Merge branch 'edge' of github.com:arthurwolf/Smoothie into edge
[clinton/Smoothieware.git] / src / modules / tools / temperaturecontrol / TemperatureControl.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 // TODO : THIS FILE IS LAME, MUST BE MADE MUCH BETTER
9
10 #include "libs/Module.h"
11 #include "libs/Kernel.h"
12 #include <math.h>
13 #include "TemperatureControl.h"
14 #include "TemperatureControlPool.h"
15 #include "libs/Pin.h"
16 #include "libs/Median.h"
17
18 #include "MRI_Hooks.h"
19
20 TemperatureControl::TemperatureControl(){}
21
22 TemperatureControl::TemperatureControl(uint16_t name){
23 this->name_checksum = name;
24 // this->error_count = 0;
25 this->waiting = false;
26 }
27
28 void TemperatureControl::on_module_loaded(){
29
30 // We start not desiring any temp
31 this->target_temperature = UNDEFINED;
32
33 // Settings
34 this->on_config_reload(this);
35
36 this->acceleration_factor = 10;
37
38 // Register for events
39 this->register_for_event(ON_GCODE_EXECUTE);
40 this->register_for_event(ON_GCODE_RECEIVED);
41 this->register_for_event(ON_MAIN_LOOP);
42 this->register_for_event(ON_SECOND_TICK);
43
44 }
45
46 void TemperatureControl::on_main_loop(void* argument){ }
47
48 // Get configuration from the config file
49 void TemperatureControl::on_config_reload(void* argument){
50
51 // General config
52 this->set_m_code = this->kernel->config->value(temperature_control_checksum, this->name_checksum, set_m_code_checksum)->by_default(104)->as_number();
53 this->set_and_wait_m_code = this->kernel->config->value(temperature_control_checksum, this->name_checksum, set_and_wait_m_code_checksum)->by_default(109)->as_number();
54 this->get_m_code = this->kernel->config->value(temperature_control_checksum, this->name_checksum, get_m_code_checksum)->by_default(105)->as_number();
55 this->readings_per_second = this->kernel->config->value(temperature_control_checksum, this->name_checksum, readings_per_second_checksum)->by_default(20)->as_number();
56
57 this->designator = this->kernel->config->value(temperature_control_checksum, this->name_checksum, designator_checksum)->by_default(string("T"))->as_string();
58
59 // Values are here : http://reprap.org/wiki/Thermistor
60 this->r0 = 100000;
61 this->t0 = 25;
62 this->beta = 4066;
63 this->r1 = 0;
64 this->r2 = 4700;
65
66 // Preset values for various common types of thermistors
67 ConfigValue* thermistor = this->kernel->config->value(temperature_control_checksum, this->name_checksum, thermistor_checksum);
68 if( thermistor->value.compare("EPCOS100K" ) == 0 ){ // Default
69 }else if( thermistor->value.compare("RRRF100K" ) == 0 ){ this->beta = 3960;
70 }else if( thermistor->value.compare("RRRF10K" ) == 0 ){ this->beta = 3964; this->r0 = 10000; this->r1 = 680; this->r2 = 1600;
71 }else if( thermistor->value.compare("Honeywell100K") == 0 ){ this->beta = 3974;
72 }else if( thermistor->value.compare("Semitec" ) == 0 ){ this->beta = 4267; }
73
74 // Preset values are overriden by specified values
75 this->r0 = this->kernel->config->value(temperature_control_checksum, this->name_checksum, r0_checksum )->by_default(this->r0 )->as_number(); // Stated resistance eg. 100K
76 this->t0 = this->kernel->config->value(temperature_control_checksum, this->name_checksum, t0_checksum )->by_default(this->t0 )->as_number(); // Temperature at stated resistance, eg. 25C
77 this->beta = this->kernel->config->value(temperature_control_checksum, this->name_checksum, beta_checksum)->by_default(this->beta)->as_number(); // Thermistor beta rating. See http://reprap.org/bin/view/Main/MeasuringThermistorBeta
78 this->r1 = this->kernel->config->value(temperature_control_checksum, this->name_checksum, r1_checksum )->by_default(this->r1 )->as_number();
79 this->r2 = this->kernel->config->value(temperature_control_checksum, this->name_checksum, r2_checksum )->by_default(this->r2 )->as_number();
80
81
82 // Thermistor math
83 j = (1.0 / beta);
84 k = (1.0 / (t0 + 273.15));
85
86 // sigma-delta output modulation
87 o = 0;
88
89 // Thermistor pin for ADC readings
90 this->thermistor_pin = this->kernel->config->value(temperature_control_checksum, this->name_checksum, thermistor_pin_checksum )->required()->as_pin();
91 this->kernel->adc->enable_pin(this->thermistor_pin);
92
93 // Heater pin
94 this->heater_pin = this->kernel->config->value(temperature_control_checksum, this->name_checksum, heater_pin_checksum)->required()->as_pwm()->as_output();
95 this->heater_pin->set(0);
96
97 set_low_on_debug(heater_pin->pin->port_number, heater_pin->pin->pin);
98
99 // activate SD-DAC timer
100 this->kernel->slow_ticker->attach(1000, this->heater_pin, &Pwm::on_tick);
101
102 // reading tick
103 this->kernel->slow_ticker->attach( this->readings_per_second, this, &TemperatureControl::thermistor_read_tick );
104
105 // PID
106 this->p_factor = this->kernel->config->value(temperature_control_checksum, this->name_checksum, p_factor_checksum)->by_default(10 )->as_number();
107 this->i_factor = this->kernel->config->value(temperature_control_checksum, this->name_checksum, i_factor_checksum)->by_default(0.3)->as_number();
108 this->d_factor = this->kernel->config->value(temperature_control_checksum, this->name_checksum, d_factor_checksum)->by_default(200)->as_number();
109 this->i_max = this->kernel->config->value(temperature_control_checksum, this->name_checksum, i_max_checksum )->by_default(255)->as_number();
110 this->i = 0.0;
111 this->last_reading = 0.0;
112 }
113
114 void TemperatureControl::on_gcode_received(void* argument)
115 {
116 Gcode* gcode = static_cast<Gcode*>(argument);
117 if (gcode->has_m)
118 {
119 // Get temperature
120 if( gcode->m == this->get_m_code ){
121 gcode->stream->printf("%s:%3.1f /%3.1f @%d ", this->designator.c_str(), this->get_temperature(), ((target_temperature == UNDEFINED)?0.0:target_temperature), this->o);
122 gcode->add_nl = true;
123 }
124 if (gcode->m == 301)
125 {
126 if (gcode->has_letter('S') && (gcode->get_value('S') == this->pool_index))
127 {
128 if (gcode->has_letter('P'))
129 this->p_factor = gcode->get_value('P');
130 if (gcode->has_letter('I'))
131 this->i_factor = gcode->get_value('I');
132 if (gcode->has_letter('D'))
133 this->d_factor = gcode->get_value('D');
134 if (gcode->has_letter('X'))
135 this->i_max = gcode->get_value('X');
136 }
137 gcode->stream->printf("%s(S%d): Pf:%g If:%g Df:%g X(I_max):%g Pv:%g Iv:%g Dv:%g O:%d\n", this->designator.c_str(), this->pool_index, this->p_factor, this->i_factor, this->d_factor, this->i_max, this->p, this->i, this->d, o);
138 }
139 if (gcode->m == 303)
140 {
141 if (gcode->has_letter('S') && (gcode->get_value('S') == this->pool_index))
142 {
143 double target = 150.0;
144 if (gcode->has_letter('P'))
145 {
146 target = gcode->get_value('P');
147 gcode->stream->printf("Target: %5.1f\n", target);
148 }
149 gcode->stream->printf("Start PID tune, command is %s\n", gcode->command.c_str());
150 this->pool->PIDtuner->begin(this, target, gcode->stream);
151 }
152 }
153 }
154 }
155
156 void TemperatureControl::on_gcode_execute(void* argument){
157 Gcode* gcode = static_cast<Gcode*>(argument);
158 if( gcode->has_m){
159 // Set temperature without waiting
160 if( gcode->m == this->set_m_code && gcode->has_letter('S') )
161 {
162 if (gcode->get_value('S') == 0)
163 {
164 this->target_temperature = UNDEFINED;
165 this->heater_pin->set(0);
166 }
167 else
168 {
169 this->set_desired_temperature(gcode->get_value('S'));
170 }
171 }
172 // Set temperature and wait
173 if( gcode->m == this->set_and_wait_m_code && gcode->has_letter('S') )
174 {
175 if (gcode->get_value('S') == 0)
176 {
177 this->target_temperature = UNDEFINED;
178 this->heater_pin->set(0);
179 }
180 else
181 {
182 this->set_desired_temperature(gcode->get_value('S'));
183 // Pause
184 this->kernel->pauser->take();
185 this->waiting = true;
186 }
187 }
188 }
189 }
190
191
192 void TemperatureControl::set_desired_temperature(double desired_temperature){
193 target_temperature = desired_temperature;
194 if (desired_temperature == 0.0)
195 heater_pin->set((o = 0));
196 }
197
198 double TemperatureControl::get_temperature(){
199 return last_reading;
200 }
201
202 double TemperatureControl::adc_value_to_temperature(int adc_value)
203 {
204 if ((adc_value == 4095) || (adc_value == 0))
205 return INFINITY;
206 double r = r2 / ((4095.0 / adc_value) - 1.0);
207 if (r1 > 0)
208 r = (r1 * r) / (r1 - r);
209 return (1.0 / (k + (j * log(r / r0)))) - 273.15;
210 }
211
212 uint32_t TemperatureControl::thermistor_read_tick(uint32_t dummy){
213 int r = new_thermistor_reading();
214
215 double temperature = adc_value_to_temperature(r);
216
217 if (target_temperature > 0)
218 {
219 if ((r <= 1) || (r >= 4094))
220 {
221 kernel->streams->printf("MINTEMP triggered on P%d.%d! check your thermistors!\n", this->thermistor_pin->port_number, this->thermistor_pin->pin);
222 target_temperature = UNDEFINED;
223 heater_pin->set(0);
224 }
225 else
226 {
227 pid_process(temperature);
228 if ((temperature > target_temperature) && waiting)
229 {
230 kernel->pauser->release();
231 waiting = false;
232 }
233 }
234 }
235 else
236 {
237 heater_pin->set((o = 0));
238 }
239 last_reading = temperature;
240 return 0;
241 }
242
243 void TemperatureControl::pid_process(double temperature)
244 {
245 double error = target_temperature - temperature;
246
247 p = error * p_factor;
248 i += (error * this->i_factor);
249 // d was imbued with oldest_raw earlier in new_thermistor_reading
250 d = adc_value_to_temperature(d);
251 d = (d - temperature) * this->d_factor;
252
253 if (i > this->i_max)
254 i = this->i_max;
255 if (i < -this->i_max)
256 i = -this->i_max;
257
258 this->o = (p + i + d) * heater_pin->max_pwm() / 256;
259
260 if (this->o >= heater_pin->max_pwm())
261 {
262 i = 0;
263 this->o = heater_pin->max_pwm();
264 }
265 if (this->o < 0)
266 {
267 if (this->o < -(heater_pin->max_pwm()))
268 i = 0;
269 this->o = 0;
270 }
271
272 this->heater_pin->pwm(o);
273 }
274
275 int TemperatureControl::new_thermistor_reading()
276 {
277 int last_raw = this->kernel->adc->read(this->thermistor_pin);
278 if (queue.size() >= queue.capacity())
279 {
280 uint16_t l;
281 queue.pop_front(l);
282 d = l;
283 }
284 uint16_t r = last_raw;
285 queue.push_back(r);
286 for (int i=0; i<queue.size(); i++)
287 median_buffer[i] = *queue.get_ref(i);
288 uint16_t m = median_buffer[quick_median(median_buffer, queue.size())];
289 return m;
290 }
291
292 void TemperatureControl::on_second_tick(void* argument)
293 {
294 if (waiting)
295 kernel->streams->printf("%s:%3.1f /%3.1f @%d\n", designator.c_str(), get_temperature(), ((target_temperature == UNDEFINED)?0.0:target_temperature), o);
296 }