allow G28.3 to reset ABC
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10
11 #include "Robot.h"
12 #include "Planner.h"
13 #include "Conveyor.h"
14 #include "Pin.h"
15 #include "StepperMotor.h"
16 #include "Gcode.h"
17 #include "PublicDataRequest.h"
18 #include "PublicData.h"
19 #include "arm_solutions/BaseSolution.h"
20 #include "arm_solutions/CartesianSolution.h"
21 #include "arm_solutions/RotatableCartesianSolution.h"
22 #include "arm_solutions/LinearDeltaSolution.h"
23 #include "arm_solutions/RotaryDeltaSolution.h"
24 #include "arm_solutions/HBotSolution.h"
25 #include "arm_solutions/CoreXZSolution.h"
26 #include "arm_solutions/MorganSCARASolution.h"
27 #include "StepTicker.h"
28 #include "checksumm.h"
29 #include "utils.h"
30 #include "ConfigValue.h"
31 #include "libs/StreamOutput.h"
32 #include "StreamOutputPool.h"
33 #include "ExtruderPublicAccess.h"
34 #include "GcodeDispatch.h"
35 #include "ActuatorCoordinates.h"
36
37 #include "mbed.h" // for us_ticker_read()
38 #include "mri.h"
39
40 #include <fastmath.h>
41 #include <string>
42 #include <algorithm>
43 using std::string;
44
45 #define default_seek_rate_checksum CHECKSUM("default_seek_rate")
46 #define default_feed_rate_checksum CHECKSUM("default_feed_rate")
47 #define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
48 #define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
49 #define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
50 #define mm_max_arc_error_checksum CHECKSUM("mm_max_arc_error")
51 #define arc_correction_checksum CHECKSUM("arc_correction")
52 #define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
53 #define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
54 #define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
55 #define segment_z_moves_checksum CHECKSUM("segment_z_moves")
56 #define save_g92_checksum CHECKSUM("save_g92")
57
58 // arm solutions
59 #define arm_solution_checksum CHECKSUM("arm_solution")
60 #define cartesian_checksum CHECKSUM("cartesian")
61 #define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
62 #define rostock_checksum CHECKSUM("rostock")
63 #define linear_delta_checksum CHECKSUM("linear_delta")
64 #define rotary_delta_checksum CHECKSUM("rotary_delta")
65 #define delta_checksum CHECKSUM("delta")
66 #define hbot_checksum CHECKSUM("hbot")
67 #define corexy_checksum CHECKSUM("corexy")
68 #define corexz_checksum CHECKSUM("corexz")
69 #define kossel_checksum CHECKSUM("kossel")
70 #define morgan_checksum CHECKSUM("morgan")
71
72 // new-style actuator stuff
73 #define actuator_checksum CHEKCSUM("actuator")
74
75 #define step_pin_checksum CHECKSUM("step_pin")
76 #define dir_pin_checksum CHEKCSUM("dir_pin")
77 #define en_pin_checksum CHECKSUM("en_pin")
78
79 #define steps_per_mm_checksum CHECKSUM("steps_per_mm")
80 #define max_rate_checksum CHECKSUM("max_rate")
81 #define acceleration_checksum CHECKSUM("acceleration")
82 #define z_acceleration_checksum CHECKSUM("z_acceleration")
83
84 #define alpha_checksum CHECKSUM("alpha")
85 #define beta_checksum CHECKSUM("beta")
86 #define gamma_checksum CHECKSUM("gamma")
87
88 #define ARC_ANGULAR_TRAVEL_EPSILON 5E-7F // Float (radians)
89 #define PI 3.14159265358979323846F // force to be float, do not use M_PI
90
91 // The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
92 // It takes care of cutting arcs into segments, same thing for line that are too long
93
94 Robot::Robot()
95 {
96 this->inch_mode = false;
97 this->absolute_mode = true;
98 this->e_absolute_mode = true;
99 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
100 memset(this->last_milestone, 0, sizeof last_milestone);
101 memset(this->last_machine_position, 0, sizeof last_machine_position);
102 this->arm_solution = NULL;
103 seconds_per_minute = 60.0F;
104 this->clearToolOffset();
105 this->compensationTransform = nullptr;
106 this->get_e_scale_fnc= nullptr;
107 this->wcs_offsets.fill(wcs_t(0.0F, 0.0F, 0.0F));
108 this->g92_offset = wcs_t(0.0F, 0.0F, 0.0F);
109 this->next_command_is_MCS = false;
110 this->disable_segmentation= false;
111 this->n_motors= 0;
112 }
113
114 //Called when the module has just been loaded
115 void Robot::on_module_loaded()
116 {
117 this->register_for_event(ON_GCODE_RECEIVED);
118
119 // Configuration
120 this->load_config();
121 }
122
123 #define ACTUATOR_CHECKSUMS(X) { \
124 CHECKSUM(X "_step_pin"), \
125 CHECKSUM(X "_dir_pin"), \
126 CHECKSUM(X "_en_pin"), \
127 CHECKSUM(X "_steps_per_mm"), \
128 CHECKSUM(X "_max_rate"), \
129 CHECKSUM(X "_acceleration") \
130 }
131
132 void Robot::load_config()
133 {
134 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
135 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
136 // To make adding those solution easier, they have their own, separate object.
137 // Here we read the config to find out which arm solution to use
138 if (this->arm_solution) delete this->arm_solution;
139 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
140 // Note checksums are not const expressions when in debug mode, so don't use switch
141 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
142 this->arm_solution = new HBotSolution(THEKERNEL->config);
143
144 } else if(solution_checksum == corexz_checksum) {
145 this->arm_solution = new CoreXZSolution(THEKERNEL->config);
146
147 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
148 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
149
150 } else if(solution_checksum == rotatable_cartesian_checksum) {
151 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
152
153 } else if(solution_checksum == rotary_delta_checksum) {
154 this->arm_solution = new RotaryDeltaSolution(THEKERNEL->config);
155
156 } else if(solution_checksum == morgan_checksum) {
157 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
158
159 } else if(solution_checksum == cartesian_checksum) {
160 this->arm_solution = new CartesianSolution(THEKERNEL->config);
161
162 } else {
163 this->arm_solution = new CartesianSolution(THEKERNEL->config);
164 }
165
166 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
167 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
168 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
169 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
170 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.0f)->as_number();
171 this->mm_max_arc_error = THEKERNEL->config->value(mm_max_arc_error_checksum )->by_default( 0.01f)->as_number();
172 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
173
174 // in mm/sec but specified in config as mm/min
175 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
176 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
177 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
178
179 this->segment_z_moves = THEKERNEL->config->value(segment_z_moves_checksum )->by_default(true)->as_bool();
180 this->save_g92 = THEKERNEL->config->value(save_g92_checksum )->by_default(false)->as_bool();
181
182 // Make our Primary XYZ StepperMotors, and potentially A B C
183 uint16_t const checksums[][6] = {
184 ACTUATOR_CHECKSUMS("alpha"), // X
185 ACTUATOR_CHECKSUMS("beta"), // Y
186 ACTUATOR_CHECKSUMS("gamma"), // Z
187 #if MAX_ROBOT_ACTUATORS > 3
188 ACTUATOR_CHECKSUMS("delta"), // A
189 #if MAX_ROBOT_ACTUATORS > 4
190 ACTUATOR_CHECKSUMS("epsilon"), // B
191 #if MAX_ROBOT_ACTUATORS > 5
192 ACTUATOR_CHECKSUMS("zeta") // C
193 #endif
194 #endif
195 #endif
196 };
197
198 // default acceleration setting, can be overriden with newer per axis settings
199 this->default_acceleration= THEKERNEL->config->value(acceleration_checksum)->by_default(100.0F )->as_number(); // Acceleration is in mm/s^2
200
201 // make each motor
202 for (size_t a = 0; a < MAX_ROBOT_ACTUATORS; a++) {
203 Pin pins[3]; //step, dir, enable
204 for (size_t i = 0; i < 3; i++) {
205 pins[i].from_string(THEKERNEL->config->value(checksums[a][i])->by_default("nc")->as_string())->as_output();
206 }
207
208 if(!pins[0].connected() || !pins[1].connected() || !pins[2].connected()) {
209 if(a <= Z_AXIS) THEKERNEL->streams->printf("FATAL: motor %d is not defined in config\n", 'X'+a);
210 break; // if any pin is not defined then the axis is not defined (and axis need to be defined in contiguous order)
211 }
212
213 StepperMotor *sm = new StepperMotor(pins[0], pins[1], pins[2]);
214 // register this motor (NB This must be 0,1,2) of the actuators array
215 uint8_t n= register_motor(sm);
216 if(n != a) {
217 // this is a fatal error
218 THEKERNEL->streams->printf("FATAL: motor %d does not match index %d\n", n, a);
219 __debugbreak();
220 }
221
222 actuators[a]->change_steps_per_mm(THEKERNEL->config->value(checksums[a][3])->by_default(a == 2 ? 2560.0F : 80.0F)->as_number());
223 actuators[a]->set_max_rate(THEKERNEL->config->value(checksums[a][4])->by_default(30000.0F)->as_number()/60.0F); // it is in mm/min and converted to mm/sec
224 actuators[a]->set_acceleration(THEKERNEL->config->value(checksums[a][5])->by_default(NAN)->as_number()); // mm/secs²
225 }
226
227 check_max_actuator_speeds(); // check the configs are sane
228
229 // if we have not specified a z acceleration see if the legacy config was set
230 if(isnan(actuators[Z_AXIS]->get_acceleration())) {
231 float acc= THEKERNEL->config->value(z_acceleration_checksum)->by_default(NAN)->as_number(); // disabled by default
232 if(!isnan(acc)) {
233 actuators[Z_AXIS]->set_acceleration(acc);
234 }
235 }
236
237 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
238 // so the first move can be correct if homing is not performed
239 ActuatorCoordinates actuator_pos;
240 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
241 for (size_t i = 0; i < n_motors; i++)
242 actuators[i]->change_last_milestone(actuator_pos[i]);
243
244 //this->clearToolOffset();
245 }
246
247 uint8_t Robot::register_motor(StepperMotor *motor)
248 {
249 // register this motor with the step ticker
250 THEKERNEL->step_ticker->register_motor(motor);
251 if(n_motors >= k_max_actuators) {
252 // this is a fatal error
253 THEKERNEL->streams->printf("FATAL: too many motors, increase k_max_actuators\n");
254 __debugbreak();
255 }
256 actuators.push_back(motor);
257 return n_motors++;
258 }
259
260 void Robot::push_state()
261 {
262 bool am = this->absolute_mode;
263 bool em = this->e_absolute_mode;
264 bool im = this->inch_mode;
265 saved_state_t s(this->feed_rate, this->seek_rate, am, em, im, current_wcs);
266 state_stack.push(s);
267 }
268
269 void Robot::pop_state()
270 {
271 if(!state_stack.empty()) {
272 auto s = state_stack.top();
273 state_stack.pop();
274 this->feed_rate = std::get<0>(s);
275 this->seek_rate = std::get<1>(s);
276 this->absolute_mode = std::get<2>(s);
277 this->e_absolute_mode = std::get<3>(s);
278 this->inch_mode = std::get<4>(s);
279 this->current_wcs = std::get<5>(s);
280 }
281 }
282
283 std::vector<Robot::wcs_t> Robot::get_wcs_state() const
284 {
285 std::vector<wcs_t> v;
286 v.push_back(wcs_t(current_wcs, MAX_WCS, 0));
287 for(auto& i : wcs_offsets) {
288 v.push_back(i);
289 }
290 v.push_back(g92_offset);
291 v.push_back(tool_offset);
292 return v;
293 }
294
295 int Robot::print_position(uint8_t subcode, char *buf, size_t bufsize) const
296 {
297 // M114.1 is a new way to do this (similar to how GRBL does it).
298 // it returns the realtime position based on the current step position of the actuators.
299 // this does require a FK to get a machine position from the actuator position
300 // and then invert all the transforms to get a workspace position from machine position
301 // M114 just does it the old way uses last_milestone and does inversse transforms to get the requested position
302 int n = 0;
303 if(subcode == 0) { // M114 print WCS
304 wcs_t pos= mcs2wcs(last_milestone);
305 n = snprintf(buf, bufsize, "C: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
306
307 } else if(subcode == 4) { // M114.4 print last milestone (which should be the same as machine position if axis are not moving and no level compensation)
308 n = snprintf(buf, bufsize, "LMS: X:%1.4f Y:%1.4f Z:%1.4f", last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
309
310 } else if(subcode == 5) { // M114.5 print last machine position (which should be the same as M114.1 if axis are not moving and no level compensation)
311 n = snprintf(buf, bufsize, "LMP: X:%1.4f Y:%1.4f Z:%1.4f", last_machine_position[X_AXIS], last_machine_position[Y_AXIS], last_machine_position[Z_AXIS]);
312
313 } else {
314 // get real time positions
315 // current actuator position in mm
316 ActuatorCoordinates current_position{
317 actuators[X_AXIS]->get_current_position(),
318 actuators[Y_AXIS]->get_current_position(),
319 actuators[Z_AXIS]->get_current_position()
320 };
321
322 // get machine position from the actuator position using FK
323 float mpos[3];
324 arm_solution->actuator_to_cartesian(current_position, mpos);
325
326 if(subcode == 1) { // M114.1 print realtime WCS
327 // FIXME this currently includes the compensation transform which is incorrect so will be slightly off if it is in effect (but by very little)
328 wcs_t pos= mcs2wcs(mpos);
329 n = snprintf(buf, bufsize, "WPOS: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
330
331 } else if(subcode == 2) { // M114.2 print realtime Machine coordinate system
332 n = snprintf(buf, bufsize, "MPOS: X:%1.4f Y:%1.4f Z:%1.4f", mpos[X_AXIS], mpos[Y_AXIS], mpos[Z_AXIS]);
333
334 } else if(subcode == 3) { // M114.3 print realtime actuator position
335 n = snprintf(buf, bufsize, "APOS: X:%1.4f Y:%1.4f Z:%1.4f", current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
336 }
337 }
338
339 #if MAX_ROBOT_ACTUATORS > 3
340 // deal with the ABC axis
341 for (int i = A_AXIS; i < n_motors; ++i) {
342 if(subcode == 4) { // M114.4 print last milestone
343 n += snprintf(&buf[n], bufsize-n, " %c:%1.4f", 'A'+i-A_AXIS, last_milestone[i]);
344
345 }else if(subcode == 3) { // M114.3 print actuator position
346 // current actuator position
347 float current_position= actuators[i]->get_current_position();
348 n += snprintf(&buf[n], bufsize-n, " %c:%1.4f", 'A'+i-A_AXIS, current_position);
349 }
350 }
351 #endif
352
353 return n;
354 }
355
356 // converts current last milestone (machine position without compensation transform) to work coordinate system (inverse transform)
357 Robot::wcs_t Robot::mcs2wcs(const Robot::wcs_t& pos) const
358 {
359 return std::make_tuple(
360 std::get<X_AXIS>(pos) - std::get<X_AXIS>(wcs_offsets[current_wcs]) + std::get<X_AXIS>(g92_offset) - std::get<X_AXIS>(tool_offset),
361 std::get<Y_AXIS>(pos) - std::get<Y_AXIS>(wcs_offsets[current_wcs]) + std::get<Y_AXIS>(g92_offset) - std::get<Y_AXIS>(tool_offset),
362 std::get<Z_AXIS>(pos) - std::get<Z_AXIS>(wcs_offsets[current_wcs]) + std::get<Z_AXIS>(g92_offset) - std::get<Z_AXIS>(tool_offset)
363 );
364 }
365
366 // this does a sanity check that actuator speeds do not exceed steps rate capability
367 // we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
368 void Robot::check_max_actuator_speeds()
369 {
370 for (size_t i = 0; i < n_motors; i++) {
371 float step_freq = actuators[i]->get_max_rate() * actuators[i]->get_steps_per_mm();
372 if (step_freq > THEKERNEL->base_stepping_frequency) {
373 actuators[i]->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / actuators[i]->get_steps_per_mm()));
374 THEKERNEL->streams->printf("WARNING: actuator %d rate exceeds base_stepping_frequency * ..._steps_per_mm: %f, setting to %f\n", i, step_freq, actuators[i]->get_max_rate());
375 }
376 }
377 }
378
379 //A GCode has been received
380 //See if the current Gcode line has some orders for us
381 void Robot::on_gcode_received(void *argument)
382 {
383 Gcode *gcode = static_cast<Gcode *>(argument);
384
385 enum MOTION_MODE_T motion_mode= NONE;
386
387 if( gcode->has_g) {
388 switch( gcode->g ) {
389 case 0: motion_mode = SEEK; break;
390 case 1: motion_mode = LINEAR; break;
391 case 2: motion_mode = CW_ARC; break;
392 case 3: motion_mode = CCW_ARC; break;
393 case 4: { // G4 pause
394 uint32_t delay_ms = 0;
395 if (gcode->has_letter('P')) {
396 delay_ms = gcode->get_int('P');
397 }
398 if (gcode->has_letter('S')) {
399 delay_ms += gcode->get_int('S') * 1000;
400 }
401 if (delay_ms > 0) {
402 // drain queue
403 THEKERNEL->conveyor->wait_for_idle();
404 // wait for specified time
405 uint32_t start = us_ticker_read(); // mbed call
406 while ((us_ticker_read() - start) < delay_ms * 1000) {
407 THEKERNEL->call_event(ON_IDLE, this);
408 if(THEKERNEL->is_halted()) return;
409 }
410 }
411 }
412 break;
413
414 case 10: // G10 L2 [L20] Pn Xn Yn Zn set WCS
415 if(gcode->has_letter('L') && (gcode->get_int('L') == 2 || gcode->get_int('L') == 20) && gcode->has_letter('P')) {
416 size_t n = gcode->get_uint('P');
417 if(n == 0) n = current_wcs; // set current coordinate system
418 else --n;
419 if(n < MAX_WCS) {
420 float x, y, z;
421 std::tie(x, y, z) = wcs_offsets[n];
422 if(gcode->get_int('L') == 20) {
423 // this makes the current machine position (less compensation transform) the offset
424 // get current position in WCS
425 wcs_t pos= mcs2wcs(last_milestone);
426
427 if(gcode->has_letter('X')){
428 x -= to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
429 }
430
431 if(gcode->has_letter('Y')){
432 y -= to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
433 }
434 if(gcode->has_letter('Z')) {
435 z -= to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
436 }
437
438 } else {
439 // the value is the offset from machine zero
440 if(gcode->has_letter('X')) x = to_millimeters(gcode->get_value('X'));
441 if(gcode->has_letter('Y')) y = to_millimeters(gcode->get_value('Y'));
442 if(gcode->has_letter('Z')) z = to_millimeters(gcode->get_value('Z'));
443 }
444 wcs_offsets[n] = wcs_t(x, y, z);
445 }
446 }
447 break;
448
449 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
450 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
451 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
452 case 20: this->inch_mode = true; break;
453 case 21: this->inch_mode = false; break;
454
455 case 54: case 55: case 56: case 57: case 58: case 59:
456 // select WCS 0-8: G54..G59, G59.1, G59.2, G59.3
457 current_wcs = gcode->g - 54;
458 if(gcode->g == 59 && gcode->subcode > 0) {
459 current_wcs += gcode->subcode;
460 if(current_wcs >= MAX_WCS) current_wcs = MAX_WCS - 1;
461 }
462 break;
463
464 case 90: this->absolute_mode = true; this->e_absolute_mode = true; break;
465 case 91: this->absolute_mode = false; this->e_absolute_mode = false; break;
466
467 case 92: {
468 if(gcode->subcode == 1 || gcode->subcode == 2 || gcode->get_num_args() == 0) {
469 // reset G92 offsets to 0
470 g92_offset = wcs_t(0, 0, 0);
471
472 } else if(gcode->subcode == 3) {
473 // initialize G92 to the specified values, only used for saving it with M500
474 float x= 0, y= 0, z= 0;
475 if(gcode->has_letter('X')) x= gcode->get_value('X');
476 if(gcode->has_letter('Y')) y= gcode->get_value('Y');
477 if(gcode->has_letter('Z')) z= gcode->get_value('Z');
478 g92_offset = wcs_t(x, y, z);
479
480 } else {
481 // standard setting of the g92 offsets, making current WCS position whatever the coordinate arguments are
482 float x, y, z;
483 std::tie(x, y, z) = g92_offset;
484 // get current position in WCS
485 wcs_t pos= mcs2wcs(last_milestone);
486
487 // adjust g92 offset to make the current wpos == the value requested
488 if(gcode->has_letter('X')){
489 x += to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
490 }
491 if(gcode->has_letter('Y')){
492 y += to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
493 }
494 if(gcode->has_letter('Z')) {
495 z += to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
496 }
497 g92_offset = wcs_t(x, y, z);
498 }
499
500 #if MAX_ROBOT_ACTUATORS > 3
501 if(gcode->subcode == 0 && (gcode->has_letter('E') || gcode->get_num_args() == 0)){
502 // reset the E position, legacy for 3d Printers to be reprap compatible
503 // find the selected extruder
504 // NOTE this will only work when E is 0 if volumetric and/or scaling is used as the actuator last milestone will be different if it was scaled
505 for (int i = E_AXIS; i < n_motors; ++i) {
506 if(actuators[i]->is_selected()) {
507 float e= gcode->has_letter('E') ? gcode->get_value('E') : 0;
508 last_milestone[i]= last_machine_position[i]= e;
509 actuators[i]->change_last_milestone(e);
510 break;
511 }
512 }
513 }
514 #endif
515
516 return;
517 }
518 }
519
520 } else if( gcode->has_m) {
521 switch( gcode->m ) {
522 // case 0: // M0 feed hold, (M0.1 is release feed hold, except we are in feed hold)
523 // if(THEKERNEL->is_grbl_mode()) THEKERNEL->set_feed_hold(gcode->subcode == 0);
524 // break;
525
526 case 30: // M30 end of program in grbl mode (otherwise it is delete sdcard file)
527 if(!THEKERNEL->is_grbl_mode()) break;
528 // fall through to M2
529 case 2: // M2 end of program
530 current_wcs = 0;
531 absolute_mode = true;
532 break;
533 case 17:
534 THEKERNEL->call_event(ON_ENABLE, (void*)1); // turn all enable pins on
535 break;
536
537 case 18: // this used to support parameters, now it ignores them
538 case 84:
539 THEKERNEL->conveyor->wait_for_idle();
540 THEKERNEL->call_event(ON_ENABLE, nullptr); // turn all enable pins off
541 break;
542
543 case 82: e_absolute_mode= true; break;
544 case 83: e_absolute_mode= false; break;
545
546 case 92: // M92 - set steps per mm
547 if (gcode->has_letter('X'))
548 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
549 if (gcode->has_letter('Y'))
550 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
551 if (gcode->has_letter('Z'))
552 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
553
554 gcode->stream->printf("X:%f Y:%f Z:%f ", actuators[0]->get_steps_per_mm(), actuators[1]->get_steps_per_mm(), actuators[2]->get_steps_per_mm());
555 gcode->add_nl = true;
556 check_max_actuator_speeds();
557 return;
558
559 case 114:{
560 char buf[64];
561 int n= print_position(gcode->subcode, buf, sizeof buf);
562 if(n > 0) gcode->txt_after_ok.append(buf, n);
563 return;
564 }
565
566 case 120: // push state
567 push_state();
568 break;
569
570 case 121: // pop state
571 pop_state();
572 break;
573
574 case 203: // M203 Set maximum feedrates in mm/sec, M203.1 set maximum actuator feedrates
575 if(gcode->get_num_args() == 0) {
576 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
577 gcode->stream->printf(" %c: %g ", 'X' + i, gcode->subcode == 0 ? this->max_speeds[i] : actuators[i]->get_max_rate());
578 }
579 gcode->add_nl = true;
580
581 }else{
582 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
583 if (gcode->has_letter('X' + i)) {
584 float v= gcode->get_value('X'+i);
585 if(gcode->subcode == 0) this->max_speeds[i]= v;
586 else if(gcode->subcode == 1) actuators[i]->set_max_rate(v);
587 }
588 }
589
590 // this format is deprecated
591 if(gcode->subcode == 0 && (gcode->has_letter('A') || gcode->has_letter('B') || gcode->has_letter('C'))) {
592 gcode->stream->printf("NOTE this format is deprecated, Use M203.1 instead\n");
593 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
594 if (gcode->has_letter('A' + i)) {
595 float v= gcode->get_value('A'+i);
596 actuators[i]->set_max_rate(v);
597 }
598 }
599 }
600
601 if(gcode->subcode == 1) check_max_actuator_speeds();
602 }
603 break;
604
605 case 204: // M204 Snnn - set default acceleration to nnn, Xnnn Ynnn Znnn sets axis specific acceleration
606 if (gcode->has_letter('S')) {
607 float acc = gcode->get_value('S'); // mm/s^2
608 // enforce minimum
609 if (acc < 1.0F) acc = 1.0F;
610 this->default_acceleration = acc;
611 }
612 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
613 if (gcode->has_letter(i+'X')) {
614 float acc = gcode->get_value(i+'X'); // mm/s^2
615 // enforce positive
616 if (acc <= 0.0F) acc = NAN;
617 actuators[i]->set_acceleration(acc);
618 }
619 }
620 break;
621
622 case 205: // M205 Xnnn - set junction deviation, Z - set Z junction deviation, Snnn - Set minimum planner speed
623 if (gcode->has_letter('X')) {
624 float jd = gcode->get_value('X');
625 // enforce minimum
626 if (jd < 0.0F)
627 jd = 0.0F;
628 THEKERNEL->planner->junction_deviation = jd;
629 }
630 if (gcode->has_letter('Z')) {
631 float jd = gcode->get_value('Z');
632 // enforce minimum, -1 disables it and uses regular junction deviation
633 if (jd <= -1.0F)
634 jd = NAN;
635 THEKERNEL->planner->z_junction_deviation = jd;
636 }
637 if (gcode->has_letter('S')) {
638 float mps = gcode->get_value('S');
639 // enforce minimum
640 if (mps < 0.0F)
641 mps = 0.0F;
642 THEKERNEL->planner->minimum_planner_speed = mps;
643 }
644 break;
645
646 case 220: // M220 - speed override percentage
647 if (gcode->has_letter('S')) {
648 float factor = gcode->get_value('S');
649 // enforce minimum 10% speed
650 if (factor < 10.0F)
651 factor = 10.0F;
652 // enforce maximum 10x speed
653 if (factor > 1000.0F)
654 factor = 1000.0F;
655
656 seconds_per_minute = 6000.0F / factor;
657 } else {
658 gcode->stream->printf("Speed factor at %6.2f %%\n", 6000.0F / seconds_per_minute);
659 }
660 break;
661
662 case 400: // wait until all moves are done up to this point
663 THEKERNEL->conveyor->wait_for_idle();
664 break;
665
666 case 500: // M500 saves some volatile settings to config override file
667 case 503: { // M503 just prints the settings
668 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->get_steps_per_mm(), actuators[1]->get_steps_per_mm(), actuators[2]->get_steps_per_mm());
669
670 // only print XYZ if not NAN
671 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f ", default_acceleration);
672 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
673 if(!isnan(actuators[i]->get_acceleration())) gcode->stream->printf("%c%1.5f ", 'X'+i, actuators[i]->get_acceleration());
674 }
675 gcode->stream->printf("\n");
676
677 gcode->stream->printf(";X- Junction Deviation, Z- Z junction deviation, S - Minimum Planner speed mm/sec:\nM205 X%1.5f Z%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, isnan(THEKERNEL->planner->z_junction_deviation)?-1:THEKERNEL->planner->z_junction_deviation, THEKERNEL->planner->minimum_planner_speed);
678
679 gcode->stream->printf(";Max cartesian feedrates in mm/sec:\nM203 X%1.5f Y%1.5f Z%1.5f\n", this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS]);
680 gcode->stream->printf(";Max actuator feedrates in mm/sec:\nM203.1 X%1.5f Y%1.5f Z%1.5f\n", actuators[X_AXIS]->get_max_rate(), actuators[Y_AXIS]->get_max_rate(), actuators[Z_AXIS]->get_max_rate());
681
682 // get or save any arm solution specific optional values
683 BaseSolution::arm_options_t options;
684 if(arm_solution->get_optional(options) && !options.empty()) {
685 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
686 for(auto &i : options) {
687 gcode->stream->printf(" %c%1.4f", i.first, i.second);
688 }
689 gcode->stream->printf("\n");
690 }
691
692 // save wcs_offsets and current_wcs
693 // TODO this may need to be done whenever they change to be compliant
694 gcode->stream->printf(";WCS settings\n");
695 gcode->stream->printf("%s\n", wcs2gcode(current_wcs).c_str());
696 int n = 1;
697 for(auto &i : wcs_offsets) {
698 if(i != wcs_t(0, 0, 0)) {
699 float x, y, z;
700 std::tie(x, y, z) = i;
701 gcode->stream->printf("G10 L2 P%d X%f Y%f Z%f ; %s\n", n, x, y, z, wcs2gcode(n-1).c_str());
702 }
703 ++n;
704 }
705 if(save_g92) {
706 // linuxcnc saves G92, so we do too if configured, default is to not save to maintain backward compatibility
707 // also it needs to be used to set Z0 on rotary deltas as M206/306 can't be used, so saving it is necessary in that case
708 if(g92_offset != wcs_t(0, 0, 0)) {
709 float x, y, z;
710 std::tie(x, y, z) = g92_offset;
711 gcode->stream->printf("G92.3 X%f Y%f Z%f\n", x, y, z); // sets G92 to the specified values
712 }
713 }
714 }
715 break;
716
717 case 665: { // M665 set optional arm solution variables based on arm solution.
718 // the parameter args could be any letter each arm solution only accepts certain ones
719 BaseSolution::arm_options_t options = gcode->get_args();
720 options.erase('S'); // don't include the S
721 options.erase('U'); // don't include the U
722 if(options.size() > 0) {
723 // set the specified options
724 arm_solution->set_optional(options);
725 }
726 options.clear();
727 if(arm_solution->get_optional(options)) {
728 // foreach optional value
729 for(auto &i : options) {
730 // print all current values of supported options
731 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
732 gcode->add_nl = true;
733 }
734 }
735
736 if(gcode->has_letter('S')) { // set delta segments per second, not saved by M500
737 this->delta_segments_per_second = gcode->get_value('S');
738 gcode->stream->printf("Delta segments set to %8.4f segs/sec\n", this->delta_segments_per_second);
739
740 } else if(gcode->has_letter('U')) { // or set mm_per_line_segment, not saved by M500
741 this->mm_per_line_segment = gcode->get_value('U');
742 this->delta_segments_per_second = 0;
743 gcode->stream->printf("mm per line segment set to %8.4f\n", this->mm_per_line_segment);
744 }
745
746 break;
747 }
748 }
749 }
750
751 if( motion_mode != NONE) {
752 process_move(gcode, motion_mode);
753 }
754
755 next_command_is_MCS = false; // must be on same line as G0 or G1
756 }
757
758 // process a G0/G1/G2/G3
759 void Robot::process_move(Gcode *gcode, enum MOTION_MODE_T motion_mode)
760 {
761 // we have a G0/G1/G2/G3 so extract parameters and apply offsets to get machine coordinate target
762 // get XYZ and one E (which goes to the selected extruder)
763 float param[4]{NAN, NAN, NAN, NAN};
764
765 // process primary axis
766 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
767 char letter= 'X'+i;
768 if( gcode->has_letter(letter) ) {
769 param[i] = this->to_millimeters(gcode->get_value(letter));
770 }
771 }
772
773 float offset[3]{0,0,0};
774 for(char letter = 'I'; letter <= 'K'; letter++) {
775 if( gcode->has_letter(letter) ) {
776 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
777 }
778 }
779
780 // calculate target in machine coordinates (less compensation transform which needs to be done after segmentation)
781 float target[n_motors];
782 memcpy(target, last_milestone, n_motors*sizeof(float));
783
784 if(!next_command_is_MCS) {
785 if(this->absolute_mode) {
786 // apply wcs offsets and g92 offset and tool offset
787 if(!isnan(param[X_AXIS])) {
788 target[X_AXIS]= param[X_AXIS] + std::get<X_AXIS>(wcs_offsets[current_wcs]) - std::get<X_AXIS>(g92_offset) + std::get<X_AXIS>(tool_offset);
789 }
790
791 if(!isnan(param[Y_AXIS])) {
792 target[Y_AXIS]= param[Y_AXIS] + std::get<Y_AXIS>(wcs_offsets[current_wcs]) - std::get<Y_AXIS>(g92_offset) + std::get<Y_AXIS>(tool_offset);
793 }
794
795 if(!isnan(param[Z_AXIS])) {
796 target[Z_AXIS]= param[Z_AXIS] + std::get<Z_AXIS>(wcs_offsets[current_wcs]) - std::get<Z_AXIS>(g92_offset) + std::get<Z_AXIS>(tool_offset);
797 }
798
799 }else{
800 // they are deltas from the last_milestone if specified
801 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
802 if(!isnan(param[i])) target[i] = param[i] + last_milestone[i];
803 }
804 }
805
806 }else{
807 // already in machine coordinates, we do not add tool offset for that
808 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
809 if(!isnan(param[i])) target[i] = param[i];
810 }
811 }
812
813 float delta_e= NAN;
814
815 #if MAX_ROBOT_ACTUATORS > 3
816 // process extruder parameters, for active extruder only (only one active extruder at a time)
817 selected_extruder= 0;
818 if(gcode->has_letter('E')) {
819 for (int i = E_AXIS; i < n_motors; ++i) {
820 // find first selected extruder
821 if(actuators[i]->is_selected()) {
822 param[E_AXIS]= gcode->get_value('E');
823 selected_extruder= i;
824 break;
825 }
826 }
827 }
828
829 // do E for the selected extruder
830 if(selected_extruder > 0 && !isnan(param[E_AXIS])) {
831 if(this->e_absolute_mode) {
832 target[selected_extruder]= param[E_AXIS];
833 delta_e= target[selected_extruder] - last_milestone[selected_extruder];
834 }else{
835 delta_e= param[E_AXIS];
836 target[selected_extruder] = delta_e + last_milestone[selected_extruder];
837 }
838 }
839
840 // process ABC axis, this is mutually exclusive to using E for an extruder, so if E is used and A then the results are undefined
841 for (int i = A_AXIS; i < n_motors; ++i) {
842 char letter= 'A'+i-A_AXIS;
843 if(gcode->has_letter(letter)) {
844 float p= gcode->get_value(letter);
845 if(this->absolute_mode) {
846 target[i]= p;
847 }else{
848 target[i]= p + last_milestone[i];
849 }
850 }
851 }
852 #endif
853
854 if( gcode->has_letter('F') ) {
855 if( motion_mode == SEEK )
856 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
857 else
858 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
859 }
860
861 bool moved= false;
862
863 // Perform any physical actions
864 switch(motion_mode) {
865 case NONE: break;
866
867 case SEEK:
868 moved= this->append_line(gcode, target, this->seek_rate / seconds_per_minute, delta_e );
869 break;
870
871 case LINEAR:
872 moved= this->append_line(gcode, target, this->feed_rate / seconds_per_minute, delta_e );
873 break;
874
875 case CW_ARC:
876 case CCW_ARC:
877 // Note arcs are not currently supported by extruder based machines, as 3D slicers do not use arcs (G2/G3)
878 moved= this->compute_arc(gcode, offset, target, motion_mode);
879 break;
880 }
881
882 if(moved) {
883 // set last_milestone to the calculated target
884 memcpy(last_milestone, target, n_motors*sizeof(float));
885 }
886 }
887
888 // reset the machine position for all axis. Used for homing.
889 // During homing compensation is turned off
890 // once homed and reset_axis called compensation is used for the move to origin and back off home if enabled,
891 // so in those cases the final position is compensated.
892 void Robot::reset_axis_position(float x, float y, float z)
893 {
894 // these are set to the same as compensation was not used to get to the current position
895 last_machine_position[X_AXIS]= last_milestone[X_AXIS] = x;
896 last_machine_position[Y_AXIS]= last_milestone[Y_AXIS] = y;
897 last_machine_position[Z_AXIS]= last_milestone[Z_AXIS] = z;
898
899 // now set the actuator positions to match
900 ActuatorCoordinates actuator_pos;
901 arm_solution->cartesian_to_actuator(this->last_machine_position, actuator_pos);
902 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
903 actuators[i]->change_last_milestone(actuator_pos[i]);
904 }
905
906 // Reset the position for an axis (used in homing, and to reset extruder after suspend)
907 void Robot::reset_axis_position(float position, int axis)
908 {
909 last_milestone[axis] = position;
910 if(axis <= Z_AXIS) {
911 reset_axis_position(last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
912 #if MAX_ROBOT_ACTUATORS > 3
913 }else if(axis < n_motors) {
914 // extruders need to be set not calculated
915 last_machine_position[axis]= position;
916 actuators[axis]->change_last_milestone(position);
917 #endif
918 }
919 }
920
921 // similar to reset_axis_position but directly sets the actuator positions in actuators units (eg mm for cartesian, degrees for rotary delta)
922 // then sets the axis positions to match. currently only called from Endstops.cpp and RotaryDeltaCalibration.cpp
923 void Robot::reset_actuator_position(const ActuatorCoordinates &ac)
924 {
925 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
926 actuators[i]->change_last_milestone(ac[i]);
927
928 // now correct axis positions then recorrect actuator to account for rounding
929 reset_position_from_current_actuator_position();
930 }
931
932 // Use FK to find out where actuator is and reset to match
933 void Robot::reset_position_from_current_actuator_position()
934 {
935 ActuatorCoordinates actuator_pos;
936 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
937 // NOTE actuator::current_position is curently NOT the same as actuator::last_milestone after an abrupt abort
938 actuator_pos[i] = actuators[i]->get_current_position();
939 }
940
941 // discover machine position from where actuators actually are
942 arm_solution->actuator_to_cartesian(actuator_pos, last_machine_position);
943 // FIXME problem is this includes any compensation transform, and without an inverse compensation we cannot get a correct last_milestone
944 memcpy(last_milestone, last_machine_position, sizeof last_milestone);
945
946 // now reset actuator::last_milestone, NOTE this may lose a little precision as FK is not always entirely accurate.
947 // NOTE This is required to sync the machine position with the actuator position, we do a somewhat redundant cartesian_to_actuator() call
948 // to get everything in perfect sync.
949 arm_solution->cartesian_to_actuator(last_machine_position, actuator_pos);
950 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
951 actuators[i]->change_last_milestone(actuator_pos[i]);
952 }
953
954 // Convert target (in machine coordinates) to machine_position, then convert to actuator position and append this to the planner
955 // target is in machine coordinates without the compensation transform, however we save a last_machine_position that includes
956 // all transforms and is what we actually convert to actuator positions
957 bool Robot::append_milestone(const float target[], float rate_mm_s)
958 {
959 float deltas[n_motors];
960 float transformed_target[n_motors]; // adjust target for bed compensation
961 float unit_vec[N_PRIMARY_AXIS];
962
963 // unity transform by default
964 memcpy(transformed_target, target, n_motors*sizeof(float));
965
966 // check function pointer and call if set to transform the target to compensate for bed
967 if(compensationTransform) {
968 // some compensation strategies can transform XYZ, some just change Z
969 compensationTransform(transformed_target);
970 }
971
972 bool move= false;
973 float sos= 0; // sun of squares for just XYZ
974
975 // find distance moved by each axis, use transformed target from the current machine position
976 for (size_t i = 0; i < n_motors; i++) {
977 deltas[i] = transformed_target[i] - last_machine_position[i];
978 if(deltas[i] == 0) continue;
979 // at least one non zero delta
980 move = true;
981 if(i <= Z_AXIS) {
982 sos += powf(deltas[i], 2);
983 }
984 }
985
986 // nothing moved
987 if(!move) return false;
988
989 // see if this is a primary axis move or not
990 bool auxilliary_move= deltas[X_AXIS] == 0 && deltas[Y_AXIS] == 0 && deltas[Z_AXIS] == 0;
991
992 // total movement, use XYZ if a primary axis otherwise we calculate distance for E after scaling to mm
993 float distance= auxilliary_move ? 0 : sqrtf(sos);
994
995 // it is unlikely but we need to protect against divide by zero, so ignore insanely small moves here
996 // as the last milestone won't be updated we do not actually lose any moves as they will be accounted for in the next move
997 if(!auxilliary_move && distance < 0.00001F) return false;
998
999
1000 if(!auxilliary_move) {
1001 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
1002 // find distance unit vector for primary axis only
1003 unit_vec[i] = deltas[i] / distance;
1004
1005 // Do not move faster than the configured cartesian limits for XYZ
1006 if ( max_speeds[i] > 0 ) {
1007 float axis_speed = fabsf(unit_vec[i] * rate_mm_s);
1008
1009 if (axis_speed > max_speeds[i])
1010 rate_mm_s *= ( max_speeds[i] / axis_speed );
1011 }
1012 }
1013 }
1014
1015 // find actuator position given the machine position, use actual adjusted target
1016 ActuatorCoordinates actuator_pos;
1017 arm_solution->cartesian_to_actuator( transformed_target, actuator_pos );
1018
1019 #if MAX_ROBOT_ACTUATORS > 3
1020 sos= 0;
1021 // for the extruders just copy the position, and possibly scale it from mm³ to mm
1022 for (size_t i = E_AXIS; i < n_motors; i++) {
1023 actuator_pos[i]= transformed_target[i];
1024 if(get_e_scale_fnc) {
1025 // NOTE this relies on the fact only one extruder is active at a time
1026 // scale for volumetric or flow rate
1027 // TODO is this correct? scaling the absolute target? what if the scale changes?
1028 // for volumetric it basically converts mm³ to mm, but what about flow rate?
1029 actuator_pos[i] *= get_e_scale_fnc();
1030 }
1031 if(auxilliary_move) {
1032 // for E only moves we need to use the scaled E to calculate the distance
1033 sos += pow(actuator_pos[i] - actuators[i]->get_last_milestone(), 2);
1034 }
1035 }
1036 if(auxilliary_move) {
1037 distance= sqrtf(sos); // distance in mm of the e move
1038 if(distance < 0.00001F) return false;
1039 }
1040 #endif
1041
1042 // use default acceleration to start with
1043 float acceleration = default_acceleration;
1044
1045 float isecs = rate_mm_s / distance;
1046
1047 // check per-actuator speed limits
1048 for (size_t actuator = 0; actuator < n_motors; actuator++) {
1049 float d = fabsf(actuator_pos[actuator] - actuators[actuator]->get_last_milestone());
1050 if(d == 0 || !actuators[actuator]->is_selected()) continue; // no movement for this actuator
1051
1052 float actuator_rate= d * isecs;
1053 if (actuator_rate > actuators[actuator]->get_max_rate()) {
1054 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
1055 isecs = rate_mm_s / distance;
1056 }
1057
1058 // adjust acceleration to lowest found, for now just primary axis unless it is an auxiliary move
1059 // TODO we may need to do all of them, check E won't limit XYZ.. it does on long E moves, but not checking it could exceed the E acceleration.
1060 if(auxilliary_move || actuator <= Z_AXIS) {
1061 float ma = actuators[actuator]->get_acceleration(); // in mm/sec²
1062 if(!isnan(ma)) { // if axis does not have acceleration set then it uses the default_acceleration
1063 float ca = fabsf((d/distance) * acceleration);
1064 if (ca > ma) {
1065 acceleration *= ( ma / ca );
1066 }
1067 }
1068 }
1069 }
1070
1071 // Append the block to the planner
1072 // NOTE that distance here should be either the distance travelled by the XYZ axis, or the E mm travel if a solo E move
1073 if(THEKERNEL->planner->append_block( actuator_pos, n_motors, rate_mm_s, distance, auxilliary_move ? nullptr : unit_vec, acceleration )) {
1074 // this is the machine position
1075 memcpy(this->last_machine_position, transformed_target, n_motors*sizeof(float));
1076 return true;
1077 }
1078
1079 // no actual move
1080 return false;
1081 }
1082
1083 // Used to plan a single move used by things like endstops when homing, zprobe, extruder firmware retracts etc.
1084 bool Robot::delta_move(const float *delta, float rate_mm_s, uint8_t naxis)
1085 {
1086 if(THEKERNEL->is_halted()) return false;
1087
1088 // catch negative or zero feed rates
1089 if(rate_mm_s <= 0.0F) {
1090 return false;
1091 }
1092
1093 // get the absolute target position, default is current last_milestone
1094 float target[n_motors];
1095 memcpy(target, last_milestone, n_motors*sizeof(float));
1096
1097 // add in the deltas to get new target
1098 for (int i= 0; i < naxis; i++) {
1099 target[i] += delta[i];
1100 }
1101
1102 // submit for planning and if moved update last_milestone
1103 if(append_milestone(target, rate_mm_s)) {
1104 memcpy(last_milestone, target, n_motors*sizeof(float));
1105 return true;
1106 }
1107
1108 return false;
1109 }
1110
1111 // Append a move to the queue ( cutting it into segments if needed )
1112 bool Robot::append_line(Gcode *gcode, const float target[], float rate_mm_s, float delta_e)
1113 {
1114 // catch negative or zero feed rates and return the same error as GRBL does
1115 if(rate_mm_s <= 0.0F) {
1116 gcode->is_error= true;
1117 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1118 return false;
1119 }
1120
1121 // Find out the distance for this move in XYZ in MCS
1122 float millimeters_of_travel = sqrtf(powf( target[X_AXIS] - last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - last_milestone[Z_AXIS], 2 ));
1123
1124 if(millimeters_of_travel < 0.00001F) {
1125 // we have no movement in XYZ, probably E only extrude or retract
1126 return this->append_milestone(target, rate_mm_s);
1127 }
1128
1129 /*
1130 For extruders, we need to do some extra work...
1131 if we have volumetric limits enabled we calculate the volume for this move and limit the rate if it exceeds the stated limit.
1132 Note we need to be using volumetric extrusion for this to work as Ennn is in mm³ not mm
1133 We ask Extruder to do all the work but we need to pass in the relevant data.
1134 NOTE we need to do this before we segment the line (for deltas)
1135 This also sets any scaling due to flow rate and volumetric if a G1
1136 */
1137 if(!isnan(delta_e) && gcode->has_g && gcode->g == 1) {
1138 float data[2]= {delta_e, rate_mm_s / millimeters_of_travel};
1139 if(PublicData::set_value(extruder_checksum, target_checksum, data)) {
1140 rate_mm_s *= data[1]; // adjust the feedrate
1141 }
1142 }
1143
1144 // We cut the line into smaller segments. This is only needed on a cartesian robot for zgrid, but always necessary for robots with rotational axes like Deltas.
1145 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second
1146 // The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
1147 uint16_t segments;
1148
1149 if(this->disable_segmentation || (!segment_z_moves && !gcode->has_letter('X') && !gcode->has_letter('Y'))) {
1150 segments= 1;
1151
1152 } else if(this->delta_segments_per_second > 1.0F) {
1153 // enabled if set to something > 1, it is set to 0.0 by default
1154 // segment based on current speed and requested segments per second
1155 // the faster the travel speed the fewer segments needed
1156 // NOTE rate is mm/sec and we take into account any speed override
1157 float seconds = millimeters_of_travel / rate_mm_s;
1158 segments = max(1.0F, ceilf(this->delta_segments_per_second * seconds));
1159 // TODO if we are only moving in Z on a delta we don't really need to segment at all
1160
1161 } else {
1162 if(this->mm_per_line_segment == 0.0F) {
1163 segments = 1; // don't split it up
1164 } else {
1165 segments = ceilf( millimeters_of_travel / this->mm_per_line_segment);
1166 }
1167 }
1168
1169 bool moved= false;
1170 if (segments > 1) {
1171 // A vector to keep track of the endpoint of each segment
1172 float segment_delta[n_motors];
1173 float segment_end[n_motors];
1174 memcpy(segment_end, last_milestone, n_motors*sizeof(float));
1175
1176 // How far do we move each segment?
1177 for (int i = 0; i < n_motors; i++)
1178 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
1179
1180 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
1181 // We always add another point after this loop so we stop at segments-1, ie i < segments
1182 for (int i = 1; i < segments; i++) {
1183 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
1184 for (int i = 0; i < n_motors; i++)
1185 segment_end[i] += segment_delta[i];
1186
1187 // Append the end of this segment to the queue
1188 bool b= this->append_milestone(segment_end, rate_mm_s);
1189 moved= moved || b;
1190 }
1191 }
1192
1193 // Append the end of this full move to the queue
1194 if(this->append_milestone(target, rate_mm_s)) moved= true;
1195
1196 this->next_command_is_MCS = false; // always reset this
1197
1198 return moved;
1199 }
1200
1201
1202 // Append an arc to the queue ( cutting it into segments as needed )
1203 bool Robot::append_arc(Gcode * gcode, const float target[], const float offset[], float radius, bool is_clockwise )
1204 {
1205 float rate_mm_s= this->feed_rate / seconds_per_minute;
1206 // catch negative or zero feed rates and return the same error as GRBL does
1207 if(rate_mm_s <= 0.0F) {
1208 gcode->is_error= true;
1209 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1210 return false;
1211 }
1212
1213 // Scary math
1214 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
1215 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
1216 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1217 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
1218 float r_axis1 = -offset[this->plane_axis_1];
1219 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
1220 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
1221
1222 // Patch from GRBL Firmware - Christoph Baumann 04072015
1223 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
1224 float angular_travel = atan2f(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
1225 if (is_clockwise) { // Correct atan2 output per direction
1226 if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= (2 * PI); }
1227 } else {
1228 if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += (2 * PI); }
1229 }
1230
1231 // Find the distance for this gcode
1232 float millimeters_of_travel = hypotf(angular_travel * radius, fabsf(linear_travel));
1233
1234 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
1235 if( millimeters_of_travel < 0.00001F ) {
1236 return false;
1237 }
1238
1239 // limit segments by maximum arc error
1240 float arc_segment = this->mm_per_arc_segment;
1241 if ((this->mm_max_arc_error > 0) && (2 * radius > this->mm_max_arc_error)) {
1242 float min_err_segment = 2 * sqrtf((this->mm_max_arc_error * (2 * radius - this->mm_max_arc_error)));
1243 if (this->mm_per_arc_segment < min_err_segment) {
1244 arc_segment = min_err_segment;
1245 }
1246 }
1247 // Figure out how many segments for this gcode
1248 uint16_t segments = ceilf(millimeters_of_travel / arc_segment);
1249
1250 //printf("Radius %f - Segment Length %f - Number of Segments %d\r\n",radius,arc_segment,segments); // Testing Purposes ONLY
1251 float theta_per_segment = angular_travel / segments;
1252 float linear_per_segment = linear_travel / segments;
1253
1254 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
1255 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
1256 r_T = [cos(phi) -sin(phi);
1257 sin(phi) cos(phi] * r ;
1258 For arc generation, the center of the circle is the axis of rotation and the radius vector is
1259 defined from the circle center to the initial position. Each line segment is formed by successive
1260 vector rotations. This requires only two cos() and sin() computations to form the rotation
1261 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1262 all float numbers are single precision on the Arduino. (True float precision will not have
1263 round off issues for CNC applications.) Single precision error can accumulate to be greater than
1264 tool precision in some cases. Therefore, arc path correction is implemented.
1265
1266 Small angle approximation may be used to reduce computation overhead further. This approximation
1267 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
1268 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
1269 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
1270 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
1271 issue for CNC machines with the single precision Arduino calculations.
1272 This approximation also allows mc_arc to immediately insert a line segment into the planner
1273 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
1274 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
1275 This is important when there are successive arc motions.
1276 */
1277 // Vector rotation matrix values
1278 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1279 float sin_T = theta_per_segment;
1280
1281 float arc_target[3];
1282 float sin_Ti;
1283 float cos_Ti;
1284 float r_axisi;
1285 uint16_t i;
1286 int8_t count = 0;
1287
1288 // Initialize the linear axis
1289 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
1290
1291 bool moved= false;
1292 for (i = 1; i < segments; i++) { // Increment (segments-1)
1293 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
1294
1295 if (count < this->arc_correction ) {
1296 // Apply vector rotation matrix
1297 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
1298 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
1299 r_axis1 = r_axisi;
1300 count++;
1301 } else {
1302 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
1303 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
1304 cos_Ti = cosf(i * theta_per_segment);
1305 sin_Ti = sinf(i * theta_per_segment);
1306 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
1307 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
1308 count = 0;
1309 }
1310
1311 // Update arc_target location
1312 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
1313 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
1314 arc_target[this->plane_axis_2] += linear_per_segment;
1315
1316 // Append this segment to the queue
1317 bool b= this->append_milestone(arc_target, rate_mm_s);
1318 moved= moved || b;
1319 }
1320
1321 // Ensure last segment arrives at target location.
1322 if(this->append_milestone(target, rate_mm_s)) moved= true;
1323
1324 return moved;
1325 }
1326
1327 // Do the math for an arc and add it to the queue
1328 bool Robot::compute_arc(Gcode * gcode, const float offset[], const float target[], enum MOTION_MODE_T motion_mode)
1329 {
1330
1331 // Find the radius
1332 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
1333
1334 // Set clockwise/counter-clockwise sign for mc_arc computations
1335 bool is_clockwise = false;
1336 if( motion_mode == CW_ARC ) {
1337 is_clockwise = true;
1338 }
1339
1340 // Append arc
1341 return this->append_arc(gcode, target, offset, radius, is_clockwise );
1342 }
1343
1344
1345 float Robot::theta(float x, float y)
1346 {
1347 float t = atanf(x / fabs(y));
1348 if (y > 0) {
1349 return(t);
1350 } else {
1351 if (t > 0) {
1352 return(PI - t);
1353 } else {
1354 return(-PI - t);
1355 }
1356 }
1357 }
1358
1359 void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
1360 {
1361 this->plane_axis_0 = axis_0;
1362 this->plane_axis_1 = axis_1;
1363 this->plane_axis_2 = axis_2;
1364 }
1365
1366 void Robot::clearToolOffset()
1367 {
1368 this->tool_offset= wcs_t(0,0,0);
1369 }
1370
1371 void Robot::setToolOffset(const float offset[3])
1372 {
1373 this->tool_offset= wcs_t(offset[0], offset[1], offset[2]);
1374 }
1375
1376 float Robot::get_feed_rate() const
1377 {
1378 return THEKERNEL->gcode_dispatch->get_modal_command() == 0 ? seek_rate : feed_rate;
1379 }