Implement parsing of standalone X Y Z or F as per pycam gcode
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include <string>
11 using std::string;
12 #include <math.h>
13 #include "Planner.h"
14 #include "Conveyor.h"
15 #include "Robot.h"
16 #include "libs/nuts_bolts.h"
17 #include "libs/Pin.h"
18 #include "libs/StepperMotor.h"
19 #include "../communication/utils/Gcode.h"
20 #include "PublicDataRequest.h"
21 #include "arm_solutions/BaseSolution.h"
22 #include "arm_solutions/CartesianSolution.h"
23 #include "arm_solutions/RotatableCartesianSolution.h"
24 #include "arm_solutions/RostockSolution.h"
25 #include "arm_solutions/JohannKosselSolution.h"
26 #include "arm_solutions/HBotSolution.h"
27
28 #define default_seek_rate_checksum CHECKSUM("default_seek_rate")
29 #define default_feed_rate_checksum CHECKSUM("default_feed_rate")
30 #define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
31 #define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
32 #define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
33 #define arc_correction_checksum CHECKSUM("arc_correction")
34 #define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
35 #define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
36 #define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
37
38 // arm solutions
39 #define arm_solution_checksum CHECKSUM("arm_solution")
40 #define cartesian_checksum CHECKSUM("cartesian")
41 #define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
42 #define rostock_checksum CHECKSUM("rostock")
43 #define delta_checksum CHECKSUM("delta")
44 #define hbot_checksum CHECKSUM("hbot")
45 #define corexy_checksum CHECKSUM("corexy")
46 #define kossel_checksum CHECKSUM("kossel")
47
48 // The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
49 // It takes care of cutting arcs into segments, same thing for line that are too long
50 #define max(a,b) (((a) > (b)) ? (a) : (b))
51
52 Robot::Robot(){
53 this->inch_mode = false;
54 this->absolute_mode = true;
55 this->motion_mode = MOTION_MODE_SEEK;
56 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
57 clear_vector(this->current_position);
58 clear_vector(this->last_milestone);
59 this->arm_solution = NULL;
60 seconds_per_minute = 60.0;
61 }
62
63 //Called when the module has just been loaded
64 void Robot::on_module_loaded() {
65 register_for_event(ON_CONFIG_RELOAD);
66 this->register_for_event(ON_GCODE_RECEIVED);
67 this->register_for_event(ON_GET_PUBLIC_DATA);
68 this->register_for_event(ON_SET_PUBLIC_DATA);
69
70 // Configuration
71 this->on_config_reload(this);
72
73 // Make our 3 StepperMotors
74 this->alpha_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(&alpha_step_pin,&alpha_dir_pin,&alpha_en_pin) );
75 this->beta_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(&beta_step_pin, &beta_dir_pin, &beta_en_pin ) );
76 this->gamma_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(&gamma_step_pin,&gamma_dir_pin,&gamma_en_pin) );
77
78 }
79
80 void Robot::on_config_reload(void* argument){
81
82 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
83 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
84 // To make adding those solution easier, they have their own, separate object.
85 // Here we read the config to find out which arm solution to use
86 if (this->arm_solution) delete this->arm_solution;
87 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
88 // Note checksums are not const expressions when in debug mode, so don't use switch
89 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
90 this->arm_solution = new HBotSolution(THEKERNEL->config);
91
92 }else if(solution_checksum == rostock_checksum) {
93 this->arm_solution = new RostockSolution(THEKERNEL->config);
94
95 }else if(solution_checksum == kossel_checksum) {
96 this->arm_solution = new JohannKosselSolution(THEKERNEL->config);
97
98 }else if(solution_checksum == delta_checksum) {
99 // place holder for now
100 this->arm_solution = new RostockSolution(THEKERNEL->config);
101
102 }else if(solution_checksum == rotatable_cartesian_checksum) {
103 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
104
105 }else if(solution_checksum == cartesian_checksum) {
106 this->arm_solution = new CartesianSolution(THEKERNEL->config);
107
108 }else{
109 this->arm_solution = new CartesianSolution(THEKERNEL->config);
110 }
111
112
113 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default(100 )->as_number() / 60;
114 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default(100 )->as_number() / 60;
115 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default(0.0f )->as_number();
116 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
117 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default(0.5f )->as_number();
118 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default(5 )->as_number();
119 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000 )->as_number();
120 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000 )->as_number();
121 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default(300 )->as_number();
122 this->alpha_step_pin.from_string( THEKERNEL->config->value(alpha_step_pin_checksum )->by_default("2.0" )->as_string())->as_output();
123 this->alpha_dir_pin.from_string( THEKERNEL->config->value(alpha_dir_pin_checksum )->by_default("0.5" )->as_string())->as_output();
124 this->alpha_en_pin.from_string( THEKERNEL->config->value(alpha_en_pin_checksum )->by_default("0.4" )->as_string())->as_output();
125 this->beta_step_pin.from_string( THEKERNEL->config->value(beta_step_pin_checksum )->by_default("2.1" )->as_string())->as_output();
126 this->gamma_step_pin.from_string( THEKERNEL->config->value(gamma_step_pin_checksum )->by_default("2.2" )->as_string())->as_output();
127 this->gamma_dir_pin.from_string( THEKERNEL->config->value(gamma_dir_pin_checksum )->by_default("0.20" )->as_string())->as_output();
128 this->gamma_en_pin.from_string( THEKERNEL->config->value(gamma_en_pin_checksum )->by_default("0.19" )->as_string())->as_output();
129 this->beta_dir_pin.from_string( THEKERNEL->config->value(beta_dir_pin_checksum )->by_default("0.11" )->as_string())->as_output();
130 this->beta_en_pin.from_string( THEKERNEL->config->value(beta_en_pin_checksum )->by_default("0.10" )->as_string())->as_output();
131
132 }
133
134 void Robot::on_get_public_data(void* argument){
135 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
136
137 if(!pdr->starts_with(robot_checksum)) return;
138
139 if(pdr->second_element_is(speed_override_percent_checksum)) {
140 static float return_data;
141 return_data= 100*this->seconds_per_minute/60;
142 pdr->set_data_ptr(&return_data);
143 pdr->set_taken();
144
145 }else if(pdr->second_element_is(current_position_checksum)) {
146 static float return_data[3];
147 return_data[0]= from_millimeters(this->current_position[0]);
148 return_data[1]= from_millimeters(this->current_position[1]);
149 return_data[2]= from_millimeters(this->current_position[2]);
150
151 pdr->set_data_ptr(&return_data);
152 pdr->set_taken();
153 }
154 }
155
156 void Robot::on_set_public_data(void* argument){
157 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
158
159 if(!pdr->starts_with(robot_checksum)) return;
160
161 if(pdr->second_element_is(speed_override_percent_checksum)) {
162 // NOTE do not use this while printing!
163 float t= *static_cast<float*>(pdr->get_data_ptr());
164 // enforce minimum 10% speed
165 if (t < 10.0) t= 10.0;
166
167 this->seconds_per_minute= t * 0.6;
168 pdr->set_taken();
169 }
170 }
171
172 //A GCode has been received
173 //See if the current Gcode line has some orders for us
174 void Robot::on_gcode_received(void * argument){
175 Gcode* gcode = static_cast<Gcode*>(argument);
176
177 //Temp variables, constant properties are stored in the object
178 uint8_t next_action = NEXT_ACTION_DEFAULT;
179 this->motion_mode = -1;
180
181 //G-letter Gcodes are mostly what the Robot module is interrested in, other modules also catch the gcode event and do stuff accordingly
182 if( gcode->has_g){
183 switch( gcode->g ){
184 case 0: this->motion_mode = MOTION_MODE_SEEK; gcode->mark_as_taken(); break;
185 case 1: this->motion_mode = MOTION_MODE_LINEAR; gcode->mark_as_taken(); break;
186 case 2: this->motion_mode = MOTION_MODE_CW_ARC; gcode->mark_as_taken(); break;
187 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; gcode->mark_as_taken(); break;
188 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); gcode->mark_as_taken(); break;
189 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); gcode->mark_as_taken(); break;
190 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); gcode->mark_as_taken(); break;
191 case 20: this->inch_mode = true; gcode->mark_as_taken(); break;
192 case 21: this->inch_mode = false; gcode->mark_as_taken(); break;
193 case 90: this->absolute_mode = true; gcode->mark_as_taken(); break;
194 case 91: this->absolute_mode = false; gcode->mark_as_taken(); break;
195 case 92: {
196 if(gcode->get_num_args() == 0){
197 clear_vector(this->last_milestone);
198 }else{
199 for (char letter = 'X'; letter <= 'Z'; letter++){
200 if ( gcode->has_letter(letter) )
201 this->last_milestone[letter-'X'] = this->to_millimeters(gcode->get_value(letter));
202 }
203 }
204 memcpy(this->current_position, this->last_milestone, sizeof(float)*3); // current_position[] = last_milestone[];
205 this->arm_solution->millimeters_to_steps(this->current_position, THEKERNEL->planner->position);
206 gcode->mark_as_taken();
207 return; // TODO: Wait until queue empty
208 }
209 }
210 }else if( gcode->has_m){
211 float steps[3];
212 switch( gcode->m ){
213 case 92: // M92 - set steps per mm
214 this->arm_solution->get_steps_per_millimeter(steps);
215 if (gcode->has_letter('X'))
216 steps[0] = this->to_millimeters(gcode->get_value('X'));
217 if (gcode->has_letter('Y'))
218 steps[1] = this->to_millimeters(gcode->get_value('Y'));
219 if (gcode->has_letter('Z'))
220 steps[2] = this->to_millimeters(gcode->get_value('Z'));
221 if (gcode->has_letter('F'))
222 seconds_per_minute = gcode->get_value('F');
223 this->arm_solution->set_steps_per_millimeter(steps);
224 // update current position in steps
225 this->arm_solution->millimeters_to_steps(this->current_position, THEKERNEL->planner->position);
226 gcode->stream->printf("X:%g Y:%g Z:%g F:%g ", steps[0], steps[1], steps[2], seconds_per_minute);
227 gcode->add_nl = true;
228 gcode->mark_as_taken();
229 return;
230 case 114: gcode->stream->printf("C: X:%1.3f Y:%1.3f Z:%1.3f ",
231 from_millimeters(this->current_position[0]),
232 from_millimeters(this->current_position[1]),
233 from_millimeters(this->current_position[2]));
234 gcode->add_nl = true;
235 gcode->mark_as_taken();
236 return;
237
238 // TODO I'm not sure if the following is safe to do here, or should it go on the block queue?
239 case 204: // M204 Snnn - set acceleration to nnn, NB only Snnn is currently supported
240 gcode->mark_as_taken();
241 if (gcode->has_letter('S'))
242 {
243 float acc= gcode->get_value('S') * 60 * 60; // mm/min^2
244 // enforce minimum
245 if (acc < 1.0)
246 acc = 1.0;
247 THEKERNEL->planner->acceleration= acc;
248 }
249 break;
250
251 case 205: // M205 Xnnn - set junction deviation Snnn - Set minimum planner speed
252 gcode->mark_as_taken();
253 if (gcode->has_letter('X'))
254 {
255 float jd= gcode->get_value('X');
256 // enforce minimum
257 if (jd < 0.0F)
258 jd = 0.0F;
259 THEKERNEL->planner->junction_deviation= jd;
260 }
261 if (gcode->has_letter('S'))
262 {
263 float mps= gcode->get_value('S');
264 // enforce minimum
265 if (mps < 0.0F)
266 mps = 0.0F;
267 THEKERNEL->planner->minimum_planner_speed= mps;
268 }
269 break;
270
271 case 220: // M220 - speed override percentage
272 gcode->mark_as_taken();
273 if (gcode->has_letter('S'))
274 {
275 float factor = gcode->get_value('S');
276 // enforce minimum 10% speed
277 if (factor < 10.0)
278 factor = 10.0;
279 seconds_per_minute = factor * 0.6;
280 }
281 break;
282
283 case 400: // wait until all moves are done up to this point
284 gcode->mark_as_taken();
285 THEKERNEL->conveyor->wait_for_empty_queue();
286 break;
287
288 case 500: // M500 saves some volatile settings to config override file
289 case 503: // M503 just prints the settings
290 this->arm_solution->get_steps_per_millimeter(steps);
291 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", steps[0], steps[1], steps[2]);
292 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f\n", THEKERNEL->planner->acceleration/3600);
293 gcode->stream->printf(";X- Junction Deviation, S - Minimum Planner speed:\nM205 X%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->minimum_planner_speed);
294 gcode->mark_as_taken();
295 break;
296
297 case 665: // M665 set optional arm solution variables based on arm solution
298 gcode->mark_as_taken();
299 // the parameter args could be any letter so try each one
300 for(char c='A';c<='Z';c++) {
301 float v;
302 bool supported= arm_solution->get_optional(c, &v); // retrieve current value if supported
303
304 if(supported && gcode->has_letter(c)) { // set new value if supported
305 v= gcode->get_value(c);
306 arm_solution->set_optional(c, v);
307 }
308 if(supported) { // print all current values of supported options
309 gcode->stream->printf("%c %8.3f ", c, v);
310 gcode->add_nl = true;
311 }
312 }
313 break;
314
315 }
316 }
317
318 if( this->motion_mode < 0)
319 return;
320
321 //Get parameters
322 float target[3], offset[3];
323 clear_vector(offset);
324
325 memcpy(target, this->current_position, sizeof(target)); //default to last target
326
327 for(char letter = 'I'; letter <= 'K'; letter++){
328 if( gcode->has_letter(letter) ){
329 offset[letter-'I'] = this->to_millimeters(gcode->get_value(letter));
330 }
331 }
332 for(char letter = 'X'; letter <= 'Z'; letter++){
333 if( gcode->has_letter(letter) ){
334 target[letter-'X'] = this->to_millimeters(gcode->get_value(letter)) + ( this->absolute_mode ? 0 : target[letter-'X']);
335 }
336 }
337
338 if( gcode->has_letter('F') )
339 {
340 if( this->motion_mode == MOTION_MODE_SEEK )
341 this->seek_rate = this->to_millimeters( gcode->get_value('F') ) / 60.0F;
342 else
343 this->feed_rate = this->to_millimeters( gcode->get_value('F') ) / 60.0F;
344 }
345
346 //Perform any physical actions
347 switch( next_action ){
348 case NEXT_ACTION_DEFAULT:
349 switch(this->motion_mode){
350 case MOTION_MODE_CANCEL: break;
351 case MOTION_MODE_SEEK : this->append_line(gcode, target, this->seek_rate ); break;
352 case MOTION_MODE_LINEAR: this->append_line(gcode, target, this->feed_rate ); break;
353 case MOTION_MODE_CW_ARC: case MOTION_MODE_CCW_ARC: this->compute_arc(gcode, offset, target ); break;
354 }
355 break;
356 }
357
358 // As far as the parser is concerned, the position is now == target. In reality the
359 // motion control system might still be processing the action and the real tool position
360 // in any intermediate location.
361 memcpy(this->current_position, target, sizeof(this->current_position)); // this->position[] = target[];
362
363 }
364
365 // We received a new gcode, and one of the functions
366 // determined the distance for that given gcode. So now we can attach this gcode to the right block
367 // and continue
368 void Robot::distance_in_gcode_is_known(Gcode* gcode){
369
370 //If the queue is empty, execute immediatly, otherwise attach to the last added block
371 THEKERNEL->conveyor->append_gcode(gcode);
372 }
373
374 // Reset the position for all axes ( used in homing and G92 stuff )
375 void Robot::reset_axis_position(float position, int axis) {
376 this->last_milestone[axis] = this->current_position[axis] = position;
377 this->arm_solution->millimeters_to_steps(this->current_position, THEKERNEL->planner->position);
378 }
379
380
381 // Convert target from millimeters to steps, and append this to the planner
382 void Robot::append_milestone( float target[], float rate ){
383 int steps[3]; //Holds the result of the conversion
384
385 // We use an arm solution object so exotic arm solutions can be used and neatly abstracted
386 this->arm_solution->millimeters_to_steps( target, steps );
387
388 float deltas[3];
389 for(int axis=X_AXIS;axis<=Z_AXIS;axis++){deltas[axis]=target[axis]-this->last_milestone[axis];}
390
391 // Compute how long this move moves, so we can attach it to the block for later use
392 float millimeters_of_travel = sqrtf( pow( deltas[X_AXIS], 2 ) + pow( deltas[Y_AXIS], 2 ) + pow( deltas[Z_AXIS], 2 ) );
393
394 // Do not move faster than the configured limits
395 for(int axis=X_AXIS;axis<=Z_AXIS;axis++){
396 if( this->max_speeds[axis] > 0 ){
397 float axis_speed = ( fabs(deltas[axis]) / ( millimeters_of_travel / rate )) * seconds_per_minute;
398 if( axis_speed > this->max_speeds[axis] ){
399 rate = rate * ( this->max_speeds[axis] / axis_speed );
400 }
401 }
402 }
403
404 // Append the block to the planner
405 THEKERNEL->planner->append_block( steps, rate * seconds_per_minute, millimeters_of_travel, deltas );
406
407 // Update the last_milestone to the current target for the next time we use last_milestone
408 memcpy(this->last_milestone, target, sizeof(this->last_milestone)); // this->last_milestone[] = target[];
409
410 }
411
412 // Append a move to the queue ( cutting it into segments if needed )
413 void Robot::append_line(Gcode* gcode, float target[], float rate ){
414
415 // Find out the distance for this gcode
416 gcode->millimeters_of_travel = sqrtf( pow( target[X_AXIS]-this->current_position[X_AXIS], 2 ) + pow( target[Y_AXIS]-this->current_position[Y_AXIS], 2 ) + pow( target[Z_AXIS]-this->current_position[Z_AXIS], 2 ) );
417
418 // We ignore non-moves ( for example, extruder moves are not XYZ moves )
419 if( gcode->millimeters_of_travel < 0.0001F ){
420 return;
421 }
422
423 // Mark the gcode as having a known distance
424 this->distance_in_gcode_is_known( gcode );
425
426 // We cut the line into smaller segments. This is not usefull in a cartesian robot, but necessary for robots with rotational axes.
427 // In cartesian robot, a high "mm_per_line_segment" setting will prevent waste.
428 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
429 uint16_t segments;
430
431 if(this->delta_segments_per_second > 1.0F) {
432 // enabled if set to something > 1, it is set to 0.0 by default
433 // segment based on current speed and requested segments per second
434 // the faster the travel speed the fewer segments needed
435 // NOTE rate is mm/sec and we take into account any speed override
436 float seconds = 60.0/seconds_per_minute * gcode->millimeters_of_travel / rate;
437 segments= max(1, ceil(this->delta_segments_per_second * seconds));
438 // TODO if we are only moving in Z on a delta we don't really need to segment at all
439
440 }else{
441 if(this->mm_per_line_segment == 0.0F){
442 segments= 1; // don't split it up
443 }else{
444 segments = ceil( gcode->millimeters_of_travel/ this->mm_per_line_segment);
445 }
446 }
447
448 // A vector to keep track of the endpoint of each segment
449 float temp_target[3];
450 //Initialize axes
451 memcpy( temp_target, this->current_position, sizeof(temp_target)); // temp_target[] = this->current_position[];
452
453 //For each segment
454 for( int i=0; i<segments-1; i++ ){
455 for(int axis=X_AXIS; axis <= Z_AXIS; axis++ ){ temp_target[axis] += ( target[axis]-this->current_position[axis] )/segments; }
456 // Append the end of this segment to the queue
457 this->append_milestone(temp_target, rate);
458 }
459
460 // Append the end of this full move to the queue
461 this->append_milestone(target, rate);
462
463 // if adding these blocks didn't start executing, do that now
464 THEKERNEL->conveyor->ensure_running();
465 }
466
467
468 // Append an arc to the queue ( cutting it into segments as needed )
469 void Robot::append_arc(Gcode* gcode, float target[], float offset[], float radius, bool is_clockwise ){
470
471 // Scary math
472 float center_axis0 = this->current_position[this->plane_axis_0] + offset[this->plane_axis_0];
473 float center_axis1 = this->current_position[this->plane_axis_1] + offset[this->plane_axis_1];
474 float linear_travel = target[this->plane_axis_2] - this->current_position[this->plane_axis_2];
475 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
476 float r_axis1 = -offset[this->plane_axis_1];
477 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
478 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
479
480 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
481 float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
482 if (angular_travel < 0) { angular_travel += 2*M_PI; }
483 if (is_clockwise) { angular_travel -= 2*M_PI; }
484
485 // Find the distance for this gcode
486 gcode->millimeters_of_travel = hypotf(angular_travel*radius, fabs(linear_travel));
487
488 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
489 if( gcode->millimeters_of_travel < 0.0001F ){ return; }
490
491 // Mark the gcode as having a known distance
492 this->distance_in_gcode_is_known( gcode );
493
494 // Figure out how many segments for this gcode
495 uint16_t segments = floor(gcode->millimeters_of_travel/this->mm_per_arc_segment);
496
497 float theta_per_segment = angular_travel/segments;
498 float linear_per_segment = linear_travel/segments;
499
500 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
501 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
502 r_T = [cos(phi) -sin(phi);
503 sin(phi) cos(phi] * r ;
504 For arc generation, the center of the circle is the axis of rotation and the radius vector is
505 defined from the circle center to the initial position. Each line segment is formed by successive
506 vector rotations. This requires only two cos() and sin() computations to form the rotation
507 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
508 all float numbers are single precision on the Arduino. (True float precision will not have
509 round off issues for CNC applications.) Single precision error can accumulate to be greater than
510 tool precision in some cases. Therefore, arc path correction is implemented.
511
512 Small angle approximation may be used to reduce computation overhead further. This approximation
513 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
514 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
515 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
516 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
517 issue for CNC machines with the single precision Arduino calculations.
518 This approximation also allows mc_arc to immediately insert a line segment into the planner
519 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
520 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
521 This is important when there are successive arc motions.
522 */
523 // Vector rotation matrix values
524 float cos_T = 1-0.5F*theta_per_segment*theta_per_segment; // Small angle approximation
525 float sin_T = theta_per_segment;
526
527 float arc_target[3];
528 float sin_Ti;
529 float cos_Ti;
530 float r_axisi;
531 uint16_t i;
532 int8_t count = 0;
533
534 // Initialize the linear axis
535 arc_target[this->plane_axis_2] = this->current_position[this->plane_axis_2];
536
537 for (i = 1; i<segments; i++) { // Increment (segments-1)
538
539 if (count < this->arc_correction ) {
540 // Apply vector rotation matrix
541 r_axisi = r_axis0*sin_T + r_axis1*cos_T;
542 r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
543 r_axis1 = r_axisi;
544 count++;
545 } else {
546 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
547 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
548 cos_Ti = cosf(i*theta_per_segment);
549 sin_Ti = sinf(i*theta_per_segment);
550 r_axis0 = -offset[this->plane_axis_0]*cos_Ti + offset[this->plane_axis_1]*sin_Ti;
551 r_axis1 = -offset[this->plane_axis_0]*sin_Ti - offset[this->plane_axis_1]*cos_Ti;
552 count = 0;
553 }
554
555 // Update arc_target location
556 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
557 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
558 arc_target[this->plane_axis_2] += linear_per_segment;
559
560 // Append this segment to the queue
561 this->append_milestone(arc_target, this->feed_rate);
562
563 }
564
565 // Ensure last segment arrives at target location.
566 this->append_milestone(target, this->feed_rate);
567 }
568
569 // Do the math for an arc and add it to the queue
570 void Robot::compute_arc(Gcode* gcode, float offset[], float target[]){
571
572 // Find the radius
573 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
574
575 // Set clockwise/counter-clockwise sign for mc_arc computations
576 bool is_clockwise = false;
577 if( this->motion_mode == MOTION_MODE_CW_ARC ){ is_clockwise = true; }
578
579 // Append arc
580 this->append_arc(gcode, target, offset, radius, is_clockwise );
581
582 }
583
584
585 float Robot::theta(float x, float y){
586 float t = atanf(x/fabs(y));
587 if (y>0) {return(t);} else {if (t>0){return(M_PI-t);} else {return(-M_PI-t);}}
588 }
589
590 void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2){
591 this->plane_axis_0 = axis_0;
592 this->plane_axis_1 = axis_1;
593 this->plane_axis_2 = axis_2;
594 }
595
596