arg)
236 register Lisp_Object arg;
b70021f4 237{
4b6baf5f
RS
238 double d = extract_float (arg);
239 IN_FLOAT (d = sin (d), "sin", arg);
b70021f4
MR
240 return make_float (d);
241}
242
c2d4ea74
RS
243DEFUN ("tan", Ftan, Stan, 1, 1, 0,
244 "Return the tangent of ARG.")
4b6baf5f
RS
245 (arg)
246 register Lisp_Object arg;
247{
248 double d = extract_float (arg);
249 double c = cos (d);
250#ifdef FLOAT_CHECK_DOMAIN
251 if (c == 0.0)
252 domain_error ("tan", arg);
253#endif
254 IN_FLOAT (d = sin (d) / c, "tan", arg);
b70021f4
MR
255 return make_float (d);
256}
257\f
c2d4ea74
RS
258#if 0 /* Leave these out unless we find there's a reason for them. */
259
b70021f4
MR
260DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
261 "Return the bessel function j0 of ARG.")
4b6baf5f
RS
262 (arg)
263 register Lisp_Object arg;
b70021f4 264{
4b6baf5f
RS
265 double d = extract_float (arg);
266 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
b70021f4
MR
267 return make_float (d);
268}
269
270DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
271 "Return the bessel function j1 of ARG.")
4b6baf5f
RS
272 (arg)
273 register Lisp_Object arg;
b70021f4 274{
4b6baf5f
RS
275 double d = extract_float (arg);
276 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
b70021f4
MR
277 return make_float (d);
278}
279
280DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
281 "Return the order N bessel function output jn of ARG.\n\
282The first arg (the order) is truncated to an integer.")
4b6baf5f
RS
283 (arg1, arg2)
284 register Lisp_Object arg1, arg2;
b70021f4 285{
4b6baf5f
RS
286 int i1 = extract_float (arg1);
287 double f2 = extract_float (arg2);
b70021f4 288
4b6baf5f 289 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", arg1);
b70021f4
MR
290 return make_float (f2);
291}
292
293DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
294 "Return the bessel function y0 of ARG.")
4b6baf5f
RS
295 (arg)
296 register Lisp_Object arg;
b70021f4 297{
4b6baf5f
RS
298 double d = extract_float (arg);
299 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
b70021f4
MR
300 return make_float (d);
301}
302
303DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
304 "Return the bessel function y1 of ARG.")
4b6baf5f
RS
305 (arg)
306 register Lisp_Object arg;
b70021f4 307{
4b6baf5f
RS
308 double d = extract_float (arg);
309 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
b70021f4
MR
310 return make_float (d);
311}
312
313DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
314 "Return the order N bessel function output yn of ARG.\n\
315The first arg (the order) is truncated to an integer.")
4b6baf5f
RS
316 (arg1, arg2)
317 register Lisp_Object arg1, arg2;
b70021f4 318{
4b6baf5f
RS
319 int i1 = extract_float (arg1);
320 double f2 = extract_float (arg2);
b70021f4 321
4b6baf5f 322 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", arg1);
b70021f4
MR
323 return make_float (f2);
324}
b70021f4 325
c2d4ea74
RS
326#endif
327\f
328#if 0 /* Leave these out unless we see they are worth having. */
b70021f4
MR
329
330DEFUN ("erf", Ferf, Serf, 1, 1, 0,
331 "Return the mathematical error function of ARG.")
4b6baf5f
RS
332 (arg)
333 register Lisp_Object arg;
b70021f4 334{
4b6baf5f
RS
335 double d = extract_float (arg);
336 IN_FLOAT (d = erf (d), "erf", arg);
b70021f4
MR
337 return make_float (d);
338}
339
340DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
341 "Return the complementary error function of ARG.")
4b6baf5f
RS
342 (arg)
343 register Lisp_Object arg;
b70021f4 344{
4b6baf5f
RS
345 double d = extract_float (arg);
346 IN_FLOAT (d = erfc (d), "erfc", arg);
b70021f4
MR
347 return make_float (d);
348}
349
b70021f4
MR
350DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
351 "Return the log gamma of ARG.")
4b6baf5f
RS
352 (arg)
353 register Lisp_Object arg;
b70021f4 354{
4b6baf5f
RS
355 double d = extract_float (arg);
356 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
b70021f4
MR
357 return make_float (d);
358}
359
4b6baf5f 360DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
c2d4ea74 361 "Return the cube root of ARG.")
4b6baf5f
RS
362 (arg)
363 register Lisp_Object arg;
b70021f4 364{
4b6baf5f
RS
365 double d = extract_float (arg);
366#ifdef HAVE_CBRT
367 IN_FLOAT (d = cbrt (d), "cube-root", arg);
368#else
369 if (d >= 0.0)
370 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
371 else
372 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
373#endif
b70021f4
MR
374 return make_float (d);
375}
376
706ac90d
RS
377#endif
378\f
c2d4ea74
RS
379DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
380 "Return the exponential base e of ARG.")
4b6baf5f
RS
381 (arg)
382 register Lisp_Object arg;
383{
384 double d = extract_float (arg);
385#ifdef FLOAT_CHECK_DOMAIN
386 if (d > 709.7827) /* Assume IEEE doubles here */
387 range_error ("exp", arg);
388 else if (d < -709.0)
389 return make_float (0.0);
390 else
391#endif
392 IN_FLOAT (d = exp (d), "exp", arg);
b70021f4
MR
393 return make_float (d);
394}
395
b70021f4 396DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
c2d4ea74 397 "Return the exponential X ** Y.")
4b6baf5f
RS
398 (arg1, arg2)
399 register Lisp_Object arg1, arg2;
b70021f4
MR
400{
401 double f1, f2;
402
4b6baf5f
RS
403 CHECK_NUMBER_OR_FLOAT (arg1, 0);
404 CHECK_NUMBER_OR_FLOAT (arg2, 0);
405 if ((XTYPE (arg1) == Lisp_Int) && /* common lisp spec */
406 (XTYPE (arg2) == Lisp_Int)) /* don't promote, if both are ints */
b70021f4 407 { /* this can be improved by pre-calculating */
eb8c3be9 408 int acc, x, y; /* some binary powers of x then accumulating */
4be1d460
RS
409 Lisp_Object val;
410
4b6baf5f
RS
411 x = XINT (arg1);
412 y = XINT (arg2);
b70021f4
MR
413 acc = 1;
414
415 if (y < 0)
416 {
4b6baf5f
RS
417 if (x == 1)
418 acc = 1;
419 else if (x == -1)
420 acc = (y & 1) ? -1 : 1;
421 else
422 acc = 0;
b70021f4
MR
423 }
424 else
425 {
426 for (; y > 0; y--)
4b6baf5f
RS
427 while (y > 0)
428 {
429 if (y & 1)
430 acc *= x;
431 x *= x;
432 y = (unsigned)y >> 1;
433 }
b70021f4 434 }
4be1d460
RS
435 XSET (val, Lisp_Int, acc);
436 return val;
b70021f4 437 }
4b6baf5f
RS
438 f1 = (XTYPE (arg1) == Lisp_Float) ? XFLOAT (arg1)->data : XINT (arg1);
439 f2 = (XTYPE (arg2) == Lisp_Float) ? XFLOAT (arg2)->data : XINT (arg2);
440 /* Really should check for overflow, too */
441 if (f1 == 0.0 && f2 == 0.0)
442 f1 = 1.0;
443#ifdef FLOAT_CHECK_DOMAIN
444 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
445 domain_error2 ("expt", arg1, arg2);
446#endif
447 IN_FLOAT (f1 = pow (f1, f2), "expt", arg1);
b70021f4
MR
448 return make_float (f1);
449}
c2d4ea74 450
56abb480 451DEFUN ("log", Flog, Slog, 1, 2, 0,
4b6baf5f
RS
452 "Return the natural logarithm of ARG.\n\
453If second optional argument BASE is given, return log ARG using that base.")
454 (arg, base)
455 register Lisp_Object arg, base;
b70021f4 456{
4b6baf5f 457 double d = extract_float (arg);
56abb480 458
4b6baf5f
RS
459#ifdef FLOAT_CHECK_DOMAIN
460 if (d <= 0.0)
461 domain_error2 ("log", arg, base);
462#endif
56abb480 463 if (NILP (base))
4b6baf5f 464 IN_FLOAT (d = log (d), "log", arg);
56abb480
JB
465 else
466 {
467 double b = extract_float (base);
468
4b6baf5f
RS
469#ifdef FLOAT_CHECK_DOMAIN
470 if (b <= 0.0 || b == 1.0)
471 domain_error2 ("log", arg, base);
472#endif
473 if (b == 10.0)
474 IN_FLOAT2 (d = log10 (d), "log", arg, base);
475 else
f8131ed2 476 IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
56abb480 477 }
b70021f4
MR
478 return make_float (d);
479}
480
c2d4ea74
RS
481DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
482 "Return the logarithm base 10 of ARG.")
4b6baf5f
RS
483 (arg)
484 register Lisp_Object arg;
b70021f4 485{
4b6baf5f
RS
486 double d = extract_float (arg);
487#ifdef FLOAT_CHECK_DOMAIN
488 if (d <= 0.0)
489 domain_error ("log10", arg);
490#endif
491 IN_FLOAT (d = log10 (d), "log10", arg);
c2d4ea74
RS
492 return make_float (d);
493}
494
b70021f4
MR
495DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
496 "Return the square root of ARG.")
4b6baf5f
RS
497 (arg)
498 register Lisp_Object arg;
b70021f4 499{
4b6baf5f
RS
500 double d = extract_float (arg);
501#ifdef FLOAT_CHECK_DOMAIN
502 if (d < 0.0)
503 domain_error ("sqrt", arg);
504#endif
505 IN_FLOAT (d = sqrt (d), "sqrt", arg);
b70021f4
MR
506 return make_float (d);
507}
c2d4ea74 508\f
706ac90d 509#if 0 /* Not clearly worth adding. */
b70021f4 510
c2d4ea74
RS
511DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
512 "Return the inverse hyperbolic cosine of ARG.")
4b6baf5f
RS
513 (arg)
514 register Lisp_Object arg;
b70021f4 515{
4b6baf5f
RS
516 double d = extract_float (arg);
517#ifdef FLOAT_CHECK_DOMAIN
518 if (d < 1.0)
519 domain_error ("acosh", arg);
520#endif
521#ifdef HAVE_INVERSE_HYPERBOLIC
522 IN_FLOAT (d = acosh (d), "acosh", arg);
523#else
524 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
525#endif
c2d4ea74
RS
526 return make_float (d);
527}
528
529DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
530 "Return the inverse hyperbolic sine of ARG.")
4b6baf5f
RS
531 (arg)
532 register Lisp_Object arg;
c2d4ea74 533{
4b6baf5f
RS
534 double d = extract_float (arg);
535#ifdef HAVE_INVERSE_HYPERBOLIC
536 IN_FLOAT (d = asinh (d), "asinh", arg);
537#else
538 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
539#endif
c2d4ea74
RS
540 return make_float (d);
541}
542
543DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
544 "Return the inverse hyperbolic tangent of ARG.")
4b6baf5f
RS
545 (arg)
546 register Lisp_Object arg;
c2d4ea74 547{
4b6baf5f
RS
548 double d = extract_float (arg);
549#ifdef FLOAT_CHECK_DOMAIN
550 if (d >= 1.0 || d <= -1.0)
551 domain_error ("atanh", arg);
552#endif
553#ifdef HAVE_INVERSE_HYPERBOLIC
554 IN_FLOAT (d = atanh (d), "atanh", arg);
555#else
556 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
557#endif
c2d4ea74
RS
558 return make_float (d);
559}
560
561DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
562 "Return the hyperbolic cosine of ARG.")
4b6baf5f
RS
563 (arg)
564 register Lisp_Object arg;
c2d4ea74 565{
4b6baf5f
RS
566 double d = extract_float (arg);
567#ifdef FLOAT_CHECK_DOMAIN
568 if (d > 710.0 || d < -710.0)
569 range_error ("cosh", arg);
570#endif
571 IN_FLOAT (d = cosh (d), "cosh", arg);
c2d4ea74
RS
572 return make_float (d);
573}
574
575DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
576 "Return the hyperbolic sine of ARG.")
4b6baf5f
RS
577 (arg)
578 register Lisp_Object arg;
c2d4ea74 579{
4b6baf5f
RS
580 double d = extract_float (arg);
581#ifdef FLOAT_CHECK_DOMAIN
582 if (d > 710.0 || d < -710.0)
583 range_error ("sinh", arg);
584#endif
585 IN_FLOAT (d = sinh (d), "sinh", arg);
b70021f4
MR
586 return make_float (d);
587}
588
589DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
590 "Return the hyperbolic tangent of ARG.")
4b6baf5f
RS
591 (arg)
592 register Lisp_Object arg;
b70021f4 593{
4b6baf5f
RS
594 double d = extract_float (arg);
595 IN_FLOAT (d = tanh (d), "tanh", arg);
b70021f4
MR
596 return make_float (d);
597}
c2d4ea74 598#endif
b70021f4
MR
599\f
600DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
601 "Return the absolute value of ARG.")
4b6baf5f
RS
602 (arg)
603 register Lisp_Object arg;
b70021f4 604{
4b6baf5f 605 CHECK_NUMBER_OR_FLOAT (arg, 0);
b70021f4 606
4b6baf5f
RS
607 if (XTYPE (arg) == Lisp_Float)
608 IN_FLOAT (arg = make_float (fabs (XFLOAT (arg)->data)), "abs", arg);
609 else if (XINT (arg) < 0)
610 XSETINT (arg, - XFASTINT (arg));
b70021f4 611
4b6baf5f 612 return arg;
b70021f4
MR
613}
614
615DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
616 "Return the floating point number equal to ARG.")
4b6baf5f
RS
617 (arg)
618 register Lisp_Object arg;
b70021f4 619{
4b6baf5f 620 CHECK_NUMBER_OR_FLOAT (arg, 0);
b70021f4 621
4b6baf5f
RS
622 if (XTYPE (arg) == Lisp_Int)
623 return make_float ((double) XINT (arg));
b70021f4 624 else /* give 'em the same float back */
4b6baf5f 625 return arg;
b70021f4
MR
626}
627
628DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
340176df 629 "Returns the integer not greater than the base 2 log of the magnitude of ARG.\n\
b70021f4 630This is the same as the exponent of a float.")
4b6baf5f
RS
631 (arg)
632 Lisp_Object arg;
b70021f4 633{
340176df 634 Lisp_Object val;
5bf54166
RS
635 int value;
636 double f = extract_float (arg);
340176df 637
6d3c6adb
JB
638#ifdef HAVE_LOGB
639 IN_FLOAT (value = logb (f), "logb", arg);
640 XSET (val, Lisp_Int, value);
641#else
642#ifdef HAVE_FREXP
c26406fe
JB
643 {
644 int exp;
645
646 IN_FLOAT (frexp (f, &exp), "logb", arg);
647 XSET (val, Lisp_Int, exp-1);
648 }
649#else
6d3c6adb
JB
650 Well, what *do* you have?
651#endif
340176df 652#endif
c26406fe
JB
653
654 return val;
b70021f4
MR
655}
656
657/* the rounding functions */
658
659DEFUN ("ceiling", Fceiling, Sceiling, 1, 1, 0,
660 "Return the smallest integer no less than ARG. (Round toward +inf.)")
4b6baf5f
RS
661 (arg)
662 register Lisp_Object arg;
b70021f4 663{
4b6baf5f 664 CHECK_NUMBER_OR_FLOAT (arg, 0);
b70021f4 665
4b6baf5f 666 if (XTYPE (arg) == Lisp_Float)
63a81d88 667 IN_FLOAT (XSET (arg, Lisp_Int, ceil (XFLOAT (arg)->data)), "ceiling", arg);
b70021f4 668
4b6baf5f 669 return arg;
b70021f4
MR
670}
671
672DEFUN ("floor", Ffloor, Sfloor, 1, 1, 0,
673 "Return the largest integer no greater than ARG. (Round towards -inf.)")
4b6baf5f
RS
674 (arg)
675 register Lisp_Object arg;
b70021f4 676{
4b6baf5f 677 CHECK_NUMBER_OR_FLOAT (arg, 0);
b70021f4 678
4b6baf5f
RS
679 if (XTYPE (arg) == Lisp_Float)
680 IN_FLOAT (XSET (arg, Lisp_Int, floor (XFLOAT (arg)->data)), "floor", arg);
b70021f4 681
4b6baf5f 682 return arg;
b70021f4
MR
683}
684
685DEFUN ("round", Fround, Sround, 1, 1, 0,
686 "Return the nearest integer to ARG.")
4b6baf5f
RS
687 (arg)
688 register Lisp_Object arg;
b70021f4 689{
4b6baf5f 690 CHECK_NUMBER_OR_FLOAT (arg, 0);
b70021f4 691
4b6baf5f
RS
692 if (XTYPE (arg) == Lisp_Float)
693 /* Screw the prevailing rounding mode. */
694 IN_FLOAT (XSET (arg, Lisp_Int, rint (XFLOAT (arg)->data)), "round", arg);
b70021f4 695
4b6baf5f 696 return arg;
b70021f4
MR
697}
698
699DEFUN ("truncate", Ftruncate, Struncate, 1, 1, 0,
700 "Truncate a floating point number to an int.\n\
701Rounds the value toward zero.")
4b6baf5f
RS
702 (arg)
703 register Lisp_Object arg;
b70021f4 704{
4b6baf5f 705 CHECK_NUMBER_OR_FLOAT (arg, 0);
b70021f4 706
4b6baf5f
RS
707 if (XTYPE (arg) == Lisp_Float)
708 XSET (arg, Lisp_Int, (int) XFLOAT (arg)->data);
709
710 return arg;
711}
712\f
713#if 0
714/* It's not clear these are worth adding. */
715
716DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
717 "Return the smallest integer no less than ARG, as a float.\n\
718\(Round toward +inf.\)")
719 (arg)
720 register Lisp_Object arg;
721{
722 double d = extract_float (arg);
723 IN_FLOAT (d = ceil (d), "fceiling", arg);
724 return make_float (d);
725}
726
727DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
728 "Return the largest integer no greater than ARG, as a float.\n\
729\(Round towards -inf.\)")
730 (arg)
731 register Lisp_Object arg;
732{
733 double d = extract_float (arg);
734 IN_FLOAT (d = floor (d), "ffloor", arg);
735 return make_float (d);
736}
b70021f4 737
4b6baf5f
RS
738DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
739 "Return the nearest integer to ARG, as a float.")
740 (arg)
741 register Lisp_Object arg;
742{
743 double d = extract_float (arg);
744 IN_FLOAT (d = rint (XFLOAT (arg)->data), "fround", arg);
745 return make_float (d);
746}
747
748DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
749 "Truncate a floating point number to an integral float value.\n\
750Rounds the value toward zero.")
751 (arg)
752 register Lisp_Object arg;
753{
754 double d = extract_float (arg);
755 if (d >= 0.0)
756 IN_FLOAT (d = floor (d), "ftruncate", arg);
757 else
758 IN_FLOAT (d = ceil (d), arg);
759 return make_float (d);
b70021f4 760}
4b6baf5f 761#endif
b70021f4 762\f
4b6baf5f 763#ifdef FLOAT_CATCH_SIGILL
4746118a 764static SIGTYPE
b70021f4
MR
765float_error (signo)
766 int signo;
767{
768 if (! in_float)
769 fatal_error_signal (signo);
770
265a9e55 771#ifdef BSD
b70021f4
MR
772#ifdef BSD4_1
773 sigrelse (SIGILL);
774#else /* not BSD4_1 */
e065a56e 775 sigsetmask (SIGEMPTYMASK);
b70021f4 776#endif /* not BSD4_1 */
265a9e55
JB
777#else
778 /* Must reestablish handler each time it is called. */
779 signal (SIGILL, float_error);
780#endif /* BSD */
b70021f4
MR
781
782 in_float = 0;
783
784 Fsignal (Qarith_error, Fcons (float_error_arg, Qnil));
785}
786
4b6baf5f
RS
787/* Another idea was to replace the library function `infnan'
788 where SIGILL is signaled. */
789
790#endif /* FLOAT_CATCH_SIGILL */
791
792#ifdef HAVE_MATHERR
793int
794matherr (x)
795 struct exception *x;
796{
797 Lisp_Object args;
798 if (! in_float)
799 /* Not called from emacs-lisp float routines; do the default thing. */
800 return 0;
801 if (!strcmp (x->name, "pow"))
802 x->name = "expt";
803
804 args
805 = Fcons (build_string (x->name),
806 Fcons (make_float (x->arg1),
807 ((!strcmp (x->name, "log") || !strcmp (x->name, "pow"))
808 ? Fcons (make_float (x->arg2), Qnil)
809 : Qnil)));
810 switch (x->type)
811 {
812 case DOMAIN: Fsignal (Qdomain_error, args); break;
813 case SING: Fsignal (Qsingularity_error, args); break;
814 case OVERFLOW: Fsignal (Qoverflow_error, args); break;
815 case UNDERFLOW: Fsignal (Qunderflow_error, args); break;
816 default: Fsignal (Qarith_error, args); break;
817 }
818 return (1); /* don't set errno or print a message */
819}
820#endif /* HAVE_MATHERR */
821
b70021f4
MR
822init_floatfns ()
823{
4b6baf5f 824#ifdef FLOAT_CATCH_SIGILL
b70021f4 825 signal (SIGILL, float_error);
4b6baf5f 826#endif
b70021f4
MR
827 in_float = 0;
828}
829
830syms_of_floatfns ()
831{
832 defsubr (&Sacos);
b70021f4 833 defsubr (&Sasin);
b70021f4 834 defsubr (&Satan);
c2d4ea74
RS
835 defsubr (&Scos);
836 defsubr (&Ssin);
837 defsubr (&Stan);
838#if 0
839 defsubr (&Sacosh);
840 defsubr (&Sasinh);
b70021f4 841 defsubr (&Satanh);
c2d4ea74
RS
842 defsubr (&Scosh);
843 defsubr (&Ssinh);
844 defsubr (&Stanh);
b70021f4
MR
845 defsubr (&Sbessel_y0);
846 defsubr (&Sbessel_y1);
847 defsubr (&Sbessel_yn);
848 defsubr (&Sbessel_j0);
849 defsubr (&Sbessel_j1);
850 defsubr (&Sbessel_jn);
b70021f4
MR
851 defsubr (&Serf);
852 defsubr (&Serfc);
c2d4ea74 853 defsubr (&Slog_gamma);
4b6baf5f
RS
854 defsubr (&Scube_root);
855 defsubr (&Sfceiling);
856 defsubr (&Sffloor);
857 defsubr (&Sfround);
858 defsubr (&Sftruncate);
c2d4ea74 859#endif
b70021f4 860 defsubr (&Sexp);
c2d4ea74 861 defsubr (&Sexpt);
b70021f4
MR
862 defsubr (&Slog);
863 defsubr (&Slog10);
b70021f4 864 defsubr (&Ssqrt);
b70021f4
MR
865
866 defsubr (&Sabs);
867 defsubr (&Sfloat);
868 defsubr (&Slogb);
869 defsubr (&Sceiling);
870 defsubr (&Sfloor);
871 defsubr (&Sround);
872 defsubr (&Struncate);
873}
874
875#else /* not LISP_FLOAT_TYPE */
876
877init_floatfns ()
878{}
879
880syms_of_floatfns ()
881{}
882
883#endif /* not LISP_FLOAT_TYPE */