Merge remote-tracking branch 'upstream/edge' into feature/e-endstop
[clinton/Smoothieware.git] / src / modules / robot / Conveyor.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/nuts_bolts.h"
9 #include "libs/RingBuffer.h"
10 #include "../communication/utils/Gcode.h"
11 #include "libs/Module.h"
12 #include "libs/Kernel.h"
13 #include "Timer.h" // mbed.h lib
14 #include "wait_api.h" // mbed.h lib
15 #include "Block.h"
16 #include "Conveyor.h"
17 #include "Planner.h"
18 #include "mri.h"
19 #include "checksumm.h"
20 #include "Config.h"
21 #include "libs/StreamOutputPool.h"
22 #include "ConfigValue.h"
23 #include "StepTicker.h"
24 #include "Robot.h"
25 #include "StepperMotor.h"
26
27 #include <functional>
28 #include <vector>
29
30 #include "mbed.h"
31
32 #define planner_queue_size_checksum CHECKSUM("planner_queue_size")
33 #define queue_delay_time_ms_checksum CHECKSUM("queue_delay_time_ms")
34
35 /*
36 * The conveyor holds the queue of blocks, takes care of creating them, and starting the executing chain of blocks
37 *
38 * The Queue is implemented as a ringbuffer- with a twist
39 *
40 * Since delete() is not thread-safe, we must marshall deletable items out of ISR context
41 *
42 * To do this, we have implmented a *double* ringbuffer- two ringbuffers sharing the same ring, and one index pointer
43 *
44 * as in regular ringbuffers, HEAD always points to a clean, free block. We are free to prepare it as we see fit, at our leisure.
45 * When the block is fully prepared, we increment the head pointer, and from that point we must not touch it anymore.
46 *
47 * also, as in regular ringbuffers, we can 'use' the TAIL block, and increment tail pointer when we're finished with it
48 *
49 * Both of these are implemented here- see queue_head_block() (where head is pushed) and on_idle() (where tail is consumed)
50 *
51 * The double ring is implemented by adding a third index pointer that lives in between head and tail. We call it isr_tail_i.
52 *
53 * in ISR context, we use HEAD as the head pointer, and isr_tail_i as the tail pointer.
54 * As HEAD increments, ISR context can consume the new blocks which appear, and when we're finished with a block, we increment isr_tail_i to signal that they're finished, and ready to be cleaned
55 *
56 * in IDLE context, we use isr_tail_i as the head pointer, and TAIL as the tail pointer.
57 * When isr_tail_i != tail, we clean up the tail block (performing ISR-unsafe delete operations) and consume it (increment tail pointer), returning it to the pool of clean, unused blocks which HEAD is allowed to prepare for queueing
58 *
59 * Thus, our two ringbuffers exist sharing the one ring of blocks, and we safely marshall used blocks from ISR context to IDLE context for safe cleanup.
60 */
61
62
63 Conveyor::Conveyor()
64 {
65 running = false;
66 halted = false;
67 allow_fetch = false;
68 flush= false;
69 }
70
71 void Conveyor::on_module_loaded()
72 {
73 register_for_event(ON_IDLE);
74 register_for_event(ON_HALT);
75
76 // Attach to the end_of_move stepper event
77 //THEKERNEL->step_ticker->finished_fnc = std::bind( &Conveyor::all_moves_finished, this);
78 queue_size = THEKERNEL->config->value(planner_queue_size_checksum)->by_default(32)->as_number();
79 queue_delay_time_ms = THEKERNEL->config->value(queue_delay_time_ms_checksum)->by_default(100)->as_number();
80 }
81
82 // we allocate the queue here after config is completed so we do not run out of memory during config
83 void Conveyor::start(uint8_t n)
84 {
85 Block::n_actuators= n; // set the number of motors which determines how big the tick info vector is
86 queue.resize(queue_size);
87 running = true;
88 }
89
90 void Conveyor::on_halt(void* argument)
91 {
92 if(argument == nullptr) {
93 halted = true;
94 flush_queue();
95 } else {
96 halted = false;
97 }
98 }
99
100 void Conveyor::on_idle(void*)
101 {
102 if (running) {
103 check_queue();
104 }
105
106 // we can garbage collect the block queue here
107 if (queue.tail_i != queue.isr_tail_i) {
108 if (queue.is_empty()) {
109 __debugbreak();
110 } else {
111 // Cleanly delete block
112 Block* block = queue.tail_ref();
113 //block->debug();
114 block->clear();
115 queue.consume_tail();
116 }
117 }
118 }
119
120 // see if we are idle
121 // this checks the block queue is empty, and that the step queue is empty and
122 // checks that all motors are no longer moving
123 bool Conveyor::is_idle() const
124 {
125 if(queue.is_empty()) {
126 for(auto &a : THEROBOT->actuators) {
127 if(a->is_moving()) return false;
128 }
129 return true;
130 }
131
132 return false;
133 }
134
135 // Wait for the queue to be empty and for all the jobs to finish in step ticker
136 void Conveyor::wait_for_idle(bool wait_for_motors)
137 {
138 // wait for the job queue to empty, this means cycling everything on the block queue into the job queue
139 // forcing them to be jobs
140 running = false; // stops on_idle calling check_queue
141 while (!queue.is_empty()) {
142 check_queue(true); // forces queue to be made available to stepticker
143 THEKERNEL->call_event(ON_IDLE, this);
144 }
145
146 if(wait_for_motors) {
147 // now we wait for all motors to stop moving
148 while(!is_idle()) {
149 THEKERNEL->call_event(ON_IDLE, this);
150 }
151 }
152
153 running = true;
154 // returning now means that everything has totally finished
155 }
156
157 /*
158 * push the pre-prepared head block onto the queue
159 */
160 void Conveyor::queue_head_block()
161 {
162 // upstream caller will block on this until there is room in the queue
163 while (queue.is_full() && !halted) {
164 //check_queue();
165 THEKERNEL->call_event(ON_IDLE, this); // will call check_queue();
166 }
167
168 if(halted) {
169 // we do not want to stick more stuff on the queue if we are in halt state
170 // clear and release the block on the head
171 queue.head_ref()->clear();
172 return; // if we got a halt then we are done here
173 }
174
175 queue.produce_head();
176
177 // not sure if this is the correct place but we need to turn on the motors if they were not already on
178 THEKERNEL->call_event(ON_ENABLE, (void*)1); // turn all enable pins on
179 }
180
181 void Conveyor::check_queue(bool force)
182 {
183 static uint32_t last_time_check = us_ticker_read();
184
185 if(queue.is_empty()) {
186 allow_fetch = false;
187 last_time_check = us_ticker_read(); // reset timeout
188 return;
189 }
190
191 // if we have been waiting for more than the required waiting time and the queue is not empty, or the queue is full, then allow stepticker to get the tail
192 // we do this to allow an idle system to pre load the queue a bit so the first few blocks run smoothly.
193 if(force || queue.is_full() || (us_ticker_read() - last_time_check) >= (queue_delay_time_ms * 1000)) {
194 last_time_check = us_ticker_read(); // reset timeout
195 if(!flush) allow_fetch = true;
196 return;
197 }
198 }
199
200 // called from step ticker ISR
201 bool Conveyor::get_next_block(Block **block)
202 {
203 // mark entire queue for GC if flush flag is asserted
204 if (flush){
205 while (queue.isr_tail_i != queue.head_i) {
206 queue.isr_tail_i = queue.next(queue.isr_tail_i);
207 }
208 }
209
210 // default the feerate to zero if there is no block available
211 this->current_feedrate= 0;
212
213 if(halted || queue.isr_tail_i == queue.head_i) return false; // we do not have anything to give
214
215 // wait for queue to fill up, optimizes planning
216 if(!allow_fetch) return false;
217
218 Block *b= queue.item_ref(queue.isr_tail_i);
219 // we cannot use this now if it is being updated
220 if(!b->locked) {
221 if(!b->is_ready) __debugbreak(); // should never happen
222
223 b->is_ticking= true;
224 b->recalculate_flag= false;
225 this->current_feedrate= b->nominal_speed;
226 *block= b;
227 return true;
228 }
229
230 return false;
231 }
232
233 // called from step ticker ISR when block is finished, do not do anything slow here
234 void Conveyor::block_finished()
235 {
236 // we increment the isr_tail_i so we can get the next block
237 queue.isr_tail_i= queue.next(queue.isr_tail_i);
238 }
239
240 /*
241 In most cases this will not totally flush the queue, as when streaming
242 gcode there is one stalled waiting for space in the queue, in
243 queue_head_block() so after this flush, once main_loop runs again one more
244 gcode gets stuck in the queue, this is bad. Current work around is to call
245 this when the queue in not full and streaming has stopped
246 */
247 void Conveyor::flush_queue()
248 {
249 allow_fetch = false;
250 flush= true;
251
252 // TODO force deceleration of last block
253
254 // now wait until the block queue has been flushed
255 wait_for_idle(false);
256
257 flush= false;
258 }
259
260 // Debug function
261 void Conveyor::dump_queue()
262 {
263 for (unsigned int index = queue.tail_i, i = 0; true; index = queue.next(index), i++ ) {
264 THEKERNEL->streams->printf("block %03d > ", i);
265 queue.item_ref(index)->debug();
266
267 if (index == queue.head_i)
268 break;
269 }
270 }
271
272 // feels hacky, but apparently the way to do it
273 #include "HeapRing.cpp"
274 template class HeapRing<Block>;