Merge remote-tracking branch 'upstream/master' into edge
[clinton/Smoothieware.git] / src / modules / tools / endstops / Endstops.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "modules/communication/utils/Gcode.h"
11 #include "modules/robot/Conveyor.h"
12 #include "Endstops.h"
13 #include "libs/nuts_bolts.h"
14 #include "libs/Pin.h"
15 #include "libs/StepperMotor.h"
16 #include "wait_api.h" // mbed.h lib
17 #include "Robot.h"
18 #include "Stepper.h"
19 #include "Config.h"
20 #include "SlowTicker.h"
21 #include "Planner.h"
22 #include "checksumm.h"
23 #include "utils.h"
24 #include "ConfigValue.h"
25 #include "libs/StreamOutput.h"
26 #include "PublicDataRequest.h"
27 #include "EndstopsPublicAccess.h"
28 #include "StreamOutputPool.h"
29 #include "Pauser.h"
30
31 #define ALPHA_AXIS 0
32 #define BETA_AXIS 1
33 #define GAMMA_AXIS 2
34 #define X_AXIS 0
35 #define Y_AXIS 1
36 #define Z_AXIS 2
37
38 #define endstops_module_enable_checksum CHECKSUM("endstops_enable")
39 #define corexy_homing_checksum CHECKSUM("corexy_homing")
40 #define delta_homing_checksum CHECKSUM("delta_homing")
41
42 #define alpha_min_endstop_checksum CHECKSUM("alpha_min_endstop")
43 #define beta_min_endstop_checksum CHECKSUM("beta_min_endstop")
44 #define gamma_min_endstop_checksum CHECKSUM("gamma_min_endstop")
45
46 #define alpha_max_endstop_checksum CHECKSUM("alpha_max_endstop")
47 #define beta_max_endstop_checksum CHECKSUM("beta_max_endstop")
48 #define gamma_max_endstop_checksum CHECKSUM("gamma_max_endstop")
49
50 #define alpha_trim_checksum CHECKSUM("alpha_trim")
51 #define beta_trim_checksum CHECKSUM("beta_trim")
52 #define gamma_trim_checksum CHECKSUM("gamma_trim")
53
54 // these values are in steps and should be deprecated
55 #define alpha_fast_homing_rate_checksum CHECKSUM("alpha_fast_homing_rate")
56 #define beta_fast_homing_rate_checksum CHECKSUM("beta_fast_homing_rate")
57 #define gamma_fast_homing_rate_checksum CHECKSUM("gamma_fast_homing_rate")
58
59 #define alpha_slow_homing_rate_checksum CHECKSUM("alpha_slow_homing_rate")
60 #define beta_slow_homing_rate_checksum CHECKSUM("beta_slow_homing_rate")
61 #define gamma_slow_homing_rate_checksum CHECKSUM("gamma_slow_homing_rate")
62
63 #define alpha_homing_retract_checksum CHECKSUM("alpha_homing_retract")
64 #define beta_homing_retract_checksum CHECKSUM("beta_homing_retract")
65 #define gamma_homing_retract_checksum CHECKSUM("gamma_homing_retract")
66 #define endstop_debounce_count_checksum CHECKSUM("endstop_debounce_count")
67
68 // same as above but in user friendly mm/s and mm
69 #define alpha_fast_homing_rate_mm_checksum CHECKSUM("alpha_fast_homing_rate_mm_s")
70 #define beta_fast_homing_rate_mm_checksum CHECKSUM("beta_fast_homing_rate_mm_s")
71 #define gamma_fast_homing_rate_mm_checksum CHECKSUM("gamma_fast_homing_rate_mm_s")
72
73 #define alpha_slow_homing_rate_mm_checksum CHECKSUM("alpha_slow_homing_rate_mm_s")
74 #define beta_slow_homing_rate_mm_checksum CHECKSUM("beta_slow_homing_rate_mm_s")
75 #define gamma_slow_homing_rate_mm_checksum CHECKSUM("gamma_slow_homing_rate_mm_s")
76
77 #define alpha_homing_retract_mm_checksum CHECKSUM("alpha_homing_retract_mm")
78 #define beta_homing_retract_mm_checksum CHECKSUM("beta_homing_retract_mm")
79 #define gamma_homing_retract_mm_checksum CHECKSUM("gamma_homing_retract_mm")
80
81 #define endstop_debounce_count_checksum CHECKSUM("endstop_debounce_count")
82
83 #define alpha_homing_direction_checksum CHECKSUM("alpha_homing_direction")
84 #define beta_homing_direction_checksum CHECKSUM("beta_homing_direction")
85 #define gamma_homing_direction_checksum CHECKSUM("gamma_homing_direction")
86 #define home_to_max_checksum CHECKSUM("home_to_max")
87 #define home_to_min_checksum CHECKSUM("home_to_min")
88 #define alpha_min_checksum CHECKSUM("alpha_min")
89 #define beta_min_checksum CHECKSUM("beta_min")
90 #define gamma_min_checksum CHECKSUM("gamma_min")
91
92 #define alpha_max_checksum CHECKSUM("alpha_max")
93 #define beta_max_checksum CHECKSUM("beta_max")
94 #define gamma_max_checksum CHECKSUM("gamma_max")
95
96 #define alpha_limit_enable_checksum CHECKSUM("alpha_limit_enable")
97 #define beta_limit_enable_checksum CHECKSUM("beta_limit_enable")
98 #define gamma_limit_enable_checksum CHECKSUM("gamma_limit_enable")
99
100 #define STEPPER THEKERNEL->robot->actuators
101 #define STEPS_PER_MM(a) (STEPPER[a]->get_steps_per_mm())
102
103 // Homing States
104 enum{
105 NOT_HOMING,
106 MOVING_TO_ORIGIN_FAST,
107 MOVING_BACK,
108 MOVING_TO_ORIGIN_SLOW,
109 BACK_OFF_HOME,
110 LIMIT_TRIGGERED
111 };
112
113 Endstops::Endstops()
114 {
115 this->status = NOT_HOMING;
116 home_offset[0] = home_offset[1] = home_offset[2] = 0.0F;
117 }
118
119 void Endstops::on_module_loaded()
120 {
121 // Do not do anything if not enabled
122 if ( THEKERNEL->config->value( endstops_module_enable_checksum )->by_default(true)->as_bool() == false ) {
123 delete this;
124 return;
125 }
126
127 register_for_event(ON_GCODE_RECEIVED);
128 register_for_event(ON_GET_PUBLIC_DATA);
129 register_for_event(ON_SET_PUBLIC_DATA);
130
131 THEKERNEL->slow_ticker->attach( THEKERNEL->stepper->get_acceleration_ticks_per_second() , this, &Endstops::acceleration_tick );
132
133 // Settings
134 this->on_config_reload(this);
135 }
136
137 // Get config
138 void Endstops::on_config_reload(void *argument)
139 {
140 this->pins[0].from_string( THEKERNEL->config->value(alpha_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
141 this->pins[1].from_string( THEKERNEL->config->value(beta_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
142 this->pins[2].from_string( THEKERNEL->config->value(gamma_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
143 this->pins[3].from_string( THEKERNEL->config->value(alpha_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
144 this->pins[4].from_string( THEKERNEL->config->value(beta_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
145 this->pins[5].from_string( THEKERNEL->config->value(gamma_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
146
147 // These are the old ones in steps still here for backwards compatibility
148 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(0);
149 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(1);
150 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_checksum )->by_default(6400 )->as_number() / STEPS_PER_MM(2);
151 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(0);
152 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(1);
153 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_checksum )->by_default(3200 )->as_number() / STEPS_PER_MM(2);
154 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(0);
155 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(1);
156 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_checksum )->by_default(1600 )->as_number() / STEPS_PER_MM(2);
157
158 // newer mm based config values override the old ones, convert to steps/mm and steps, defaults to what was set in the older config settings above
159 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[0])->as_number();
160 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[1])->as_number();
161 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[2])->as_number();
162 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[0])->as_number();
163 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[1])->as_number();
164 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[2])->as_number();
165 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_mm_checksum )->by_default(this->retract_mm[0])->as_number();
166 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_mm_checksum )->by_default(this->retract_mm[1])->as_number();
167 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_mm_checksum )->by_default(this->retract_mm[2])->as_number();
168
169 this->debounce_count = THEKERNEL->config->value(endstop_debounce_count_checksum )->by_default(100)->as_number();
170
171
172 // get homing direction and convert to boolean where true is home to min, and false is home to max
173 int home_dir = get_checksum(THEKERNEL->config->value(alpha_homing_direction_checksum)->by_default("home_to_min")->as_string());
174 this->home_direction[0] = home_dir != home_to_max_checksum;
175
176 home_dir = get_checksum(THEKERNEL->config->value(beta_homing_direction_checksum)->by_default("home_to_min")->as_string());
177 this->home_direction[1] = home_dir != home_to_max_checksum;
178
179 home_dir = get_checksum(THEKERNEL->config->value(gamma_homing_direction_checksum)->by_default("home_to_min")->as_string());
180 this->home_direction[2] = home_dir != home_to_max_checksum;
181
182 this->homing_position[0] = this->home_direction[0] ? THEKERNEL->config->value(alpha_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(alpha_max_checksum)->by_default(200)->as_number();
183 this->homing_position[1] = this->home_direction[1] ? THEKERNEL->config->value(beta_min_checksum )->by_default(0)->as_number() : THEKERNEL->config->value(beta_max_checksum )->by_default(200)->as_number();;
184 this->homing_position[2] = this->home_direction[2] ? THEKERNEL->config->value(gamma_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(gamma_max_checksum)->by_default(200)->as_number();;
185
186 this->is_corexy = THEKERNEL->config->value(corexy_homing_checksum)->by_default(false)->as_bool();
187 this->is_delta = THEKERNEL->config->value(delta_homing_checksum)->by_default(false)->as_bool();
188
189 // endstop trim used by deltas to do soft adjusting
190 // on a delta homing to max, a negative trim value will move the carriage down, and a positive will move it up
191 this->trim_mm[0] = THEKERNEL->config->value(alpha_trim_checksum )->by_default(0 )->as_number();
192 this->trim_mm[1] = THEKERNEL->config->value(beta_trim_checksum )->by_default(0 )->as_number();
193 this->trim_mm[2] = THEKERNEL->config->value(gamma_trim_checksum )->by_default(0 )->as_number();
194
195 // limits enabled
196 this->limit_enable[X_AXIS]= THEKERNEL->config->value(alpha_limit_enable_checksum)->by_default(false)->as_bool();
197 this->limit_enable[Y_AXIS]= THEKERNEL->config->value(beta_limit_enable_checksum)->by_default(false)->as_bool();
198 this->limit_enable[Z_AXIS]= THEKERNEL->config->value(gamma_limit_enable_checksum)->by_default(false)->as_bool();
199
200 if(this->limit_enable[X_AXIS] || this->limit_enable[Y_AXIS] || this->limit_enable[Z_AXIS]){
201 register_for_event(ON_IDLE);
202 }
203 }
204
205 static const char *endstop_names[]= {"MIN_X", "MIN_Y", "MIN_Z", "MAX_X", "MAX_Y", "MAX_Z"};
206
207 void Endstops::on_idle(void *argument)
208 {
209 if(this->status != NOT_HOMING) return; // don't check while homing or if a LIMIT was triggered
210
211 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
212 if(this->limit_enable[c] && STEPPER[c]->is_moving()) {
213 std::array<int, 2> minmax{{0, 3}};
214 // check min and max endstops
215 for (int i : minmax) {
216 int n= c+i;
217 uint8_t debounce= 0;
218 while(this->pins[n].get()) {
219 if ( ++debounce >= debounce_count ) {
220 // endstop triggered
221 THEKERNEL->pauser->take();
222 THEKERNEL->streams->printf("Limit switch %s was hit - reset or press play button\n", endstop_names[n]);
223 this->status= LIMIT_TRIGGERED;
224 return;
225 }
226 }
227 }
228 }
229 }
230 }
231
232 // if limit switches are enabled, then we must move off of the endstop otherwise we won't be able to move
233 // TODO should check if triggered and only back off if triggered
234 void Endstops::back_off_home()
235 {
236 this->status = BACK_OFF_HOME;
237 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
238 if(this->limit_enable[c]) {
239 // Move off of the endstop using a regular relative move
240 char buf[32];
241 snprintf(buf, sizeof(buf), "G0 %c%1.4f F%1.4f", c+'X', this->retract_mm[c]*(this->home_direction[c]?1:-1), this->slow_rates[c]*60.0F);
242 Gcode gc(buf, &(StreamOutput::NullStream));
243 bool oldmode= THEKERNEL->robot->absolute_mode;
244 THEKERNEL->robot->absolute_mode= false; // needs to be relative mode
245 THEKERNEL->robot->on_gcode_received(&gc); // send to robot directly
246 THEKERNEL->robot->absolute_mode= oldmode; // restore mode
247 }
248 }
249 // Wait for above to finish
250 THEKERNEL->conveyor->wait_for_empty_queue();
251 this->status = NOT_HOMING;
252 }
253
254 void Endstops::wait_for_homed(char axes_to_move)
255 {
256 bool running = true;
257 unsigned int debounce[3] = {0, 0, 0};
258 while (running) {
259 running = false;
260 THEKERNEL->call_event(ON_IDLE);
261 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
262 if ( ( axes_to_move >> c ) & 1 ) {
263 if ( this->pins[c + (this->home_direction[c] ? 0 : 3)].get() ) {
264 if ( debounce[c] < debounce_count ) {
265 debounce[c]++;
266 running = true;
267 } else if ( STEPPER[c]->is_moving() ) {
268 STEPPER[c]->move(0, 0);
269 }
270 } else {
271 // The endstop was not hit yet
272 running = true;
273 debounce[c] = 0;
274 }
275 }
276 }
277 }
278 }
279
280 // this homing works for cartesian and delta printers, not for HBots/CoreXY
281 void Endstops::do_homing(char axes_to_move)
282 {
283 // Start moving the axes to the origin
284 this->status = MOVING_TO_ORIGIN_FAST;
285 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
286 if ( ( axes_to_move >> c) & 1 ) {
287 this->feed_rate[c]= this->fast_rates[c];
288 STEPPER[c]->set_speed(0);
289 STEPPER[c]->move(this->home_direction[c], 10000000);
290 }
291 }
292
293 // Wait for all axes to have homed
294 this->wait_for_homed(axes_to_move);
295
296 // Move back a small distance
297 this->status = MOVING_BACK;
298 bool inverted_dir;
299 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
300 if ( ( axes_to_move >> c ) & 1 ) {
301 inverted_dir = !this->home_direction[c];
302 this->feed_rate[c]= this->slow_rates[c];
303 STEPPER[c]->set_speed(0);
304 STEPPER[c]->move(inverted_dir, this->retract_mm[c]*STEPS_PER_MM(c));
305 }
306 }
307
308 // Wait for moves to be done
309 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
310 if ( ( axes_to_move >> c ) & 1 ) {
311 while ( STEPPER[c]->is_moving() ) {
312 THEKERNEL->call_event(ON_IDLE);
313 }
314 }
315 }
316
317 // Start moving the axes to the origin slowly
318 this->status = MOVING_TO_ORIGIN_SLOW;
319 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
320 if ( ( axes_to_move >> c ) & 1 ) {
321 this->feed_rate[c]= this->slow_rates[c];
322 STEPPER[c]->set_speed(0);
323 STEPPER[c]->move(this->home_direction[c], 10000000);
324 }
325 }
326
327 // Wait for all axes to have homed
328 this->wait_for_homed(axes_to_move);
329
330 if (this->is_delta) {
331 // move for soft trim
332 this->status = MOVING_BACK;
333 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
334 if ( this->trim_mm[c] != 0.0F && ( axes_to_move >> c ) & 1 ) {
335 inverted_dir = this->home_direction[c];
336 // move up or down depending on sign of trim, -ive is down away from home
337 if (this->trim_mm[c] < 0) inverted_dir = !inverted_dir;
338 this->feed_rate[c]= this->slow_rates[c];
339 STEPPER[c]->set_speed(0);
340 STEPPER[c]->move(inverted_dir, abs(round(this->trim_mm[c]*STEPS_PER_MM(c))));
341 }
342 }
343
344 // Wait for moves to be done
345 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
346 if ( ( axes_to_move >> c ) & 1 ) {
347 //THEKERNEL->streams->printf("axis %c \r\n", c );
348 while ( STEPPER[c]->is_moving() ) {
349 THEKERNEL->call_event(ON_IDLE);
350 }
351 }
352 }
353 }
354
355 // Homing is done
356 this->status = NOT_HOMING;
357 }
358
359 void Endstops::wait_for_homed_corexy(int axis)
360 {
361 bool running = true;
362 unsigned int debounce[3] = {0, 0, 0};
363 while (running) {
364 running = false;
365 THEKERNEL->call_event(ON_IDLE);
366 if ( this->pins[axis + (this->home_direction[axis] ? 0 : 3)].get() ) {
367 if ( debounce[axis] < debounce_count ) {
368 debounce[axis] ++;
369 running = true;
370 } else {
371 // turn both off if running
372 if (STEPPER[X_AXIS]->is_moving()) STEPPER[X_AXIS]->move(0, 0);
373 if (STEPPER[Y_AXIS]->is_moving()) STEPPER[Y_AXIS]->move(0, 0);
374 }
375 } else {
376 // The endstop was not hit yet
377 running = true;
378 debounce[axis] = 0;
379 }
380 }
381 }
382
383 void Endstops::corexy_home(int home_axis, bool dirx, bool diry, float fast_rate, float slow_rate, unsigned int retract_steps)
384 {
385 this->status = MOVING_TO_ORIGIN_FAST;
386 this->feed_rate[X_AXIS]= fast_rate;
387 STEPPER[X_AXIS]->set_speed(0);
388 STEPPER[X_AXIS]->move(dirx, 10000000);
389 this->feed_rate[Y_AXIS]= fast_rate;
390 STEPPER[Y_AXIS]->set_speed(0);
391 STEPPER[Y_AXIS]->move(diry, 10000000);
392
393 // wait for primary axis
394 this->wait_for_homed_corexy(home_axis);
395
396 // Move back a small distance
397 this->status = MOVING_BACK;
398 this->feed_rate[X_AXIS]= slow_rate;
399 STEPPER[X_AXIS]->set_speed(0);
400 STEPPER[X_AXIS]->move(!dirx, retract_steps);
401 this->feed_rate[Y_AXIS]= slow_rate;
402 STEPPER[Y_AXIS]->set_speed(0);
403 STEPPER[Y_AXIS]->move(!diry, retract_steps);
404
405 // wait until done
406 while ( STEPPER[X_AXIS]->is_moving() || STEPPER[Y_AXIS]->is_moving()) {
407 THEKERNEL->call_event(ON_IDLE);
408 }
409
410 // Start moving the axes to the origin slowly
411 this->status = MOVING_TO_ORIGIN_SLOW;
412 this->feed_rate[X_AXIS]= slow_rate;
413 STEPPER[X_AXIS]->set_speed(0);
414 STEPPER[X_AXIS]->move(dirx, 10000000);
415 this->feed_rate[Y_AXIS]= slow_rate;
416 STEPPER[Y_AXIS]->set_speed(0);
417 STEPPER[Y_AXIS]->move(diry, 10000000);
418
419 // wait for primary axis
420 this->wait_for_homed_corexy(home_axis);
421 }
422
423 // this homing works for HBots/CoreXY
424 void Endstops::do_homing_corexy(char axes_to_move)
425 {
426 // TODO should really make order configurable, and select whether to allow XY to home at the same time, diagonally
427 // To move XY at the same time only one motor needs to turn, determine which motor and which direction based on min or max directions
428 // allow to move until an endstop triggers, then stop that motor. Speed up when moving diagonally to match X or Y speed
429 // continue moving in the direction not yet triggered (which means two motors turning) until endstop hit
430
431 if((axes_to_move & 0x03) == 0x03) { // both X and Y need Homing
432 // determine which motor to turn and which way
433 bool dirx= this->home_direction[X_AXIS];
434 bool diry= this->home_direction[Y_AXIS];
435 int motor;
436 bool dir;
437 if(dirx && diry) { // min/min
438 motor= X_AXIS;
439 dir= true;
440 }else if(dirx && !diry) { // min/max
441 motor= Y_AXIS;
442 dir= true;
443 }else if(!dirx && diry) { // max/min
444 motor= Y_AXIS;
445 dir= false;
446 }else if(!dirx && !diry) { // max/max
447 motor= X_AXIS;
448 dir= false;
449 }
450
451 // then move both X and Y until one hits the endstop
452 this->status = MOVING_TO_ORIGIN_FAST;
453 this->feed_rate[motor]= this->fast_rates[motor]*1.4142;
454 STEPPER[motor]->set_speed(0); // need to allow for more ground covered when moving diagonally
455 STEPPER[motor]->move(dir, 10000000);
456 // wait until either X or Y hits the endstop
457 bool running= true;
458 while (running) {
459 THEKERNEL->call_event(ON_IDLE);
460 for(int m=X_AXIS;m<=Y_AXIS;m++) {
461 if(this->pins[m + (this->home_direction[m] ? 0 : 3)].get()) {
462 // turn off motor
463 if(STEPPER[motor]->is_moving()) STEPPER[motor]->move(0, 0);
464 running= false;
465 break;
466 }
467 }
468 }
469 }
470
471 // move individual axis
472 if (axes_to_move & 0x01) { // Home X, which means both X and Y in same direction
473 bool dir= this->home_direction[X_AXIS];
474 corexy_home(X_AXIS, dir, dir, this->fast_rates[X_AXIS], this->slow_rates[X_AXIS], this->retract_mm[X_AXIS]*STEPS_PER_MM(X_AXIS));
475 }
476
477 if (axes_to_move & 0x02) { // Home Y, which means both X and Y in different directions
478 bool dir= this->home_direction[Y_AXIS];
479 corexy_home(Y_AXIS, dir, !dir, this->fast_rates[Y_AXIS], this->slow_rates[Y_AXIS], this->retract_mm[Y_AXIS]*STEPS_PER_MM(Y_AXIS));
480 }
481
482 if (axes_to_move & 0x04) { // move Z
483 do_homing(0x04); // just home normally for Z
484 }
485
486 // Homing is done
487 this->status = NOT_HOMING;
488 }
489
490 // Start homing sequences by response to GCode commands
491 void Endstops::on_gcode_received(void *argument)
492 {
493 Gcode *gcode = static_cast<Gcode *>(argument);
494 if ( gcode->has_g) {
495 if ( gcode->g == 28 ) {
496 gcode->mark_as_taken();
497 // G28 is received, we have homing to do
498
499 // First wait for the queue to be empty
500 THEKERNEL->conveyor->wait_for_empty_queue();
501
502 // Do we move select axes or all of them
503 char axes_to_move = 0;
504 // only enable homing if the endstop is defined, deltas always home all axis
505 bool home_all = this->is_delta || !( gcode->has_letter('X') || gcode->has_letter('Y') || gcode->has_letter('Z') );
506
507 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
508 if ( (home_all || gcode->has_letter(c+'X')) && this->pins[c + (this->home_direction[c] ? 0 : 3)].connected() ) {
509 axes_to_move += ( 1 << c );
510 }
511 }
512
513 // Enable the motors
514 THEKERNEL->stepper->turn_enable_pins_on();
515
516 // do the actual homing
517 if (is_corexy)
518 do_homing_corexy(axes_to_move);
519 else
520 do_homing(axes_to_move);
521
522 // Zero the ax(i/e)s position, add in the home offset
523 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
524 if ( (axes_to_move >> c) & 1 ) {
525 THEKERNEL->robot->reset_axis_position(this->homing_position[c] + this->home_offset[c], c);
526 }
527 }
528
529 // if limit switches are enabled we must back off endstop after setting home
530 // TODO should maybe be done before setting home so X0 does not retrigger?
531 back_off_home();
532 }
533 } else if (gcode->has_m) {
534 switch (gcode->m) {
535 case 119: {
536 for (int i = 0; i < 6; ++i) {
537 if(this->pins[i].connected())
538 gcode->stream->printf("%s:%d ", endstop_names[i], this->pins[i].get());
539 }
540 gcode->add_nl= true;
541 gcode->mark_as_taken();
542 }
543 break;
544
545 case 206: // M206 - set homing offset
546 if (gcode->has_letter('X')) home_offset[0] = gcode->get_value('X');
547 if (gcode->has_letter('Y')) home_offset[1] = gcode->get_value('Y');
548 if (gcode->has_letter('Z')) home_offset[2] = gcode->get_value('Z');
549 gcode->stream->printf("X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
550 gcode->mark_as_taken();
551 break;
552
553 case 500: // save settings
554 case 503: // print settings
555 gcode->stream->printf(";Home offset (mm):\nM206 X%1.2f Y%1.2f Z%1.2f\n", home_offset[0], home_offset[1], home_offset[2]);
556 if (is_delta) {
557 gcode->stream->printf(";Trim (mm):\nM666 X%1.3f Y%1.3f Z%1.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
558 gcode->stream->printf(";Max Z\nM665 Z%1.3f\n", this->homing_position[2]);
559 }
560 gcode->mark_as_taken();
561 break;
562
563 case 665: { // M665 - set max gamma/z height
564 gcode->mark_as_taken();
565 float gamma_max = this->homing_position[2];
566 if (gcode->has_letter('Z')) {
567 this->homing_position[2] = gamma_max = gcode->get_value('Z');
568 }
569 gcode->stream->printf("Max Z %8.3f ", gamma_max);
570 gcode->add_nl = true;
571 }
572 break;
573
574
575 case 666:
576 if(this->is_delta) { // M666 - set trim for each axis in mm, NB negative mm trim is down
577 if (gcode->has_letter('X')) trim_mm[0] = gcode->get_value('X');
578 if (gcode->has_letter('Y')) trim_mm[1] = gcode->get_value('Y');
579 if (gcode->has_letter('Z')) trim_mm[2] = gcode->get_value('Z');
580
581 // print the current trim values in mm
582 gcode->stream->printf("X: %5.3f Y: %5.3f Z: %5.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
583 gcode->mark_as_taken();
584 }
585 break;
586
587 // NOTE this is to test accuracy of lead screws etc.
588 case 910: { // M910 - move specific number of raw steps
589 // Enable the motors
590 THEKERNEL->stepper->turn_enable_pins_on();
591
592 int x= 0, y=0 , z= 0, f= 200*16;
593 if (gcode->has_letter('F')) f = gcode->get_value('F');
594 if (gcode->has_letter('X')) {
595 x = gcode->get_value('X');
596 STEPPER[X_AXIS]->set_speed(f);
597 STEPPER[X_AXIS]->move(x<0, abs(x));
598 }
599 if (gcode->has_letter('Y')) {
600 y = gcode->get_value('Y');
601 STEPPER[Y_AXIS]->set_speed(f);
602 STEPPER[Y_AXIS]->move(y<0, abs(y));
603 }
604 if (gcode->has_letter('Z')) {
605 z = gcode->get_value('Z');
606 STEPPER[Z_AXIS]->set_speed(f);
607 STEPPER[Z_AXIS]->move(z<0, abs(z));
608 }
609 gcode->stream->printf("Moved X %d Y %d Z %d F %d steps\n", x, y, z, f);
610 gcode->mark_as_taken();
611 break;
612 }
613 }
614 }
615 }
616
617 #define max(a,b) (((a) > (b)) ? (a) : (b))
618 // Called periodically to change the speed to match acceleration
619 uint32_t Endstops::acceleration_tick(uint32_t dummy)
620 {
621 if(this->status == NOT_HOMING) return(0); // nothing to do
622
623 // foreach stepper that is moving
624 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
625 if( !STEPPER[c]->is_moving() ) continue;
626
627 uint32_t current_rate = STEPPER[c]->get_steps_per_second();
628 uint32_t target_rate = int(floor(this->feed_rate[c]*STEPS_PER_MM(c)));
629
630 if( current_rate < target_rate ){
631 uint32_t rate_increase = int(floor((THEKERNEL->planner->get_acceleration()/THEKERNEL->stepper->get_acceleration_ticks_per_second())*STEPS_PER_MM(c)));
632 current_rate = min( target_rate, current_rate + rate_increase );
633 }
634 if( current_rate > target_rate ){ current_rate = target_rate; }
635
636 // steps per second
637 STEPPER[c]->set_speed(max(current_rate, THEKERNEL->stepper->get_minimum_steps_per_second()));
638 }
639
640 return 0;
641 }
642
643 void Endstops::on_get_public_data(void* argument){
644 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
645
646 if(!pdr->starts_with(endstops_checksum)) return;
647
648 if(pdr->second_element_is(trim_checksum)) {
649 pdr->set_data_ptr(&this->trim_mm);
650 pdr->set_taken();
651
652 }else if(pdr->second_element_is(home_offset_checksum)) {
653 pdr->set_data_ptr(&this->home_offset);
654 pdr->set_taken();
655 }
656 }
657
658 void Endstops::on_set_public_data(void* argument){
659 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
660
661 if(!pdr->starts_with(endstops_checksum)) return;
662
663 if(pdr->second_element_is(trim_checksum)) {
664 float *t= static_cast<float*>(pdr->get_data_ptr());
665 this->trim_mm[0]= t[0];
666 this->trim_mm[1]= t[1];
667 this->trim_mm[2]= t[2];
668 pdr->set_taken();
669
670 }else if(pdr->second_element_is(home_offset_checksum)) {
671 float *t= static_cast<float*>(pdr->get_data_ptr());
672 if(!isnan(t[0])) this->home_offset[0]= t[0];
673 if(!isnan(t[1])) this->home_offset[1]= t[1];
674 if(!isnan(t[2])) this->home_offset[2]= t[2];
675 }
676 }