changes as requested
[clinton/Smoothieware.git] / src / modules / tools / endstops / Endstops.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "modules/communication/utils/Gcode.h"
11 #include "modules/robot/Conveyor.h"
12 #include "modules/robot/ActuatorCoordinates.h"
13 #include "Endstops.h"
14 #include "libs/nuts_bolts.h"
15 #include "libs/Pin.h"
16 #include "libs/StepperMotor.h"
17 #include "wait_api.h" // mbed.h lib
18 #include "Robot.h"
19 #include "Config.h"
20 #include "SlowTicker.h"
21 #include "Planner.h"
22 #include "checksumm.h"
23 #include "utils.h"
24 #include "ConfigValue.h"
25 #include "libs/StreamOutput.h"
26 #include "PublicDataRequest.h"
27 #include "EndstopsPublicAccess.h"
28 #include "StreamOutputPool.h"
29 #include "StepTicker.h"
30 #include "BaseSolution.h"
31 #include "SerialMessage.h"
32
33 #include <ctype.h>
34 #include <algorithm>
35
36 // OLD deprecated syntax
37 #define endstops_module_enable_checksum CHECKSUM("endstops_enable")
38
39 #define ENDSTOP_CHECKSUMS(X) { \
40 CHECKSUM(X "_min_endstop"), \
41 CHECKSUM(X "_max_endstop"), \
42 CHECKSUM(X "_max_travel"), \
43 CHECKSUM(X "_fast_homing_rate_mm_s"), \
44 CHECKSUM(X "_slow_homing_rate_mm_s"), \
45 CHECKSUM(X "_homing_retract_mm"), \
46 CHECKSUM(X "_homing_direction"), \
47 CHECKSUM(X "_min"), \
48 CHECKSUM(X "_max"), \
49 CHECKSUM(X "_limit_enable"), \
50 }
51
52 // checksum defns
53 enum DEFNS {MIN_PIN, MAX_PIN, MAX_TRAVEL, FAST_RATE, SLOW_RATE, RETRACT, DIRECTION, MIN, MAX, LIMIT, NDEFNS};
54
55 // global config settings
56 #define corexy_homing_checksum CHECKSUM("corexy_homing")
57 #define delta_homing_checksum CHECKSUM("delta_homing")
58 #define rdelta_homing_checksum CHECKSUM("rdelta_homing")
59 #define scara_homing_checksum CHECKSUM("scara_homing")
60
61 #define endstop_debounce_count_checksum CHECKSUM("endstop_debounce_count")
62 #define endstop_debounce_ms_checksum CHECKSUM("endstop_debounce_ms")
63
64 #define home_z_first_checksum CHECKSUM("home_z_first")
65 #define homing_order_checksum CHECKSUM("homing_order")
66 #define move_to_origin_checksum CHECKSUM("move_to_origin_after_home")
67
68 #define alpha_trim_checksum CHECKSUM("alpha_trim_mm")
69 #define beta_trim_checksum CHECKSUM("beta_trim_mm")
70 #define gamma_trim_checksum CHECKSUM("gamma_trim_mm")
71
72 // new config syntax
73 // endstop.xmin.enable true
74 // endstop.xmin.pin 1.29
75 // endstop.xmin.axis X
76 // endstop.xmin.homing_direction home_to_min
77
78 #define endstop_checksum CHECKSUM("endstop")
79 #define enable_checksum CHECKSUM("enable")
80 #define pin_checksum CHECKSUM("pin")
81 #define axis_checksum CHECKSUM("axis")
82 #define direction_checksum CHECKSUM("homing_direction")
83 #define position_checksum CHECKSUM("homing_position")
84 #define fast_rate_checksum CHECKSUM("fast_rate")
85 #define slow_rate_checksum CHECKSUM("slow_rate")
86 #define max_travel_checksum CHECKSUM("max_travel")
87 #define retract_checksum CHECKSUM("retract")
88 #define limit_checksum CHECKSUM("limit_enable")
89
90 #define STEPPER THEROBOT->actuators
91 #define STEPS_PER_MM(a) (STEPPER[a]->get_steps_per_mm())
92
93
94
95 // Homing States
96 enum STATES {
97 MOVING_TO_ENDSTOP_FAST, // homing move
98 MOVING_TO_ENDSTOP_SLOW, // homing move
99 MOVING_BACK, // homing move
100 NOT_HOMING,
101 BACK_OFF_HOME,
102 MOVE_TO_ORIGIN,
103 LIMIT_TRIGGERED
104 };
105
106 Endstops::Endstops()
107 {
108 this->status = NOT_HOMING;
109 }
110
111 void Endstops::on_module_loaded()
112 {
113 // Do not do anything if not enabled or if no pins are defined
114 if (THEKERNEL->config->value( endstops_module_enable_checksum )->by_default(false)->as_bool()) {
115 if(!load_old_config()) {
116 delete this;
117 return;
118 }
119
120 }else{
121 // check for new config syntax
122 if(!load_config()) {
123 delete this;
124 return;
125 }
126 }
127
128 register_for_event(ON_GCODE_RECEIVED);
129 register_for_event(ON_GET_PUBLIC_DATA);
130 register_for_event(ON_SET_PUBLIC_DATA);
131
132
133 THEKERNEL->slow_ticker->attach(1000, this, &Endstops::read_endstops);
134 }
135
136 // Get config using old deprecated syntax Does not support ABC
137 bool Endstops::load_old_config()
138 {
139 uint16_t const checksums[][NDEFNS] = {
140 ENDSTOP_CHECKSUMS("alpha"), // X
141 ENDSTOP_CHECKSUMS("beta"), // Y
142 ENDSTOP_CHECKSUMS("gamma") // Z
143 };
144
145 bool limit_enabled= false;
146 for (int i = X_AXIS; i <= Z_AXIS; ++i) { // X_AXIS to Z_AXIS
147 homing_info_t hinfo;
148
149 // init homing struct
150 hinfo.home_offset= 0;
151 hinfo.homed= false;
152 hinfo.axis= 'X'+i;
153 hinfo.axis_index= i;
154 hinfo.pin_info= nullptr;
155
156 // rates in mm/sec
157 hinfo.fast_rate= THEKERNEL->config->value(checksums[i][FAST_RATE])->by_default(100)->as_number();
158 hinfo.slow_rate= THEKERNEL->config->value(checksums[i][SLOW_RATE])->by_default(10)->as_number();
159
160 // retract in mm
161 hinfo.retract= THEKERNEL->config->value(checksums[i][RETRACT])->by_default(5)->as_number();
162
163 // get homing direction and convert to boolean where true is home to min, and false is home to max
164 hinfo.home_direction= THEKERNEL->config->value(checksums[i][DIRECTION])->by_default("home_to_min")->as_string() != "home_to_max";
165
166 // homing cartesian position
167 hinfo.homing_position= hinfo.home_direction ? THEKERNEL->config->value(checksums[i][MIN])->by_default(0)->as_number() : THEKERNEL->config->value(checksums[i][MAX])->by_default(200)->as_number();
168
169 // used to set maximum movement on homing, set by alpha_max_travel if defined
170 hinfo.max_travel= THEKERNEL->config->value(checksums[i][MAX_TRAVEL])->by_default(500)->as_number();
171
172
173 // pin definitions for endstop pins
174 for (int j = MIN_PIN; j <= MAX_PIN; ++j) {
175 endstop_info_t *info= new endstop_info_t;
176 info->pin.from_string(THEKERNEL->config->value(checksums[i][j])->by_default("nc" )->as_string())->as_input();
177 if(!info->pin.connected()){
178 // no pin defined try next
179 delete info;
180 continue;
181 }
182
183 // enter into endstop array
184 endstops.push_back(info);
185
186 // add index to the homing struct if this is the one used for homing
187 if((hinfo.home_direction && j == MIN_PIN) || (!hinfo.home_direction && j == MAX_PIN)) hinfo.pin_info= info;
188
189 // init struct
190 info->debounce= 0;
191 info->axis= 'X'+i;
192 info->axis_index= i;
193
194 // limits enabled
195 info->limit_enable= THEKERNEL->config->value(checksums[i][LIMIT])->by_default(false)->as_bool();
196 limit_enabled |= info->limit_enable;
197 }
198
199 homing_axis.push_back(hinfo);
200 }
201
202 // if no pins defined then disable the module
203 if(endstops.empty()) return false;
204
205 get_global_configs();
206
207 if(limit_enabled) {
208 register_for_event(ON_IDLE);
209 }
210
211 // sanity check for deltas
212 /*
213 if(this->is_delta || this->is_rdelta) {
214 // some things must be the same or they will die, so force it here to avoid config errors
215 this->fast_rates[1] = this->fast_rates[2] = this->fast_rates[0];
216 this->slow_rates[1] = this->slow_rates[2] = this->slow_rates[0];
217 this->retract_mm[1] = this->retract_mm[2] = this->retract_mm[0];
218 this->home_direction[1] = this->home_direction[2] = this->home_direction[0];
219 // NOTE homing_position for rdelta is the angle of the actuator not the cartesian position
220 if(!this->is_rdelta) this->homing_position[0] = this->homing_position[1] = 0;
221 }
222 */
223
224 return true;
225 }
226
227 // Get config using new syntax supports ABC
228 bool Endstops::load_config()
229 {
230 bool limit_enabled= false;
231
232 std::array<homing_info_t, k_max_actuators> temp_axis_array; // needs to be at least XYZ, but allow for ABC
233 {
234 homing_info_t t;
235 t.axis= 0;
236 t.axis_index= 0;
237 t.pin_info= nullptr;
238
239 temp_axis_array.fill(t);
240 }
241
242 // iterate over all endstop.*.*
243 std::vector<uint16_t> modules;
244 THEKERNEL->config->get_module_list(&modules, endstop_checksum);
245 for(auto cs : modules ) {
246 if(!THEKERNEL->config->value(endstop_checksum, cs, enable_checksum )->as_bool()) continue;
247
248 endstop_info_t *pin_info= new endstop_info_t;
249 pin_info->pin.from_string(THEKERNEL->config->value(endstop_checksum, cs, pin_checksum)->by_default("nc" )->as_string())->as_input();
250 if(!pin_info->pin.connected()){
251 // no pin defined try next
252 delete pin_info;
253 continue;
254 }
255
256 string axis= THEKERNEL->config->value(endstop_checksum, cs, axis_checksum)->by_default("")->as_string();
257 if(axis.empty()){
258 // axis is required
259 delete pin_info;
260 continue;
261 }
262
263 size_t i;
264 switch(toupper(axis[0])) {
265 case 'X': i= X_AXIS; break;
266 case 'Y': i= Y_AXIS; break;
267 case 'Z': i= Z_AXIS; break;
268 case 'A': i= A_AXIS; break;
269 case 'B': i= B_AXIS; break;
270 case 'C': i= C_AXIS; break;
271 default: // not a recognized axis
272 delete pin_info;
273 continue;
274 }
275
276 // init pin struct
277 pin_info->debounce= 0;
278 pin_info->axis= toupper(axis[0]);
279 pin_info->axis_index= i;
280
281 // are limits enabled
282 pin_info->limit_enable= THEKERNEL->config->value(endstop_checksum, cs, limit_checksum)->by_default(false)->as_bool();
283 limit_enabled |= pin_info->limit_enable;
284
285 // enter into endstop array
286 endstops.push_back(pin_info);
287
288 // check we are not going above the number of defined actuators/axis
289 if(i >= k_max_actuators) {
290 // too many axis we only have configured k_max_actuators
291 continue;
292 }
293
294 // if set to none it means not used for homing (maybe limit only) so do not add to the homing array
295 string direction= THEKERNEL->config->value(endstop_checksum, cs, direction_checksum)->by_default("none")->as_string();
296 if(direction == "none") {
297 continue;
298 }
299
300 // setup the homing array
301 homing_info_t hinfo;
302
303 // init homing struct
304 hinfo.home_offset= 0;
305 hinfo.homed= false;
306 hinfo.axis= toupper(axis[0]);
307 hinfo.axis_index= i;
308 hinfo.pin_info= pin_info;
309
310 // rates in mm/sec
311 hinfo.fast_rate= THEKERNEL->config->value(endstop_checksum, cs, fast_rate_checksum)->by_default(100)->as_number();
312 hinfo.slow_rate= THEKERNEL->config->value(endstop_checksum, cs, slow_rate_checksum)->by_default(10)->as_number();
313
314 // retract in mm
315 hinfo.retract= THEKERNEL->config->value(endstop_checksum, cs, retract_checksum)->by_default(5)->as_number();
316
317 // homing direction and convert to boolean where true is home to min, and false is home to max
318 hinfo.home_direction= direction == "home_to_min";
319
320 // homing cartesian position
321 hinfo.homing_position= THEKERNEL->config->value(endstop_checksum, cs, position_checksum)->by_default(hinfo.home_direction ? 0 : 200)->as_number();
322
323 // used to set maximum movement on homing, set by max_travel if defined
324 hinfo.max_travel= THEKERNEL->config->value(endstop_checksum, cs, max_travel_checksum)->by_default(500)->as_number();
325
326 // stick into array in correct place
327 temp_axis_array[hinfo.axis_index]= hinfo;
328 }
329
330 // if no pins defined then disable the module
331 if(endstops.empty()) return false;
332
333 // copy to the homing_axis array
334 for (size_t i = 0; i < temp_axis_array.size(); ++i) {
335 if(temp_axis_array[i].axis == 0) {
336 // was not configured above, if it is XYZ then we need to force a dummy entry
337 if(i <= Z_AXIS) {
338 homing_info_t t;
339 t.axis= 'X' + i;
340 t.axis_index= i;
341 t.pin_info= nullptr; // this tells it that it cannot be used for homing
342 homing_axis.push_back(t);
343 }
344
345 }else{
346 homing_axis.push_back(temp_axis_array[i]);
347 }
348 }
349
350 // sets some endstop global configs applicable to all endstops
351 get_global_configs();
352
353 if(limit_enabled) {
354 register_for_event(ON_IDLE);
355 }
356
357 return true;
358 }
359
360 void Endstops::get_global_configs()
361 {
362 // NOTE the debounce count is in milliseconds so probably does not need to beset anymore
363 this->debounce_ms= THEKERNEL->config->value(endstop_debounce_ms_checksum)->by_default(0)->as_number();
364 this->debounce_count= THEKERNEL->config->value(endstop_debounce_count_checksum)->by_default(100)->as_number();
365
366 this->is_corexy= THEKERNEL->config->value(corexy_homing_checksum)->by_default(false)->as_bool();
367 this->is_delta= THEKERNEL->config->value(delta_homing_checksum)->by_default(false)->as_bool();
368 this->is_rdelta= THEKERNEL->config->value(rdelta_homing_checksum)->by_default(false)->as_bool();
369 this->is_scara= THEKERNEL->config->value(scara_homing_checksum)->by_default(false)->as_bool();
370
371 this->home_z_first= THEKERNEL->config->value(home_z_first_checksum)->by_default(false)->as_bool();
372
373 this->trim_mm[0] = THEKERNEL->config->value(alpha_trim_checksum)->by_default(0)->as_number();
374 this->trim_mm[1] = THEKERNEL->config->value(beta_trim_checksum)->by_default(0)->as_number();
375 this->trim_mm[2] = THEKERNEL->config->value(gamma_trim_checksum)->by_default(0)->as_number();
376
377 // see if an order has been specified, must be three or more characters, XYZABC or ABYXZ etc
378 string order = THEKERNEL->config->value(homing_order_checksum)->by_default("")->as_string();
379 this->homing_order = 0;
380 if(order.size() >= 3 && order.size() <= homing_axis.size() && !(this->is_delta || this->is_rdelta)) {
381 int shift = 0;
382 for(auto c : order) {
383 char n= toupper(c);
384 uint32_t i = n >= 'X' ? n - 'X' : n - 'A' + 3;
385 i += 1; // So X is 1
386 if(i > 6) { // bad value
387 this->homing_order = 0;
388 break;
389 }
390 homing_order |= (i << shift);
391 shift += 3;
392 }
393 }
394
395 // set to true by default for deltas due to trim, false on cartesians
396 this->move_to_origin_after_home = THEKERNEL->config->value(move_to_origin_checksum)->by_default(is_delta)->as_bool();
397 }
398
399 bool Endstops::debounced_get(Pin *pin)
400 {
401 if(pin == nullptr) return false;
402 uint8_t debounce = 0;
403 while(pin->get()) {
404 if ( ++debounce >= this->debounce_count ) {
405 // pin triggered
406 return true;
407 }
408 }
409 return false;
410 }
411
412 // only called if limits are enabled
413 void Endstops::on_idle(void *argument)
414 {
415 if(this->status == LIMIT_TRIGGERED) {
416 // if we were in limit triggered see if it has been cleared
417 for(auto& i : endstops) {
418 if(i->limit_enable) {
419 if(i->pin.get()) {
420 // still triggered, so exit
421 i->debounce = 0;
422 return;
423 }
424
425 if(i->debounce++ > debounce_count) { // can use less as it calls on_idle in between
426 // clear the state
427 this->status = NOT_HOMING;
428 }
429 }
430 }
431 return;
432
433 } else if(this->status != NOT_HOMING) {
434 // don't check while homing
435 return;
436 }
437
438 for(auto& i : endstops) {
439 if(i->limit_enable && STEPPER[i->axis_index]->is_moving()) {
440 // check min and max endstops
441 if(debounced_get(&i->pin)) {
442 // endstop triggered
443 THEKERNEL->streams->printf("Limit switch %c was hit - reset or M999 required\n", i->axis);
444 this->status = LIMIT_TRIGGERED;
445 i->debounce= 0;
446 // disables heaters and motors, ignores incoming Gcode and flushes block queue
447 THEKERNEL->call_event(ON_HALT, nullptr);
448 return;
449 }
450 }
451 }
452 }
453
454 // if limit switches are enabled, then we must move off of the endstop otherwise we won't be able to move
455 // checks if triggered and only backs off if triggered
456 void Endstops::back_off_home(axis_bitmap_t axis)
457 {
458 std::vector<std::pair<char, float>> params;
459 this->status = BACK_OFF_HOME;
460
461 float slow_rate= NAN; // default mm/sec
462
463 // these are handled differently
464 if(is_delta) {
465 // Move off of the endstop using a regular relative move in Z only
466 params.push_back({'Z', homing_axis[Z_AXIS].retract * (homing_axis[Z_AXIS].home_direction ? 1 : -1)});
467 slow_rate= homing_axis[Z_AXIS].slow_rate;
468
469 } else {
470 // cartesians, concatenate all the moves we need to do into one gcode
471 for( auto& e : homing_axis) {
472 if(!axis[e.axis_index]) continue; // only for axes we asked to move
473
474 // if not triggered no need to move off
475 if(e.pin_info != nullptr && e.pin_info->limit_enable && debounced_get(&e.pin_info->pin)) {
476 char ax= e.axis;
477 params.push_back({ax, e.retract * (e.home_direction ? 1 : -1)});
478 // select slowest of them all
479 slow_rate= isnan(slow_rate) ? e.slow_rate : std::min(slow_rate, e.slow_rate);
480 }
481 }
482 }
483
484 if(!params.empty()) {
485 // Move off of the endstop using a regular relative move
486 params.insert(params.begin(), {'G', 0});
487 // use X slow rate to move, Z should have a max speed set anyway
488 params.push_back({'F', slow_rate * 60.0F});
489 char gcode_buf[64];
490 append_parameters(gcode_buf, params, sizeof(gcode_buf));
491 Gcode gc(gcode_buf, &(StreamOutput::NullStream));
492 THEROBOT->push_state();
493 THEROBOT->inch_mode = false; // needs to be in mm
494 THEROBOT->absolute_mode = false; // needs to be relative mode
495 THEROBOT->on_gcode_received(&gc); // send to robot directly
496 // Wait for above to finish
497 THECONVEYOR->wait_for_idle();
498 THEROBOT->pop_state();
499 }
500
501 this->status = NOT_HOMING;
502 }
503
504 // If enabled will move the head to 0,0 after homing, but only if X and Y were set to home
505 void Endstops::move_to_origin(axis_bitmap_t axis)
506 {
507 if(!is_delta && (!axis[X_AXIS] || !axis[Y_AXIS])) return; // ignore if X and Y not homing, unless delta
508
509 // Do we need to check if we are already at 0,0? probably not as the G0 will not do anything if we are
510 // float pos[3]; THEROBOT->get_axis_position(pos); if(pos[0] == 0 && pos[1] == 0) return;
511
512 this->status = MOVE_TO_ORIGIN;
513 // Move to center using a regular move, use slower of X and Y fast rate
514 //float rate = std::min(this->fast_rates[0], this->fast_rates[1]) * 60.0F;
515 char buf[32];
516 THEROBOT->push_state();
517 THEROBOT->inch_mode = false; // needs to be in mm
518 THEROBOT->absolute_mode = true;
519 //snprintf(buf, sizeof(buf), "G53 G0 X0 Y0 F%1.4f", rate); // must use machine coordinates in case G92 or WCS is in effect
520 snprintf(buf, sizeof(buf), "G53 G0 X0 Y0"); // must use machine coordinates in case G92 or WCS is in effect
521 struct SerialMessage message;
522 message.message = buf;
523 message.stream = &(StreamOutput::NullStream);
524 THEKERNEL->call_event(ON_CONSOLE_LINE_RECEIVED, &message ); // as it is a multi G code command
525 // Wait for above to finish
526 THECONVEYOR->wait_for_idle();
527 THEROBOT->pop_state();
528 this->status = NOT_HOMING;
529 }
530
531 // Called every millisecond in an ISR
532 uint32_t Endstops::read_endstops(uint32_t dummy)
533 {
534 if(this->status != MOVING_TO_ENDSTOP_SLOW && this->status != MOVING_TO_ENDSTOP_FAST) return 0; // not doing anything we need to monitor for
535
536 // check each homing endstop
537 for(auto& e : homing_axis) { // check all axis homing endstops
538 if(e.pin_info == nullptr) continue; // ignore if not a homing endstop
539 int m= e.axis_index;
540
541 // for corexy homing in X or Y we must only check the associated endstop, works as we only home one axis at a time for corexy
542 if(is_corexy && (m == X_AXIS || m == Y_AXIS) && !axis_to_home[m]) continue;
543
544 if(STEPPER[m]->is_moving()) {
545 // if it is moving then we check the associated endstop, and debounce it
546 if(e.pin_info->pin.get()) {
547 if(e.pin_info->debounce < debounce_ms) {
548 e.pin_info->debounce++;
549
550 } else {
551 if(is_corexy && (m == X_AXIS || m == Y_AXIS)) {
552 // corexy when moving in X or Y we need to stop both the X and Y motors
553 STEPPER[X_AXIS]->stop_moving();
554 STEPPER[Y_AXIS]->stop_moving();
555
556 }else{
557 // we signal the motor to stop, which will preempt any moves on that axis
558 STEPPER[m]->stop_moving();
559 }
560 }
561
562 } else {
563 // The endstop was not hit yet
564 e.pin_info->debounce= 0;
565 }
566 }
567 }
568
569 return 0;
570 }
571
572 void Endstops::home_xy()
573 {
574 if(axis_to_home[X_AXIS] && axis_to_home[Y_AXIS]) {
575 // Home XY first so as not to slow them down by homing Z at the same time
576 float delta[3] {homing_axis[X_AXIS].max_travel, homing_axis[Y_AXIS].max_travel, 0};
577 if(homing_axis[X_AXIS].home_direction) delta[X_AXIS]= -delta[X_AXIS];
578 if(homing_axis[Y_AXIS].home_direction) delta[Y_AXIS]= -delta[Y_AXIS];
579 float feed_rate = std::min(homing_axis[X_AXIS].fast_rate, homing_axis[Y_AXIS].fast_rate);
580 THEROBOT->delta_move(delta, feed_rate, 3);
581
582 } else if(axis_to_home[X_AXIS]) {
583 // now home X only
584 float delta[3] {homing_axis[X_AXIS].max_travel, 0, 0};
585 if(homing_axis[X_AXIS].home_direction) delta[X_AXIS]= -delta[X_AXIS];
586 THEROBOT->delta_move(delta, homing_axis[X_AXIS].fast_rate, 3);
587
588 } else if(axis_to_home[Y_AXIS]) {
589 // now home Y only
590 float delta[3] {0, homing_axis[Y_AXIS].max_travel, 0};
591 if(homing_axis[Y_AXIS].home_direction) delta[Y_AXIS]= -delta[Y_AXIS];
592 THEROBOT->delta_move(delta, homing_axis[Y_AXIS].fast_rate, 3);
593 }
594
595 // Wait for axis to have homed
596 THECONVEYOR->wait_for_idle();
597 }
598
599 void Endstops::home(axis_bitmap_t a)
600 {
601 // reset debounce counts for all endstops
602 for(auto& e : endstops) {
603 e->debounce= 0;
604 }
605
606 if (is_scara) {
607 THEROBOT->disable_arm_solution = true; // Polar bots has to home in the actuator space. Arm solution disabled.
608 }
609
610 this->axis_to_home= a;
611
612 // Start moving the axes to the origin
613 this->status = MOVING_TO_ENDSTOP_FAST;
614
615 THEROBOT->disable_segmentation= true; // we must disable segmentation as this won't work with it enabled
616
617 if(!home_z_first) home_xy();
618
619 if(axis_to_home[Z_AXIS]) {
620 // now home z
621 float delta[3] {0, 0, homing_axis[Z_AXIS].max_travel}; // we go the max z
622 if(homing_axis[Z_AXIS].home_direction) delta[Z_AXIS]= -delta[Z_AXIS];
623 THEROBOT->delta_move(delta, homing_axis[Z_AXIS].fast_rate, 3);
624 // wait for Z
625 THECONVEYOR->wait_for_idle();
626 }
627
628 if(home_z_first) home_xy();
629
630 // potentially home A B and C individually
631 if(homing_axis.size() > 3){
632 for (size_t i = A_AXIS; i < homing_axis.size(); ++i) {
633 if(axis_to_home[i]) {
634 // now home A B or C
635 float delta[i+1];
636 for (size_t j = 0; j <= i; ++j) delta[j]= 0;
637 delta[i]= homing_axis[i].max_travel; // we go the max
638 if(homing_axis[i].home_direction) delta[i]= -delta[i];
639 THEROBOT->delta_move(delta, homing_axis[i].fast_rate, i+1);
640 // wait for it
641 THECONVEYOR->wait_for_idle();
642 }
643 }
644 }
645
646
647 // TODO: should check that the endstops were hit and it did not stop short for some reason
648 // we did not complete movement the full distance if we hit the endstops
649 // TODO Maybe only reset axis involved in the homing cycle
650 // Only for non polar bots
651 if (!is_scara) {
652 THEROBOT->reset_position_from_current_actuator_position();
653 }
654
655 // Move back a small distance for all homing axis
656 this->status = MOVING_BACK;
657 float delta[homing_axis.size()];
658 for (size_t i = 0; i < homing_axis.size(); ++i) delta[i]= 0;
659
660 // use minimum feed rate of all axes that are being homed (sub optimal, but necessary)
661 float feed_rate= homing_axis[X_AXIS].slow_rate;
662 for (auto& i : homing_axis) {
663 int c= i.axis_index;
664 if(axis_to_home[c]) {
665 delta[c]= i.retract;
666 if(!i.home_direction) delta[c]= -delta[c];
667 feed_rate= std::min(i.slow_rate, feed_rate);
668 }
669 }
670
671 THEROBOT->delta_move(delta, feed_rate, homing_axis.size());
672 // wait until finished
673 THECONVEYOR->wait_for_idle();
674
675 // Start moving the axes towards the endstops slowly
676 this->status = MOVING_TO_ENDSTOP_SLOW;
677 for (auto& i : homing_axis) {
678 int c= i.axis_index;
679 if(axis_to_home[c]) {
680 delta[c]= i.retract*2; // move further than we moved off to make sure we hit it cleanly
681 if(i.home_direction) delta[c]= -delta[c];
682 }else{
683 delta[c]= 0;
684 }
685 }
686 THEROBOT->delta_move(delta, feed_rate, homing_axis.size());
687 // wait until finished
688 THECONVEYOR->wait_for_idle();
689
690 // TODO: should check that the endstops were hit and it did not stop short for some reason
691 // we did not complete movement the full distance if we hit the endstops
692 // TODO Maybe only reset axis involved in the homing cycle
693 THEROBOT->reset_position_from_current_actuator_position();
694
695 THEROBOT->disable_segmentation= false;
696 if (is_scara) {
697 THEROBOT->disable_arm_solution = false; // Arm solution enabled again.
698 }
699
700 this->status = NOT_HOMING;
701 }
702
703 void Endstops::process_home_command(Gcode* gcode)
704 {
705 // First wait for the queue to be empty
706 THECONVEYOR->wait_for_idle();
707
708 // turn off any compensation transform so Z does not move as XY home
709 auto savect= THEROBOT->compensationTransform;
710 THEROBOT->compensationTransform= nullptr;
711
712 // deltas always home Z axis only, which moves all three actuators
713 bool home_in_z = this->is_delta || this->is_rdelta;
714
715 // figure out which axis to home
716 axis_bitmap_t haxis;
717 haxis.reset();
718
719 if(!home_in_z) { // ie not a delta
720 bool axis_speced = (gcode->has_letter('X') || gcode->has_letter('Y') || gcode->has_letter('Z') ||
721 gcode->has_letter('A') || gcode->has_letter('B') || gcode->has_letter('C'));
722
723 for (auto &p : homing_axis) {
724 // only enable homing if the endstop is defined,
725 if(p.pin_info == nullptr) continue;
726 if(!axis_speced || gcode->has_letter(p.axis)) {
727 haxis.set(p.axis_index);
728 // now reset axis to 0 as we do not know what state we are in
729 if (!is_scara) {
730 THEROBOT->reset_axis_position(0, p.axis_index);
731 }
732 else {
733 // SCARA resets arms to plausable minimum angles
734 THEROBOT->reset_axis_position(-30,30,0); // angles set into axis space for homing.
735 }
736 }
737 }
738
739 } else {
740 // Only Z axis homes (even though all actuators move this is handled by arm solution)
741 haxis.set(Z_AXIS);
742 // we also set the kinematics to a known good position, this is necessary for a rotary delta, but doesn't hurt for linear delta
743 THEROBOT->reset_axis_position(0, 0, 0);
744 }
745
746 // do the actual homing
747 if(homing_order != 0 && !is_scara) {
748 // if an order has been specified do it in the specified order
749 // homing order is 0bfffeeedddcccbbbaaa where aaa is 1,2,3,4,5,6 to specify the first axis (XYZABC), bbb is the second and ccc is the third etc
750 // eg 0b0101011001010 would be Y X Z A, 011 010 001 100 101 would be B A X Y Z
751 for (uint32_t m = homing_order; m != 0; m >>= 3) {
752 uint32_t a= (m & 0x07)-1; // axis to home
753 if(a < homing_axis.size() && haxis[a]) { // if axis is selected to home
754 axis_bitmap_t bs;
755 bs.set(a);
756 home(bs);
757 }
758 // check if on_halt (eg kill)
759 if(THEKERNEL->is_halted()) break;
760 }
761
762 } else if(is_corexy) {
763 // corexy must home each axis individually
764 for (auto &p : homing_axis) {
765 if(haxis[p.axis_index]) {
766 axis_bitmap_t bs;
767 bs.set(p.axis_index);
768 home(bs);
769 }
770 // check if on_halt (eg kill)
771 if(THEKERNEL->is_halted()) break;
772 }
773
774 } else {
775 // they could all home at the same time
776 home(haxis);
777 }
778
779 // restore compensationTransform
780 THEROBOT->compensationTransform= savect;
781
782 // check if on_halt (eg kill)
783 if(THEKERNEL->is_halted()) {
784 if(!THEKERNEL->is_grbl_mode()) {
785 THEKERNEL->streams->printf("Homing cycle aborted by kill\n");
786 }
787 // clear all the homed flags
788 for (auto &p : homing_axis) p.homed= false;
789 return;
790 }
791
792 if(home_in_z || is_scara) { // deltas and scaras only
793 // Here's where we would have been if the endstops were perfectly trimmed
794 // NOTE on a rotary delta home_offset is actuator position in degrees when homed and
795 // home_offset is the theta offset for each actuator, so M206 is used to set theta offset for each actuator in degrees
796 // FIXME not sure this will work with compensation transforms on.
797 float ideal_position[3] = {
798 homing_axis[X_AXIS].homing_position + homing_axis[X_AXIS].home_offset,
799 homing_axis[Y_AXIS].homing_position + homing_axis[Y_AXIS].home_offset,
800 homing_axis[Z_AXIS].homing_position + homing_axis[Z_AXIS].home_offset
801 };
802
803 bool has_endstop_trim = this->is_delta || is_scara;
804 if (has_endstop_trim) {
805 ActuatorCoordinates ideal_actuator_position;
806 THEROBOT->arm_solution->cartesian_to_actuator(ideal_position, ideal_actuator_position);
807
808 // We are actually not at the ideal position, but a trim away
809 ActuatorCoordinates real_actuator_position = {
810 ideal_actuator_position[X_AXIS] - this->trim_mm[X_AXIS],
811 ideal_actuator_position[Y_AXIS] - this->trim_mm[Y_AXIS],
812 ideal_actuator_position[Z_AXIS] - this->trim_mm[Z_AXIS]
813 };
814
815 float real_position[3];
816 THEROBOT->arm_solution->actuator_to_cartesian(real_actuator_position, real_position);
817 // Reset the actuator positions to correspond to our real position
818 THEROBOT->reset_axis_position(real_position[0], real_position[1], real_position[2]);
819
820 } else {
821 // without endstop trim, real_position == ideal_position
822 if(is_rdelta) {
823 // with a rotary delta we set the actuators angle then use the FK to calculate the resulting cartesian coordinates
824 ActuatorCoordinates real_actuator_position = {ideal_position[0], ideal_position[1], ideal_position[2]};
825 THEROBOT->reset_actuator_position(real_actuator_position);
826
827 } else {
828 // Reset the actuator positions to correspond to our real position
829 THEROBOT->reset_axis_position(ideal_position[0], ideal_position[1], ideal_position[2]);
830 }
831 }
832
833 // for deltas we say all axis are homed even though it was only Z
834 for (auto &p : homing_axis) p.homed= true;
835
836 } else {
837 // Zero the ax(i/e)s position, add in the home offset
838 // NOTE that if compensation is active the Z will be set based on where XY are, so make sure XY are homed first then Z
839 // so XY are at a known consistent position. (especially true if using a proximity probe)
840 for (auto &p : homing_axis) {
841 if (haxis[p.axis_index]) { // if we requested this axis to home
842 THEROBOT->reset_axis_position(p.homing_position + p.home_offset, p.axis_index);
843 // set flag indicating axis was homed, it stays set once set until H/W reset or unhomed
844 p.homed= true;
845 }
846 }
847 }
848
849 // on some systems where 0,0 is bed center it is nice to have home goto 0,0 after homing
850 // default is off for cartesian on for deltas
851 if(!is_delta) {
852 // NOTE a rotary delta usually has optical or hall-effect endstops so it is safe to go past them a little bit
853 if(this->move_to_origin_after_home) move_to_origin(haxis);
854 // if limit switches are enabled we must back off endstop after setting home
855 back_off_home(haxis);
856
857 } else if(this->move_to_origin_after_home || homing_axis[X_AXIS].pin_info->limit_enable) {
858 // deltas are not left at 0,0 because of the trim settings, so move to 0,0 if requested, but we need to back off endstops first
859 // also need to back off endstops if limits are enabled
860 back_off_home(haxis);
861 if(this->move_to_origin_after_home) move_to_origin(haxis);
862 }
863 }
864
865 void Endstops::set_homing_offset(Gcode *gcode)
866 {
867 // M306 Similar to M206 but sets Homing offsets based on current MCS position
868 // Basically it finds the delta between the current MCS position and the requested position and adds it to the homing offset
869 // then will not let it be set again until that axis is homed.
870 float pos[3];
871 THEROBOT->get_axis_position(pos);
872
873 if (gcode->has_letter('X')) {
874 if(!homing_axis[X_AXIS].homed) {
875 gcode->stream->printf("error: Axis X must be homed before setting Homing offset\n");
876 return;
877 }
878 homing_axis[X_AXIS].home_offset += (THEROBOT->to_millimeters(gcode->get_value('X')) - pos[X_AXIS]);
879 homing_axis[X_AXIS].homed= false; // force it to be homed
880 }
881 if (gcode->has_letter('Y')) {
882 if(!homing_axis[Y_AXIS].homed) {
883 gcode->stream->printf("error: Axis Y must be homed before setting Homing offset\n");
884 return;
885 }
886 homing_axis[Y_AXIS].home_offset += (THEROBOT->to_millimeters(gcode->get_value('Y')) - pos[Y_AXIS]);
887 homing_axis[Y_AXIS].homed= false; // force it to be homed
888 }
889 if (gcode->has_letter('Z')) {
890 if(!homing_axis[Z_AXIS].homed) {
891 gcode->stream->printf("error: Axis Z must be homed before setting Homing offset\n");
892 return;
893 }
894 homing_axis[Z_AXIS].home_offset += (THEROBOT->to_millimeters(gcode->get_value('Z')) - pos[Z_AXIS]);
895 homing_axis[Z_AXIS].homed= false; // force it to be homed
896 }
897
898 gcode->stream->printf("Homing Offset: X %5.3f Y %5.3f Z %5.3f will take effect next home\n", homing_axis[X_AXIS].home_offset, homing_axis[Y_AXIS].home_offset, homing_axis[Z_AXIS].home_offset);
899 }
900
901 void Endstops::handle_park(Gcode * gcode)
902 {
903 // TODO: spec says if XYZ specified move to them first then move to MCS of specifed axis
904 THEROBOT->push_state();
905 THEROBOT->inch_mode = false; // needs to be in mm
906 THEROBOT->absolute_mode = true;
907 char buf[32];
908 snprintf(buf, sizeof(buf), "G53 G0 X%f Y%f", saved_position[X_AXIS], saved_position[Y_AXIS]); // must use machine coordinates in case G92 or WCS is in effect
909 struct SerialMessage message;
910 message.message = buf;
911 message.stream = &(StreamOutput::NullStream);
912 THEKERNEL->call_event(ON_CONSOLE_LINE_RECEIVED, &message ); // as it is a multi G code command
913 // Wait for above to finish
914 THECONVEYOR->wait_for_idle();
915 THEROBOT->pop_state();
916 }
917
918 // parse gcodes
919 void Endstops::on_gcode_received(void *argument)
920 {
921 Gcode *gcode = static_cast<Gcode *>(argument);
922
923 if ( gcode->has_g && gcode->g == 28) {
924 switch(gcode->subcode) {
925 case 0: // G28 in grbl mode will do a rapid to the predefined position otherwise it is home command
926 if(THEKERNEL->is_grbl_mode()){
927 handle_park(gcode);
928 }else{
929 process_home_command(gcode);
930 }
931 break;
932
933 case 1: // G28.1 set pre defined park position
934 // saves current position in absolute machine coordinates
935 THEROBOT->get_axis_position(saved_position); // Only XY are used
936 // Note the following is only meant to be used for recovering a saved position from config-override
937 // Not a standard Gcode and not to be relied on
938 if (gcode->has_letter('X')) saved_position[X_AXIS] = gcode->get_value('X');
939 if (gcode->has_letter('Y')) saved_position[Y_AXIS] = gcode->get_value('Y');
940 break;
941
942 case 2: // G28.2 in grbl mode does homing (triggered by $H), otherwise it moves to the park position
943 if(THEKERNEL->is_grbl_mode()) {
944 process_home_command(gcode);
945 }else{
946 handle_park(gcode);
947 }
948 break;
949
950 case 3: // G28.3 is a smoothie special it sets manual homing
951 if(gcode->get_num_args() == 0) {
952 for (auto &p : homing_axis) {
953 p.homed= true;
954 THEROBOT->reset_axis_position(0, p.axis_index);
955 }
956 } else {
957 // do a manual homing based on given coordinates, no endstops required
958 if(gcode->has_letter('X')){ THEROBOT->reset_axis_position(gcode->get_value('X'), X_AXIS); homing_axis[X_AXIS].homed= true; }
959 if(gcode->has_letter('Y')){ THEROBOT->reset_axis_position(gcode->get_value('Y'), Y_AXIS); homing_axis[Y_AXIS].homed= true; }
960 if(gcode->has_letter('Z')){ THEROBOT->reset_axis_position(gcode->get_value('Z'), Z_AXIS); homing_axis[Z_AXIS].homed= true; }
961 if(homing_axis.size() > A_AXIS && gcode->has_letter('A')){ THEROBOT->reset_axis_position(gcode->get_value('A'), A_AXIS); homing_axis[A_AXIS].homed= true; }
962 if(homing_axis.size() > B_AXIS && gcode->has_letter('B')){ THEROBOT->reset_axis_position(gcode->get_value('B'), B_AXIS); homing_axis[B_AXIS].homed= true; }
963 if(homing_axis.size() > C_AXIS && gcode->has_letter('C')){ THEROBOT->reset_axis_position(gcode->get_value('C'), C_AXIS); homing_axis[C_AXIS].homed= true; }
964 }
965 break;
966
967 case 4: { // G28.4 is a smoothie special it sets manual homing based on the actuator position (used for rotary delta)
968 // do a manual homing based on given coordinates, no endstops required
969 ActuatorCoordinates ac{NAN, NAN, NAN};
970 if(gcode->has_letter('X')){ ac[0] = gcode->get_value('X'); homing_axis[X_AXIS].homed= true; }
971 if(gcode->has_letter('Y')){ ac[1] = gcode->get_value('Y'); homing_axis[Y_AXIS].homed= true; }
972 if(gcode->has_letter('Z')){ ac[2] = gcode->get_value('Z'); homing_axis[Z_AXIS].homed= true; }
973 THEROBOT->reset_actuator_position(ac);
974 }
975 break;
976
977 case 5: // G28.5 is a smoothie special it clears the homed flag for the specified axis, or all if not specifed
978 if(gcode->get_num_args() == 0) {
979 for (auto &p : homing_axis) p.homed= false;
980 } else {
981 if(gcode->has_letter('X')) homing_axis[X_AXIS].homed= false;
982 if(gcode->has_letter('Y')) homing_axis[Y_AXIS].homed= false;
983 if(gcode->has_letter('Z')) homing_axis[Z_AXIS].homed= false;
984 if(homing_axis.size() > A_AXIS && gcode->has_letter('A')) homing_axis[A_AXIS].homed= false;
985 if(homing_axis.size() > B_AXIS && gcode->has_letter('B')) homing_axis[B_AXIS].homed= false;
986 if(homing_axis.size() > C_AXIS && gcode->has_letter('C')) homing_axis[C_AXIS].homed= false;
987 }
988 break;
989
990 case 6: // G28.6 is a smoothie special it shows the homing status of each axis
991 for (auto &p : homing_axis) {
992 gcode->stream->printf("%c:%d ", p.axis, p.homed);
993 }
994 gcode->add_nl= true;
995 break;
996
997 default:
998 if(THEKERNEL->is_grbl_mode()) {
999 gcode->stream->printf("error:Unsupported command\n");
1000 }
1001 break;
1002 }
1003
1004 } else if (gcode->has_m) {
1005
1006 switch (gcode->m) {
1007 case 119: {
1008 for(auto& h : homing_axis) {
1009 string name;
1010 name.append(1, h.axis).append(h.home_direction ? "_min" : "_max");
1011 gcode->stream->printf("%s:%d ", name.c_str(), h.pin_info->pin.get());
1012 }
1013 gcode->stream->printf("pins- ");
1014 for(auto& p : endstops) {
1015 string str(1, p->axis);
1016 if(p->limit_enable) str.append("L");
1017 gcode->stream->printf("(%s)P%d.%d:%d ", str.c_str(), p->pin.port_number, p->pin.pin, p->pin.get());
1018 }
1019 gcode->add_nl = true;
1020 }
1021 break;
1022
1023 case 206: // M206 - set homing offset
1024 if(is_rdelta) return; // RotaryDeltaCalibration module will handle this
1025 for (auto &p : homing_axis) {
1026 if (gcode->has_letter(p.axis)) p.home_offset= gcode->get_value(p.axis);
1027 }
1028
1029 for (auto &p : homing_axis) {
1030 gcode->stream->printf("%c: %5.3f ", p.axis, p.home_offset);
1031 }
1032
1033 gcode->stream->printf(" will take effect next home\n");
1034 break;
1035
1036 case 306: // set homing offset based on current position
1037 if(is_rdelta) return; // RotaryDeltaCalibration module will handle this
1038
1039 set_homing_offset(gcode);
1040 break;
1041
1042 case 500: // save settings
1043 case 503: // print settings
1044 if(!is_rdelta) {
1045 gcode->stream->printf(";Home offset (mm):\nM206 ");
1046 for (auto &p : homing_axis) {
1047 gcode->stream->printf("%c%1.2f ", p.axis, p.home_offset);
1048 }
1049 gcode->stream->printf("\n");
1050
1051 }else{
1052 gcode->stream->printf(";Theta offset (degrees):\nM206 A%1.5f B%1.5f C%1.5f\n",
1053 homing_axis[X_AXIS].home_offset, homing_axis[Y_AXIS].home_offset, homing_axis[Z_AXIS].home_offset);
1054 }
1055
1056 if (this->is_delta || this->is_scara) {
1057 gcode->stream->printf(";Trim (mm):\nM666 X%1.3f Y%1.3f Z%1.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
1058 gcode->stream->printf(";Max Z\nM665 Z%1.3f\n", homing_axis[Z_AXIS].homing_position);
1059 }
1060 if(saved_position[X_AXIS] != 0 || saved_position[Y_AXIS] != 0) {
1061 gcode->stream->printf(";predefined position:\nG28.1 X%1.4f Y%1.4f\n", saved_position[X_AXIS], saved_position[Y_AXIS]);
1062 }
1063 break;
1064
1065 case 665:
1066 if (this->is_delta || this->is_scara) { // M665 - set max gamma/z height
1067 float gamma_max = homing_axis[Z_AXIS].homing_position;
1068 if (gcode->has_letter('Z')) {
1069 homing_axis[Z_AXIS].homing_position= gamma_max = gcode->get_value('Z');
1070 }
1071 gcode->stream->printf("Max Z %8.3f ", gamma_max);
1072 gcode->add_nl = true;
1073 }
1074 break;
1075
1076 case 666:
1077 if(this->is_delta || this->is_scara) { // M666 - set trim for each axis in mm, NB negative mm trim is down
1078 if (gcode->has_letter('X')) trim_mm[0] = gcode->get_value('X');
1079 if (gcode->has_letter('Y')) trim_mm[1] = gcode->get_value('Y');
1080 if (gcode->has_letter('Z')) trim_mm[2] = gcode->get_value('Z');
1081
1082 // print the current trim values in mm
1083 gcode->stream->printf("X: %5.3f Y: %5.3f Z: %5.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
1084
1085 }
1086 break;
1087
1088 }
1089 }
1090 }
1091
1092 void Endstops::on_get_public_data(void* argument)
1093 {
1094 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
1095
1096 if(!pdr->starts_with(endstops_checksum)) return;
1097
1098 if(pdr->second_element_is(trim_checksum)) {
1099 pdr->set_data_ptr(&this->trim_mm);
1100 pdr->set_taken();
1101
1102 } else if(pdr->second_element_is(home_offset_checksum)) {
1103 // provided by caller
1104 float *data = static_cast<float *>(pdr->get_data_ptr());
1105 for (int i = 0; i < 3; ++i) {
1106 data[i]= homing_axis[i].home_offset;
1107 }
1108 pdr->set_taken();
1109
1110 } else if(pdr->second_element_is(saved_position_checksum)) {
1111 pdr->set_data_ptr(&this->saved_position);
1112 pdr->set_taken();
1113
1114 } else if(pdr->second_element_is(get_homing_status_checksum)) {
1115 bool *homing = static_cast<bool *>(pdr->get_data_ptr());
1116 *homing = this->status != NOT_HOMING;
1117 pdr->set_taken();
1118 }
1119 }
1120
1121 void Endstops::on_set_public_data(void* argument)
1122 {
1123 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
1124
1125 if(!pdr->starts_with(endstops_checksum)) return;
1126
1127 if(pdr->second_element_is(trim_checksum)) {
1128 float *t = static_cast<float*>(pdr->get_data_ptr());
1129 this->trim_mm[0] = t[0];
1130 this->trim_mm[1] = t[1];
1131 this->trim_mm[2] = t[2];
1132 pdr->set_taken();
1133
1134 } else if(pdr->second_element_is(home_offset_checksum)) {
1135 float *t = static_cast<float*>(pdr->get_data_ptr());
1136 if(!isnan(t[0])) homing_axis[0].home_offset= t[0];
1137 if(!isnan(t[1])) homing_axis[1].home_offset= t[1];
1138 if(!isnan(t[2])) homing_axis[2].home_offset= t[2];
1139 }
1140 }