Merge pull request #311 from wolfmanjm/upstreamedge
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include <string>
11 using std::string;
12 #include <math.h>
13 #include "Planner.h"
14 #include "Conveyor.h"
15 #include "Robot.h"
16 #include "libs/nuts_bolts.h"
17 #include "libs/Pin.h"
18 #include "libs/StepperMotor.h"
19 #include "../communication/utils/Gcode.h"
20 #include "PublicDataRequest.h"
21 #include "arm_solutions/BaseSolution.h"
22 #include "arm_solutions/CartesianSolution.h"
23 #include "arm_solutions/RotatableCartesianSolution.h"
24 #include "arm_solutions/RostockSolution.h"
25 #include "arm_solutions/JohannKosselSolution.h"
26 #include "arm_solutions/HBotSolution.h"
27
28 #define default_seek_rate_checksum CHECKSUM("default_seek_rate")
29 #define default_feed_rate_checksum CHECKSUM("default_feed_rate")
30 #define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
31 #define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
32 #define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
33 #define arc_correction_checksum CHECKSUM("arc_correction")
34 #define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
35 #define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
36 #define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
37
38 // arm solutions
39 #define arm_solution_checksum CHECKSUM("arm_solution")
40 #define cartesian_checksum CHECKSUM("cartesian")
41 #define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
42 #define rostock_checksum CHECKSUM("rostock")
43 #define delta_checksum CHECKSUM("delta")
44 #define hbot_checksum CHECKSUM("hbot")
45 #define corexy_checksum CHECKSUM("corexy")
46 #define kossel_checksum CHECKSUM("kossel")
47
48 // The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
49 // It takes care of cutting arcs into segments, same thing for line that are too long
50 #define max(a,b) (((a) > (b)) ? (a) : (b))
51
52 Robot::Robot(){
53 this->inch_mode = false;
54 this->absolute_mode = true;
55 this->motion_mode = MOTION_MODE_SEEK;
56 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
57 clear_vector(this->current_position);
58 clear_vector(this->last_milestone);
59 this->arm_solution = NULL;
60 seconds_per_minute = 60.0;
61 }
62
63 //Called when the module has just been loaded
64 void Robot::on_module_loaded() {
65 register_for_event(ON_CONFIG_RELOAD);
66 this->register_for_event(ON_GCODE_RECEIVED);
67 this->register_for_event(ON_GET_PUBLIC_DATA);
68 this->register_for_event(ON_SET_PUBLIC_DATA);
69
70 // Configuration
71 this->on_config_reload(this);
72
73 // Make our 3 StepperMotors
74 this->alpha_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(&alpha_step_pin,&alpha_dir_pin,&alpha_en_pin) );
75 this->beta_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(&beta_step_pin, &beta_dir_pin, &beta_en_pin ) );
76 this->gamma_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(&gamma_step_pin,&gamma_dir_pin,&gamma_en_pin) );
77
78 }
79
80 void Robot::on_config_reload(void* argument){
81
82 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
83 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
84 // To make adding those solution easier, they have their own, separate object.
85 // Here we read the config to find out which arm solution to use
86 if (this->arm_solution) delete this->arm_solution;
87 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
88 // Note checksums are not const expressions when in debug mode, so don't use switch
89 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
90 this->arm_solution = new HBotSolution(THEKERNEL->config);
91
92 }else if(solution_checksum == rostock_checksum) {
93 this->arm_solution = new RostockSolution(THEKERNEL->config);
94
95 }else if(solution_checksum == kossel_checksum) {
96 this->arm_solution = new JohannKosselSolution(THEKERNEL->config);
97
98 }else if(solution_checksum == delta_checksum) {
99 // place holder for now
100 this->arm_solution = new RostockSolution(THEKERNEL->config);
101
102 }else if(solution_checksum == rotatable_cartesian_checksum) {
103 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
104
105 }else if(solution_checksum == cartesian_checksum) {
106 this->arm_solution = new CartesianSolution(THEKERNEL->config);
107
108 }else{
109 this->arm_solution = new CartesianSolution(THEKERNEL->config);
110 }
111
112
113 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default(100 )->as_number() / 60;
114 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default(100 )->as_number() / 60;
115 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default(0.0f )->as_number();
116 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
117 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default(0.5f )->as_number();
118 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default(5 )->as_number();
119 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000 )->as_number();
120 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000 )->as_number();
121 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default(300 )->as_number();
122 this->alpha_step_pin.from_string( THEKERNEL->config->value(alpha_step_pin_checksum )->by_default("2.0" )->as_string())->as_output();
123 this->alpha_dir_pin.from_string( THEKERNEL->config->value(alpha_dir_pin_checksum )->by_default("0.5" )->as_string())->as_output();
124 this->alpha_en_pin.from_string( THEKERNEL->config->value(alpha_en_pin_checksum )->by_default("0.4" )->as_string())->as_output();
125 this->beta_step_pin.from_string( THEKERNEL->config->value(beta_step_pin_checksum )->by_default("2.1" )->as_string())->as_output();
126 this->gamma_step_pin.from_string( THEKERNEL->config->value(gamma_step_pin_checksum )->by_default("2.2" )->as_string())->as_output();
127 this->gamma_dir_pin.from_string( THEKERNEL->config->value(gamma_dir_pin_checksum )->by_default("0.20" )->as_string())->as_output();
128 this->gamma_en_pin.from_string( THEKERNEL->config->value(gamma_en_pin_checksum )->by_default("0.19" )->as_string())->as_output();
129 this->beta_dir_pin.from_string( THEKERNEL->config->value(beta_dir_pin_checksum )->by_default("0.11" )->as_string())->as_output();
130 this->beta_en_pin.from_string( THEKERNEL->config->value(beta_en_pin_checksum )->by_default("0.10" )->as_string())->as_output();
131
132 }
133
134 void Robot::on_get_public_data(void* argument){
135 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
136
137 if(!pdr->starts_with(robot_checksum)) return;
138
139 if(pdr->second_element_is(speed_override_percent_checksum)) {
140 static float return_data;
141 return_data= 100*this->seconds_per_minute/60;
142 pdr->set_data_ptr(&return_data);
143 pdr->set_taken();
144
145 }else if(pdr->second_element_is(current_position_checksum)) {
146 static float return_data[3];
147 return_data[0]= from_millimeters(this->current_position[0]);
148 return_data[1]= from_millimeters(this->current_position[1]);
149 return_data[2]= from_millimeters(this->current_position[2]);
150
151 pdr->set_data_ptr(&return_data);
152 pdr->set_taken();
153 }
154 }
155
156 void Robot::on_set_public_data(void* argument){
157 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
158
159 if(!pdr->starts_with(robot_checksum)) return;
160
161 if(pdr->second_element_is(speed_override_percent_checksum)) {
162 // NOTE do not use this while printing!
163 float t= *static_cast<float*>(pdr->get_data_ptr());
164 // enforce minimum 10% speed
165 if (t < 10.0) t= 10.0;
166
167 this->seconds_per_minute= t * 0.6;
168 pdr->set_taken();
169 }
170 }
171
172 //A GCode has been received
173 //See if the current Gcode line has some orders for us
174 void Robot::on_gcode_received(void * argument){
175 Gcode* gcode = static_cast<Gcode*>(argument);
176
177 //Temp variables, constant properties are stored in the object
178 uint8_t next_action = NEXT_ACTION_DEFAULT;
179 this->motion_mode = -1;
180
181 //G-letter Gcodes are mostly what the Robot module is interrested in, other modules also catch the gcode event and do stuff accordingly
182 if( gcode->has_g){
183 switch( gcode->g ){
184 case 0: this->motion_mode = MOTION_MODE_SEEK; gcode->mark_as_taken(); break;
185 case 1: this->motion_mode = MOTION_MODE_LINEAR; gcode->mark_as_taken(); break;
186 case 2: this->motion_mode = MOTION_MODE_CW_ARC; gcode->mark_as_taken(); break;
187 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; gcode->mark_as_taken(); break;
188 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); gcode->mark_as_taken(); break;
189 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); gcode->mark_as_taken(); break;
190 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); gcode->mark_as_taken(); break;
191 case 20: this->inch_mode = true; gcode->mark_as_taken(); break;
192 case 21: this->inch_mode = false; gcode->mark_as_taken(); break;
193 case 90: this->absolute_mode = true; gcode->mark_as_taken(); break;
194 case 91: this->absolute_mode = false; gcode->mark_as_taken(); break;
195 case 92: {
196 if(gcode->get_num_args() == 0){
197 clear_vector(this->last_milestone);
198 }else{
199 for (char letter = 'X'; letter <= 'Z'; letter++){
200 if ( gcode->has_letter(letter) )
201 this->last_milestone[letter-'X'] = this->to_millimeters(gcode->get_value(letter));
202 }
203 }
204 memcpy(this->current_position, this->last_milestone, sizeof(float)*3); // current_position[] = last_milestone[];
205 this->arm_solution->millimeters_to_steps(this->current_position, THEKERNEL->planner->position);
206 gcode->mark_as_taken();
207 return; // TODO: Wait until queue empty
208 }
209 }
210 }else if( gcode->has_m){
211 float steps[3];
212 switch( gcode->m ){
213 case 92: // M92 - set steps per mm
214 this->arm_solution->get_steps_per_millimeter(steps);
215 if (gcode->has_letter('X'))
216 steps[0] = this->to_millimeters(gcode->get_value('X'));
217 if (gcode->has_letter('Y'))
218 steps[1] = this->to_millimeters(gcode->get_value('Y'));
219 if (gcode->has_letter('Z'))
220 steps[2] = this->to_millimeters(gcode->get_value('Z'));
221 if (gcode->has_letter('F'))
222 seconds_per_minute = gcode->get_value('F');
223 this->arm_solution->set_steps_per_millimeter(steps);
224 // update current position in steps
225 this->arm_solution->millimeters_to_steps(this->current_position, THEKERNEL->planner->position);
226 gcode->stream->printf("X:%g Y:%g Z:%g F:%g ", steps[0], steps[1], steps[2], seconds_per_minute);
227 gcode->add_nl = true;
228 gcode->mark_as_taken();
229 return;
230 case 114: gcode->stream->printf("C: X:%1.3f Y:%1.3f Z:%1.3f ",
231 from_millimeters(this->current_position[0]),
232 from_millimeters(this->current_position[1]),
233 from_millimeters(this->current_position[2]));
234 gcode->add_nl = true;
235 gcode->mark_as_taken();
236 return;
237
238 // TODO I'm not sure if the following is safe to do here, or should it go on the block queue?
239 case 204: // M204 Snnn - set acceleration to nnn, NB only Snnn is currently supported
240 gcode->mark_as_taken();
241 if (gcode->has_letter('S'))
242 {
243 float acc= gcode->get_value('S') * 60 * 60; // mm/min^2
244 // enforce minimum
245 if (acc < 1.0)
246 acc = 1.0;
247 THEKERNEL->planner->acceleration= acc;
248 }
249 break;
250
251 case 205: // M205 Xnnn - set junction deviation Snnn - Set minimum planner speed
252 gcode->mark_as_taken();
253 if (gcode->has_letter('X'))
254 {
255 float jd= gcode->get_value('X');
256 // enforce minimum
257 if (jd < 0.0F)
258 jd = 0.0F;
259 THEKERNEL->planner->junction_deviation= jd;
260 }
261 if (gcode->has_letter('S'))
262 {
263 float mps= gcode->get_value('S');
264 // enforce minimum
265 if (mps < 0.0F)
266 mps = 0.0F;
267 THEKERNEL->planner->minimum_planner_speed= mps;
268 }
269 break;
270
271 case 220: // M220 - speed override percentage
272 gcode->mark_as_taken();
273 if (gcode->has_letter('S'))
274 {
275 float factor = gcode->get_value('S');
276 // enforce minimum 10% speed
277 if (factor < 10.0)
278 factor = 10.0;
279 seconds_per_minute = factor * 0.6;
280 }
281 break;
282
283 case 400: // wait until all moves are done up to this point
284 gcode->mark_as_taken();
285 THEKERNEL->conveyor->wait_for_empty_queue();
286 break;
287
288 case 500: // M500 saves some volatile settings to config override file
289 case 503: // M503 just prints the settings
290 this->arm_solution->get_steps_per_millimeter(steps);
291 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", steps[0], steps[1], steps[2]);
292 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f\n", THEKERNEL->planner->acceleration/3600);
293 gcode->stream->printf(";X- Junction Deviation, S - Minimum Planner speed:\nM205 X%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->minimum_planner_speed);
294 gcode->mark_as_taken();
295 break;
296
297 case 665: // M665 set optional arm solution variables based on arm solution
298 gcode->mark_as_taken();
299 // the parameter args could be any letter so try each one
300 for(char c='A';c<='Z';c++) {
301 float v;
302 bool supported= arm_solution->get_optional(c, &v); // retrieve current value if supported
303
304 if(supported && gcode->has_letter(c)) { // set new value if supported
305 v= gcode->get_value(c);
306 arm_solution->set_optional(c, v);
307 }
308 if(supported) { // print all current values of supported options
309 gcode->stream->printf("%c %8.3f ", c, v);
310 gcode->add_nl = true;
311 }
312 }
313 break;
314
315 }
316 }
317
318 if( this->motion_mode < 0)
319 return;
320
321 //Get parameters
322 float target[3], offset[3];
323 clear_vector(target); clear_vector(offset);
324
325 memcpy(target, this->current_position, sizeof(target)); //default to last target
326
327 for(char letter = 'I'; letter <= 'K'; letter++){ if( gcode->has_letter(letter) ){ offset[letter-'I'] = this->to_millimeters(gcode->get_value(letter)); } }
328 for(char letter = 'X'; letter <= 'Z'; letter++){ if( gcode->has_letter(letter) ){ target[letter-'X'] = this->to_millimeters(gcode->get_value(letter)) + ( this->absolute_mode ? 0 : target[letter-'X']); } }
329
330 if( gcode->has_letter('F') )
331 {
332 if( this->motion_mode == MOTION_MODE_SEEK )
333 this->seek_rate = this->to_millimeters( gcode->get_value('F') ) / 60.0;
334 else
335 this->feed_rate = this->to_millimeters( gcode->get_value('F') ) / 60.0;
336 }
337
338 //Perform any physical actions
339 switch( next_action ){
340 case NEXT_ACTION_DEFAULT:
341 switch(this->motion_mode){
342 case MOTION_MODE_CANCEL: break;
343 case MOTION_MODE_SEEK : this->append_line(gcode, target, this->seek_rate ); break;
344 case MOTION_MODE_LINEAR: this->append_line(gcode, target, this->feed_rate ); break;
345 case MOTION_MODE_CW_ARC: case MOTION_MODE_CCW_ARC: this->compute_arc(gcode, offset, target ); break;
346 }
347 break;
348 }
349
350 // As far as the parser is concerned, the position is now == target. In reality the
351 // motion control system might still be processing the action and the real tool position
352 // in any intermediate location.
353 memcpy(this->current_position, target, sizeof(float)*3); // this->position[] = target[];
354
355 }
356
357 // We received a new gcode, and one of the functions
358 // determined the distance for that given gcode. So now we can attach this gcode to the right block
359 // and continue
360 void Robot::distance_in_gcode_is_known(Gcode* gcode){
361
362 //If the queue is empty, execute immediatly, otherwise attach to the last added block
363 if( THEKERNEL->conveyor->queue.size() == 0 ){
364 THEKERNEL->call_event(ON_GCODE_EXECUTE, gcode );
365 }else{
366 Block* block = THEKERNEL->conveyor->queue.get_ref( THEKERNEL->conveyor->queue.size() - 1 );
367 block->append_gcode(gcode);
368 }
369
370 }
371
372 // Reset the position for all axes ( used in homing and G92 stuff )
373 void Robot::reset_axis_position(float position, int axis) {
374 this->last_milestone[axis] = this->current_position[axis] = position;
375 this->arm_solution->millimeters_to_steps(this->current_position, THEKERNEL->planner->position);
376 }
377
378
379 // Convert target from millimeters to steps, and append this to the planner
380 void Robot::append_milestone( float target[], float rate ){
381 int steps[3]; //Holds the result of the conversion
382
383 // We use an arm solution object so exotic arm solutions can be used and neatly abstracted
384 this->arm_solution->millimeters_to_steps( target, steps );
385
386 float deltas[3];
387 for(int axis=X_AXIS;axis<=Z_AXIS;axis++){deltas[axis]=target[axis]-this->last_milestone[axis];}
388
389 // Compute how long this move moves, so we can attach it to the block for later use
390 float millimeters_of_travel = sqrtf( pow( deltas[X_AXIS], 2 ) + pow( deltas[Y_AXIS], 2 ) + pow( deltas[Z_AXIS], 2 ) );
391
392 // Do not move faster than the configured limits
393 for(int axis=X_AXIS;axis<=Z_AXIS;axis++){
394 if( this->max_speeds[axis] > 0 ){
395 float axis_speed = ( fabs(deltas[axis]) / ( millimeters_of_travel / rate )) * seconds_per_minute;
396 if( axis_speed > this->max_speeds[axis] ){
397 rate = rate * ( this->max_speeds[axis] / axis_speed );
398 }
399 }
400 }
401
402 // Append the block to the planner
403 THEKERNEL->planner->append_block( steps, rate * seconds_per_minute, millimeters_of_travel, deltas );
404
405 // Update the last_milestone to the current target for the next time we use last_milestone
406 memcpy(this->last_milestone, target, sizeof(float)*3); // this->last_milestone[] = target[];
407
408 }
409
410 // Append a move to the queue ( cutting it into segments if needed )
411 void Robot::append_line(Gcode* gcode, float target[], float rate ){
412
413 // Find out the distance for this gcode
414 gcode->millimeters_of_travel = sqrtf( pow( target[X_AXIS]-this->current_position[X_AXIS], 2 ) + pow( target[Y_AXIS]-this->current_position[Y_AXIS], 2 ) + pow( target[Z_AXIS]-this->current_position[Z_AXIS], 2 ) );
415
416 // We ignore non-moves ( for example, extruder moves are not XYZ moves )
417 if( gcode->millimeters_of_travel < 0.0001 ){
418 // an extruder only move means we stopped so we need to tell planner that previous speed and unitvector are zero
419 THEKERNEL->planner->previous_nominal_speed = 0;
420 clear_vector_float(THEKERNEL->planner->previous_unit_vec);
421 return;
422 }
423
424 // Mark the gcode as having a known distance
425 this->distance_in_gcode_is_known( gcode );
426
427 // We cut the line into smaller segments. This is not usefull in a cartesian robot, but necessary for robots with rotational axes.
428 // In cartesian robot, a high "mm_per_line_segment" setting will prevent waste.
429 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
430 uint16_t segments;
431
432 if(this->delta_segments_per_second > 1.0) {
433 // enabled if set to something > 1, it is set to 0.0 by default
434 // segment based on current speed and requested segments per second
435 // the faster the travel speed the fewer segments needed
436 // NOTE rate is mm/sec and we take into account any speed override
437 float seconds = 60.0/seconds_per_minute * gcode->millimeters_of_travel / rate;
438 segments= max(1, ceil(this->delta_segments_per_second * seconds));
439 // TODO if we are only moving in Z on a delta we don't really need to segment at all
440
441 }else{
442 if(this->mm_per_line_segment == 0.0){
443 segments= 1; // don't split it up
444 }else{
445 segments = ceil( gcode->millimeters_of_travel/ this->mm_per_line_segment);
446 }
447 }
448
449 // A vector to keep track of the endpoint of each segment
450 float temp_target[3];
451 //Initialize axes
452 memcpy( temp_target, this->current_position, sizeof(float)*3); // temp_target[] = this->current_position[];
453
454 //For each segment
455 for( int i=0; i<segments-1; i++ ){
456 for(int axis=X_AXIS; axis <= Z_AXIS; axis++ ){ temp_target[axis] += ( target[axis]-this->current_position[axis] )/segments; }
457 // Append the end of this segment to the queue
458 this->append_milestone(temp_target, rate);
459 }
460
461 // Append the end of this full move to the queue
462 this->append_milestone(target, rate);
463 }
464
465
466 // Append an arc to the queue ( cutting it into segments as needed )
467 void Robot::append_arc(Gcode* gcode, float target[], float offset[], float radius, bool is_clockwise ){
468
469 // Scary math
470 float center_axis0 = this->current_position[this->plane_axis_0] + offset[this->plane_axis_0];
471 float center_axis1 = this->current_position[this->plane_axis_1] + offset[this->plane_axis_1];
472 float linear_travel = target[this->plane_axis_2] - this->current_position[this->plane_axis_2];
473 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
474 float r_axis1 = -offset[this->plane_axis_1];
475 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
476 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
477
478 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
479 float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
480 if (angular_travel < 0) { angular_travel += 2*M_PI; }
481 if (is_clockwise) { angular_travel -= 2*M_PI; }
482
483 // Find the distance for this gcode
484 gcode->millimeters_of_travel = hypotf(angular_travel*radius, fabs(linear_travel));
485
486 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
487 if( gcode->millimeters_of_travel < 0.0001 ){ return; }
488
489 // Mark the gcode as having a known distance
490 this->distance_in_gcode_is_known( gcode );
491
492 // Figure out how many segments for this gcode
493 uint16_t segments = floor(gcode->millimeters_of_travel/this->mm_per_arc_segment);
494
495 float theta_per_segment = angular_travel/segments;
496 float linear_per_segment = linear_travel/segments;
497
498 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
499 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
500 r_T = [cos(phi) -sin(phi);
501 sin(phi) cos(phi] * r ;
502 For arc generation, the center of the circle is the axis of rotation and the radius vector is
503 defined from the circle center to the initial position. Each line segment is formed by successive
504 vector rotations. This requires only two cos() and sin() computations to form the rotation
505 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
506 all float numbers are single precision on the Arduino. (True float precision will not have
507 round off issues for CNC applications.) Single precision error can accumulate to be greater than
508 tool precision in some cases. Therefore, arc path correction is implemented.
509
510 Small angle approximation may be used to reduce computation overhead further. This approximation
511 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
512 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
513 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
514 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
515 issue for CNC machines with the single precision Arduino calculations.
516 This approximation also allows mc_arc to immediately insert a line segment into the planner
517 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
518 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
519 This is important when there are successive arc motions.
520 */
521 // Vector rotation matrix values
522 float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
523 float sin_T = theta_per_segment;
524
525 float arc_target[3];
526 float sin_Ti;
527 float cos_Ti;
528 float r_axisi;
529 uint16_t i;
530 int8_t count = 0;
531
532 // Initialize the linear axis
533 arc_target[this->plane_axis_2] = this->current_position[this->plane_axis_2];
534
535 for (i = 1; i<segments; i++) { // Increment (segments-1)
536
537 if (count < this->arc_correction ) {
538 // Apply vector rotation matrix
539 r_axisi = r_axis0*sin_T + r_axis1*cos_T;
540 r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
541 r_axis1 = r_axisi;
542 count++;
543 } else {
544 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
545 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
546 cos_Ti = cosf(i*theta_per_segment);
547 sin_Ti = sinf(i*theta_per_segment);
548 r_axis0 = -offset[this->plane_axis_0]*cos_Ti + offset[this->plane_axis_1]*sin_Ti;
549 r_axis1 = -offset[this->plane_axis_0]*sin_Ti - offset[this->plane_axis_1]*cos_Ti;
550 count = 0;
551 }
552
553 // Update arc_target location
554 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
555 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
556 arc_target[this->plane_axis_2] += linear_per_segment;
557
558 // Append this segment to the queue
559 this->append_milestone(arc_target, this->feed_rate);
560
561 }
562
563 // Ensure last segment arrives at target location.
564 this->append_milestone(target, this->feed_rate);
565 }
566
567 // Do the math for an arc and add it to the queue
568 void Robot::compute_arc(Gcode* gcode, float offset[], float target[]){
569
570 // Find the radius
571 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
572
573 // Set clockwise/counter-clockwise sign for mc_arc computations
574 bool is_clockwise = false;
575 if( this->motion_mode == MOTION_MODE_CW_ARC ){ is_clockwise = true; }
576
577 // Append arc
578 this->append_arc(gcode, target, offset, radius, is_clockwise );
579
580 }
581
582
583 float Robot::theta(float x, float y){
584 float t = atanf(x/fabs(y));
585 if (y>0) {return(t);} else {if (t>0){return(M_PI-t);} else {return(-M_PI-t);}}
586 }
587
588 void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2){
589 this->plane_axis_0 = axis_0;
590 this->plane_axis_1 = axis_1;
591 this->plane_axis_2 = axis_2;
592 }
593
594