Allow M18 to turn off selected motors
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10
11 #include "Robot.h"
12 #include "Planner.h"
13 #include "Conveyor.h"
14 #include "Pin.h"
15 #include "StepperMotor.h"
16 #include "Gcode.h"
17 #include "PublicDataRequest.h"
18 #include "PublicData.h"
19 #include "arm_solutions/BaseSolution.h"
20 #include "arm_solutions/CartesianSolution.h"
21 #include "arm_solutions/RotatableCartesianSolution.h"
22 #include "arm_solutions/LinearDeltaSolution.h"
23 #include "arm_solutions/RotaryDeltaSolution.h"
24 #include "arm_solutions/HBotSolution.h"
25 #include "arm_solutions/CoreXZSolution.h"
26 #include "arm_solutions/MorganSCARASolution.h"
27 #include "StepTicker.h"
28 #include "checksumm.h"
29 #include "utils.h"
30 #include "ConfigValue.h"
31 #include "libs/StreamOutput.h"
32 #include "StreamOutputPool.h"
33 #include "ExtruderPublicAccess.h"
34 #include "GcodeDispatch.h"
35 #include "ActuatorCoordinates.h"
36
37 #include "mbed.h" // for us_ticker_read()
38 #include "mri.h"
39
40 #include <fastmath.h>
41 #include <string>
42 #include <algorithm>
43 using std::string;
44
45 #define default_seek_rate_checksum CHECKSUM("default_seek_rate")
46 #define default_feed_rate_checksum CHECKSUM("default_feed_rate")
47 #define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
48 #define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
49 #define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
50 #define mm_max_arc_error_checksum CHECKSUM("mm_max_arc_error")
51 #define arc_correction_checksum CHECKSUM("arc_correction")
52 #define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
53 #define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
54 #define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
55 #define segment_z_moves_checksum CHECKSUM("segment_z_moves")
56 #define save_g92_checksum CHECKSUM("save_g92")
57 #define set_g92_checksum CHECKSUM("set_g92")
58
59 // arm solutions
60 #define arm_solution_checksum CHECKSUM("arm_solution")
61 #define cartesian_checksum CHECKSUM("cartesian")
62 #define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
63 #define rostock_checksum CHECKSUM("rostock")
64 #define linear_delta_checksum CHECKSUM("linear_delta")
65 #define rotary_delta_checksum CHECKSUM("rotary_delta")
66 #define delta_checksum CHECKSUM("delta")
67 #define hbot_checksum CHECKSUM("hbot")
68 #define corexy_checksum CHECKSUM("corexy")
69 #define corexz_checksum CHECKSUM("corexz")
70 #define kossel_checksum CHECKSUM("kossel")
71 #define morgan_checksum CHECKSUM("morgan")
72
73 // new-style actuator stuff
74 #define actuator_checksum CHEKCSUM("actuator")
75
76 #define step_pin_checksum CHECKSUM("step_pin")
77 #define dir_pin_checksum CHEKCSUM("dir_pin")
78 #define en_pin_checksum CHECKSUM("en_pin")
79
80 #define steps_per_mm_checksum CHECKSUM("steps_per_mm")
81 #define max_rate_checksum CHECKSUM("max_rate")
82 #define acceleration_checksum CHECKSUM("acceleration")
83 #define z_acceleration_checksum CHECKSUM("z_acceleration")
84
85 #define alpha_checksum CHECKSUM("alpha")
86 #define beta_checksum CHECKSUM("beta")
87 #define gamma_checksum CHECKSUM("gamma")
88
89 #define laser_module_default_power_checksum CHECKSUM("laser_module_default_power")
90
91 #define ARC_ANGULAR_TRAVEL_EPSILON 5E-7F // Float (radians)
92 #define PI 3.14159265358979323846F // force to be float, do not use M_PI
93
94 // The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
95 // It takes care of cutting arcs into segments, same thing for line that are too long
96
97 Robot::Robot()
98 {
99 this->inch_mode = false;
100 this->absolute_mode = true;
101 this->e_absolute_mode = true;
102 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
103 memset(this->last_milestone, 0, sizeof last_milestone);
104 memset(this->last_machine_position, 0, sizeof last_machine_position);
105 this->arm_solution = NULL;
106 seconds_per_minute = 60.0F;
107 this->clearToolOffset();
108 this->compensationTransform = nullptr;
109 this->get_e_scale_fnc= nullptr;
110 this->wcs_offsets.fill(wcs_t(0.0F, 0.0F, 0.0F));
111 this->g92_offset = wcs_t(0.0F, 0.0F, 0.0F);
112 this->next_command_is_MCS = false;
113 this->disable_segmentation= false;
114 this->disable_arm_solution= false;
115 this->n_motors= 0;
116 }
117
118 //Called when the module has just been loaded
119 void Robot::on_module_loaded()
120 {
121 this->register_for_event(ON_GCODE_RECEIVED);
122
123 // Configuration
124 this->load_config();
125 }
126
127 #define ACTUATOR_CHECKSUMS(X) { \
128 CHECKSUM(X "_step_pin"), \
129 CHECKSUM(X "_dir_pin"), \
130 CHECKSUM(X "_en_pin"), \
131 CHECKSUM(X "_steps_per_mm"), \
132 CHECKSUM(X "_max_rate"), \
133 CHECKSUM(X "_acceleration") \
134 }
135
136 void Robot::load_config()
137 {
138 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
139 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
140 // To make adding those solution easier, they have their own, separate object.
141 // Here we read the config to find out which arm solution to use
142 if (this->arm_solution) delete this->arm_solution;
143 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
144 // Note checksums are not const expressions when in debug mode, so don't use switch
145 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
146 this->arm_solution = new HBotSolution(THEKERNEL->config);
147
148 } else if(solution_checksum == corexz_checksum) {
149 this->arm_solution = new CoreXZSolution(THEKERNEL->config);
150
151 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
152 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
153
154 } else if(solution_checksum == rotatable_cartesian_checksum) {
155 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
156
157 } else if(solution_checksum == rotary_delta_checksum) {
158 this->arm_solution = new RotaryDeltaSolution(THEKERNEL->config);
159
160 } else if(solution_checksum == morgan_checksum) {
161 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
162
163 } else if(solution_checksum == cartesian_checksum) {
164 this->arm_solution = new CartesianSolution(THEKERNEL->config);
165
166 } else {
167 this->arm_solution = new CartesianSolution(THEKERNEL->config);
168 }
169
170 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
171 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
172 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
173 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
174 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.0f)->as_number();
175 this->mm_max_arc_error = THEKERNEL->config->value(mm_max_arc_error_checksum )->by_default( 0.01f)->as_number();
176 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
177
178 // in mm/sec but specified in config as mm/min
179 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
180 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
181 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
182
183 this->segment_z_moves = THEKERNEL->config->value(segment_z_moves_checksum )->by_default(true)->as_bool();
184 this->save_g92 = THEKERNEL->config->value(save_g92_checksum )->by_default(false)->as_bool();
185 string g92 = THEKERNEL->config->value(set_g92_checksum )->by_default("")->as_string();
186 if(!g92.empty()) {
187 // optional setting for a fixed G92 offset
188 std::vector<float> t= parse_number_list(g92.c_str());
189 if(t.size() == 3) {
190 g92_offset = wcs_t(t[0], t[1], t[2]);
191 }
192 }
193
194 // default s value for laser
195 this->s_value = THEKERNEL->config->value(laser_module_default_power_checksum)->by_default(0.8F)->as_number();
196
197 // Make our Primary XYZ StepperMotors
198 uint16_t const checksums[][6] = {
199 ACTUATOR_CHECKSUMS("alpha"), // X
200 ACTUATOR_CHECKSUMS("beta"), // Y
201 ACTUATOR_CHECKSUMS("gamma"), // Z
202 };
203
204 // default acceleration setting, can be overriden with newer per axis settings
205 this->default_acceleration= THEKERNEL->config->value(acceleration_checksum)->by_default(100.0F )->as_number(); // Acceleration is in mm/s^2
206
207 // make each motor
208 for (size_t a = X_AXIS; a <= Z_AXIS; a++) {
209 Pin pins[3]; //step, dir, enable
210 for (size_t i = 0; i < 3; i++) {
211 pins[i].from_string(THEKERNEL->config->value(checksums[a][i])->by_default("nc")->as_string())->as_output();
212 }
213 StepperMotor *sm = new StepperMotor(pins[0], pins[1], pins[2]);
214 // register this motor (NB This must be 0,1,2) of the actuators array
215 uint8_t n= register_motor(sm);
216 if(n != a) {
217 // this is a fatal error
218 THEKERNEL->streams->printf("FATAL: motor %d does not match index %d\n", n, a);
219 __debugbreak();
220 }
221
222 actuators[a]->change_steps_per_mm(THEKERNEL->config->value(checksums[a][3])->by_default(a == 2 ? 2560.0F : 80.0F)->as_number());
223 actuators[a]->set_max_rate(THEKERNEL->config->value(checksums[a][4])->by_default(30000.0F)->as_number()/60.0F); // it is in mm/min and converted to mm/sec
224 actuators[a]->set_acceleration(THEKERNEL->config->value(checksums[a][5])->by_default(NAN)->as_number()); // mm/secs²
225 }
226
227 check_max_actuator_speeds(); // check the configs are sane
228
229 // if we have not specified a z acceleration see if the legacy config was set
230 if(isnan(actuators[Z_AXIS]->get_acceleration())) {
231 float acc= THEKERNEL->config->value(z_acceleration_checksum)->by_default(NAN)->as_number(); // disabled by default
232 if(!isnan(acc)) {
233 actuators[Z_AXIS]->set_acceleration(acc);
234 }
235 }
236
237 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
238 // so the first move can be correct if homing is not performed
239 ActuatorCoordinates actuator_pos;
240 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
241 for (size_t i = 0; i < n_motors; i++)
242 actuators[i]->change_last_milestone(actuator_pos[i]);
243
244 //this->clearToolOffset();
245 }
246
247 uint8_t Robot::register_motor(StepperMotor *motor)
248 {
249 // register this motor with the step ticker
250 THEKERNEL->step_ticker->register_motor(motor);
251 if(n_motors >= k_max_actuators) {
252 // this is a fatal error
253 THEKERNEL->streams->printf("FATAL: too many motors, increase k_max_actuators\n");
254 __debugbreak();
255 }
256 actuators.push_back(motor);
257 return n_motors++;
258 }
259
260 void Robot::push_state()
261 {
262 bool am = this->absolute_mode;
263 bool em = this->e_absolute_mode;
264 bool im = this->inch_mode;
265 saved_state_t s(this->feed_rate, this->seek_rate, am, em, im, current_wcs);
266 state_stack.push(s);
267 }
268
269 void Robot::pop_state()
270 {
271 if(!state_stack.empty()) {
272 auto s = state_stack.top();
273 state_stack.pop();
274 this->feed_rate = std::get<0>(s);
275 this->seek_rate = std::get<1>(s);
276 this->absolute_mode = std::get<2>(s);
277 this->e_absolute_mode = std::get<3>(s);
278 this->inch_mode = std::get<4>(s);
279 this->current_wcs = std::get<5>(s);
280 }
281 }
282
283 std::vector<Robot::wcs_t> Robot::get_wcs_state() const
284 {
285 std::vector<wcs_t> v;
286 v.push_back(wcs_t(current_wcs, MAX_WCS, 0));
287 for(auto& i : wcs_offsets) {
288 v.push_back(i);
289 }
290 v.push_back(g92_offset);
291 v.push_back(tool_offset);
292 return v;
293 }
294
295 int Robot::print_position(uint8_t subcode, char *buf, size_t bufsize) const
296 {
297 // M114.1 is a new way to do this (similar to how GRBL does it).
298 // it returns the realtime position based on the current step position of the actuators.
299 // this does require a FK to get a machine position from the actuator position
300 // and then invert all the transforms to get a workspace position from machine position
301 // M114 just does it the old way uses last_milestone and does inversse transforms to get the requested position
302 int n = 0;
303 if(subcode == 0) { // M114 print WCS
304 wcs_t pos= mcs2wcs(last_milestone);
305 n = snprintf(buf, bufsize, "C: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
306
307 } else if(subcode == 4) { // M114.4 print last milestone (which should be the same as machine position if axis are not moving and no level compensation)
308 n = snprintf(buf, bufsize, "LMS: X:%1.4f Y:%1.4f Z:%1.4f", last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
309
310 } else if(subcode == 5) { // M114.5 print last machine position (which should be the same as M114.1 if axis are not moving and no level compensation)
311 n = snprintf(buf, bufsize, "LMP: X:%1.4f Y:%1.4f Z:%1.4f", last_machine_position[X_AXIS], last_machine_position[Y_AXIS], last_machine_position[Z_AXIS]);
312
313 } else {
314 // get real time positions
315 // current actuator position in mm
316 ActuatorCoordinates current_position{
317 actuators[X_AXIS]->get_current_position(),
318 actuators[Y_AXIS]->get_current_position(),
319 actuators[Z_AXIS]->get_current_position()
320 };
321
322 // get machine position from the actuator position using FK
323 float mpos[3];
324 arm_solution->actuator_to_cartesian(current_position, mpos);
325
326 if(subcode == 1) { // M114.1 print realtime WCS
327 // FIXME this currently includes the compensation transform which is incorrect so will be slightly off if it is in effect (but by very little)
328 wcs_t pos= mcs2wcs(mpos);
329 n = snprintf(buf, bufsize, "WPOS: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
330
331 } else if(subcode == 2) { // M114.2 print realtime Machine coordinate system
332 n = snprintf(buf, bufsize, "MPOS: X:%1.4f Y:%1.4f Z:%1.4f", mpos[X_AXIS], mpos[Y_AXIS], mpos[Z_AXIS]);
333
334 } else if(subcode == 3) { // M114.3 print realtime actuator position
335 n = snprintf(buf, bufsize, "APOS: X:%1.4f Y:%1.4f Z:%1.4f", current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
336 }
337 }
338 return n;
339 }
340
341 // converts current last milestone (machine position without compensation transform) to work coordinate system (inverse transform)
342 Robot::wcs_t Robot::mcs2wcs(const Robot::wcs_t& pos) const
343 {
344 return std::make_tuple(
345 std::get<X_AXIS>(pos) - std::get<X_AXIS>(wcs_offsets[current_wcs]) + std::get<X_AXIS>(g92_offset) - std::get<X_AXIS>(tool_offset),
346 std::get<Y_AXIS>(pos) - std::get<Y_AXIS>(wcs_offsets[current_wcs]) + std::get<Y_AXIS>(g92_offset) - std::get<Y_AXIS>(tool_offset),
347 std::get<Z_AXIS>(pos) - std::get<Z_AXIS>(wcs_offsets[current_wcs]) + std::get<Z_AXIS>(g92_offset) - std::get<Z_AXIS>(tool_offset)
348 );
349 }
350
351 // this does a sanity check that actuator speeds do not exceed steps rate capability
352 // we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
353 void Robot::check_max_actuator_speeds()
354 {
355 for (size_t i = 0; i < n_motors; i++) {
356 float step_freq = actuators[i]->get_max_rate() * actuators[i]->get_steps_per_mm();
357 if (step_freq > THEKERNEL->base_stepping_frequency) {
358 actuators[i]->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / actuators[i]->get_steps_per_mm()));
359 THEKERNEL->streams->printf("WARNING: actuator %d rate exceeds base_stepping_frequency * ..._steps_per_mm: %f, setting to %f\n", i, step_freq, actuators[i]->get_max_rate());
360 }
361 }
362 }
363
364 //A GCode has been received
365 //See if the current Gcode line has some orders for us
366 void Robot::on_gcode_received(void *argument)
367 {
368 Gcode *gcode = static_cast<Gcode *>(argument);
369
370 enum MOTION_MODE_T motion_mode= NONE;
371
372 if( gcode->has_g) {
373 switch( gcode->g ) {
374 case 0: motion_mode = SEEK; break;
375 case 1: motion_mode = LINEAR; break;
376 case 2: motion_mode = CW_ARC; break;
377 case 3: motion_mode = CCW_ARC; break;
378 case 4: { // G4 pause
379 uint32_t delay_ms = 0;
380 if (gcode->has_letter('P')) {
381 delay_ms = gcode->get_int('P');
382 }
383 if (gcode->has_letter('S')) {
384 delay_ms += gcode->get_int('S') * 1000;
385 }
386 if (delay_ms > 0) {
387 // drain queue
388 THEKERNEL->conveyor->wait_for_idle();
389 // wait for specified time
390 uint32_t start = us_ticker_read(); // mbed call
391 while ((us_ticker_read() - start) < delay_ms * 1000) {
392 THEKERNEL->call_event(ON_IDLE, this);
393 if(THEKERNEL->is_halted()) return;
394 }
395 }
396 }
397 break;
398
399 case 10: // G10 L2 [L20] Pn Xn Yn Zn set WCS
400 if(gcode->has_letter('L') && (gcode->get_int('L') == 2 || gcode->get_int('L') == 20) && gcode->has_letter('P')) {
401 size_t n = gcode->get_uint('P');
402 if(n == 0) n = current_wcs; // set current coordinate system
403 else --n;
404 if(n < MAX_WCS) {
405 float x, y, z;
406 std::tie(x, y, z) = wcs_offsets[n];
407 if(gcode->get_int('L') == 20) {
408 // this makes the current machine position (less compensation transform) the offset
409 // get current position in WCS
410 wcs_t pos= mcs2wcs(last_milestone);
411
412 if(gcode->has_letter('X')){
413 x -= to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
414 }
415
416 if(gcode->has_letter('Y')){
417 y -= to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
418 }
419 if(gcode->has_letter('Z')) {
420 z -= to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
421 }
422
423 } else {
424 // the value is the offset from machine zero
425 if(gcode->has_letter('X')) x = to_millimeters(gcode->get_value('X'));
426 if(gcode->has_letter('Y')) y = to_millimeters(gcode->get_value('Y'));
427 if(gcode->has_letter('Z')) z = to_millimeters(gcode->get_value('Z'));
428 }
429 wcs_offsets[n] = wcs_t(x, y, z);
430 }
431 }
432 break;
433
434 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
435 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
436 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
437 case 20: this->inch_mode = true; break;
438 case 21: this->inch_mode = false; break;
439
440 case 54: case 55: case 56: case 57: case 58: case 59:
441 // select WCS 0-8: G54..G59, G59.1, G59.2, G59.3
442 current_wcs = gcode->g - 54;
443 if(gcode->g == 59 && gcode->subcode > 0) {
444 current_wcs += gcode->subcode;
445 if(current_wcs >= MAX_WCS) current_wcs = MAX_WCS - 1;
446 }
447 break;
448
449 case 90: this->absolute_mode = true; this->e_absolute_mode = true; break;
450 case 91: this->absolute_mode = false; this->e_absolute_mode = false; break;
451
452 case 92: {
453 if(gcode->subcode == 1 || gcode->subcode == 2 || gcode->get_num_args() == 0) {
454 // reset G92 offsets to 0
455 g92_offset = wcs_t(0, 0, 0);
456
457 } else if(gcode->subcode == 3) {
458 // initialize G92 to the specified values, only used for saving it with M500
459 float x= 0, y= 0, z= 0;
460 if(gcode->has_letter('X')) x= gcode->get_value('X');
461 if(gcode->has_letter('Y')) y= gcode->get_value('Y');
462 if(gcode->has_letter('Z')) z= gcode->get_value('Z');
463 g92_offset = wcs_t(x, y, z);
464
465 } else {
466 // standard setting of the g92 offsets, making current WCS position whatever the coordinate arguments are
467 float x, y, z;
468 std::tie(x, y, z) = g92_offset;
469 // get current position in WCS
470 wcs_t pos= mcs2wcs(last_milestone);
471
472 // adjust g92 offset to make the current wpos == the value requested
473 if(gcode->has_letter('X')){
474 x += to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
475 }
476 if(gcode->has_letter('Y')){
477 y += to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
478 }
479 if(gcode->has_letter('Z')) {
480 z += to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
481 }
482 g92_offset = wcs_t(x, y, z);
483 }
484
485 #if MAX_ROBOT_ACTUATORS > 3
486 if(gcode->subcode == 0 && (gcode->has_letter('E') || gcode->get_num_args() == 0)){
487 // reset the E position, legacy for 3d Printers to be reprap compatible
488 // find the selected extruder
489 // NOTE this will only work when E is 0 if volumetric and/or scaling is used as the actuator last milestone will be different if it was scaled
490 for (int i = E_AXIS; i < n_motors; ++i) {
491 if(actuators[i]->is_selected()) {
492 float e= gcode->has_letter('E') ? gcode->get_value('E') : 0;
493 last_milestone[i]= last_machine_position[i]= e;
494 actuators[i]->change_last_milestone(e);
495 break;
496 }
497 }
498 }
499 #endif
500
501 return;
502 }
503 }
504
505 } else if( gcode->has_m) {
506 switch( gcode->m ) {
507 // case 0: // M0 feed hold, (M0.1 is release feed hold, except we are in feed hold)
508 // if(THEKERNEL->is_grbl_mode()) THEKERNEL->set_feed_hold(gcode->subcode == 0);
509 // break;
510
511 case 30: // M30 end of program in grbl mode (otherwise it is delete sdcard file)
512 if(!THEKERNEL->is_grbl_mode()) break;
513 // fall through to M2
514 case 2: // M2 end of program
515 current_wcs = 0;
516 absolute_mode = true;
517 break;
518 case 17:
519 THEKERNEL->call_event(ON_ENABLE, (void*)1); // turn all enable pins on
520 break;
521
522 case 18: // this allows individual motors to be turned off, no parameters falls through to turn all off
523 if(gcode->get_num_args() > 0) {
524 // bitmap of motors to turn off, where bit 1:X, 2:Y, 3:Z, 4:A, 5:B, 6:C
525 uint32_t bm= 0;
526 for (int i = 0; i < n_motors; ++i) {
527 char axis= (i <= Z_AXIS ? 'X'+i : 'A'+(i-3));
528 if(gcode->has_letter(axis)) bm |= (0x02<<i); // set appropriate bit
529 }
530 THEKERNEL->conveyor->wait_for_idle();
531 THEKERNEL->call_event(ON_ENABLE, (void *)bm);
532 break;
533 }
534 // fall through
535 case 84:
536 THEKERNEL->conveyor->wait_for_idle();
537 THEKERNEL->call_event(ON_ENABLE, nullptr); // turn all enable pins off
538 break;
539
540 case 82: e_absolute_mode= true; break;
541 case 83: e_absolute_mode= false; break;
542
543 case 92: // M92 - set steps per mm
544 if (gcode->has_letter('X'))
545 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
546 if (gcode->has_letter('Y'))
547 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
548 if (gcode->has_letter('Z'))
549 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
550
551 gcode->stream->printf("X:%f Y:%f Z:%f ", actuators[0]->get_steps_per_mm(), actuators[1]->get_steps_per_mm(), actuators[2]->get_steps_per_mm());
552 gcode->add_nl = true;
553 check_max_actuator_speeds();
554 return;
555
556 case 114:{
557 char buf[64];
558 int n= print_position(gcode->subcode, buf, sizeof buf);
559 if(n > 0) gcode->txt_after_ok.append(buf, n);
560 return;
561 }
562
563 case 120: // push state
564 push_state();
565 break;
566
567 case 121: // pop state
568 pop_state();
569 break;
570
571 case 203: // M203 Set maximum feedrates in mm/sec, M203.1 set maximum actuator feedrates
572 if(gcode->get_num_args() == 0) {
573 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
574 gcode->stream->printf(" %c: %g ", 'X' + i, gcode->subcode == 0 ? this->max_speeds[i] : actuators[i]->get_max_rate());
575 }
576 gcode->add_nl = true;
577
578 }else{
579 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
580 if (gcode->has_letter('X' + i)) {
581 float v= gcode->get_value('X'+i);
582 if(gcode->subcode == 0) this->max_speeds[i]= v;
583 else if(gcode->subcode == 1) actuators[i]->set_max_rate(v);
584 }
585 }
586
587 // this format is deprecated
588 if(gcode->subcode == 0 && (gcode->has_letter('A') || gcode->has_letter('B') || gcode->has_letter('C'))) {
589 gcode->stream->printf("NOTE this format is deprecated, Use M203.1 instead\n");
590 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
591 if (gcode->has_letter('A' + i)) {
592 float v= gcode->get_value('A'+i);
593 actuators[i]->set_max_rate(v);
594 }
595 }
596 }
597
598 if(gcode->subcode == 1) check_max_actuator_speeds();
599 }
600 break;
601
602 case 204: // M204 Snnn - set default acceleration to nnn, Xnnn Ynnn Znnn sets axis specific acceleration
603 if (gcode->has_letter('S')) {
604 float acc = gcode->get_value('S'); // mm/s^2
605 // enforce minimum
606 if (acc < 1.0F) acc = 1.0F;
607 this->default_acceleration = acc;
608 }
609 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
610 if (gcode->has_letter(i+'X')) {
611 float acc = gcode->get_value(i+'X'); // mm/s^2
612 // enforce positive
613 if (acc <= 0.0F) acc = NAN;
614 actuators[i]->set_acceleration(acc);
615 }
616 }
617 break;
618
619 case 205: // M205 Xnnn - set junction deviation, Z - set Z junction deviation, Snnn - Set minimum planner speed
620 if (gcode->has_letter('X')) {
621 float jd = gcode->get_value('X');
622 // enforce minimum
623 if (jd < 0.0F)
624 jd = 0.0F;
625 THEKERNEL->planner->junction_deviation = jd;
626 }
627 if (gcode->has_letter('Z')) {
628 float jd = gcode->get_value('Z');
629 // enforce minimum, -1 disables it and uses regular junction deviation
630 if (jd <= -1.0F)
631 jd = NAN;
632 THEKERNEL->planner->z_junction_deviation = jd;
633 }
634 if (gcode->has_letter('S')) {
635 float mps = gcode->get_value('S');
636 // enforce minimum
637 if (mps < 0.0F)
638 mps = 0.0F;
639 THEKERNEL->planner->minimum_planner_speed = mps;
640 }
641 break;
642
643 case 220: // M220 - speed override percentage
644 if (gcode->has_letter('S')) {
645 float factor = gcode->get_value('S');
646 // enforce minimum 10% speed
647 if (factor < 10.0F)
648 factor = 10.0F;
649 // enforce maximum 10x speed
650 if (factor > 1000.0F)
651 factor = 1000.0F;
652
653 seconds_per_minute = 6000.0F / factor;
654 } else {
655 gcode->stream->printf("Speed factor at %6.2f %%\n", 6000.0F / seconds_per_minute);
656 }
657 break;
658
659 case 400: // wait until all moves are done up to this point
660 THEKERNEL->conveyor->wait_for_idle();
661 break;
662
663 case 500: // M500 saves some volatile settings to config override file
664 case 503: { // M503 just prints the settings
665 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->get_steps_per_mm(), actuators[1]->get_steps_per_mm(), actuators[2]->get_steps_per_mm());
666
667 // only print XYZ if not NAN
668 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f ", default_acceleration);
669 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
670 if(!isnan(actuators[i]->get_acceleration())) gcode->stream->printf("%c%1.5f ", 'X'+i, actuators[i]->get_acceleration());
671 }
672 gcode->stream->printf("\n");
673
674 gcode->stream->printf(";X- Junction Deviation, Z- Z junction deviation, S - Minimum Planner speed mm/sec:\nM205 X%1.5f Z%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, isnan(THEKERNEL->planner->z_junction_deviation)?-1:THEKERNEL->planner->z_junction_deviation, THEKERNEL->planner->minimum_planner_speed);
675
676 gcode->stream->printf(";Max cartesian feedrates in mm/sec:\nM203 X%1.5f Y%1.5f Z%1.5f\n", this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS]);
677 gcode->stream->printf(";Max actuator feedrates in mm/sec:\nM203.1 X%1.5f Y%1.5f Z%1.5f\n", actuators[X_AXIS]->get_max_rate(), actuators[Y_AXIS]->get_max_rate(), actuators[Z_AXIS]->get_max_rate());
678
679 // get or save any arm solution specific optional values
680 BaseSolution::arm_options_t options;
681 if(arm_solution->get_optional(options) && !options.empty()) {
682 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
683 for(auto &i : options) {
684 gcode->stream->printf(" %c%1.4f", i.first, i.second);
685 }
686 gcode->stream->printf("\n");
687 }
688
689 // save wcs_offsets and current_wcs
690 // TODO this may need to be done whenever they change to be compliant
691 gcode->stream->printf(";WCS settings\n");
692 gcode->stream->printf("%s\n", wcs2gcode(current_wcs).c_str());
693 int n = 1;
694 for(auto &i : wcs_offsets) {
695 if(i != wcs_t(0, 0, 0)) {
696 float x, y, z;
697 std::tie(x, y, z) = i;
698 gcode->stream->printf("G10 L2 P%d X%f Y%f Z%f ; %s\n", n, x, y, z, wcs2gcode(n-1).c_str());
699 }
700 ++n;
701 }
702 if(save_g92) {
703 // linuxcnc saves G92, so we do too if configured, default is to not save to maintain backward compatibility
704 // also it needs to be used to set Z0 on rotary deltas as M206/306 can't be used, so saving it is necessary in that case
705 if(g92_offset != wcs_t(0, 0, 0)) {
706 float x, y, z;
707 std::tie(x, y, z) = g92_offset;
708 gcode->stream->printf("G92.3 X%f Y%f Z%f\n", x, y, z); // sets G92 to the specified values
709 }
710 }
711 }
712 break;
713
714 case 665: { // M665 set optional arm solution variables based on arm solution.
715 // the parameter args could be any letter each arm solution only accepts certain ones
716 BaseSolution::arm_options_t options = gcode->get_args();
717 options.erase('S'); // don't include the S
718 options.erase('U'); // don't include the U
719 if(options.size() > 0) {
720 // set the specified options
721 arm_solution->set_optional(options);
722 }
723 options.clear();
724 if(arm_solution->get_optional(options)) {
725 // foreach optional value
726 for(auto &i : options) {
727 // print all current values of supported options
728 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
729 gcode->add_nl = true;
730 }
731 }
732
733 if(gcode->has_letter('S')) { // set delta segments per second, not saved by M500
734 this->delta_segments_per_second = gcode->get_value('S');
735 gcode->stream->printf("Delta segments set to %8.4f segs/sec\n", this->delta_segments_per_second);
736
737 } else if(gcode->has_letter('U')) { // or set mm_per_line_segment, not saved by M500
738 this->mm_per_line_segment = gcode->get_value('U');
739 this->delta_segments_per_second = 0;
740 gcode->stream->printf("mm per line segment set to %8.4f\n", this->mm_per_line_segment);
741 }
742
743 break;
744 }
745 }
746 }
747
748 if( motion_mode != NONE) {
749 is_g123= motion_mode != SEEK;
750 process_move(gcode, motion_mode);
751
752 }else{
753 is_g123= false;
754 }
755
756 next_command_is_MCS = false; // must be on same line as G0 or G1
757 }
758
759 // process a G0/G1/G2/G3
760 void Robot::process_move(Gcode *gcode, enum MOTION_MODE_T motion_mode)
761 {
762 // we have a G0/G1/G2/G3 so extract parameters and apply offsets to get machine coordinate target
763 // get XYZ and one E (which goes to the selected extruder)
764 float param[4]{NAN, NAN, NAN, NAN};
765
766 // process primary axis
767 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
768 char letter= 'X'+i;
769 if( gcode->has_letter(letter) ) {
770 param[i] = this->to_millimeters(gcode->get_value(letter));
771 }
772 }
773
774 float offset[3]{0,0,0};
775 for(char letter = 'I'; letter <= 'K'; letter++) {
776 if( gcode->has_letter(letter) ) {
777 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
778 }
779 }
780
781 // calculate target in machine coordinates (less compensation transform which needs to be done after segmentation)
782 float target[n_motors];
783 memcpy(target, last_milestone, n_motors*sizeof(float));
784
785 if(!next_command_is_MCS) {
786 if(this->absolute_mode) {
787 // apply wcs offsets and g92 offset and tool offset
788 if(!isnan(param[X_AXIS])) {
789 target[X_AXIS]= param[X_AXIS] + std::get<X_AXIS>(wcs_offsets[current_wcs]) - std::get<X_AXIS>(g92_offset) + std::get<X_AXIS>(tool_offset);
790 }
791
792 if(!isnan(param[Y_AXIS])) {
793 target[Y_AXIS]= param[Y_AXIS] + std::get<Y_AXIS>(wcs_offsets[current_wcs]) - std::get<Y_AXIS>(g92_offset) + std::get<Y_AXIS>(tool_offset);
794 }
795
796 if(!isnan(param[Z_AXIS])) {
797 target[Z_AXIS]= param[Z_AXIS] + std::get<Z_AXIS>(wcs_offsets[current_wcs]) - std::get<Z_AXIS>(g92_offset) + std::get<Z_AXIS>(tool_offset);
798 }
799
800 }else{
801 // they are deltas from the last_milestone if specified
802 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
803 if(!isnan(param[i])) target[i] = param[i] + last_milestone[i];
804 }
805 }
806
807 }else{
808 // already in machine coordinates, we do not add tool offset for that
809 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
810 if(!isnan(param[i])) target[i] = param[i];
811 }
812 }
813
814 // process extruder parameters, for active extruder only (only one active extruder at a time)
815 selected_extruder= 0;
816 if(gcode->has_letter('E')) {
817 for (int i = E_AXIS; i < n_motors; ++i) {
818 // find first selected extruder
819 if(actuators[i]->is_selected()) {
820 param[E_AXIS]= gcode->get_value('E');
821 selected_extruder= i;
822 break;
823 }
824 }
825 }
826
827 // do E for the selected extruder
828 float delta_e= NAN;
829 if(selected_extruder > 0 && !isnan(param[E_AXIS])) {
830 if(this->e_absolute_mode) {
831 target[selected_extruder]= param[E_AXIS];
832 delta_e= target[selected_extruder] - last_milestone[selected_extruder];
833 }else{
834 delta_e= param[E_AXIS];
835 target[selected_extruder] = delta_e + last_milestone[selected_extruder];
836 }
837 }
838
839 if( gcode->has_letter('F') ) {
840 if( motion_mode == SEEK )
841 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
842 else
843 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
844 }
845
846 // S is modal When specified on a G0/1/2/3 command
847 if(gcode->has_letter('S')) s_value= gcode->get_value('S');
848
849 bool moved= false;
850
851 // Perform any physical actions
852 switch(motion_mode) {
853 case NONE: break;
854
855 case SEEK:
856 moved= this->append_line(gcode, target, this->seek_rate / seconds_per_minute, delta_e );
857 break;
858
859 case LINEAR:
860 moved= this->append_line(gcode, target, this->feed_rate / seconds_per_minute, delta_e );
861 break;
862
863 case CW_ARC:
864 case CCW_ARC:
865 // Note arcs are not currently supported by extruder based machines, as 3D slicers do not use arcs (G2/G3)
866 moved= this->compute_arc(gcode, offset, target, motion_mode);
867 break;
868 }
869
870 if(moved) {
871 // set last_milestone to the calculated target
872 memcpy(last_milestone, target, n_motors*sizeof(float));
873 }
874 }
875
876 // reset the machine position for all axis. Used for homing.
877 // During homing compensation is turned off
878 // once homed and reset_axis called compensation is used for the move to origin and back off home if enabled,
879 // so in those cases the final position is compensated.
880 void Robot::reset_axis_position(float x, float y, float z)
881 {
882 // these are set to the same as compensation was not used to get to the current position
883 last_machine_position[X_AXIS]= last_milestone[X_AXIS] = x;
884 last_machine_position[Y_AXIS]= last_milestone[Y_AXIS] = y;
885 last_machine_position[Z_AXIS]= last_milestone[Z_AXIS] = z;
886
887 // now set the actuator positions to match
888 ActuatorCoordinates actuator_pos;
889 arm_solution->cartesian_to_actuator(this->last_machine_position, actuator_pos);
890 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
891 actuators[i]->change_last_milestone(actuator_pos[i]);
892 }
893
894 // Reset the position for an axis (used in homing, and to reset extruder after suspend)
895 void Robot::reset_axis_position(float position, int axis)
896 {
897 last_milestone[axis] = position;
898 if(axis <= Z_AXIS) {
899 reset_axis_position(last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
900 #if MAX_ROBOT_ACTUATORS > 3
901 }else{
902 // extruders need to be set not calculated
903 last_machine_position[axis]= position;
904 #endif
905 }
906 }
907
908 // similar to reset_axis_position but directly sets the actuator positions in actuators units (eg mm for cartesian, degrees for rotary delta)
909 // then sets the axis positions to match. currently only called from Endstops.cpp and RotaryDeltaCalibration.cpp
910 void Robot::reset_actuator_position(const ActuatorCoordinates &ac)
911 {
912 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
913 actuators[i]->change_last_milestone(ac[i]);
914
915 // now correct axis positions then recorrect actuator to account for rounding
916 reset_position_from_current_actuator_position();
917 }
918
919 // Use FK to find out where actuator is and reset to match
920 void Robot::reset_position_from_current_actuator_position()
921 {
922 ActuatorCoordinates actuator_pos;
923 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
924 // NOTE actuator::current_position is curently NOT the same as actuator::last_milestone after an abrupt abort
925 actuator_pos[i] = actuators[i]->get_current_position();
926 }
927
928 // discover machine position from where actuators actually are
929 arm_solution->actuator_to_cartesian(actuator_pos, last_machine_position);
930 // FIXME problem is this includes any compensation transform, and without an inverse compensation we cannot get a correct last_milestone
931 memcpy(last_milestone, last_machine_position, sizeof last_milestone);
932
933 // now reset actuator::last_milestone, NOTE this may lose a little precision as FK is not always entirely accurate.
934 // NOTE This is required to sync the machine position with the actuator position, we do a somewhat redundant cartesian_to_actuator() call
935 // to get everything in perfect sync.
936 arm_solution->cartesian_to_actuator(last_machine_position, actuator_pos);
937 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
938 actuators[i]->change_last_milestone(actuator_pos[i]);
939 }
940
941 // Convert target (in machine coordinates) to machine_position, then convert to actuator position and append this to the planner
942 // target is in machine coordinates without the compensation transform, however we save a last_machine_position that includes
943 // all transforms and is what we actually convert to actuator positions
944 bool Robot::append_milestone(const float target[], float rate_mm_s)
945 {
946 float deltas[n_motors];
947 float transformed_target[n_motors]; // adjust target for bed compensation
948 float unit_vec[N_PRIMARY_AXIS];
949
950 // unity transform by default
951 memcpy(transformed_target, target, n_motors*sizeof(float));
952
953 // check function pointer and call if set to transform the target to compensate for bed
954 if(compensationTransform) {
955 // some compensation strategies can transform XYZ, some just change Z
956 compensationTransform(transformed_target);
957 }
958
959 bool move= false;
960 float sos= 0; // sun of squares for just XYZ
961
962 // find distance moved by each axis, use transformed target from the current machine position
963 for (size_t i = 0; i < n_motors; i++) {
964 deltas[i] = transformed_target[i] - last_machine_position[i];
965 if(deltas[i] == 0) continue;
966 // at least one non zero delta
967 move = true;
968 if(i <= Z_AXIS) {
969 sos += powf(deltas[i], 2);
970 }
971 }
972
973 // nothing moved
974 if(!move) return false;
975
976 // see if this is a primary axis move or not
977 bool auxilliary_move= deltas[X_AXIS] == 0 && deltas[Y_AXIS] == 0 && deltas[Z_AXIS] == 0;
978
979 // total movement, use XYZ if a primary axis otherwise we calculate distance for E after scaling to mm
980 float distance= auxilliary_move ? 0 : sqrtf(sos);
981
982 // it is unlikely but we need to protect against divide by zero, so ignore insanely small moves here
983 // as the last milestone won't be updated we do not actually lose any moves as they will be accounted for in the next move
984 if(!auxilliary_move && distance < 0.00001F) return false;
985
986
987 if(!auxilliary_move) {
988 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
989 // find distance unit vector for primary axis only
990 unit_vec[i] = deltas[i] / distance;
991
992 // Do not move faster than the configured cartesian limits for XYZ
993 if ( max_speeds[i] > 0 ) {
994 float axis_speed = fabsf(unit_vec[i] * rate_mm_s);
995
996 if (axis_speed > max_speeds[i])
997 rate_mm_s *= ( max_speeds[i] / axis_speed );
998 }
999 }
1000 }
1001
1002 // find actuator position given the machine position, use actual adjusted target
1003 ActuatorCoordinates actuator_pos;
1004 if(!disable_arm_solution) {
1005 arm_solution->cartesian_to_actuator( transformed_target, actuator_pos );
1006
1007 }else{
1008 // basically the same as cartesian, would be used for special homing situations like for scara
1009 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
1010 actuator_pos[i] = transformed_target[i];
1011 }
1012 }
1013
1014 #if MAX_ROBOT_ACTUATORS > 3
1015 sos= 0;
1016 // for the extruders just copy the position, and possibly scale it from mm³ to mm
1017 for (size_t i = E_AXIS; i < n_motors; i++) {
1018 actuator_pos[i]= transformed_target[i];
1019 if(get_e_scale_fnc) {
1020 // NOTE this relies on the fact only one extruder is active at a time
1021 // scale for volumetric or flow rate
1022 // TODO is this correct? scaling the absolute target? what if the scale changes?
1023 // for volumetric it basically converts mm³ to mm, but what about flow rate?
1024 actuator_pos[i] *= get_e_scale_fnc();
1025 }
1026 if(auxilliary_move) {
1027 // for E only moves we need to use the scaled E to calculate the distance
1028 sos += pow(actuator_pos[i] - actuators[i]->get_last_milestone(), 2);
1029 }
1030 }
1031 if(auxilliary_move) {
1032 distance= sqrtf(sos); // distance in mm of the e move
1033 if(distance < 0.00001F) return false;
1034 }
1035 #endif
1036
1037 // use default acceleration to start with
1038 float acceleration = default_acceleration;
1039
1040 float isecs = rate_mm_s / distance;
1041
1042 // check per-actuator speed limits
1043 for (size_t actuator = 0; actuator < n_motors; actuator++) {
1044 float d = fabsf(actuator_pos[actuator] - actuators[actuator]->get_last_milestone());
1045 if(d == 0 || !actuators[actuator]->is_selected()) continue; // no movement for this actuator
1046
1047 float actuator_rate= d * isecs;
1048 if (actuator_rate > actuators[actuator]->get_max_rate()) {
1049 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
1050 isecs = rate_mm_s / distance;
1051 }
1052
1053 // adjust acceleration to lowest found, for now just primary axis unless it is an auxiliary move
1054 // TODO we may need to do all of them, check E won't limit XYZ.. it does on long E moves, but not checking it could exceed the E acceleration.
1055 if(auxilliary_move || actuator <= Z_AXIS) {
1056 float ma = actuators[actuator]->get_acceleration(); // in mm/sec²
1057 if(!isnan(ma)) { // if axis does not have acceleration set then it uses the default_acceleration
1058 float ca = fabsf((d/distance) * acceleration);
1059 if (ca > ma) {
1060 acceleration *= ( ma / ca );
1061 }
1062 }
1063 }
1064 }
1065
1066 // Append the block to the planner
1067 // NOTE that distance here should be either the distance travelled by the XYZ axis, or the E mm travel if a solo E move
1068 if(THEKERNEL->planner->append_block( actuator_pos, n_motors, rate_mm_s, distance, auxilliary_move ? nullptr : unit_vec, acceleration, s_value, is_g123)) {
1069 // this is the machine position
1070 memcpy(this->last_machine_position, transformed_target, n_motors*sizeof(float));
1071 return true;
1072 }
1073
1074 // no actual move
1075 return false;
1076 }
1077
1078 // Used to plan a single move used by things like endstops when homing, zprobe, extruder firmware retracts etc.
1079 bool Robot::delta_move(const float *delta, float rate_mm_s, uint8_t naxis)
1080 {
1081 if(THEKERNEL->is_halted()) return false;
1082
1083 // catch negative or zero feed rates
1084 if(rate_mm_s <= 0.0F) {
1085 return false;
1086 }
1087
1088 // get the absolute target position, default is current last_milestone
1089 float target[n_motors];
1090 memcpy(target, last_milestone, n_motors*sizeof(float));
1091
1092 // add in the deltas to get new target
1093 for (int i= 0; i < naxis; i++) {
1094 target[i] += delta[i];
1095 }
1096
1097 // submit for planning and if moved update last_milestone
1098 if(append_milestone(target, rate_mm_s)) {
1099 memcpy(last_milestone, target, n_motors*sizeof(float));
1100 return true;
1101 }
1102
1103 return false;
1104 }
1105
1106 // Append a move to the queue ( cutting it into segments if needed )
1107 bool Robot::append_line(Gcode *gcode, const float target[], float rate_mm_s, float delta_e)
1108 {
1109 // catch negative or zero feed rates and return the same error as GRBL does
1110 if(rate_mm_s <= 0.0F) {
1111 gcode->is_error= true;
1112 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1113 return false;
1114 }
1115
1116 // Find out the distance for this move in XYZ in MCS
1117 float millimeters_of_travel = sqrtf(powf( target[X_AXIS] - last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - last_milestone[Z_AXIS], 2 ));
1118
1119 if(millimeters_of_travel < 0.00001F) {
1120 // we have no movement in XYZ, probably E only extrude or retract
1121 return this->append_milestone(target, rate_mm_s);
1122 }
1123
1124 /*
1125 For extruders, we need to do some extra work to limit the volumetric rate if specified...
1126 If using volumetric limts we need to be using volumetric extrusion for this to work as Ennn needs to be in mm³ not mm
1127 We ask Extruder to do all the work but we need to pass in the relevant data.
1128 NOTE we need to do this before we segment the line (for deltas)
1129 */
1130 if(!isnan(delta_e) && gcode->has_g && gcode->g == 1) {
1131 float data[2]= {delta_e, rate_mm_s / millimeters_of_travel};
1132 if(PublicData::set_value(extruder_checksum, target_checksum, data)) {
1133 rate_mm_s *= data[1]; // adjust the feedrate
1134 }
1135 }
1136
1137 // We cut the line into smaller segments. This is only needed on a cartesian robot for zgrid, but always necessary for robots with rotational axes like Deltas.
1138 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second
1139 // The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
1140 uint16_t segments;
1141
1142 if(this->disable_segmentation || (!segment_z_moves && !gcode->has_letter('X') && !gcode->has_letter('Y'))) {
1143 segments= 1;
1144
1145 } else if(this->delta_segments_per_second > 1.0F) {
1146 // enabled if set to something > 1, it is set to 0.0 by default
1147 // segment based on current speed and requested segments per second
1148 // the faster the travel speed the fewer segments needed
1149 // NOTE rate is mm/sec and we take into account any speed override
1150 float seconds = millimeters_of_travel / rate_mm_s;
1151 segments = max(1.0F, ceilf(this->delta_segments_per_second * seconds));
1152 // TODO if we are only moving in Z on a delta we don't really need to segment at all
1153
1154 } else {
1155 if(this->mm_per_line_segment == 0.0F) {
1156 segments = 1; // don't split it up
1157 } else {
1158 segments = ceilf( millimeters_of_travel / this->mm_per_line_segment);
1159 }
1160 }
1161
1162 bool moved= false;
1163 if (segments > 1) {
1164 // A vector to keep track of the endpoint of each segment
1165 float segment_delta[n_motors];
1166 float segment_end[n_motors];
1167 memcpy(segment_end, last_milestone, n_motors*sizeof(float));
1168
1169 // How far do we move each segment?
1170 for (int i = 0; i < n_motors; i++)
1171 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
1172
1173 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
1174 // We always add another point after this loop so we stop at segments-1, ie i < segments
1175 for (int i = 1; i < segments; i++) {
1176 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
1177 for (int i = 0; i < n_motors; i++)
1178 segment_end[i] += segment_delta[i];
1179
1180 // Append the end of this segment to the queue
1181 bool b= this->append_milestone(segment_end, rate_mm_s);
1182 moved= moved || b;
1183 }
1184 }
1185
1186 // Append the end of this full move to the queue
1187 if(this->append_milestone(target, rate_mm_s)) moved= true;
1188
1189 this->next_command_is_MCS = false; // always reset this
1190
1191 return moved;
1192 }
1193
1194
1195 // Append an arc to the queue ( cutting it into segments as needed )
1196 // TODO does not support any E parameters so cannot be used for 3D printing.
1197 bool Robot::append_arc(Gcode * gcode, const float target[], const float offset[], float radius, bool is_clockwise )
1198 {
1199 float rate_mm_s= this->feed_rate / seconds_per_minute;
1200 // catch negative or zero feed rates and return the same error as GRBL does
1201 if(rate_mm_s <= 0.0F) {
1202 gcode->is_error= true;
1203 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1204 return false;
1205 }
1206
1207 // Scary math
1208 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
1209 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
1210 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1211 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
1212 float r_axis1 = -offset[this->plane_axis_1];
1213 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
1214 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
1215
1216 // Patch from GRBL Firmware - Christoph Baumann 04072015
1217 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
1218 float angular_travel = atan2f(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
1219 if (is_clockwise) { // Correct atan2 output per direction
1220 if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= (2 * PI); }
1221 } else {
1222 if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += (2 * PI); }
1223 }
1224
1225 // Find the distance for this gcode
1226 float millimeters_of_travel = hypotf(angular_travel * radius, fabsf(linear_travel));
1227
1228 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
1229 if( millimeters_of_travel < 0.00001F ) {
1230 return false;
1231 }
1232
1233 // limit segments by maximum arc error
1234 float arc_segment = this->mm_per_arc_segment;
1235 if ((this->mm_max_arc_error > 0) && (2 * radius > this->mm_max_arc_error)) {
1236 float min_err_segment = 2 * sqrtf((this->mm_max_arc_error * (2 * radius - this->mm_max_arc_error)));
1237 if (this->mm_per_arc_segment < min_err_segment) {
1238 arc_segment = min_err_segment;
1239 }
1240 }
1241 // Figure out how many segments for this gcode
1242 // TODO for deltas we need to make sure we are at least as many segments as requested, also if mm_per_line_segment is set we need to use the
1243 uint16_t segments = ceilf(millimeters_of_travel / arc_segment);
1244
1245 //printf("Radius %f - Segment Length %f - Number of Segments %d\r\n",radius,arc_segment,segments); // Testing Purposes ONLY
1246 float theta_per_segment = angular_travel / segments;
1247 float linear_per_segment = linear_travel / segments;
1248
1249 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
1250 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
1251 r_T = [cos(phi) -sin(phi);
1252 sin(phi) cos(phi] * r ;
1253 For arc generation, the center of the circle is the axis of rotation and the radius vector is
1254 defined from the circle center to the initial position. Each line segment is formed by successive
1255 vector rotations. This requires only two cos() and sin() computations to form the rotation
1256 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1257 all float numbers are single precision on the Arduino. (True float precision will not have
1258 round off issues for CNC applications.) Single precision error can accumulate to be greater than
1259 tool precision in some cases. Therefore, arc path correction is implemented.
1260
1261 Small angle approximation may be used to reduce computation overhead further. This approximation
1262 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
1263 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
1264 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
1265 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
1266 issue for CNC machines with the single precision Arduino calculations.
1267 This approximation also allows mc_arc to immediately insert a line segment into the planner
1268 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
1269 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
1270 This is important when there are successive arc motions.
1271 */
1272 // Vector rotation matrix values
1273 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1274 float sin_T = theta_per_segment;
1275
1276 float arc_target[3];
1277 float sin_Ti;
1278 float cos_Ti;
1279 float r_axisi;
1280 uint16_t i;
1281 int8_t count = 0;
1282
1283 // Initialize the linear axis
1284 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
1285
1286 bool moved= false;
1287 for (i = 1; i < segments; i++) { // Increment (segments-1)
1288 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
1289
1290 if (count < this->arc_correction ) {
1291 // Apply vector rotation matrix
1292 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
1293 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
1294 r_axis1 = r_axisi;
1295 count++;
1296 } else {
1297 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
1298 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
1299 cos_Ti = cosf(i * theta_per_segment);
1300 sin_Ti = sinf(i * theta_per_segment);
1301 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
1302 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
1303 count = 0;
1304 }
1305
1306 // Update arc_target location
1307 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
1308 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
1309 arc_target[this->plane_axis_2] += linear_per_segment;
1310
1311 // Append this segment to the queue
1312 bool b= this->append_milestone(arc_target, rate_mm_s);
1313 moved= moved || b;
1314 }
1315
1316 // Ensure last segment arrives at target location.
1317 if(this->append_milestone(target, rate_mm_s)) moved= true;
1318
1319 return moved;
1320 }
1321
1322 // Do the math for an arc and add it to the queue
1323 bool Robot::compute_arc(Gcode * gcode, const float offset[], const float target[], enum MOTION_MODE_T motion_mode)
1324 {
1325
1326 // Find the radius
1327 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
1328
1329 // Set clockwise/counter-clockwise sign for mc_arc computations
1330 bool is_clockwise = false;
1331 if( motion_mode == CW_ARC ) {
1332 is_clockwise = true;
1333 }
1334
1335 // Append arc
1336 return this->append_arc(gcode, target, offset, radius, is_clockwise );
1337 }
1338
1339
1340 float Robot::theta(float x, float y)
1341 {
1342 float t = atanf(x / fabs(y));
1343 if (y > 0) {
1344 return(t);
1345 } else {
1346 if (t > 0) {
1347 return(PI - t);
1348 } else {
1349 return(-PI - t);
1350 }
1351 }
1352 }
1353
1354 void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
1355 {
1356 this->plane_axis_0 = axis_0;
1357 this->plane_axis_1 = axis_1;
1358 this->plane_axis_2 = axis_2;
1359 }
1360
1361 void Robot::clearToolOffset()
1362 {
1363 this->tool_offset= wcs_t(0,0,0);
1364 }
1365
1366 void Robot::setToolOffset(const float offset[3])
1367 {
1368 this->tool_offset= wcs_t(offset[0], offset[1], offset[2]);
1369 }
1370
1371 float Robot::get_feed_rate() const
1372 {
1373 return THEKERNEL->gcode_dispatch->get_modal_command() == 0 ? seek_rate : feed_rate;
1374 }