fix rotary delta FK to be mirrored like the IK
[clinton/Smoothieware.git] / src / modules / tools / endstops / Endstops.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "modules/communication/utils/Gcode.h"
11 #include "modules/robot/Conveyor.h"
12 #include "modules/robot/ActuatorCoordinates.h"
13 #include "Endstops.h"
14 #include "libs/nuts_bolts.h"
15 #include "libs/Pin.h"
16 #include "libs/StepperMotor.h"
17 #include "wait_api.h" // mbed.h lib
18 #include "Robot.h"
19 #include "Stepper.h"
20 #include "Config.h"
21 #include "SlowTicker.h"
22 #include "Planner.h"
23 #include "checksumm.h"
24 #include "utils.h"
25 #include "ConfigValue.h"
26 #include "libs/StreamOutput.h"
27 #include "PublicDataRequest.h"
28 #include "EndstopsPublicAccess.h"
29 #include "StreamOutputPool.h"
30 #include "StepTicker.h"
31 #include "BaseSolution.h"
32 #include "SerialMessage.h"
33
34 #include <ctype.h>
35
36 #define ALPHA_AXIS 0
37 #define BETA_AXIS 1
38 #define GAMMA_AXIS 2
39 #define X_AXIS 0
40 #define Y_AXIS 1
41 #define Z_AXIS 2
42
43 #define endstops_module_enable_checksum CHECKSUM("endstops_enable")
44 #define corexy_homing_checksum CHECKSUM("corexy_homing")
45 #define delta_homing_checksum CHECKSUM("delta_homing")
46 #define rdelta_homing_checksum CHECKSUM("rdelta_homing")
47 #define scara_homing_checksum CHECKSUM("scara_homing")
48
49 #define alpha_min_endstop_checksum CHECKSUM("alpha_min_endstop")
50 #define beta_min_endstop_checksum CHECKSUM("beta_min_endstop")
51 #define gamma_min_endstop_checksum CHECKSUM("gamma_min_endstop")
52
53 #define alpha_max_endstop_checksum CHECKSUM("alpha_max_endstop")
54 #define beta_max_endstop_checksum CHECKSUM("beta_max_endstop")
55 #define gamma_max_endstop_checksum CHECKSUM("gamma_max_endstop")
56
57 #define alpha_trim_checksum CHECKSUM("alpha_trim")
58 #define beta_trim_checksum CHECKSUM("beta_trim")
59 #define gamma_trim_checksum CHECKSUM("gamma_trim")
60
61 // these values are in steps and should be deprecated
62 #define alpha_fast_homing_rate_checksum CHECKSUM("alpha_fast_homing_rate")
63 #define beta_fast_homing_rate_checksum CHECKSUM("beta_fast_homing_rate")
64 #define gamma_fast_homing_rate_checksum CHECKSUM("gamma_fast_homing_rate")
65
66 #define alpha_slow_homing_rate_checksum CHECKSUM("alpha_slow_homing_rate")
67 #define beta_slow_homing_rate_checksum CHECKSUM("beta_slow_homing_rate")
68 #define gamma_slow_homing_rate_checksum CHECKSUM("gamma_slow_homing_rate")
69
70 #define alpha_homing_retract_checksum CHECKSUM("alpha_homing_retract")
71 #define beta_homing_retract_checksum CHECKSUM("beta_homing_retract")
72 #define gamma_homing_retract_checksum CHECKSUM("gamma_homing_retract")
73
74 // same as above but in user friendly mm/s and mm
75 #define alpha_fast_homing_rate_mm_checksum CHECKSUM("alpha_fast_homing_rate_mm_s")
76 #define beta_fast_homing_rate_mm_checksum CHECKSUM("beta_fast_homing_rate_mm_s")
77 #define gamma_fast_homing_rate_mm_checksum CHECKSUM("gamma_fast_homing_rate_mm_s")
78
79 #define alpha_slow_homing_rate_mm_checksum CHECKSUM("alpha_slow_homing_rate_mm_s")
80 #define beta_slow_homing_rate_mm_checksum CHECKSUM("beta_slow_homing_rate_mm_s")
81 #define gamma_slow_homing_rate_mm_checksum CHECKSUM("gamma_slow_homing_rate_mm_s")
82
83 #define alpha_homing_retract_mm_checksum CHECKSUM("alpha_homing_retract_mm")
84 #define beta_homing_retract_mm_checksum CHECKSUM("beta_homing_retract_mm")
85 #define gamma_homing_retract_mm_checksum CHECKSUM("gamma_homing_retract_mm")
86
87 #define endstop_debounce_count_checksum CHECKSUM("endstop_debounce_count")
88
89 #define alpha_homing_direction_checksum CHECKSUM("alpha_homing_direction")
90 #define beta_homing_direction_checksum CHECKSUM("beta_homing_direction")
91 #define gamma_homing_direction_checksum CHECKSUM("gamma_homing_direction")
92 #define home_to_max_checksum CHECKSUM("home_to_max")
93 #define home_to_min_checksum CHECKSUM("home_to_min")
94 #define alpha_min_checksum CHECKSUM("alpha_min")
95 #define beta_min_checksum CHECKSUM("beta_min")
96 #define gamma_min_checksum CHECKSUM("gamma_min")
97
98 #define alpha_max_checksum CHECKSUM("alpha_max")
99 #define beta_max_checksum CHECKSUM("beta_max")
100 #define gamma_max_checksum CHECKSUM("gamma_max")
101
102 #define alpha_limit_enable_checksum CHECKSUM("alpha_limit_enable")
103 #define beta_limit_enable_checksum CHECKSUM("beta_limit_enable")
104 #define gamma_limit_enable_checksum CHECKSUM("gamma_limit_enable")
105
106 #define homing_order_checksum CHECKSUM("homing_order")
107 #define move_to_origin_checksum CHECKSUM("move_to_origin_after_home")
108
109 #define STEPPER THEKERNEL->robot->actuators
110 #define STEPS_PER_MM(a) (STEPPER[a]->get_steps_per_mm())
111
112
113 // Homing States
114 enum {
115 MOVING_TO_ENDSTOP_FAST, // homing move
116 MOVING_BACK, // homing move
117 MOVING_TO_ENDSTOP_SLOW, // homing move
118 NOT_HOMING,
119 BACK_OFF_HOME,
120 MOVE_TO_ORIGIN,
121 LIMIT_TRIGGERED
122 };
123
124 Endstops::Endstops()
125 {
126 this->status = NOT_HOMING;
127 home_offset[0] = home_offset[1] = home_offset[2] = 0.0F;
128 }
129
130 void Endstops::on_module_loaded()
131 {
132 // Do not do anything if not enabled
133 if ( THEKERNEL->config->value( endstops_module_enable_checksum )->by_default(true)->as_bool() == false ) {
134 delete this;
135 return;
136 }
137
138 register_for_event(ON_GCODE_RECEIVED);
139 register_for_event(ON_GET_PUBLIC_DATA);
140 register_for_event(ON_SET_PUBLIC_DATA);
141
142 THEKERNEL->step_ticker->register_acceleration_tick_handler([this]() {acceleration_tick(); });
143
144 // Settings
145 this->on_config_reload(this);
146 }
147
148 // Get config
149 void Endstops::on_config_reload(void *argument)
150 {
151 this->pins[0].from_string( THEKERNEL->config->value(alpha_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
152 this->pins[1].from_string( THEKERNEL->config->value(beta_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
153 this->pins[2].from_string( THEKERNEL->config->value(gamma_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
154 this->pins[3].from_string( THEKERNEL->config->value(alpha_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
155 this->pins[4].from_string( THEKERNEL->config->value(beta_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
156 this->pins[5].from_string( THEKERNEL->config->value(gamma_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
157
158 // These are the old ones in steps still here for backwards compatibility
159 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(0);
160 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(1);
161 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_checksum )->by_default(6400 )->as_number() / STEPS_PER_MM(2);
162 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(0);
163 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(1);
164 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_checksum )->by_default(3200 )->as_number() / STEPS_PER_MM(2);
165 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(0);
166 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(1);
167 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_checksum )->by_default(1600 )->as_number() / STEPS_PER_MM(2);
168
169 // newer mm based config values override the old ones, convert to steps/mm and steps, defaults to what was set in the older config settings above
170 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[0])->as_number();
171 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[1])->as_number();
172 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[2])->as_number();
173 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[0])->as_number();
174 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[1])->as_number();
175 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[2])->as_number();
176 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_mm_checksum )->by_default(this->retract_mm[0])->as_number();
177 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_mm_checksum )->by_default(this->retract_mm[1])->as_number();
178 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_mm_checksum )->by_default(this->retract_mm[2])->as_number();
179
180 this->debounce_count = THEKERNEL->config->value(endstop_debounce_count_checksum )->by_default(100)->as_number();
181
182 // get homing direction and convert to boolean where true is home to min, and false is home to max
183 int home_dir = get_checksum(THEKERNEL->config->value(alpha_homing_direction_checksum)->by_default("home_to_min")->as_string());
184 this->home_direction[0] = home_dir != home_to_max_checksum;
185
186 home_dir = get_checksum(THEKERNEL->config->value(beta_homing_direction_checksum)->by_default("home_to_min")->as_string());
187 this->home_direction[1] = home_dir != home_to_max_checksum;
188
189 home_dir = get_checksum(THEKERNEL->config->value(gamma_homing_direction_checksum)->by_default("home_to_min")->as_string());
190 this->home_direction[2] = home_dir != home_to_max_checksum;
191
192 this->homing_position[0] = this->home_direction[0] ? THEKERNEL->config->value(alpha_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(alpha_max_checksum)->by_default(200)->as_number();
193 this->homing_position[1] = this->home_direction[1] ? THEKERNEL->config->value(beta_min_checksum )->by_default(0)->as_number() : THEKERNEL->config->value(beta_max_checksum )->by_default(200)->as_number();
194 this->homing_position[2] = this->home_direction[2] ? THEKERNEL->config->value(gamma_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(gamma_max_checksum)->by_default(200)->as_number();
195
196 this->is_corexy = THEKERNEL->config->value(corexy_homing_checksum)->by_default(false)->as_bool();
197 this->is_delta = THEKERNEL->config->value(delta_homing_checksum)->by_default(false)->as_bool();
198 this->is_rdelta = THEKERNEL->config->value(rdelta_homing_checksum)->by_default(false)->as_bool();
199 this->is_scara = THEKERNEL->config->value(scara_homing_checksum)->by_default(false)->as_bool();
200
201 // see if an order has been specified, must be three characters, XYZ or YXZ etc
202 string order = THEKERNEL->config->value(homing_order_checksum)->by_default("")->as_string();
203 this->homing_order = 0;
204 if(order.size() == 3 && !this->is_delta) {
205 int shift = 0;
206 for(auto c : order) {
207 uint8_t i = toupper(c) - 'X';
208 if(i > 2) { // bad value
209 this->homing_order = 0;
210 break;
211 }
212 homing_order |= (i << shift);
213 shift += 2;
214 }
215 }
216
217 // endstop trim used by deltas to do soft adjusting
218 // on a delta homing to max, a negative trim value will move the carriage down, and a positive will move it up
219 this->trim_mm[0] = THEKERNEL->config->value(alpha_trim_checksum )->by_default(0 )->as_number();
220 this->trim_mm[1] = THEKERNEL->config->value(beta_trim_checksum )->by_default(0 )->as_number();
221 this->trim_mm[2] = THEKERNEL->config->value(gamma_trim_checksum )->by_default(0 )->as_number();
222
223 // limits enabled
224 this->limit_enable[X_AXIS] = THEKERNEL->config->value(alpha_limit_enable_checksum)->by_default(false)->as_bool();
225 this->limit_enable[Y_AXIS] = THEKERNEL->config->value(beta_limit_enable_checksum)->by_default(false)->as_bool();
226 this->limit_enable[Z_AXIS] = THEKERNEL->config->value(gamma_limit_enable_checksum)->by_default(false)->as_bool();
227
228 // set to true by default for deltas duwe to trim, false on cartesians
229 this->move_to_origin_after_home = THEKERNEL->config->value(move_to_origin_checksum)->by_default(is_delta)->as_bool();
230
231 if(this->limit_enable[X_AXIS] || this->limit_enable[Y_AXIS] || this->limit_enable[Z_AXIS]) {
232 register_for_event(ON_IDLE);
233 if(this->is_delta) {
234 // we must enable all the limits not just one
235 this->limit_enable[X_AXIS] = true;
236 this->limit_enable[Y_AXIS] = true;
237 this->limit_enable[Z_AXIS] = true;
238 }
239 }
240
241 //
242 if(this->is_delta || this->is_rdelta) {
243 // some things must be the same or they will die, so force it here to avoid config errors
244 this->fast_rates[1] = this->fast_rates[2] = this->fast_rates[0];
245 this->slow_rates[1] = this->slow_rates[2] = this->slow_rates[0];
246 this->retract_mm[1] = this->retract_mm[2] = this->retract_mm[0];
247 this->home_direction[1] = this->home_direction[2] = this->home_direction[0];
248 // NOTE homing_position for rdelta is the angle of the actuator not the cartesian position
249 if(!this->is_rdelta) this->homing_position[0] = this->homing_position[1] = 0;
250 }
251 }
252
253 bool Endstops::debounced_get(int pin)
254 {
255 uint8_t debounce = 0;
256 while(this->pins[pin].get()) {
257 if ( ++debounce >= this->debounce_count ) {
258 // pin triggered
259 return true;
260 }
261 }
262 return false;
263 }
264
265 static const char *endstop_names[] = {"min_x", "min_y", "min_z", "max_x", "max_y", "max_z"};
266
267 void Endstops::on_idle(void *argument)
268 {
269 if(this->status == LIMIT_TRIGGERED) {
270 // if we were in limit triggered see if it has been cleared
271 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
272 if(this->limit_enable[c]) {
273 std::array<int, 2> minmax{{0, 3}};
274 // check min and max endstops
275 for (int i : minmax) {
276 int n = c + i;
277 if(this->pins[n].get()) {
278 // still triggered, so exit
279 bounce_cnt = 0;
280 return;
281 }
282 }
283 }
284 }
285 if(++bounce_cnt > 10) { // can use less as it calls on_idle in between
286 // clear the state
287 this->status = NOT_HOMING;
288 }
289 return;
290
291 } else if(this->status != NOT_HOMING) {
292 // don't check while homing
293 return;
294 }
295
296 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
297 if(this->limit_enable[c] && STEPPER[c]->is_moving()) {
298 std::array<int, 2> minmax{{0, 3}};
299 // check min and max endstops
300 for (int i : minmax) {
301 int n = c + i;
302 if(debounced_get(n)) {
303 // endstop triggered
304 THEKERNEL->streams->printf("Limit switch %s was hit - reset or M999 required\n", endstop_names[n]);
305 this->status = LIMIT_TRIGGERED;
306 // disables heaters and motors, ignores incoming Gcode and flushes block queue
307 THEKERNEL->call_event(ON_HALT, nullptr);
308 return;
309 }
310 }
311 }
312 }
313 }
314
315 // if limit switches are enabled, then we must move off of the endstop otherwise we won't be able to move
316 // checks if triggered and only backs off if triggered
317 void Endstops::back_off_home(char axes_to_move)
318 {
319 std::vector<std::pair<char, float>> params;
320 this->status = BACK_OFF_HOME;
321
322 // these are handled differently
323 if(is_delta) {
324 // Move off of the endstop using a regular relative move in Z only
325 params.push_back({'Z', this->retract_mm[Z_AXIS] * (this->home_direction[Z_AXIS] ? 1 : -1)});
326
327 } else {
328 // cartesians, concatenate all the moves we need to do into one gcode
329 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
330 if( ((axes_to_move >> c ) & 1) == 0) continue; // only for axes we asked to move
331
332 // if not triggered no need to move off
333 if(this->limit_enable[c] && debounced_get(c + (this->home_direction[c] ? 0 : 3)) ) {
334 params.push_back({c + 'X', this->retract_mm[c] * (this->home_direction[c] ? 1 : -1)});
335 }
336 }
337 }
338
339 if(!params.empty()) {
340 // Move off of the endstop using a regular relative move
341 params.insert(params.begin(), {'G', 0});
342 // use X slow rate to move, Z should have a max speed set anyway
343 params.push_back({'F', this->slow_rates[X_AXIS] * 60.0F});
344 char gcode_buf[64];
345 append_parameters(gcode_buf, params, sizeof(gcode_buf));
346 Gcode gc(gcode_buf, &(StreamOutput::NullStream));
347 THEKERNEL->robot->push_state();
348 THEKERNEL->robot->absolute_mode = false; // needs to be relative mode
349 THEKERNEL->robot->on_gcode_received(&gc); // send to robot directly
350 // Wait for above to finish
351 THEKERNEL->conveyor->wait_for_empty_queue();
352 THEKERNEL->robot->pop_state();
353 }
354
355 this->status = NOT_HOMING;
356 }
357
358 // If enabled will move the head to 0,0 after homing, but only if X and Y were set to home
359 void Endstops::move_to_origin(char axes_to_move)
360 {
361 if( (axes_to_move & 0x03) != 3 ) return; // ignore if X and Y not homing
362
363 // Do we need to check if we are already at 0,0? probably not as the G0 will not do anything if we are
364 // float pos[3]; THEKERNEL->robot->get_axis_position(pos); if(pos[0] == 0 && pos[1] == 0) return;
365
366 this->status = MOVE_TO_ORIGIN;
367 // Move to center using a regular move, use slower of X and Y fast rate
368 float rate = std::min(this->fast_rates[0], this->fast_rates[1]) * 60.0F;
369 char buf[32];
370 snprintf(buf, sizeof(buf), "G53 G0 X0 Y0 F%1.4f", rate); // must use machine coordinates in case G92 or WCS is in effect
371 THEKERNEL->robot->push_state();
372 struct SerialMessage message;
373 message.message = buf;
374 message.stream = &(StreamOutput::NullStream);
375 THEKERNEL->call_event(ON_CONSOLE_LINE_RECEIVED, &message ); // as it is a multi G code command
376 // Wait for above to finish
377 THEKERNEL->conveyor->wait_for_empty_queue();
378 THEKERNEL->robot->pop_state();
379 this->status = NOT_HOMING;
380 }
381
382 bool Endstops::wait_for_homed(char axes_to_move)
383 {
384 bool running = true;
385 unsigned int debounce[3] = {0, 0, 0};
386 while (running) {
387 running = false;
388 THEKERNEL->call_event(ON_IDLE);
389
390 // check if on_halt (eg kill)
391 if(THEKERNEL->is_halted()) return false;
392
393 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
394 if ( ( axes_to_move >> c ) & 1 ) {
395 if ( this->pins[c + (this->home_direction[c] ? 0 : 3)].get() ) {
396 if ( debounce[c] < debounce_count ) {
397 debounce[c]++;
398 running = true;
399 } else if ( STEPPER[c]->is_moving() ) {
400 STEPPER[c]->move(0, 0);
401 axes_to_move &= ~(1 << c); // no need to check it again
402 }
403 } else {
404 // The endstop was not hit yet
405 running = true;
406 debounce[c] = 0;
407 }
408 }
409 }
410 }
411 return true;
412 }
413
414 void Endstops::do_homing_cartesian(char axes_to_move)
415 {
416 // check if on_halt (eg kill)
417 if(THEKERNEL->is_halted()) return;
418
419 // this homing works for cartesian and delta printers
420 // Start moving the axes to the origin
421 this->status = MOVING_TO_ENDSTOP_FAST;
422 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
423 if ( ( axes_to_move >> c) & 1 ) {
424 this->feed_rate[c] = this->fast_rates[c];
425 STEPPER[c]->move(this->home_direction[c], 10000000, 0);
426 }
427 }
428
429 // Wait for all axes to have homed
430 if(!this->wait_for_homed(axes_to_move)) return;
431
432 // Move back a small distance
433 this->status = MOVING_BACK;
434 bool inverted_dir;
435 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
436 if ( ( axes_to_move >> c ) & 1 ) {
437 inverted_dir = !this->home_direction[c];
438 this->feed_rate[c] = this->slow_rates[c];
439 STEPPER[c]->move(inverted_dir, this->retract_mm[c]*STEPS_PER_MM(c), 0);
440 }
441 }
442
443 // Wait for moves to be done
444 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
445 if ( ( axes_to_move >> c ) & 1 ) {
446 while ( STEPPER[c]->is_moving() ) {
447 THEKERNEL->call_event(ON_IDLE);
448 if(THEKERNEL->is_halted()) return;
449 }
450 }
451 }
452
453 // Start moving the axes to the origin slowly
454 this->status = MOVING_TO_ENDSTOP_SLOW;
455 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
456 if ( ( axes_to_move >> c ) & 1 ) {
457 this->feed_rate[c] = this->slow_rates[c];
458 STEPPER[c]->move(this->home_direction[c], 10000000, 0);
459 }
460 }
461
462 // Wait for all axes to have homed
463 if(!this->wait_for_homed(axes_to_move)) return;
464 }
465
466 bool Endstops::wait_for_homed_corexy(int axis)
467 {
468 bool running = true;
469 unsigned int debounce[3] = {0, 0, 0};
470 while (running) {
471 running = false;
472 THEKERNEL->call_event(ON_IDLE);
473
474 // check if on_halt (eg kill)
475 if(THEKERNEL->is_halted()) return false;
476
477 if ( this->pins[axis + (this->home_direction[axis] ? 0 : 3)].get() ) {
478 if ( debounce[axis] < debounce_count ) {
479 debounce[axis] ++;
480 running = true;
481 } else {
482 // turn both off if running
483 if (STEPPER[X_AXIS]->is_moving()) STEPPER[X_AXIS]->move(0, 0);
484 if (STEPPER[Y_AXIS]->is_moving()) STEPPER[Y_AXIS]->move(0, 0);
485 }
486 } else {
487 // The endstop was not hit yet
488 running = true;
489 debounce[axis] = 0;
490 }
491 }
492 return true;
493 }
494
495 void Endstops::corexy_home(int home_axis, bool dirx, bool diry, float fast_rate, float slow_rate, unsigned int retract_steps)
496 {
497 // check if on_halt (eg kill)
498 if(THEKERNEL->is_halted()) return;
499
500 this->status = MOVING_TO_ENDSTOP_FAST;
501 this->feed_rate[X_AXIS] = fast_rate;
502 STEPPER[X_AXIS]->move(dirx, 10000000, 0);
503 this->feed_rate[Y_AXIS] = fast_rate;
504 STEPPER[Y_AXIS]->move(diry, 10000000, 0);
505
506 // wait for primary axis
507 if(!this->wait_for_homed_corexy(home_axis)) return;
508
509 // Move back a small distance
510 this->status = MOVING_BACK;
511 this->feed_rate[X_AXIS] = slow_rate;
512 STEPPER[X_AXIS]->move(!dirx, retract_steps, 0);
513 this->feed_rate[Y_AXIS] = slow_rate;
514 STEPPER[Y_AXIS]->move(!diry, retract_steps, 0);
515
516 // wait until done
517 while ( STEPPER[X_AXIS]->is_moving() || STEPPER[Y_AXIS]->is_moving()) {
518 THEKERNEL->call_event(ON_IDLE);
519 if(THEKERNEL->is_halted()) return;
520 }
521
522 // Start moving the axes to the origin slowly
523 this->status = MOVING_TO_ENDSTOP_SLOW;
524 this->feed_rate[X_AXIS] = slow_rate;
525 STEPPER[X_AXIS]->move(dirx, 10000000, 0);
526 this->feed_rate[Y_AXIS] = slow_rate;
527 STEPPER[Y_AXIS]->move(diry, 10000000, 0);
528
529 // wait for primary axis
530 if(!this->wait_for_homed_corexy(home_axis)) return;
531 }
532
533 // this homing works for HBots/CoreXY
534 void Endstops::do_homing_corexy(char axes_to_move)
535 {
536 // TODO should really make order configurable, and select whether to allow XY to home at the same time, diagonally
537 // To move XY at the same time only one motor needs to turn, determine which motor and which direction based on min or max directions
538 // allow to move until an endstop triggers, then stop that motor. Speed up when moving diagonally to match X or Y speed
539 // continue moving in the direction not yet triggered (which means two motors turning) until endstop hit
540
541 if((axes_to_move & 0x03) == 0x03) { // both X and Y need Homing
542 // determine which motor to turn and which way
543 bool dirx = this->home_direction[X_AXIS];
544 bool diry = this->home_direction[Y_AXIS];
545 int motor;
546 bool dir;
547 if(dirx && diry) { // min/min
548 motor = X_AXIS;
549 dir = true;
550 } else if(dirx && !diry) { // min/max
551 motor = Y_AXIS;
552 dir = true;
553 } else if(!dirx && diry) { // max/min
554 motor = Y_AXIS;
555 dir = false;
556 } else if(!dirx && !diry) { // max/max
557 motor = X_AXIS;
558 dir = false;
559 }
560
561 // then move both X and Y until one hits the endstop
562 this->status = MOVING_TO_ENDSTOP_FAST;
563 // need to allow for more ground covered when moving diagonally
564 this->feed_rate[motor] = this->fast_rates[motor] * 1.4142;
565 STEPPER[motor]->move(dir, 10000000, 0);
566 // wait until either X or Y hits the endstop
567 bool running = true;
568 while (running) {
569 THEKERNEL->call_event(ON_IDLE);
570 if(THEKERNEL->is_halted()) return;
571 for(int m = X_AXIS; m <= Y_AXIS; m++) {
572 if(this->pins[m + (this->home_direction[m] ? 0 : 3)].get()) {
573 // turn off motor
574 if(STEPPER[motor]->is_moving()) STEPPER[motor]->move(0, 0);
575 running = false;
576 break;
577 }
578 }
579 }
580 }
581
582 // move individual axis
583 if (axes_to_move & 0x01) { // Home X, which means both X and Y in same direction
584 bool dir = this->home_direction[X_AXIS];
585 corexy_home(X_AXIS, dir, dir, this->fast_rates[X_AXIS], this->slow_rates[X_AXIS], this->retract_mm[X_AXIS]*STEPS_PER_MM(X_AXIS));
586 }
587
588 if (axes_to_move & 0x02) { // Home Y, which means both X and Y in different directions
589 bool dir = this->home_direction[Y_AXIS];
590 corexy_home(Y_AXIS, dir, !dir, this->fast_rates[Y_AXIS], this->slow_rates[Y_AXIS], this->retract_mm[Y_AXIS]*STEPS_PER_MM(Y_AXIS));
591 }
592
593 if (axes_to_move & 0x04) { // move Z
594 do_homing_cartesian(0x04); // just home normally for Z
595 }
596 }
597
598 void Endstops::home(char axes_to_move)
599 {
600 // not a block move so disable the last tick setting
601 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
602 STEPPER[c]->set_moved_last_block(false);
603 }
604
605 if (is_corexy) {
606 // corexy/HBot homing
607 do_homing_corexy(axes_to_move);
608 } else {
609 // cartesian/delta homing
610 do_homing_cartesian(axes_to_move);
611 }
612
613 // make sure all steppers are off (especially if aborted)
614 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
615 STEPPER[c]->move(0, 0);
616 }
617 this->status = NOT_HOMING;
618 }
619
620 void Endstops::process_home_command(Gcode* gcode)
621 {
622 if( (gcode->subcode == 0 && THEKERNEL->is_grbl_mode()) || (gcode->subcode == 2 && !THEKERNEL->is_grbl_mode()) ) {
623 // G28 in grbl mode or G28.2 in normal mode will do a rapid to the predefined position
624 // TODO spec says if XYZ specified move to them first then move to MCS of specifed axis
625 char buf[32];
626 snprintf(buf, sizeof(buf), "G53 G0 X%f Y%f", saved_position[X_AXIS], saved_position[Y_AXIS]); // must use machine coordinates in case G92 or WCS is in effect
627 struct SerialMessage message;
628 message.message = buf;
629 message.stream = &(StreamOutput::NullStream);
630 THEKERNEL->call_event(ON_CONSOLE_LINE_RECEIVED, &message ); // as it is a multi G code command
631 return;
632
633 } else if(THEKERNEL->is_grbl_mode() && gcode->subcode == 2) { // G28.2 in grbl mode forces homing (triggered by $H)
634 // fall through so it does homing cycle
635
636 } else if(gcode->subcode == 1) { // G28.1 set pre defined position
637 // saves current position in absolute machine coordinates
638 THEKERNEL->robot->get_axis_position(saved_position);
639 return;
640
641 } else if(gcode->subcode == 3) { // G28.3 is a smoothie special it sets manual homing
642 if(gcode->get_num_args() == 0) {
643 THEKERNEL->robot->reset_axis_position(0, 0, 0);
644 } else {
645 // do a manual homing based on given coordinates, no endstops required
646 if(gcode->has_letter('X')) THEKERNEL->robot->reset_axis_position(gcode->get_value('X'), X_AXIS);
647 if(gcode->has_letter('Y')) THEKERNEL->robot->reset_axis_position(gcode->get_value('Y'), Y_AXIS);
648 if(gcode->has_letter('Z')) THEKERNEL->robot->reset_axis_position(gcode->get_value('Z'), Z_AXIS);
649 }
650 return;
651
652 } else if(gcode->subcode == 4) { // G28.4 is a smoothie special it sets manual homing based on the actuator position (used for rotary delta)
653 // do a manual homing based on given coordinates, no endstops required, NOTE does not support the multi actuator hack
654 ActuatorCoordinates ac;
655 if(gcode->has_letter('A')) ac[0] = gcode->get_value('A');
656 if(gcode->has_letter('B')) ac[1] = gcode->get_value('B');
657 if(gcode->has_letter('C')) ac[2] = gcode->get_value('C');
658 THEKERNEL->robot->reset_actuator_position(ac);
659 return;
660
661 } else if(THEKERNEL->is_grbl_mode()) {
662 gcode->stream->printf("error:Unsupported command\n");
663 return;
664 }
665
666 // G28 is received, we have homing to do
667
668 // First wait for the queue to be empty
669 THEKERNEL->conveyor->wait_for_empty_queue();
670
671 // Do we move select axes or all of them
672 char axes_to_move = 0;
673 // only enable homing if the endstop is defined, deltas, scaras always home all axis
674 bool home_all = this->is_delta || this->is_rdelta || this->is_scara || !( gcode->has_letter('X') || gcode->has_letter('Y') || gcode->has_letter('Z') );
675
676 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
677 if ( (home_all || gcode->has_letter(c + 'X')) && this->pins[c + (this->home_direction[c] ? 0 : 3)].connected() ) {
678 axes_to_move += ( 1 << c );
679 }
680 }
681
682 // save current actuator position so we can report how far we moved
683 ActuatorCoordinates start_pos{
684 THEKERNEL->robot->actuators[X_AXIS]->get_current_position(),
685 THEKERNEL->robot->actuators[Y_AXIS]->get_current_position(),
686 THEKERNEL->robot->actuators[Z_AXIS]->get_current_position()
687 };
688
689 // Enable the motors
690 THEKERNEL->stepper->turn_enable_pins_on();
691
692 // do the actual homing
693 if(homing_order != 0) {
694 // if an order has been specified do it in the specified order
695 // homing order is 0b00ccbbaa where aa is 0,1,2 to specify the first axis, bb is the second and cc is the third
696 // eg 0b00100001 would be Y X Z, 0b00100100 would be X Y Z
697 for (uint8_t m = homing_order; m != 0; m >>= 2) {
698 int a = (1 << (m & 0x03)); // axis to move
699 if((a & axes_to_move) != 0) {
700 home(a);
701 }
702 // check if on_halt (eg kill)
703 if(THEKERNEL->is_halted()) break;
704 }
705
706 } else {
707 // they all home at the same time
708 home(axes_to_move);
709 }
710
711 // check if on_halt (eg kill)
712 if(THEKERNEL->is_halted()) {
713 if(!THEKERNEL->is_grbl_mode()) {
714 THEKERNEL->streams->printf("Homing cycle aborted by kill\n");
715 }
716 return;
717 }
718
719 // set the last probe position to the actuator units moved during this home
720 THEKERNEL->robot->set_last_probe_position(
721 std::make_tuple(
722 start_pos[0] - THEKERNEL->robot->actuators[0]->get_current_position(),
723 start_pos[1] - THEKERNEL->robot->actuators[1]->get_current_position(),
724 start_pos[2] - THEKERNEL->robot->actuators[2]->get_current_position(),
725 0));
726
727 if(home_all) {
728 // Here's where we would have been if the endstops were perfectly trimmed
729 // NOTE on a rotary delta home_offset is actuator position in degrees when homed and
730 // home_offset is the theta offset for each actuator, so M206 is used to set theta offset for each actuator in degrees
731 float ideal_position[3] = {
732 this->homing_position[X_AXIS] + this->home_offset[X_AXIS],
733 this->homing_position[Y_AXIS] + this->home_offset[Y_AXIS],
734 this->homing_position[Z_AXIS] + this->home_offset[Z_AXIS]
735 };
736
737 bool has_endstop_trim = this->is_delta || this->is_scara;
738 if (has_endstop_trim) {
739 ActuatorCoordinates ideal_actuator_position;
740 THEKERNEL->robot->arm_solution->cartesian_to_actuator(ideal_position, ideal_actuator_position);
741
742 // We are actually not at the ideal position, but a trim away
743 ActuatorCoordinates real_actuator_position = {
744 ideal_actuator_position[X_AXIS] - this->trim_mm[X_AXIS],
745 ideal_actuator_position[Y_AXIS] - this->trim_mm[Y_AXIS],
746 ideal_actuator_position[Z_AXIS] - this->trim_mm[Z_AXIS]
747 };
748
749 float real_position[3];
750 THEKERNEL->robot->arm_solution->actuator_to_cartesian(real_actuator_position, real_position);
751 // Reset the actuator positions to correspond our real position
752 THEKERNEL->robot->reset_axis_position(real_position[0], real_position[1], real_position[2]);
753
754 } else {
755 // without endstop trim, real_position == ideal_position
756 if(is_rdelta) {
757 // with a rotary delta we set the actuators angle then use the FK to calculate the resulting cartesian coordinates
758 ActuatorCoordinates real_actuator_position = {ideal_position[0], ideal_position[1], ideal_position[2]};
759 THEKERNEL->robot->reset_actuator_position(real_actuator_position);
760
761 } else {
762 // Reset the actuator positions to correspond our real position
763 THEKERNEL->robot->reset_axis_position(ideal_position[0], ideal_position[1], ideal_position[2]);
764 }
765 }
766
767 } else {
768 // Zero the ax(i/e)s position, add in the home offset
769 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
770 if ( (axes_to_move >> c) & 1 ) {
771 THEKERNEL->robot->reset_axis_position(this->homing_position[c] + this->home_offset[c], c);
772 }
773 }
774 }
775
776 // on some systems where 0,0 is bed center it is nice to have home goto 0,0 after homing
777 // default is off for cartesian on for deltas
778 if(!is_delta) {
779 // NOTE a rotary delta usually has optical or hall-effect endstops so it is safe to go past them a little bit
780 if(this->move_to_origin_after_home) move_to_origin(axes_to_move);
781 // if limit switches are enabled we must back off endstop after setting home
782 back_off_home(axes_to_move);
783
784 } else if(this->move_to_origin_after_home || this->limit_enable[X_AXIS]) {
785 // deltas are not left at 0,0 because of the trim settings, so move to 0,0 if requested, but we need to back off endstops first
786 // also need to back off endstops if limits are enabled
787 back_off_home(axes_to_move);
788 if(this->move_to_origin_after_home) move_to_origin(axes_to_move);
789 }
790 }
791
792 // Start homing sequences by response to GCode commands
793 void Endstops::on_gcode_received(void *argument)
794 {
795 Gcode *gcode = static_cast<Gcode *>(argument);
796 if ( gcode->has_g && gcode->g == 28) {
797 process_home_command(gcode);
798
799 } else if (gcode->has_m) {
800
801 switch (gcode->m) {
802 case 119: {
803 for (int i = 0; i < 6; ++i) {
804 if(this->pins[i].connected())
805 gcode->stream->printf("%s:%d ", endstop_names[i], this->pins[i].get());
806 }
807 gcode->add_nl = true;
808
809 }
810 break;
811
812 case 206: // M206 - set homing offset
813 if(!is_rdelta) {
814 if (gcode->has_letter('X')) home_offset[0] = gcode->get_value('X');
815 if (gcode->has_letter('Y')) home_offset[1] = gcode->get_value('Y');
816 if (gcode->has_letter('Z')) home_offset[2] = gcode->get_value('Z');
817 gcode->stream->printf("X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
818
819 } else {
820 // set theta offset
821 if (gcode->has_letter('A')) home_offset[0] = gcode->get_value('A');
822 if (gcode->has_letter('B')) home_offset[1] = gcode->get_value('B');
823 if (gcode->has_letter('C')) home_offset[2] = gcode->get_value('C');
824 gcode->stream->printf("Theta offset A %8.5f B %8.5f C %8.5f\n", home_offset[0], home_offset[1], home_offset[2]);
825 }
826 break;
827
828 case 306:
829 if(!is_rdelta) { // Similar to M206 and G92 but sets Homing offsets based on current position
830 float cartesian[3];
831 THEKERNEL->robot->get_axis_position(cartesian); // get actual position from robot
832 if (gcode->has_letter('X')) {
833 home_offset[0] -= (cartesian[X_AXIS] - gcode->get_value('X'));
834 THEKERNEL->robot->reset_axis_position(gcode->get_value('X'), X_AXIS);
835 }
836 if (gcode->has_letter('Y')) {
837 home_offset[1] -= (cartesian[Y_AXIS] - gcode->get_value('Y'));
838 THEKERNEL->robot->reset_axis_position(gcode->get_value('Y'), Y_AXIS);
839 }
840 if (gcode->has_letter('Z')) {
841 home_offset[2] -= (cartesian[Z_AXIS] - gcode->get_value('Z'));
842 THEKERNEL->robot->reset_axis_position(gcode->get_value('Z'), Z_AXIS);
843 }
844
845 gcode->stream->printf("Homing Offset: X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
846
847 } else {
848 // for a rotary delta M306 calibrates the homing angle
849 // by doing M306 A-56.17 it will calculate the M206 A value (the theta offset for actuator A) based on the difference
850 // between what it thinks is the current angle and what the current angle actually is specified by A (ditto for B and C)
851
852 // get the current angle for each actuator, NOTE we only deal with ABC so if there are more than 3 actuators this will probably go wonky
853 ActuatorCoordinates current_angle;
854 for (size_t i = 0; i < THEKERNEL->robot->actuators.size(); i++) {
855 current_angle[i]= THEKERNEL->robot->actuators[i]->get_current_position();
856 }
857
858 //figure out what home_offset needs to be to correct the homing_position
859 if (gcode->has_letter('A')) {
860 float a = gcode->get_value('A'); // what actual angle is
861 home_offset[0] += (current_angle[0] - a);
862 current_angle[0]= a;
863 }
864 if (gcode->has_letter('B')) {
865 float b = gcode->get_value('B');
866 home_offset[1] += (current_angle[1] - b);
867 current_angle[1]= b;
868 }
869 if (gcode->has_letter('C')) {
870 float c = gcode->get_value('C');
871 home_offset[2] += (current_angle[2] - c);
872 current_angle[2]= c;
873 }
874
875 // reset the actuator positions (and machine position accordingly)
876 THEKERNEL->robot->reset_actuator_position(current_angle);
877
878 gcode->stream->printf("Theta Offset: A %8.5f B %8.5f C %8.5f\n", home_offset[0], home_offset[1], home_offset[2]);
879 }
880 break;
881
882 case 500: // save settings
883 case 503: // print settings
884 if(!is_rdelta)
885 gcode->stream->printf(";Home offset (mm):\nM206 X%1.2f Y%1.2f Z%1.2f\n", home_offset[0], home_offset[1], home_offset[2]);
886 else
887 gcode->stream->printf(";Theta offset (degrees):\nM206 A%1.5f B%1.5f C%1.5f\n", home_offset[0], home_offset[1], home_offset[2]);
888
889 if (this->is_delta || this->is_scara) {
890 gcode->stream->printf(";Trim (mm):\nM666 X%1.3f Y%1.3f Z%1.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
891 gcode->stream->printf(";Max Z\nM665 Z%1.3f\n", this->homing_position[2]);
892 }
893 if(saved_position[X_AXIS] != 0 || saved_position[Y_AXIS] != 0) {
894 gcode->stream->printf(";predefined position:\nG28.1 X%1.4f Y%1.4f Z%1.4f\n", saved_position[X_AXIS], saved_position[Y_AXIS], saved_position[Z_AXIS]);
895 }
896 break;
897
898 case 665:
899 if (this->is_delta || this->is_scara) { // M665 - set max gamma/z height
900 float gamma_max = this->homing_position[2];
901 if (gcode->has_letter('Z')) {
902 this->homing_position[2] = gamma_max = gcode->get_value('Z');
903 }
904 gcode->stream->printf("Max Z %8.3f ", gamma_max);
905 gcode->add_nl = true;
906 }
907 break;
908
909 case 666:
910 if(this->is_delta || this->is_scara) { // M666 - set trim for each axis in mm, NB negative mm trim is down
911 if (gcode->has_letter('X')) trim_mm[0] = gcode->get_value('X');
912 if (gcode->has_letter('Y')) trim_mm[1] = gcode->get_value('Y');
913 if (gcode->has_letter('Z')) trim_mm[2] = gcode->get_value('Z');
914
915 // print the current trim values in mm
916 gcode->stream->printf("X: %5.3f Y: %5.3f Z: %5.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
917
918 }
919 break;
920
921 // NOTE this is to test accuracy of lead screws etc.
922 case 1910: {
923 // M1910.0 - move specific number of raw steps
924 // M1910.1 - stop any moves
925 // M1910.2 - move specific number of actuator units (usually mm but is degrees for a rotary delta)
926 if(gcode->subcode == 0 || gcode->subcode == 2) {
927 // Enable the motors
928 THEKERNEL->stepper->turn_enable_pins_on();
929
930 int32_t x = 0, y = 0, z = 0, f = 200 * 16;
931 if (gcode->has_letter('F')) f = gcode->get_value('F');
932
933 if (gcode->has_letter('X')) {
934 float v = gcode->get_value('X');
935 if(gcode->subcode == 2) x = lroundf(v * STEPS_PER_MM(X_AXIS));
936 else x = roundf(v);
937 STEPPER[X_AXIS]->move(x < 0, abs(x), f);
938 }
939 if (gcode->has_letter('Y')) {
940 float v = gcode->get_value('Y');
941 if(gcode->subcode == 2) y = lroundf(v * STEPS_PER_MM(Y_AXIS));
942 else y = roundf(v);
943 STEPPER[Y_AXIS]->move(y < 0, abs(y), f);
944 }
945 if (gcode->has_letter('Z')) {
946 float v = gcode->get_value('Z');
947 if(gcode->subcode == 2) z = lroundf(v * STEPS_PER_MM(Z_AXIS));
948 else z = roundf(v);
949 STEPPER[Z_AXIS]->move(z < 0, abs(z), f);
950 }
951 gcode->stream->printf("Moving X %ld Y %ld Z %ld steps at F %ld steps/sec\n", x, y, z, f);
952
953 } else if(gcode->subcode == 1) {
954 // stop any that are moving
955 for (int i = 0; i < 3; ++i) {
956 if(STEPPER[i]->is_moving()) STEPPER[i]->move(0, 0);
957 }
958 }
959 break;
960 }
961 }
962 }
963 }
964
965 // Called periodically to change the speed to match acceleration
966 void Endstops::acceleration_tick(void)
967 {
968 if(this->status >= NOT_HOMING) return; // nothing to do, only do this when moving for homing sequence
969
970 // foreach stepper that is moving
971 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
972 if( !STEPPER[c]->is_moving() ) continue;
973
974 uint32_t current_rate = STEPPER[c]->get_steps_per_second();
975 uint32_t target_rate = floorf(this->feed_rate[c] * STEPS_PER_MM(c));
976 float acc = (c == Z_AXIS) ? THEKERNEL->planner->get_z_acceleration() : THEKERNEL->planner->get_acceleration();
977 if( current_rate < target_rate ) {
978 uint32_t rate_increase = floorf((acc / THEKERNEL->acceleration_ticks_per_second) * STEPS_PER_MM(c));
979 current_rate = min( target_rate, current_rate + rate_increase );
980 }
981 if( current_rate > target_rate ) { current_rate = target_rate; }
982
983 // steps per second
984 STEPPER[c]->set_speed(current_rate);
985 }
986
987 return;
988 }
989
990 void Endstops::on_get_public_data(void* argument)
991 {
992 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
993
994 if(!pdr->starts_with(endstops_checksum)) return;
995
996 if(pdr->second_element_is(trim_checksum)) {
997 pdr->set_data_ptr(&this->trim_mm);
998 pdr->set_taken();
999
1000 } else if(pdr->second_element_is(home_offset_checksum)) {
1001 pdr->set_data_ptr(&this->home_offset);
1002 pdr->set_taken();
1003
1004 } else if(pdr->second_element_is(saved_position_checksum)) {
1005 pdr->set_data_ptr(&this->saved_position);
1006 pdr->set_taken();
1007
1008 } else if(pdr->second_element_is(get_homing_status_checksum)) {
1009 bool *homing = static_cast<bool *>(pdr->get_data_ptr());
1010 *homing = this->status != NOT_HOMING;
1011 pdr->set_taken();
1012 }
1013 }
1014
1015 void Endstops::on_set_public_data(void* argument)
1016 {
1017 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
1018
1019 if(!pdr->starts_with(endstops_checksum)) return;
1020
1021 if(pdr->second_element_is(trim_checksum)) {
1022 float *t = static_cast<float*>(pdr->get_data_ptr());
1023 this->trim_mm[0] = t[0];
1024 this->trim_mm[1] = t[1];
1025 this->trim_mm[2] = t[2];
1026 pdr->set_taken();
1027
1028 } else if(pdr->second_element_is(home_offset_checksum)) {
1029 float *t = static_cast<float*>(pdr->get_data_ptr());
1030 if(!isnan(t[0])) this->home_offset[0] = t[0];
1031 if(!isnan(t[1])) this->home_offset[1] = t[1];
1032 if(!isnan(t[2])) this->home_offset[2] = t[2];
1033 }
1034 }