modified: src/modules/robot/arm_solutions/RotatableDeltaSolution.cpp
[clinton/Smoothieware.git] / src / modules / robot / arm_solutions / RotatableDeltaSolution.cpp
1 #include "RotatableDeltaSolution.h"
2 #include "checksumm.h"
3 #include "ConfigValue.h"
4 #include "ConfigCache.h"
5 #include "libs/Kernel.h"
6 #include "libs/nuts_bolts.h"
7 #include "libs/Config.h"
8 #include "libs/utils.h"
9 #include "StreamOutputPool.h"
10 #include <fastmath.h>
11
12 #define delta_e_checksum CHECKSUM("delta_e_checksum")
13 #define delta_f_checksum CHECKSUM("delta_f_checksum")
14 #define delta_re_checksum CHECKSUM("delta_re_checksum")
15 #define delta_rf_checksum CHECKSUM("delta_rf_checksum")
16 #define delta_z_offset_checksum CHECKSUM("delta_z_offset_checksum")
17
18 #define delta_ee_offs_checksum CHECKSUM("delta_ee_offs_checksum")
19 #define tool_offset_checksum CHECKSUM("tool_offset_checksum")
20
21 #ifndef alpha_steps_per_mm_checksum
22 #define alpha_steps_per_mm_checksum CHECKSUM("alpha_steps_per_mm_checksum");
23 #endif
24
25 #ifndef beta_steps_per_mm_checksum
26 #define beta_steps_per_mm_checksum CHECKSUM("beta_steps_per_mm_checksum");
27 #endif
28
29 #ifndef gamma_steps_per_mm_checksum
30 #define gamma_steps_per_mm_checksum CHECKSUM("gamma_steps_per_mm_checksum");
31 #endif
32
33 const static float pi = 3.14159265358979323846; // PI
34 const static float two_pi = 2 * pi;
35 const static float sin120 = 0.86602540378443864676372317075294; //sqrt3/2.0
36 const static float cos120 = -0.5;
37 const static float tan60 = 1.7320508075688772935274463415059; //sqrt3;
38 const static float sin30 = 0.5;
39 const static float tan30 = 0.57735026918962576450914878050196; //1/sqrt3
40
41 RotatableDeltaSolution::RotatableDeltaSolution(Config* config)
42 {
43 // End effector length
44 delta_e = config->value(delta_e_checksum)->by_default(131.636F)->as_number();
45
46 // Base length
47 delta_f = config->value(delta_f_checksum)->by_default(190.526F)->as_number();
48
49 // Carbon rod length
50 delta_re = config->value(delta_re_checksum)->by_default(270.000F)->as_number();
51
52 // Servo horn length
53 delta_rf = config->value(delta_rf_checksum)->by_default(90.000F)->as_number();
54
55 // Distance from delta 8mm rod/pulley to table/bed,
56 // NOTE: For OpenPnP, set the zero to be about 25mm above the bed..
57 delta_z_offset = config->value(delta_z_offset_checksum)->by_default(290.700F)->as_number();
58
59 // Ball joint plane to bottom of end effector surface
60 delta_ee_offs = config->value(delta_ee_offs_checksum)->by_default(15.000F)->as_number();
61
62 // Distance between end effector ball joint plane and tip of tool (PnP)
63 tool_offset = config->value(tool_offset_checksum)->by_default(30.500F)->as_number();
64
65 init();
66 }
67
68 // inverse kinematics
69 // helper functions, calculates angle theta1 (for YZ-pane)
70 int RotatableDeltaSolution::delta_calcAngleYZ(float x0, float y0, float z0, float &theta)
71 {
72 float y1 = -0.5F * tan30 * delta_f; // f/2 * tan 30
73 y0 -= 0.5F * tan30 * delta_e; // shift center to edge
74 // z = a + b*y
75 float a = (x0*x0 + y0*y0 + z0*z0 + delta_rf*delta_rf - delta_re*delta_re - y1*y1) / (2.0F*z0);
76 float b = (y1-y0)/z0;
77
78 float d = -(a+b*y1)*(a+b*y1) + delta_rf*(b*b*delta_rf+delta_rf); // discriminant
79 if (d < 0.0F) return -1; // non-existing point
80
81 float yj = (y1 - a*b - sqrtf(d))/(b*b + 1.0F); // choosing outer point
82 float zj = a + b*yj;
83
84 theta = 180.0F*atanf(-zj/(y1 - yj))/pi + ((yj>y1)?180.0F:0.0F);
85 return 0;
86 }
87
88 // forward kinematics: (theta1, theta2, theta3) -> (x0, y0, z0)
89 // returned status: 0=OK, -1=non-existing position
90 int RotatableDeltaSolution::delta_calcForward(float theta1, float theta2, float theta3, float &x0, float &y0, float &z0)
91 {
92 float t = (delta_f-delta_e)*tan30/2.0F;
93 float degrees_to_radians = pi/180.0F;
94
95 theta1 *= degrees_to_radians;
96 theta2 *= degrees_to_radians;
97 theta3 *= degrees_to_radians;
98
99 float y1 = -(t + delta_rf*cosf(theta1));
100 float z1 = -delta_rf*sinf(theta1);
101
102 float y2 = (t + delta_rf*cosf(theta2))*sin30;
103 float x2 = y2*tan60;
104 float z2 = -delta_rf*sinf(theta2);
105
106 float y3 = (t + delta_rf*cosf(theta3))*sin30;
107 float x3 = -y3*tan60;
108 float z3 = -delta_rf*sinf(theta3);
109
110 float dnm = (y2-y1)*x3-(y3-y1)*x2;
111
112 float w1 = y1*y1 + z1*z1;
113 float w2 = x2*x2 + y2*y2 + z2*z2;
114 float w3 = x3*x3 + y3*y3 + z3*z3;
115
116 // x = (a1*z + b1)/dnm
117 float a1 = (z2-z1)*(y3-y1)-(z3-z1)*(y2-y1);
118 float b1 = -((w2-w1)*(y3-y1)-(w3-w1)*(y2-y1))/2.0F;
119
120 // y = (a2*z + b2)/dnm;
121 float a2 = -(z2-z1)*x3+(z3-z1)*x2;
122 float b2 = ((w2-w1)*x3 - (w3-w1)*x2)/2.0F;
123
124 // a*z^2 + b*z + c = 0
125 float a = a1*a1 + a2*a2 + dnm*dnm;
126 float b = 2.0F*(a1*b1 + a2*(b2-y1*dnm) - z1*dnm*dnm);
127 float c = (b2-y1*dnm)*(b2-y1*dnm) + b1*b1 + dnm*dnm*(z1*z1 - delta_re*delta_re);
128
129 // discriminant
130 float d = b*b - (float)4.0F*a*c;
131 if (d < 0.0F) return -1; // non-existing point
132
133 z0 = -(float)0.5F*(b+sqrtf(d))/a;
134 x0 = (a1*z0 + b1)/dnm;
135 y0 = (a2*z0 + b2)/dnm;
136
137 z0 += z_calc_offset; //nj
138 return 0;
139 }
140
141
142 void RotatableDeltaSolution::init() {
143
144 //these are calculated here and not in the config() as these variables can be fine tuned by the user.
145 z_calc_offset = (delta_z_offset - tool_offset - delta_ee_offs)*-1.0F;
146
147 // This is calculated from the Z_HOME_ANGLE angles after applying forward kinematics, and adding the Z calc offset to it.
148 z_home_offs = (((delta_z_offset - tool_offset - delta_ee_offs) - 182.002F) - 0.5F);
149
150 }
151
152 void RotatableDeltaSolution::cartesian_to_actuator( float cartesian_mm[], float actuator_mm[] )
153 {
154 //We need to translate the Cartesian coordinates in mm to the actuator position required in mm so the stepper motor functions
155 float alpha_theta = 0.0F;
156 float beta_theta = 0.0F;
157 float gamma_theta = 0.0F;
158
159 //Code from Trossen Robotics tutorial, note we put the X axis at the back and not the front of the robot.
160
161 float x0 = cartesian_mm[X_AXIS];
162 float y0 = cartesian_mm[Y_AXIS];
163 float z_with_offset = cartesian_mm[Z_AXIS] + z_calc_offset; //The delta calculation below places zero at the top. Subtract the Z offset to make zero at the bottom.
164
165 int status = delta_calcAngleYZ(x0, y0, z_with_offset, alpha_theta);
166 if (status == 0) status = delta_calcAngleYZ(x0*cos120 + y0*sin120, y0*cos120-x0*sin120, z_with_offset, beta_theta); // rotate co-ordinates to +120 deg
167 if (status == 0) status = delta_calcAngleYZ(x0*cos120 - y0*sin120, y0*cos120+x0*sin120, z_with_offset, gamma_theta); // rotate co-ordinates to -120 deg
168
169 if (status == -1) //something went wrong,
170 {
171 //force to actuator FPD home position as we know this is a valid position
172 actuator_mm[ALPHA_STEPPER] = 0;
173 actuator_mm[BETA_STEPPER ] = 0;
174 actuator_mm[GAMMA_STEPPER] = 0;
175
176 //DEBUG CODE, uncomment the following to help determine what may be happening if you are trying to adapt this to your own different roational delta.
177 // THEKERNEL->streams->printf("ERROR: Delta calculation fail! Unable to move to:\n");
178 // THEKERNEL->streams->printf(" x= %f\n",cartesian_mm[X_AXIS]);
179 // THEKERNEL->streams->printf(" y= %f\n",cartesian_mm[Y_AXIS]);
180 // THEKERNEL->streams->printf(" z= %f\n",cartesian_mm[Z_AXIS]);
181 // THEKERNEL->streams->printf(" CalcZ= %f\n",z_calc_offset);
182 // THEKERNEL->streams->printf(" Offz= %f\n",z_with_offset);
183 }
184 else
185 {
186 actuator_mm[ALPHA_STEPPER] = alpha_theta;
187 actuator_mm[BETA_STEPPER ] = beta_theta;
188 actuator_mm[GAMMA_STEPPER] = gamma_theta;
189
190 // THEKERNEL->streams->printf("cartesian x= %f\n\r",cartesian_mm[X_AXIS]);
191 // THEKERNEL->streams->printf(" y= %f\n\r",cartesian_mm[Y_AXIS]);
192 // THEKERNEL->streams->printf(" z= %f\n\r",cartesian_mm[Z_AXIS]);
193 // THEKERNEL->streams->printf(" Offz= %f\n\r",z_with_offset);
194 // THEKERNEL->streams->printf(" delta x= %f\n\r",delta[X_AXIS]);
195 // THEKERNEL->streams->printf(" y= %f\n\r",delta[Y_AXIS]);
196 // THEKERNEL->streams->printf(" z= %f\n\r",delta[Z_AXIS]);
197 }
198
199 }
200
201 void RotatableDeltaSolution::actuator_to_cartesian( float actuator_mm[], float cartesian_mm[] )
202 {
203 //Use forward kinematics
204 delta_calcForward(actuator_mm[ALPHA_STEPPER], actuator_mm[BETA_STEPPER ], actuator_mm[GAMMA_STEPPER], cartesian_mm[X_AXIS], cartesian_mm[Y_AXIS], cartesian_mm[Z_AXIS]);
205 }
206
207 bool RotatableDeltaSolution::set_optional(const arm_options_t& options) {
208
209 for(auto &i : options) {
210 switch(i.first) {
211 case 'A': delta_e = i.second; break;
212 case 'B': delta_f = i.second; break;
213 case 'C': delta_re = i.second; break;
214 case 'D': delta_rf = i.second; break;
215 case 'E': delta_z_offset = i.second; break;
216 case 'F': delta_ee_offs = i.second; break;
217 case 'H': tool_offset = i.second; break;
218 }
219 }
220 init();
221 return true;
222 }
223
224 bool RotatableDeltaSolution::get_optional(arm_options_t& options) {
225
226 // don't report these if none of them are set
227 if(this->delta_e != 0.0F || this->delta_f != 0.0F || this->delta_re != 0.0F ||
228 this->delta_rf != 0.0F || this->delta_z_offset != 0.0F || this->delta_ee_offs != 0.0F ||
229 this->tool_offset != 0.0F) {
230
231 options['A'] = this->delta_e;
232 options['B'] = this->delta_f;
233 options['C'] = this->delta_re;
234 options['D'] = this->delta_rf;
235 options['E'] = this->delta_z_offset;
236 options['F'] = this->delta_ee_offs;
237 options['H'] = this->tool_offset;
238 }
239
240 return true;
241 };
242