Merge branch 'edge' into wait4q
[clinton/Smoothieware.git] / src / modules / robot / Planner.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 using namespace std;
9 #include <vector>
10 #include "libs/nuts_bolts.h"
11 #include "libs/RingBuffer.h"
12 #include "../communication/utils/Gcode.h"
13 #include "libs/Module.h"
14 #include "libs/Kernel.h"
15 #include "Block.h"
16 #include "Planner.h"
17 #include "Player.h"
18
19
20 Planner::Planner(){
21 clear_vector(this->position);
22 clear_vector_double(this->previous_unit_vec);
23 this->previous_nominal_speed = 0.0;
24 this->has_deleted_block = false;
25 }
26
27 void Planner::on_module_loaded(){
28 this->on_config_reload(this);
29 }
30
31 void Planner::on_config_reload(void* argument){
32 this->acceleration = this->kernel->config->value(acceleration_checksum )->by_default(100 )->as_number();
33 this->max_jerk = this->kernel->config->value(max_jerk_checksum )->by_default(100 )->as_number();
34 this->junction_deviation = this->kernel->config->value(junction_deviation_checksum )->by_default(0.05)->as_number();
35 }
36
37
38 // Append a block to the queue, compute it's speed factors
39 void Planner::append_block( int target[], double feed_rate, double distance, double deltas[] ){
40
41 // Stall here if the queue is ful
42 this->kernel->player->wait_for_queue(2);
43
44 Block* block = this->kernel->player->new_block();
45 block->planner = this;
46
47 // Direction bits
48 block->direction_bits = 0;
49 for( int stepper=ALPHA_STEPPER; stepper<=GAMMA_STEPPER; stepper++){
50 if( target[stepper] < position[stepper] ){ block->direction_bits |= (1<<stepper); }
51 }
52
53 // Number of steps for each stepper
54 for( int stepper=ALPHA_STEPPER; stepper<=GAMMA_STEPPER; stepper++){ block->steps[stepper] = labs(target[stepper] - this->position[stepper]); }
55
56 // Max number of steps, for all axes
57 block->steps_event_count = max( block->steps[ALPHA_STEPPER], max( block->steps[BETA_STEPPER], block->steps[GAMMA_STEPPER] ) );
58 //if( block->steps_event_count == 0 ){ this->computing = false; return; }
59
60 block->millimeters = distance;
61 double inverse_millimeters = 0;
62 if( distance > 0 ){ inverse_millimeters = 1.0/distance; }
63
64 // Calculate speed in mm/minute for each axis. No divide by zero due to previous checks.
65 // NOTE: Minimum stepper speed is limited by MINIMUM_STEPS_PER_MINUTE in stepper.c
66 double inverse_minute = feed_rate * inverse_millimeters;
67 if( distance > 0 ){
68 block->nominal_speed = block->millimeters * inverse_minute; // (mm/min) Always > 0
69 block->nominal_rate = ceil(block->steps_event_count * inverse_minute); // (step/min) Always > 0
70 }else{
71 block->nominal_speed = 0;
72 block->nominal_rate = 0;
73 }
74
75 //this->kernel->serial->printf("nom_speed: %f nom_rate: %u step_event_count: %u block->steps_z: %u \r\n", block->nominal_speed, block->nominal_rate, block->steps_event_count, block->steps[2] );
76
77 // Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
78 // average travel per step event changes. For a line along one axis the travel per step event
79 // is equal to the travel/step in the particular axis. For a 45 degree line the steppers of both
80 // axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
81 // To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
82 // specifically for each line to compensate for this phenomenon:
83 // Convert universal acceleration for direction-dependent stepper rate change parameter
84 block->rate_delta = ceil( block->steps_event_count*inverse_millimeters * this->acceleration*60.0 / this->kernel->stepper->acceleration_ticks_per_second ); // (step/min/acceleration_tick)
85
86 // Compute path unit vector
87 double unit_vec[3];
88 unit_vec[X_AXIS] = deltas[X_AXIS]*inverse_millimeters;
89 unit_vec[Y_AXIS] = deltas[Y_AXIS]*inverse_millimeters;
90 unit_vec[Z_AXIS] = deltas[Z_AXIS]*inverse_millimeters;
91
92 // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
93 // Let a circle be tangent to both previous and current path line segments, where the junction
94 // deviation is defined as the distance from the junction to the closest edge of the circle,
95 // colinear with the circle center. The circular segment joining the two paths represents the
96 // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
97 // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
98 // path width or max_jerk in the previous grbl version. This approach does not actually deviate
99 // from path, but used as a robust way to compute cornering speeds, as it takes into account the
100 // nonlinearities of both the junction angle and junction velocity.
101 double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
102
103 if (this->kernel->player->queue.size() > 1 && (this->previous_nominal_speed > 0.0)) {
104 // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
105 // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
106 double cos_theta = - this->previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
107 - this->previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
108 - this->previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
109
110 // Skip and use default max junction speed for 0 degree acute junction.
111 if (cos_theta < 0.95) {
112 vmax_junction = min(this->previous_nominal_speed,block->nominal_speed);
113 // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
114 if (cos_theta > -0.95) {
115 // Compute maximum junction velocity based on maximum acceleration and junction deviation
116 double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
117 vmax_junction = min(vmax_junction,
118 sqrt(this->acceleration*60*60 * this->junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
119 }
120 }
121 }
122 block->max_entry_speed = vmax_junction;
123
124 // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
125 double v_allowable = this->max_allowable_speed(-this->acceleration,0.0,block->millimeters); //TODO: Get from config
126 block->entry_speed = min(vmax_junction, v_allowable);
127
128 // Initialize planner efficiency flags
129 // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
130 // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
131 // the current block and next block junction speeds are guaranteed to always be at their maximum
132 // junction speeds in deceleration and acceleration, respectively. This is due to how the current
133 // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
134 // the reverse and forward planners, the corresponding block junction speed will always be at the
135 // the maximum junction speed and may always be ignored for any speed reduction checks.
136 if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
137 else { block->nominal_length_flag = false; }
138 block->recalculate_flag = true; // Always calculate trapezoid for new block
139
140 // Update previous path unit_vector and nominal speed
141 memcpy(this->previous_unit_vec, unit_vec, sizeof(unit_vec)); // previous_unit_vec[] = unit_vec[]
142 this->previous_nominal_speed = block->nominal_speed;
143
144 // Update current position
145 memcpy(this->position, target, sizeof(int)*3);
146
147 // Math-heavy re-computing of the whole queue to take the new
148 this->recalculate();
149
150 // The block can now be used
151 block->ready();
152
153 }
154
155
156 // Recalculates the motion plan according to the following algorithm:
157 //
158 // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
159 // so that:
160 // a. The junction jerk is within the set limit
161 // b. No speed reduction within one block requires faster deceleration than the one, true constant
162 // acceleration.
163 // 2. Go over every block in chronological order and dial down junction speed reduction values if
164 // a. The speed increase within one block would require faster accelleration than the one, true
165 // constant acceleration.
166 //
167 // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
168 // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
169 // the set limit. Finally it will:
170 //
171 // 3. Recalculate trapezoids for all blocks.
172 //
173 void Planner::recalculate() {
174 //this->kernel->serial->printf("recalculate last: %p, queue size: %d \r\n", this->kernel->player->queue.get_ref( this->kernel->player->queue.size()-1 ), this->kernel->player->queue.size() );
175 this->reverse_pass();
176 this->forward_pass();
177 this->recalculate_trapezoids();
178 }
179
180 // Planner::recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
181 // implements the reverse pass.
182 void Planner::reverse_pass(){
183 // For each block
184 int block_index = this->kernel->player->queue.tail;
185 Block* blocks[3] = {NULL,NULL,NULL};
186
187 while(block_index!=this->kernel->player->queue.head){
188 block_index = this->kernel->player->queue.prev_block_index( block_index );
189 blocks[2] = blocks[1];
190 blocks[1] = blocks[0];
191 blocks[0] = &this->kernel->player->queue.buffer[block_index];
192 if( blocks[1] == NULL ){ continue; }
193 blocks[1]->reverse_pass(blocks[2], blocks[0]);
194 }
195
196 }
197
198 // Planner::recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
199 // implements the forward pass.
200 void Planner::forward_pass() {
201 // For each block
202 int block_index = this->kernel->player->queue.head;
203 Block* blocks[3] = {NULL,NULL,NULL};
204
205 while(block_index!=this->kernel->player->queue.tail){
206 blocks[0] = blocks[1];
207 blocks[1] = blocks[2];
208 blocks[2] = &this->kernel->player->queue.buffer[block_index];
209 if( blocks[0] == NULL ){ continue; }
210 blocks[1]->forward_pass(blocks[0],blocks[2]);
211 block_index = this->kernel->player->queue.next_block_index( block_index );
212 }
213 blocks[2]->forward_pass(blocks[1],NULL);
214
215 }
216
217 // Recalculates the trapezoid speed profiles for flagged blocks in the plan according to the
218 // entry_speed for each junction and the entry_speed of the next junction. Must be called by
219 // planner_recalculate() after updating the blocks. Any recalulate flagged junction will
220 // compute the two adjacent trapezoids to the junction, since the junction speed corresponds
221 // to exit speed and entry speed of one another.
222 void Planner::recalculate_trapezoids() {
223 int block_index = this->kernel->player->queue.head;
224 Block* current;
225 Block* next = NULL;
226
227 while(block_index != this->kernel->player->queue.tail){
228 current = next;
229 next = &this->kernel->player->queue.buffer[block_index];
230 //this->kernel->serial->printf("index:%d current:%p next:%p \r\n", block_index, current, next );
231 if( current ){
232 // Recalculate if current block entry or exit junction speed has changed.
233 if( current->recalculate_flag || next->recalculate_flag ){
234 current->calculate_trapezoid( current->entry_speed/current->nominal_speed, next->entry_speed/current->nominal_speed );
235 current->recalculate_flag = false;
236 }
237 }
238 block_index = this->kernel->player->queue.next_block_index( block_index );
239 }
240
241 // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
242 next->calculate_trapezoid( next->entry_speed/next->nominal_speed, MINIMUM_PLANNER_SPEED/next->nominal_speed); //TODO: Make configuration option
243 next->recalculate_flag = false;
244
245 }
246
247 // Debug function
248 void Planner::dump_queue(){
249 for( int index = 0; index <= this->kernel->player->queue.size()-1; index++ ){
250 if( index > 10 && index < this->kernel->player->queue.size()-10 ){ continue; }
251 this->kernel->serial->printf("block %03d > ", index);
252 this->kernel->player->queue.get_ref(index)->debug(this->kernel);
253 }
254 }
255
256 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
257 // acceleration within the allotted distance.
258 double Planner::max_allowable_speed(double acceleration, double target_velocity, double distance) {
259 return(
260 sqrt(target_velocity*target_velocity-2L*acceleration*60*60*distance) //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
261 );
262 }
263
264