change config trim values sign to match that set in M206
[clinton/Smoothieware.git] / src / modules / tools / endstops / Endstops.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "modules/communication/utils/Gcode.h"
11 #include "modules/robot/Conveyor.h"
12 #include "Endstops.h"
13 #include "libs/nuts_bolts.h"
14 #include "libs/Pin.h"
15 #include "libs/StepperMotor.h"
16 #include "wait_api.h" // mbed.h lib
17
18 Endstops::Endstops(){
19 this->status = NOT_HOMING;
20 }
21
22 void Endstops::on_module_loaded() {
23 // Do not do anything if not enabled
24 if( this->kernel->config->value( endstops_module_enable_checksum )->by_default(true)->as_bool() == false ){ return; }
25
26 register_for_event(ON_CONFIG_RELOAD);
27 this->register_for_event(ON_GCODE_RECEIVED);
28
29 // Take StepperMotor objects from Robot and keep them here
30 this->steppers[0] = this->kernel->robot->alpha_stepper_motor;
31 this->steppers[1] = this->kernel->robot->beta_stepper_motor;
32 this->steppers[2] = this->kernel->robot->gamma_stepper_motor;
33
34 // Settings
35 this->on_config_reload(this);
36
37 }
38
39 // Get config
40 void Endstops::on_config_reload(void* argument){
41 this->pins[0].from_string( this->kernel->config->value(alpha_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
42 this->pins[1].from_string( this->kernel->config->value(beta_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
43 this->pins[2].from_string( this->kernel->config->value(gamma_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
44 this->pins[3].from_string( this->kernel->config->value(alpha_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
45 this->pins[4].from_string( this->kernel->config->value(beta_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
46 this->pins[5].from_string( this->kernel->config->value(gamma_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
47
48 // we need to know steps per mm for M206, also use them for all settings
49 this->steps_per_mm[0] = this->kernel->config->value(alpha_steps_per_mm_checksum )->as_number();
50 this->steps_per_mm[1] = this->kernel->config->value(beta_steps_per_mm_checksum )->as_number();
51 this->steps_per_mm[2] = this->kernel->config->value(gamma_steps_per_mm_checksum )->as_number();
52
53 this->fast_rates[0] = this->kernel->config->value(alpha_fast_homing_rate_checksum )->by_default(4000 )->as_number();
54 this->fast_rates[1] = this->kernel->config->value(beta_fast_homing_rate_checksum )->by_default(4000 )->as_number();
55 this->fast_rates[2] = this->kernel->config->value(gamma_fast_homing_rate_checksum )->by_default(6400 )->as_number();
56 this->slow_rates[0] = this->kernel->config->value(alpha_slow_homing_rate_checksum )->by_default(2000 )->as_number();
57 this->slow_rates[1] = this->kernel->config->value(beta_slow_homing_rate_checksum )->by_default(2000 )->as_number();
58 this->slow_rates[2] = this->kernel->config->value(gamma_slow_homing_rate_checksum )->by_default(3200 )->as_number();
59 this->retract_steps[0] = this->kernel->config->value(alpha_homing_retract_checksum )->by_default(400 )->as_number();
60 this->retract_steps[1] = this->kernel->config->value(beta_homing_retract_checksum )->by_default(400 )->as_number();
61 this->retract_steps[2] = this->kernel->config->value(gamma_homing_retract_checksum )->by_default(1600 )->as_number();
62
63 // newer mm based config values override the old ones, convert to steps/mm and steps, defaults to what was set in the older config settings above
64 this->fast_rates[0]= this->kernel->config->value(alpha_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[0] / steps_per_mm[0])->as_number() * steps_per_mm[0];
65 this->fast_rates[1]= this->kernel->config->value(beta_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[1] / steps_per_mm[1])->as_number() * steps_per_mm[1];
66 this->fast_rates[2]= this->kernel->config->value(gamma_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[2] / steps_per_mm[2])->as_number() * steps_per_mm[2];
67 this->slow_rates[0]= this->kernel->config->value(alpha_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[0] / steps_per_mm[0])->as_number() * steps_per_mm[0];
68 this->slow_rates[1]= this->kernel->config->value(beta_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[1] / steps_per_mm[1])->as_number() * steps_per_mm[1];
69 this->slow_rates[2]= this->kernel->config->value(gamma_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[2] / steps_per_mm[2])->as_number() * steps_per_mm[2];
70 this->retract_steps[0]= this->kernel->config->value(alpha_homing_retract_mm_checksum )->by_default(this->retract_steps[0]/steps_per_mm[0])->as_number() * steps_per_mm[0];
71 this->retract_steps[1]= this->kernel->config->value(beta_homing_retract_mm_checksum )->by_default(this->retract_steps[1]/steps_per_mm[1])->as_number() * steps_per_mm[1];
72 this->retract_steps[2]= this->kernel->config->value(gamma_homing_retract_mm_checksum )->by_default(this->retract_steps[2]/steps_per_mm[2])->as_number() * steps_per_mm[2];
73
74 this->debounce_count = this->kernel->config->value(endstop_debounce_count_checksum )->by_default(100)->as_number();
75
76
77 // get homing direction and convert to boolean where true is home to min, and false is home to max
78 int home_dir = get_checksum(this->kernel->config->value(alpha_homing_direction_checksum)->by_default("home_to_min")->as_string());
79 this->home_direction[0] = home_dir != home_to_max_checksum;
80
81 home_dir = get_checksum(this->kernel->config->value(beta_homing_direction_checksum)->by_default("home_to_min")->as_string());
82 this->home_direction[1] = home_dir != home_to_max_checksum;
83
84 home_dir = get_checksum(this->kernel->config->value(gamma_homing_direction_checksum)->by_default("home_to_min")->as_string());
85 this->home_direction[2] = home_dir != home_to_max_checksum;
86
87 this->homing_position[0] = this->home_direction[0]?this->kernel->config->value(alpha_min_checksum)->by_default(0)->as_number():this->kernel->config->value(alpha_max_checksum)->by_default(200)->as_number();
88 this->homing_position[1] = this->home_direction[1]?this->kernel->config->value(beta_min_checksum )->by_default(0)->as_number():this->kernel->config->value(beta_max_checksum )->by_default(200)->as_number();;
89 this->homing_position[2] = this->home_direction[2]?this->kernel->config->value(gamma_min_checksum)->by_default(0)->as_number():this->kernel->config->value(gamma_max_checksum)->by_default(200)->as_number();;
90
91 this->is_corexy = this->kernel->config->value(corexy_homing_checksum)->by_default(false)->as_bool();
92
93 // endstop trim used by deltas to do soft adjusting, in mm, convert to steps, and negate depending on homing direction
94 // eg on a delta homing to max, a negative trim value will move the carriage down, and a positive will move it up
95 int dirx= (this->home_direction[0] ? 1 : -1);
96 int diry= (this->home_direction[1] ? 1 : -1);
97 int dirz= (this->home_direction[2] ? 1 : -1);
98 this->trim[0]= this->kernel->config->value(alpha_trim_checksum )->by_default(0 )->as_number() * steps_per_mm[0] * dirx;
99 this->trim[1]= this->kernel->config->value(beta_trim_checksum )->by_default(0 )->as_number() * steps_per_mm[1] * diry;
100 this->trim[2]= this->kernel->config->value(gamma_trim_checksum )->by_default(0 )->as_number() * steps_per_mm[2] * dirz;
101 }
102
103 void Endstops::wait_for_homed(char axes_to_move){
104 bool running = true;
105 unsigned int debounce[3] = {0,0,0};
106 while(running){
107 running = false;
108 this->kernel->call_event(ON_IDLE);
109 for( char c = 'X'; c <= 'Z'; c++ ){
110 if( ( axes_to_move >> ( c - 'X' ) ) & 1 ){
111 if( this->pins[c - 'X' + (this->home_direction[c - 'X']?0:3)].get() ){
112 if( debounce[c - 'X'] < debounce_count ) {
113 debounce[c - 'X'] ++;
114 running = true;
115 } else if ( this->steppers[c - 'X']->moving ){
116 this->steppers[c - 'X']->move(0,0);
117 }
118 }else{
119 // The endstop was not hit yet
120 running = true;
121 debounce[c - 'X'] = 0;
122 }
123 }
124 }
125 }
126 }
127
128 // this homing works for cartesian and delta printers, not for HBots/CoreXY
129 void Endstops::do_homing(char axes_to_move) {
130 // Start moving the axes to the origin
131 this->status = MOVING_TO_ORIGIN_FAST;
132 for( char c = 'X'; c <= 'Z'; c++ ){
133 if( ( axes_to_move >> ( c - 'X' ) ) & 1 ){
134 this->steppers[c - 'X']->set_speed(this->fast_rates[c - 'X']);
135 this->steppers[c - 'X']->move(this->home_direction[c - 'X'],10000000);
136 }
137 }
138
139 // Wait for all axes to have homed
140 this->wait_for_homed(axes_to_move);
141
142 // Move back a small distance
143 this->status = MOVING_BACK;
144 bool inverted_dir;
145 for( char c = 'X'; c <= 'Z'; c++ ){
146 if( ( axes_to_move >> ( c - 'X' ) ) & 1 ){
147 inverted_dir = !this->home_direction[c - 'X'];
148 this->steppers[c - 'X']->set_speed(this->slow_rates[c - 'X']);
149 this->steppers[c - 'X']->move(inverted_dir,this->retract_steps[c - 'X']);
150 }
151 }
152
153 // Wait for moves to be done
154 for( char c = 'X'; c <= 'Z'; c++ ){
155 if( ( axes_to_move >> ( c - 'X' ) ) & 1 ){
156 while( this->steppers[c - 'X']->moving ){
157 this->kernel->call_event(ON_IDLE);
158 }
159 }
160 }
161
162 // Start moving the axes to the origin slowly
163 this->status = MOVING_TO_ORIGIN_SLOW;
164 for( char c = 'X'; c <= 'Z'; c++ ){
165 if( ( axes_to_move >> ( c - 'X' ) ) & 1 ){
166 this->steppers[c - 'X']->set_speed(this->slow_rates[c -'X']);
167 this->steppers[c - 'X']->move(this->home_direction[c - 'X'],10000000);
168 }
169 }
170
171 // Wait for all axes to have homed
172 this->wait_for_homed(axes_to_move);
173
174 // move for soft trim
175 this->status = MOVING_BACK;
176 for( char c = 'X'; c <= 'Z'; c++ ){
177 if( this->trim[c - 'X'] != 0 && ( axes_to_move >> ( c - 'X' ) ) & 1 ){
178 inverted_dir = !this->home_direction[c - 'X'];
179 // move up or down depending on sign of trim
180 if(this->trim[c - 'X'] < 0) inverted_dir= !inverted_dir;
181 this->steppers[c - 'X']->set_speed(this->slow_rates[c - 'X']);
182 this->steppers[c - 'X']->move(inverted_dir,this->trim[c - 'X']);
183 }
184 }
185
186 // Wait for moves to be done
187 for( char c = 'X'; c <= 'Z'; c++ ){
188 if( ( axes_to_move >> ( c - 'X' ) ) & 1 ){
189 //this->kernel->streams->printf("axis %c \r\n", c );
190 while( this->steppers[c - 'X']->moving ){
191 this->kernel->call_event(ON_IDLE);
192 }
193 }
194 }
195
196 // Homing is done
197 this->status = NOT_HOMING;
198 }
199
200 #define X_AXIS 0
201 #define Y_AXIS 1
202 #define Z_AXIS 2
203
204 void Endstops::wait_for_homed_corexy(int axis){
205 bool running = true;
206 unsigned int debounce[3] = {0,0,0};
207 while(running){
208 running = false;
209 this->kernel->call_event(ON_IDLE);
210 if( this->pins[axis + (this->home_direction[axis]?0:3)].get() ){
211 if( debounce[axis] < debounce_count ) {
212 debounce[axis] ++;
213 running = true;
214 } else {
215 // turn both off if running
216 if(this->steppers[X_AXIS]->moving) this->steppers[X_AXIS]->move(0,0);
217 if(this->steppers[Y_AXIS]->moving) this->steppers[Y_AXIS]->move(0,0);
218 }
219 }else{
220 // The endstop was not hit yet
221 running = true;
222 debounce[axis] = 0;
223 }
224 }
225 }
226
227 // this homing works for HBots/CoreXY
228 void Endstops::do_homing_corexy(char axes_to_move) {
229 // Start moving the axes to the origin
230 if(axes_to_move & 0x01) { // Home X, which means both X and Y in same direction
231 this->status = MOVING_TO_ORIGIN_FAST;
232 this->steppers[X_AXIS]->set_speed(this->fast_rates[X_AXIS]);
233 this->steppers[X_AXIS]->move(this->home_direction[X_AXIS], 10000000);
234 this->steppers[Y_AXIS]->set_speed(this->fast_rates[X_AXIS]);
235 this->steppers[Y_AXIS]->move(this->home_direction[X_AXIS], 10000000);
236
237 // wait for X
238 this->wait_for_homed_corexy(X_AXIS);
239
240 // Move back a small distance
241 this->status = MOVING_BACK;
242 this->steppers[X_AXIS]->set_speed(this->slow_rates[X_AXIS]);
243 this->steppers[X_AXIS]->move(!this->home_direction[X_AXIS], this->retract_steps[X_AXIS]);
244 this->steppers[Y_AXIS]->set_speed(this->slow_rates[X_AXIS]);
245 this->steppers[Y_AXIS]->move(!this->home_direction[X_AXIS], this->retract_steps[X_AXIS]);
246
247 // wait until done
248 while( this->steppers[X_AXIS]->moving ){ this->kernel->call_event(ON_IDLE); }
249 while( this->steppers[Y_AXIS]->moving ){ this->kernel->call_event(ON_IDLE); }
250
251 // Start moving the axes to the origin slowly
252 this->status = MOVING_TO_ORIGIN_SLOW;
253 this->steppers[X_AXIS]->set_speed(this->slow_rates[X_AXIS]);
254 this->steppers[X_AXIS]->move(this->home_direction[X_AXIS], 10000000);
255 this->steppers[Y_AXIS]->set_speed(this->slow_rates[X_AXIS]);
256 this->steppers[Y_AXIS]->move(this->home_direction[X_AXIS], 10000000);
257
258 // wait for X
259 this->wait_for_homed_corexy(X_AXIS);
260 }
261
262 if(axes_to_move & 0x02) { // Home Y, which means both X and Y in different directions
263 this->status = MOVING_TO_ORIGIN_FAST;
264 this->steppers[X_AXIS]->set_speed(this->fast_rates[Y_AXIS]);
265 this->steppers[X_AXIS]->move(this->home_direction[Y_AXIS], 10000000);
266 this->steppers[Y_AXIS]->set_speed(this->fast_rates[Y_AXIS]); // yes I use X_axis speed as they need to go at the same speed
267 this->steppers[Y_AXIS]->move(!this->home_direction[Y_AXIS], 10000000);
268
269 // wait for Y
270 this->wait_for_homed_corexy(Y_AXIS);
271
272 // Move back a small distance
273 this->status = MOVING_BACK;
274 this->steppers[X_AXIS]->set_speed(this->slow_rates[Y_AXIS]);
275 this->steppers[X_AXIS]->move(!this->home_direction[Y_AXIS], this->retract_steps[Y_AXIS]);
276 this->steppers[Y_AXIS]->set_speed(this->slow_rates[Y_AXIS]);
277 this->steppers[Y_AXIS]->move(this->home_direction[Y_AXIS], this->retract_steps[Y_AXIS]);
278
279 // wait until done
280 while( this->steppers[X_AXIS]->moving ){ this->kernel->call_event(ON_IDLE); }
281 while( this->steppers[Y_AXIS]->moving ){ this->kernel->call_event(ON_IDLE); }
282
283 // Start moving the axes to the origin slowly
284 this->status = MOVING_TO_ORIGIN_SLOW;
285 this->steppers[X_AXIS]->set_speed(this->slow_rates[Y_AXIS]);
286 this->steppers[X_AXIS]->move(this->home_direction[Y_AXIS], 10000000);
287 this->steppers[Y_AXIS]->set_speed(this->slow_rates[Y_AXIS]);
288 this->steppers[Y_AXIS]->move(!this->home_direction[Y_AXIS], 10000000);
289
290 // wait for Y
291 this->wait_for_homed_corexy(Y_AXIS);
292 }
293
294 if(axes_to_move & 0x04) { // move Z
295 do_homing(0x04); // just home normally for Z
296 }
297
298 // Homing is done
299 this->status = NOT_HOMING;
300 }
301
302 // Start homing sequences by response to GCode commands
303 void Endstops::on_gcode_received(void* argument)
304 {
305 Gcode* gcode = static_cast<Gcode*>(argument);
306 if( gcode->has_g)
307 {
308 if( gcode->g == 28 )
309 {
310 gcode->mark_as_taken();
311 // G28 is received, we have homing to do
312
313 // First wait for the queue to be empty
314 this->kernel->conveyor->wait_for_empty_queue();
315
316 // Do we move select axes or all of them
317 char axes_to_move = 0;
318 // only enable homing if the endstop is defined
319 bool home_all= !( gcode->has_letter('X') || gcode->has_letter('Y') || gcode->has_letter('Z') );
320
321 for( char c = 'X'; c <= 'Z'; c++ ){
322 if( (home_all || gcode->has_letter(c)) && this->pins[c - 'X' + (this->home_direction[c - 'X']?0:3)].connected() ){ axes_to_move += ( 1 << (c - 'X' ) ); }
323 }
324
325 // Enable the motors
326 this->kernel->stepper->turn_enable_pins_on();
327
328 // do the actual homing
329 if(is_corexy)
330 do_homing_corexy(axes_to_move);
331 else
332 do_homing(axes_to_move);
333
334 // Zero the ax(i/e)s position
335 for( char c = 'X'; c <= 'Z'; c++ ){
336 if( ( axes_to_move >> ( c - 'X' ) ) & 1 ){
337
338 this->kernel->robot->reset_axis_position(this->homing_position[c - 'X'], c - 'X');
339 }
340 }
341
342 }
343 }
344 else if (gcode->has_m){
345 switch(gcode->m){
346 case 119:
347 {
348
349 int px= this->home_direction[0] ? 0 : 3;
350 int py= this->home_direction[1] ? 1 : 4;
351 int pz= this->home_direction[2] ? 2 : 5;
352 const char* mx= this->home_direction[0] ? "min" : "max";
353 const char* my= this->home_direction[1] ? "min" : "max";
354 const char* mz= this->home_direction[2] ? "min" : "max";
355
356 gcode->stream->printf("X %s:%d Y %s:%d Z %s:%d\n", mx, this->pins[px].get(), my, this->pins[py].get(), mz, this->pins[pz].get());
357 gcode->mark_as_taken();
358 }
359 break;
360
361 case 206: // M206 - set trim for each axis in mm
362 {
363 int dirx= (this->home_direction[0] ? 1 : -1);
364 int diry= (this->home_direction[1] ? 1 : -1);
365 int dirz= (this->home_direction[2] ? 1 : -1);
366 double mm[3];
367 mm[0]= trim[0]/steps_per_mm[0] * dirx; // convert to mm
368 mm[1]= trim[1]/steps_per_mm[1] * diry;
369 mm[2]= trim[2]/steps_per_mm[2] * dirz;
370
371 if(gcode->has_letter('X')) mm[0]= gcode->get_value('X');
372 if(gcode->has_letter('Y')) mm[1]= gcode->get_value('Y');
373 if(gcode->has_letter('Z')) mm[2]= gcode->get_value('Z');
374
375 trim[0]= lround(mm[0]*steps_per_mm[0]) * dirx; // convert back to steps
376 trim[1]= lround(mm[1]*steps_per_mm[1]) * diry;
377 trim[2]= lround(mm[2]*steps_per_mm[2]) * dirz;
378
379 // print the current trim values in mm and steps
380 char buf[64];
381 int n= snprintf(buf, sizeof(buf), "X:%5.3f (%d) Y:%5.3f (%d) Z:%5.3f (%d) ", mm[0], trim[0], mm[1], trim[1], mm[2], trim[2]);
382 gcode->txt_after_ok.append(buf, n);
383 gcode->mark_as_taken();
384 }
385 break;
386
387 }
388 }
389 }
390