Allow homing_order to specify ABC as well
[clinton/Smoothieware.git] / src / modules / tools / endstops / Endstops.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "modules/communication/utils/Gcode.h"
11 #include "modules/robot/Conveyor.h"
12 #include "modules/robot/ActuatorCoordinates.h"
13 #include "Endstops.h"
14 #include "libs/nuts_bolts.h"
15 #include "libs/Pin.h"
16 #include "libs/StepperMotor.h"
17 #include "wait_api.h" // mbed.h lib
18 #include "Robot.h"
19 #include "Config.h"
20 #include "SlowTicker.h"
21 #include "Planner.h"
22 #include "checksumm.h"
23 #include "utils.h"
24 #include "ConfigValue.h"
25 #include "libs/StreamOutput.h"
26 #include "PublicDataRequest.h"
27 #include "EndstopsPublicAccess.h"
28 #include "StreamOutputPool.h"
29 #include "StepTicker.h"
30 #include "BaseSolution.h"
31 #include "SerialMessage.h"
32
33 #include <ctype.h>
34 #include <algorithm>
35
36 // OLD deprecated syntax
37 #define endstops_module_enable_checksum CHECKSUM("endstops_enable")
38
39 #define ENDSTOP_CHECKSUMS(X) { \
40 CHECKSUM(X "_min_endstop"), \
41 CHECKSUM(X "_max_endstop"), \
42 CHECKSUM(X "_max_travel"), \
43 CHECKSUM(X "_fast_homing_rate_mm_s"), \
44 CHECKSUM(X "_slow_homing_rate_mm_s"), \
45 CHECKSUM(X "_homing_retract_mm"), \
46 CHECKSUM(X "_homing_direction"), \
47 CHECKSUM(X "_min"), \
48 CHECKSUM(X "_max"), \
49 CHECKSUM(X "_limit_enable"), \
50 }
51
52 // checksum defns
53 enum DEFNS {MIN_PIN, MAX_PIN, MAX_TRAVEL, FAST_RATE, SLOW_RATE, RETRACT, DIRECTION, MIN, MAX, LIMIT, NDEFNS};
54
55 // global config settings
56 #define corexy_homing_checksum CHECKSUM("corexy_homing")
57 #define delta_homing_checksum CHECKSUM("delta_homing")
58 #define rdelta_homing_checksum CHECKSUM("rdelta_homing")
59 #define scara_homing_checksum CHECKSUM("scara_homing")
60
61 #define endstop_debounce_count_checksum CHECKSUM("endstop_debounce_count")
62 #define endstop_debounce_ms_checksum CHECKSUM("endstop_debounce_ms")
63
64 #define home_z_first_checksum CHECKSUM("home_z_first")
65 #define homing_order_checksum CHECKSUM("homing_order")
66 #define move_to_origin_checksum CHECKSUM("move_to_origin_after_home")
67
68 #define alpha_trim_checksum CHECKSUM("alpha_trim_mm")
69 #define beta_trim_checksum CHECKSUM("beta_trim_mm")
70 #define gamma_trim_checksum CHECKSUM("gamma_trim_mm")
71
72 // new config syntax
73 // endstop.xmin.enable true
74 // endstop.xmin.pin 1.29
75 // endstop.xmin.axis X
76 // endstop.xmin.homing_direction home_to_min
77
78 #define endstop_checksum CHECKSUM("endstop")
79 #define enable_checksum CHECKSUM("enable")
80 #define pin_checksum CHECKSUM("pin")
81 #define axis_checksum CHECKSUM("axis")
82 #define direction_checksum CHECKSUM("homing_direction")
83 #define position_checksum CHECKSUM("homing_position")
84 #define fast_rate_checksum CHECKSUM("fast_rate")
85 #define slow_rate_checksum CHECKSUM("slow_rate")
86 #define max_travel_checksum CHECKSUM("max_travel")
87 #define retract_checksum CHECKSUM("retract")
88 #define limit_checksum CHECKSUM("limit_enable")
89
90 #define STEPPER THEROBOT->actuators
91 #define STEPS_PER_MM(a) (STEPPER[a]->get_steps_per_mm())
92
93
94
95 // Homing States
96 enum STATES {
97 MOVING_TO_ENDSTOP_FAST, // homing move
98 MOVING_TO_ENDSTOP_SLOW, // homing move
99 MOVING_BACK, // homing move
100 NOT_HOMING,
101 BACK_OFF_HOME,
102 MOVE_TO_ORIGIN,
103 LIMIT_TRIGGERED
104 };
105
106 Endstops::Endstops()
107 {
108 this->status = NOT_HOMING;
109 }
110
111 void Endstops::on_module_loaded()
112 {
113 // Do not do anything if not enabled or if no pins are defined
114 if (THEKERNEL->config->value( endstops_module_enable_checksum )->by_default(false)->as_bool()) {
115 if(!load_old_config()) {
116 delete this;
117 return;
118 }
119
120 }else{
121 // check for new config syntax
122 if(!load_config()) {
123 delete this;
124 return;
125 }
126 }
127
128 register_for_event(ON_GCODE_RECEIVED);
129 register_for_event(ON_GET_PUBLIC_DATA);
130 register_for_event(ON_SET_PUBLIC_DATA);
131
132
133 THEKERNEL->slow_ticker->attach(1000, this, &Endstops::read_endstops);
134 }
135
136 // Get config using old deprecated syntax Does not support ABC
137 bool Endstops::load_old_config()
138 {
139 uint16_t const checksums[][NDEFNS] = {
140 ENDSTOP_CHECKSUMS("alpha"), // X
141 ENDSTOP_CHECKSUMS("beta"), // Y
142 ENDSTOP_CHECKSUMS("gamma") // Z
143 };
144
145 bool limit_enabled= false;
146 for (int i = X_AXIS; i <= Z_AXIS; ++i) { // X_AXIS to Z_AXIS
147 homing_info_t hinfo;
148
149 // init homing struct
150 hinfo.home_offset= 0;
151 hinfo.homed= false;
152 hinfo.axis= 'X'+i;
153 hinfo.axis_index= i;
154 hinfo.pin_info= nullptr;
155
156 // rates in mm/sec
157 hinfo.fast_rate= THEKERNEL->config->value(checksums[i][FAST_RATE])->by_default(100)->as_number();
158 hinfo.slow_rate= THEKERNEL->config->value(checksums[i][SLOW_RATE])->by_default(10)->as_number();
159
160 // retract in mm
161 hinfo.retract= THEKERNEL->config->value(checksums[i][RETRACT])->by_default(5)->as_number();
162
163 // get homing direction and convert to boolean where true is home to min, and false is home to max
164 hinfo.home_direction= THEKERNEL->config->value(checksums[i][DIRECTION])->by_default("home_to_min")->as_string() != "home_to_max";
165
166 // homing cartesian position
167 hinfo.homing_position= hinfo.home_direction ? THEKERNEL->config->value(checksums[i][MIN])->by_default(0)->as_number() : THEKERNEL->config->value(checksums[i][MAX])->by_default(200)->as_number();
168
169 // used to set maximum movement on homing, set by alpha_max_travel if defined
170 hinfo.max_travel= THEKERNEL->config->value(checksums[i][MAX_TRAVEL])->by_default(500)->as_number();
171
172
173 // pin definitions for endstop pins
174 for (int j = MIN_PIN; j <= MAX_PIN; ++j) {
175 endstop_info_t *info= new endstop_info_t;
176 info->pin.from_string(THEKERNEL->config->value(checksums[i][j])->by_default("nc" )->as_string())->as_input();
177 if(!info->pin.connected()){
178 // no pin defined try next
179 delete info;
180 continue;
181 }
182
183 // enter into endstop array
184 endstops.push_back(info);
185
186 // add index to the homing struct if this is the one used for homing
187 if((hinfo.home_direction && j == MIN_PIN) || (!hinfo.home_direction && j == MAX_PIN)) hinfo.pin_info= info;
188
189 // init struct
190 info->debounce= 0;
191 info->axis= 'X'+i;
192 info->axis_index= i;
193
194 // limits enabled
195 info->limit_enable= THEKERNEL->config->value(checksums[i][LIMIT])->by_default(false)->as_bool();
196 limit_enabled |= info->limit_enable;
197 }
198
199 homing_axis.push_back(hinfo);
200 }
201
202 // if no pins defined then disable the module
203 if(endstops.empty()) return false;
204
205 get_global_configs();
206
207 if(limit_enabled) {
208 register_for_event(ON_IDLE);
209 }
210
211 // sanity check for deltas
212 /*
213 if(this->is_delta || this->is_rdelta) {
214 // some things must be the same or they will die, so force it here to avoid config errors
215 this->fast_rates[1] = this->fast_rates[2] = this->fast_rates[0];
216 this->slow_rates[1] = this->slow_rates[2] = this->slow_rates[0];
217 this->retract_mm[1] = this->retract_mm[2] = this->retract_mm[0];
218 this->home_direction[1] = this->home_direction[2] = this->home_direction[0];
219 // NOTE homing_position for rdelta is the angle of the actuator not the cartesian position
220 if(!this->is_rdelta) this->homing_position[0] = this->homing_position[1] = 0;
221 }
222 */
223
224 return true;
225 }
226
227 // Get config using new syntax supports ABC
228 bool Endstops::load_config()
229 {
230 bool limit_enabled= false;
231
232 std::array<homing_info_t, k_max_actuators> temp_axis_array; // needs to be at least XYZ, but allow for ABC
233 {
234 homing_info_t t;
235 t.axis= 0;
236 t.axis_index= 0;
237 t.pin_info= nullptr;
238
239 temp_axis_array.fill(t);
240 }
241
242 // iterate over all endstop.*.*
243 std::vector<uint16_t> modules;
244 THEKERNEL->config->get_module_list(&modules, endstop_checksum);
245 for(auto cs : modules ) {
246 if(!THEKERNEL->config->value(endstop_checksum, cs, enable_checksum )->as_bool()) continue;
247
248 endstop_info_t *pin_info= new endstop_info_t;
249 pin_info->pin.from_string(THEKERNEL->config->value(endstop_checksum, cs, pin_checksum)->by_default("nc" )->as_string())->as_input();
250 if(!pin_info->pin.connected()){
251 // no pin defined try next
252 delete pin_info;
253 continue;
254 }
255
256 string axis= THEKERNEL->config->value(endstop_checksum, cs, axis_checksum)->by_default("")->as_string();
257 if(axis.empty()){
258 // axis is required
259 delete pin_info;
260 continue;
261 }
262
263 size_t i;
264 switch(toupper(axis[0])) {
265 case 'X': i= X_AXIS; break;
266 case 'Y': i= Y_AXIS; break;
267 case 'Z': i= Z_AXIS; break;
268 case 'A': i= A_AXIS; break;
269 case 'B': i= B_AXIS; break;
270 case 'C': i= C_AXIS; break;
271 default: // not a recognized axis
272 delete pin_info;
273 continue;
274 }
275
276 // init pin struct
277 pin_info->debounce= 0;
278 pin_info->axis= toupper(axis[0]);
279 pin_info->axis_index= i;
280
281 // are limits enabled
282 pin_info->limit_enable= THEKERNEL->config->value(endstop_checksum, cs, limit_checksum)->by_default(false)->as_bool();
283 limit_enabled |= pin_info->limit_enable;
284
285 // enter into endstop array
286 endstops.push_back(pin_info);
287
288 // check we are not going above the number of defined actuators/axis
289 if(i >= k_max_actuators) {
290 // too many axis we only have configured k_max_actuators
291 continue;
292 }
293
294 // if set to none it means not used for homing (maybe limit only) so do not add to the homing array
295 string direction= THEKERNEL->config->value(endstop_checksum, cs, direction_checksum)->by_default("none")->as_string();
296 if(direction == "none") {
297 continue;
298 }
299
300 // setup the homing array
301 homing_info_t hinfo;
302
303 // init homing struct
304 hinfo.home_offset= 0;
305 hinfo.homed= false;
306 hinfo.axis= toupper(axis[0]);
307 hinfo.axis_index= i;
308 hinfo.pin_info= pin_info;
309
310 // rates in mm/sec
311 hinfo.fast_rate= THEKERNEL->config->value(endstop_checksum, cs, fast_rate_checksum)->by_default(100)->as_number();
312 hinfo.slow_rate= THEKERNEL->config->value(endstop_checksum, cs, slow_rate_checksum)->by_default(10)->as_number();
313
314 // retract in mm
315 hinfo.retract= THEKERNEL->config->value(endstop_checksum, cs, retract_checksum)->by_default(5)->as_number();
316
317 // homing direction and convert to boolean where true is home to min, and false is home to max
318 hinfo.home_direction= direction == "home_to_min";
319
320 // homing cartesian position
321 hinfo.homing_position= THEKERNEL->config->value(endstop_checksum, cs, position_checksum)->by_default(hinfo.home_direction ? 0 : 200)->as_number();
322
323 // used to set maximum movement on homing, set by max_travel if defined
324 hinfo.max_travel= THEKERNEL->config->value(endstop_checksum, cs, max_travel_checksum)->by_default(500)->as_number();
325
326 // stick into array in correct place
327 temp_axis_array[hinfo.axis_index]= hinfo;
328 }
329
330 // if no pins defined then disable the module
331 if(endstops.empty()) return false;
332
333 // copy to the homing_axis array
334 for (size_t i = 0; i < temp_axis_array.size(); ++i) {
335 if(temp_axis_array[i].axis == 0) {
336 // was not configured above, if it is XYZ then we need to force a dummy entry
337 if(i <= Z_AXIS) {
338 homing_info_t t;
339 t.axis= 'X' + i;
340 t.axis_index= i;
341 t.pin_info= nullptr; // this tells it that it cannot be used for homing
342 homing_axis.push_back(t);
343 }
344
345 }else{
346 homing_axis.push_back(temp_axis_array[i]);
347 }
348 }
349
350 // sets some endstop global configs applicable to all endstops
351 get_global_configs();
352
353 if(limit_enabled) {
354 register_for_event(ON_IDLE);
355 }
356
357 return true;
358 }
359
360 void Endstops::get_global_configs()
361 {
362 // NOTE the debounce count is in milliseconds so probably does not need to beset anymore
363 this->debounce_ms= THEKERNEL->config->value(endstop_debounce_ms_checksum)->by_default(0)->as_number();
364 this->debounce_count= THEKERNEL->config->value(endstop_debounce_count_checksum)->by_default(100)->as_number();
365
366 this->is_corexy= THEKERNEL->config->value(corexy_homing_checksum)->by_default(false)->as_bool();
367 this->is_delta= THEKERNEL->config->value(delta_homing_checksum)->by_default(false)->as_bool();
368 this->is_rdelta= THEKERNEL->config->value(rdelta_homing_checksum)->by_default(false)->as_bool();
369 this->is_scara= THEKERNEL->config->value(scara_homing_checksum)->by_default(false)->as_bool();
370
371 this->home_z_first= THEKERNEL->config->value(home_z_first_checksum)->by_default(false)->as_bool();
372
373 this->trim_mm[0] = THEKERNEL->config->value(alpha_trim_checksum)->by_default(0)->as_number();
374 this->trim_mm[1] = THEKERNEL->config->value(beta_trim_checksum)->by_default(0)->as_number();
375 this->trim_mm[2] = THEKERNEL->config->value(gamma_trim_checksum)->by_default(0)->as_number();
376
377 // see if an order has been specified, must be three or more characters, XYZABC or ABYXZ etc
378 string order = THEKERNEL->config->value(homing_order_checksum)->by_default("")->as_string();
379 this->homing_order = 0;
380 if(order.size() >= 3 && order.size() <= homing_axis.size() && !(this->is_delta || this->is_rdelta)) {
381 int shift = 0;
382 for(auto c : order) {
383 uint8_t n= toupper(c);
384 uint8_t i = n >= 'X' ? n - 'X' : n - 'A' + 3;
385 if(i > 6) { // bad value
386 this->homing_order = 0;
387 break;
388 }
389 homing_order |= (i << shift);
390 shift += 3;
391 }
392 }
393
394 // set to true by default for deltas due to trim, false on cartesians
395 this->move_to_origin_after_home = THEKERNEL->config->value(move_to_origin_checksum)->by_default(is_delta)->as_bool();
396 }
397
398 bool Endstops::debounced_get(Pin *pin)
399 {
400 if(pin == nullptr) return false;
401 uint8_t debounce = 0;
402 while(pin->get()) {
403 if ( ++debounce >= this->debounce_count ) {
404 // pin triggered
405 return true;
406 }
407 }
408 return false;
409 }
410
411 // only called if limits are enabled
412 void Endstops::on_idle(void *argument)
413 {
414 if(this->status == LIMIT_TRIGGERED) {
415 // if we were in limit triggered see if it has been cleared
416 for(auto& i : endstops) {
417 if(i->limit_enable) {
418 if(i->pin.get()) {
419 // still triggered, so exit
420 i->debounce = 0;
421 return;
422 }
423
424 if(i->debounce++ > debounce_count) { // can use less as it calls on_idle in between
425 // clear the state
426 this->status = NOT_HOMING;
427 }
428 }
429 }
430 return;
431
432 } else if(this->status != NOT_HOMING) {
433 // don't check while homing
434 return;
435 }
436
437 for(auto& i : endstops) {
438 if(i->limit_enable && STEPPER[i->axis_index]->is_moving()) {
439 // check min and max endstops
440 if(debounced_get(&i->pin)) {
441 // endstop triggered
442 THEKERNEL->streams->printf("Limit switch %c was hit - reset or M999 required\n", i->axis);
443 this->status = LIMIT_TRIGGERED;
444 i->debounce= 0;
445 // disables heaters and motors, ignores incoming Gcode and flushes block queue
446 THEKERNEL->call_event(ON_HALT, nullptr);
447 return;
448 }
449 }
450 }
451 }
452
453 // if limit switches are enabled, then we must move off of the endstop otherwise we won't be able to move
454 // checks if triggered and only backs off if triggered
455 void Endstops::back_off_home(axis_bitmap_t axis)
456 {
457 std::vector<std::pair<char, float>> params;
458 this->status = BACK_OFF_HOME;
459
460 float slow_rate= NAN; // default mm/sec
461
462 // these are handled differently
463 if(is_delta) {
464 // Move off of the endstop using a regular relative move in Z only
465 params.push_back({'Z', homing_axis[Z_AXIS].retract * (homing_axis[Z_AXIS].home_direction ? 1 : -1)});
466 slow_rate= homing_axis[Z_AXIS].slow_rate;
467
468 } else {
469 // cartesians, concatenate all the moves we need to do into one gcode
470 for( auto& e : homing_axis) {
471 if(!axis[e.axis_index]) continue; // only for axes we asked to move
472
473 // if not triggered no need to move off
474 if(e.pin_info != nullptr && e.pin_info->limit_enable && debounced_get(&e.pin_info->pin)) {
475 char ax= e.axis;
476 params.push_back({ax, e.retract * (e.home_direction ? 1 : -1)});
477 // select slowest of them all
478 slow_rate= isnan(slow_rate) ? e.slow_rate : std::min(slow_rate, e.slow_rate);
479 }
480 }
481 }
482
483 if(!params.empty()) {
484 // Move off of the endstop using a regular relative move
485 params.insert(params.begin(), {'G', 0});
486 // use X slow rate to move, Z should have a max speed set anyway
487 params.push_back({'F', slow_rate * 60.0F});
488 char gcode_buf[64];
489 append_parameters(gcode_buf, params, sizeof(gcode_buf));
490 Gcode gc(gcode_buf, &(StreamOutput::NullStream));
491 THEROBOT->push_state();
492 THEROBOT->inch_mode = false; // needs to be in mm
493 THEROBOT->absolute_mode = false; // needs to be relative mode
494 THEROBOT->on_gcode_received(&gc); // send to robot directly
495 // Wait for above to finish
496 THECONVEYOR->wait_for_idle();
497 THEROBOT->pop_state();
498 }
499
500 this->status = NOT_HOMING;
501 }
502
503 // If enabled will move the head to 0,0 after homing, but only if X and Y were set to home
504 void Endstops::move_to_origin(axis_bitmap_t axis)
505 {
506 if(!is_delta && (!axis[X_AXIS] || !axis[Y_AXIS])) return; // ignore if X and Y not homing, unless delta
507
508 // Do we need to check if we are already at 0,0? probably not as the G0 will not do anything if we are
509 // float pos[3]; THEROBOT->get_axis_position(pos); if(pos[0] == 0 && pos[1] == 0) return;
510
511 this->status = MOVE_TO_ORIGIN;
512 // Move to center using a regular move, use slower of X and Y fast rate
513 //float rate = std::min(this->fast_rates[0], this->fast_rates[1]) * 60.0F;
514 char buf[32];
515 THEROBOT->push_state();
516 THEROBOT->inch_mode = false; // needs to be in mm
517 THEROBOT->absolute_mode = true;
518 //snprintf(buf, sizeof(buf), "G53 G0 X0 Y0 F%1.4f", rate); // must use machine coordinates in case G92 or WCS is in effect
519 snprintf(buf, sizeof(buf), "G53 G0 X0 Y0"); // must use machine coordinates in case G92 or WCS is in effect
520 struct SerialMessage message;
521 message.message = buf;
522 message.stream = &(StreamOutput::NullStream);
523 THEKERNEL->call_event(ON_CONSOLE_LINE_RECEIVED, &message ); // as it is a multi G code command
524 // Wait for above to finish
525 THECONVEYOR->wait_for_idle();
526 THEROBOT->pop_state();
527 this->status = NOT_HOMING;
528 }
529
530 // Called every millisecond in an ISR
531 uint32_t Endstops::read_endstops(uint32_t dummy)
532 {
533 if(this->status != MOVING_TO_ENDSTOP_SLOW && this->status != MOVING_TO_ENDSTOP_FAST) return 0; // not doing anything we need to monitor for
534
535 // check each homing endstop
536 for(auto& e : homing_axis) { // check all axis homing endstops
537 if(e.pin_info == nullptr) continue; // ignore if not a homing endstop
538 int m= e.axis_index;
539
540 // for corexy homing in X or Y we must only check the associated endstop, works as we only home one axis at a time for corexy
541 if(is_corexy && (m == X_AXIS || m == Y_AXIS) && !axis_to_home[m]) continue;
542
543 if(STEPPER[m]->is_moving()) {
544 // if it is moving then we check the associated endstop, and debounce it
545 if(e.pin_info->pin.get()) {
546 if(e.pin_info->debounce < debounce_ms) {
547 e.pin_info->debounce++;
548
549 } else {
550 if(is_corexy && (m == X_AXIS || m == Y_AXIS)) {
551 // corexy when moving in X or Y we need to stop both the X and Y motors
552 STEPPER[X_AXIS]->stop_moving();
553 STEPPER[Y_AXIS]->stop_moving();
554
555 }else{
556 // we signal the motor to stop, which will preempt any moves on that axis
557 STEPPER[m]->stop_moving();
558 }
559 }
560
561 } else {
562 // The endstop was not hit yet
563 e.pin_info->debounce= 0;
564 }
565 }
566 }
567
568 return 0;
569 }
570
571 void Endstops::home_xy()
572 {
573 if(axis_to_home[X_AXIS] && axis_to_home[Y_AXIS]) {
574 // Home XY first so as not to slow them down by homing Z at the same time
575 float delta[3] {homing_axis[X_AXIS].max_travel, homing_axis[Y_AXIS].max_travel, 0};
576 if(homing_axis[X_AXIS].home_direction) delta[X_AXIS]= -delta[X_AXIS];
577 if(homing_axis[Y_AXIS].home_direction) delta[Y_AXIS]= -delta[Y_AXIS];
578 float feed_rate = std::min(homing_axis[X_AXIS].fast_rate, homing_axis[Y_AXIS].fast_rate);
579 THEROBOT->delta_move(delta, feed_rate, 3);
580
581 } else if(axis_to_home[X_AXIS]) {
582 // now home X only
583 float delta[3] {homing_axis[X_AXIS].max_travel, 0, 0};
584 if(homing_axis[X_AXIS].home_direction) delta[X_AXIS]= -delta[X_AXIS];
585 THEROBOT->delta_move(delta, homing_axis[X_AXIS].fast_rate, 3);
586
587 } else if(axis_to_home[Y_AXIS]) {
588 // now home Y only
589 float delta[3] {0, homing_axis[Y_AXIS].max_travel, 0};
590 if(homing_axis[Y_AXIS].home_direction) delta[Y_AXIS]= -delta[Y_AXIS];
591 THEROBOT->delta_move(delta, homing_axis[Y_AXIS].fast_rate, 3);
592 }
593
594 // Wait for axis to have homed
595 THECONVEYOR->wait_for_idle();
596 }
597
598 void Endstops::home(axis_bitmap_t a)
599 {
600 // reset debounce counts for all endstops
601 for(auto& e : endstops) {
602 e->debounce= 0;
603 }
604
605 this->axis_to_home= a;
606
607 // Start moving the axes to the origin
608 this->status = MOVING_TO_ENDSTOP_FAST;
609
610 THEROBOT->disable_segmentation= true; // we must disable segmentation as this won't work with it enabled
611
612 if(!home_z_first) home_xy();
613
614 if(axis_to_home[Z_AXIS]) {
615 // now home z
616 float delta[3] {0, 0, homing_axis[Z_AXIS].max_travel}; // we go the max z
617 if(homing_axis[Z_AXIS].home_direction) delta[Z_AXIS]= -delta[Z_AXIS];
618 THEROBOT->delta_move(delta, homing_axis[Z_AXIS].fast_rate, 3);
619 // wait for Z
620 THECONVEYOR->wait_for_idle();
621 }
622
623 if(home_z_first) home_xy();
624
625 // potentially home A B and C individually
626 if(homing_axis.size() > 3){
627 for (size_t i = A_AXIS; i < homing_axis.size(); ++i) {
628 if(axis_to_home[i]) {
629 // now home A B or C
630 float delta[i+1];
631 for (size_t j = 0; j <= i; ++j) delta[j]= 0;
632 delta[i]= homing_axis[i].max_travel; // we go the max
633 if(homing_axis[i].home_direction) delta[i]= -delta[i];
634 THEROBOT->delta_move(delta, homing_axis[i].fast_rate, i+1);
635 // wait for it
636 THECONVEYOR->wait_for_idle();
637 }
638 }
639 }
640
641
642 // TODO: should check that the endstops were hit and it did not stop short for some reason
643 // we did not complete movement the full distance if we hit the endstops
644 // TODO Maybe only reset axis involved in the homing cycle
645 THEROBOT->reset_position_from_current_actuator_position();
646
647 // Move back a small distance for all homing axis
648 this->status = MOVING_BACK;
649 float delta[homing_axis.size()];
650 for (size_t i = 0; i < homing_axis.size(); ++i) delta[i]= 0;
651
652 // use minimum feed rate of all axes that are being homed (sub optimal, but necessary)
653 float feed_rate= homing_axis[X_AXIS].slow_rate;
654 for (auto& i : homing_axis) {
655 int c= i.axis_index;
656 if(axis_to_home[c]) {
657 delta[c]= i.retract;
658 if(!i.home_direction) delta[c]= -delta[c];
659 feed_rate= std::min(i.slow_rate, feed_rate);
660 }
661 }
662
663 THEROBOT->delta_move(delta, feed_rate, homing_axis.size());
664 // wait until finished
665 THECONVEYOR->wait_for_idle();
666
667 // Start moving the axes towards the endstops slowly
668 this->status = MOVING_TO_ENDSTOP_SLOW;
669 for (auto& i : homing_axis) {
670 int c= i.axis_index;
671 if(axis_to_home[c]) {
672 delta[c]= i.retract*2; // move further than we moved off to make sure we hit it cleanly
673 if(i.home_direction) delta[c]= -delta[c];
674 }else{
675 delta[c]= 0;
676 }
677 }
678 THEROBOT->delta_move(delta, feed_rate, homing_axis.size());
679 // wait until finished
680 THECONVEYOR->wait_for_idle();
681
682 // TODO: should check that the endstops were hit and it did not stop short for some reason
683 // we did not complete movement the full distance if we hit the endstops
684 // TODO Maybe only reset axis involved in the homing cycle
685 THEROBOT->reset_position_from_current_actuator_position();
686
687 THEROBOT->disable_segmentation= false;
688
689 this->status = NOT_HOMING;
690 }
691
692 void Endstops::process_home_command(Gcode* gcode)
693 {
694 // First wait for the queue to be empty
695 THECONVEYOR->wait_for_idle();
696
697 // turn off any compensation transform so Z does not move as XY home
698 auto savect= THEROBOT->compensationTransform;
699 THEROBOT->compensationTransform= nullptr;
700
701 // deltas always home Z axis only, which moves all three actuators
702 bool home_in_z = this->is_delta || this->is_rdelta;
703
704 // figure out which axis to home
705 axis_bitmap_t haxis;
706 haxis.reset();
707
708 if(!home_in_z) { // ie not a delta
709 bool axis_speced = (gcode->has_letter('X') || gcode->has_letter('Y') || gcode->has_letter('Z') ||
710 gcode->has_letter('A') || gcode->has_letter('B') || gcode->has_letter('C'));
711
712 for (auto &p : homing_axis) {
713 // only enable homing if the endstop is defined,
714 if(p.pin_info == nullptr) continue;
715 if(!axis_speced || gcode->has_letter(p.axis)) {
716 haxis.set(p.axis_index);
717 // now reset axis to 0 as we do not know what state we are in
718 THEROBOT->reset_axis_position(0, p.axis_index);
719 }
720 }
721
722 } else {
723 // Only Z axis homes (even though all actuators move this is handled by arm solution)
724 haxis.set(Z_AXIS);
725 // we also set the kinematics to a known good position, this is necessary for a rotary delta, but doesn't hurt for linear delta
726 THEROBOT->reset_axis_position(0, 0, 0);
727 }
728
729 // do the actual homing
730 if(homing_order != 0) {
731 // if an order has been specified do it in the specified order
732 // homing order is 0bfffeeedddcccbbbaaa where aaa is 0,1,2,3,4,5 to specify the first axis (XYZABC), bb is the second and cc is the third etc
733 // eg 0b011010000001 would be Y X Z A, 010 001 000 011 100 would be B A X Y Z
734 for (uint8_t m = homing_order; m != 0; m >>= 3) {
735 uint8_t a= (m & 0x07); // axis to home
736 if(a <= homing_axis.size() && haxis[a]) { // if axis is selected to home
737 axis_bitmap_t bs;
738 bs.set(a);
739 home(bs);
740 }
741 // check if on_halt (eg kill)
742 if(THEKERNEL->is_halted()) break;
743 }
744
745 } else if(is_corexy) {
746 // corexy must home each axis individually
747 for (auto &p : homing_axis) {
748 if(haxis[p.axis_index]) {
749 axis_bitmap_t bs;
750 bs.set(p.axis_index);
751 home(bs);
752 }
753 // check if on_halt (eg kill)
754 if(THEKERNEL->is_halted()) break;
755 }
756
757 } else {
758 // they could all home at the same time
759 home(haxis);
760 }
761
762 // restore compensationTransform
763 THEROBOT->compensationTransform= savect;
764
765 // check if on_halt (eg kill)
766 if(THEKERNEL->is_halted()) {
767 if(!THEKERNEL->is_grbl_mode()) {
768 THEKERNEL->streams->printf("Homing cycle aborted by kill\n");
769 }
770 // clear all the homed flags
771 for (auto &p : homing_axis) p.homed= false;
772 return;
773 }
774
775 if(home_in_z) { // deltas only
776 // Here's where we would have been if the endstops were perfectly trimmed
777 // NOTE on a rotary delta home_offset is actuator position in degrees when homed and
778 // home_offset is the theta offset for each actuator, so M206 is used to set theta offset for each actuator in degrees
779 // FIXME not sure this will work with compensation transforms on.
780 float ideal_position[3] = {
781 homing_axis[X_AXIS].homing_position + homing_axis[X_AXIS].home_offset,
782 homing_axis[Y_AXIS].homing_position + homing_axis[Y_AXIS].home_offset,
783 homing_axis[Z_AXIS].homing_position + homing_axis[Z_AXIS].home_offset
784 };
785
786 bool has_endstop_trim = this->is_delta;
787 if (has_endstop_trim) {
788 ActuatorCoordinates ideal_actuator_position;
789 THEROBOT->arm_solution->cartesian_to_actuator(ideal_position, ideal_actuator_position);
790
791 // We are actually not at the ideal position, but a trim away
792 ActuatorCoordinates real_actuator_position = {
793 ideal_actuator_position[X_AXIS] - this->trim_mm[X_AXIS],
794 ideal_actuator_position[Y_AXIS] - this->trim_mm[Y_AXIS],
795 ideal_actuator_position[Z_AXIS] - this->trim_mm[Z_AXIS]
796 };
797
798 float real_position[3];
799 THEROBOT->arm_solution->actuator_to_cartesian(real_actuator_position, real_position);
800 // Reset the actuator positions to correspond to our real position
801 THEROBOT->reset_axis_position(real_position[0], real_position[1], real_position[2]);
802
803 } else {
804 // without endstop trim, real_position == ideal_position
805 if(is_rdelta) {
806 // with a rotary delta we set the actuators angle then use the FK to calculate the resulting cartesian coordinates
807 ActuatorCoordinates real_actuator_position = {ideal_position[0], ideal_position[1], ideal_position[2]};
808 THEROBOT->reset_actuator_position(real_actuator_position);
809
810 } else {
811 // Reset the actuator positions to correspond to our real position
812 THEROBOT->reset_axis_position(ideal_position[0], ideal_position[1], ideal_position[2]);
813 }
814 }
815
816 // for deltas we say all axis are homed even though it was only Z
817 for (auto &p : homing_axis) p.homed= true;
818
819 } else {
820 // Zero the ax(i/e)s position, add in the home offset
821 // NOTE that if compensation is active the Z will be set based on where XY are, so make sure XY are homed first then Z
822 // so XY are at a known consistent position. (especially true if using a proximity probe)
823 for (auto &p : homing_axis) {
824 if (haxis[p.axis_index]) { // if we requested this axis to home
825 THEROBOT->reset_axis_position(p.homing_position + p.home_offset, p.axis_index);
826 // set flag indicating axis was homed, it stays set once set until H/W reset or unhomed
827 p.homed= true;
828 }
829 }
830 }
831
832 // on some systems where 0,0 is bed center it is nice to have home goto 0,0 after homing
833 // default is off for cartesian on for deltas
834 if(!is_delta) {
835 // NOTE a rotary delta usually has optical or hall-effect endstops so it is safe to go past them a little bit
836 if(this->move_to_origin_after_home) move_to_origin(haxis);
837 // if limit switches are enabled we must back off endstop after setting home
838 back_off_home(haxis);
839
840 } else if(this->move_to_origin_after_home || homing_axis[X_AXIS].pin_info->limit_enable) {
841 // deltas are not left at 0,0 because of the trim settings, so move to 0,0 if requested, but we need to back off endstops first
842 // also need to back off endstops if limits are enabled
843 back_off_home(haxis);
844 if(this->move_to_origin_after_home) move_to_origin(haxis);
845 }
846 }
847
848 void Endstops::set_homing_offset(Gcode *gcode)
849 {
850 // M306 Similar to M206 but sets Homing offsets based on current MCS position
851 // Basically it finds the delta between the current MCS position and the requested position and adds it to the homing offset
852 // then will not let it be set again until that axis is homed.
853 float pos[3];
854 THEROBOT->get_axis_position(pos);
855
856 if (gcode->has_letter('X')) {
857 if(!homing_axis[X_AXIS].homed) {
858 gcode->stream->printf("error: Axis X must be homed before setting Homing offset\n");
859 return;
860 }
861 homing_axis[X_AXIS].home_offset += (THEROBOT->to_millimeters(gcode->get_value('X')) - pos[X_AXIS]);
862 homing_axis[X_AXIS].homed= false; // force it to be homed
863 }
864 if (gcode->has_letter('Y')) {
865 if(!homing_axis[Y_AXIS].homed) {
866 gcode->stream->printf("error: Axis Y must be homed before setting Homing offset\n");
867 return;
868 }
869 homing_axis[Y_AXIS].home_offset += (THEROBOT->to_millimeters(gcode->get_value('Y')) - pos[Y_AXIS]);
870 homing_axis[Y_AXIS].homed= false; // force it to be homed
871 }
872 if (gcode->has_letter('Z')) {
873 if(!homing_axis[Z_AXIS].homed) {
874 gcode->stream->printf("error: Axis Z must be homed before setting Homing offset\n");
875 return;
876 }
877 homing_axis[Z_AXIS].home_offset += (THEROBOT->to_millimeters(gcode->get_value('Z')) - pos[Z_AXIS]);
878 homing_axis[Z_AXIS].homed= false; // force it to be homed
879 }
880
881 gcode->stream->printf("Homing Offset: X %5.3f Y %5.3f Z %5.3f will take effect next home\n", homing_axis[X_AXIS].home_offset, homing_axis[Y_AXIS].home_offset, homing_axis[Z_AXIS].home_offset);
882 }
883
884 void Endstops::handle_park(Gcode * gcode)
885 {
886 // TODO: spec says if XYZ specified move to them first then move to MCS of specifed axis
887 THEROBOT->push_state();
888 THEROBOT->inch_mode = false; // needs to be in mm
889 THEROBOT->absolute_mode = true;
890 char buf[32];
891 snprintf(buf, sizeof(buf), "G53 G0 X%f Y%f", saved_position[X_AXIS], saved_position[Y_AXIS]); // must use machine coordinates in case G92 or WCS is in effect
892 struct SerialMessage message;
893 message.message = buf;
894 message.stream = &(StreamOutput::NullStream);
895 THEKERNEL->call_event(ON_CONSOLE_LINE_RECEIVED, &message ); // as it is a multi G code command
896 // Wait for above to finish
897 THECONVEYOR->wait_for_idle();
898 THEROBOT->pop_state();
899 }
900
901 // parse gcodes
902 void Endstops::on_gcode_received(void *argument)
903 {
904 Gcode *gcode = static_cast<Gcode *>(argument);
905
906 if ( gcode->has_g && gcode->g == 28) {
907 switch(gcode->subcode) {
908 case 0: // G28 in grbl mode will do a rapid to the predefined position otherwise it is home command
909 if(THEKERNEL->is_grbl_mode()){
910 handle_park(gcode);
911 }else{
912 process_home_command(gcode);
913 }
914 break;
915
916 case 1: // G28.1 set pre defined park position
917 // saves current position in absolute machine coordinates
918 THEROBOT->get_axis_position(saved_position); // Only XY are used
919 // Note the following is only meant to be used for recovering a saved position from config-override
920 // Not a standard Gcode and not to be relied on
921 if (gcode->has_letter('X')) saved_position[X_AXIS] = gcode->get_value('X');
922 if (gcode->has_letter('Y')) saved_position[Y_AXIS] = gcode->get_value('Y');
923 break;
924
925 case 2: // G28.2 in grbl mode does homing (triggered by $H), otherwise it moves to the park position
926 if(THEKERNEL->is_grbl_mode()) {
927 process_home_command(gcode);
928 }else{
929 handle_park(gcode);
930 }
931 break;
932
933 case 3: // G28.3 is a smoothie special it sets manual homing
934 if(gcode->get_num_args() == 0) {
935 for (auto &p : homing_axis) {
936 p.homed= true;
937 THEROBOT->reset_axis_position(0, p.axis_index);
938 }
939 } else {
940 // do a manual homing based on given coordinates, no endstops required
941 if(gcode->has_letter('X')){ THEROBOT->reset_axis_position(gcode->get_value('X'), X_AXIS); homing_axis[X_AXIS].homed= true; }
942 if(gcode->has_letter('Y')){ THEROBOT->reset_axis_position(gcode->get_value('Y'), Y_AXIS); homing_axis[Y_AXIS].homed= true; }
943 if(gcode->has_letter('Z')){ THEROBOT->reset_axis_position(gcode->get_value('Z'), Z_AXIS); homing_axis[Z_AXIS].homed= true; }
944 if(homing_axis.size() > A_AXIS && gcode->has_letter('A')){ THEROBOT->reset_axis_position(gcode->get_value('A'), A_AXIS); homing_axis[A_AXIS].homed= true; }
945 if(homing_axis.size() > B_AXIS && gcode->has_letter('B')){ THEROBOT->reset_axis_position(gcode->get_value('B'), B_AXIS); homing_axis[B_AXIS].homed= true; }
946 if(homing_axis.size() > C_AXIS && gcode->has_letter('C')){ THEROBOT->reset_axis_position(gcode->get_value('C'), C_AXIS); homing_axis[C_AXIS].homed= true; }
947 }
948 break;
949
950 case 4: { // G28.4 is a smoothie special it sets manual homing based on the actuator position (used for rotary delta)
951 // do a manual homing based on given coordinates, no endstops required
952 ActuatorCoordinates ac{NAN, NAN, NAN};
953 if(gcode->has_letter('X')){ ac[0] = gcode->get_value('X'); homing_axis[X_AXIS].homed= true; }
954 if(gcode->has_letter('Y')){ ac[1] = gcode->get_value('Y'); homing_axis[Y_AXIS].homed= true; }
955 if(gcode->has_letter('Z')){ ac[2] = gcode->get_value('Z'); homing_axis[Z_AXIS].homed= true; }
956 THEROBOT->reset_actuator_position(ac);
957 }
958 break;
959
960 case 5: // G28.5 is a smoothie special it clears the homed flag for the specified axis, or all if not specifed
961 if(gcode->get_num_args() == 0) {
962 for (auto &p : homing_axis) p.homed= false;
963 } else {
964 if(gcode->has_letter('X')) homing_axis[X_AXIS].homed= false;
965 if(gcode->has_letter('Y')) homing_axis[Y_AXIS].homed= false;
966 if(gcode->has_letter('Z')) homing_axis[Z_AXIS].homed= false;
967 if(homing_axis.size() > A_AXIS && gcode->has_letter('A')) homing_axis[A_AXIS].homed= false;
968 if(homing_axis.size() > B_AXIS && gcode->has_letter('B')) homing_axis[B_AXIS].homed= false;
969 if(homing_axis.size() > C_AXIS && gcode->has_letter('C')) homing_axis[C_AXIS].homed= false;
970 }
971 break;
972
973 case 6: // G28.6 is a smoothie special it shows the homing status of each axis
974 for (auto &p : homing_axis) {
975 gcode->stream->printf("%c:%d ", p.axis, p.homed);
976 }
977 gcode->add_nl= true;
978 break;
979
980 default:
981 if(THEKERNEL->is_grbl_mode()) {
982 gcode->stream->printf("error:Unsupported command\n");
983 }
984 break;
985 }
986
987 } else if (gcode->has_m) {
988
989 switch (gcode->m) {
990 case 119: {
991 for(auto& h : homing_axis) {
992 string name;
993 name.append(1, h.axis).append(h.home_direction ? "_min" : "_max");
994 gcode->stream->printf("%s:%d ", name.c_str(), h.pin_info->pin.get());
995 }
996 gcode->stream->printf("pins- ");
997 for(auto& p : endstops) {
998 string str(1, p->axis);
999 if(p->limit_enable) str.append("L");
1000 gcode->stream->printf("(%s)P%d.%d:%d ", str.c_str(), p->pin.port_number, p->pin.pin, p->pin.get());
1001 }
1002 gcode->add_nl = true;
1003 }
1004 break;
1005
1006 case 206: // M206 - set homing offset
1007 if(is_rdelta) return; // RotaryDeltaCalibration module will handle this
1008 for (auto &p : homing_axis) {
1009 if (gcode->has_letter(p.axis)) p.home_offset= gcode->get_value(p.axis);
1010 }
1011
1012 for (auto &p : homing_axis) {
1013 gcode->stream->printf("%c: %5.3f ", p.axis, p.home_offset);
1014 }
1015
1016 gcode->stream->printf(" will take effect next home\n");
1017 break;
1018
1019 case 306: // set homing offset based on current position
1020 if(is_rdelta) return; // RotaryDeltaCalibration module will handle this
1021
1022 set_homing_offset(gcode);
1023 break;
1024
1025 case 500: // save settings
1026 case 503: // print settings
1027 if(!is_rdelta) {
1028 gcode->stream->printf(";Home offset (mm):\nM206 ");
1029 for (auto &p : homing_axis) {
1030 gcode->stream->printf("%c%1.2f ", p.axis, p.home_offset);
1031 }
1032 gcode->stream->printf("\n");
1033
1034 }else{
1035 gcode->stream->printf(";Theta offset (degrees):\nM206 A%1.5f B%1.5f C%1.5f\n",
1036 homing_axis[X_AXIS].home_offset, homing_axis[Y_AXIS].home_offset, homing_axis[Z_AXIS].home_offset);
1037 }
1038
1039 if (this->is_delta || this->is_scara) {
1040 gcode->stream->printf(";Trim (mm):\nM666 X%1.3f Y%1.3f Z%1.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
1041 gcode->stream->printf(";Max Z\nM665 Z%1.3f\n", homing_axis[Z_AXIS].homing_position);
1042 }
1043 if(saved_position[X_AXIS] != 0 || saved_position[Y_AXIS] != 0) {
1044 gcode->stream->printf(";predefined position:\nG28.1 X%1.4f Y%1.4f\n", saved_position[X_AXIS], saved_position[Y_AXIS]);
1045 }
1046 break;
1047
1048 case 665:
1049 if (this->is_delta || this->is_scara) { // M665 - set max gamma/z height
1050 float gamma_max = homing_axis[Z_AXIS].homing_position;
1051 if (gcode->has_letter('Z')) {
1052 homing_axis[Z_AXIS].homing_position= gamma_max = gcode->get_value('Z');
1053 }
1054 gcode->stream->printf("Max Z %8.3f ", gamma_max);
1055 gcode->add_nl = true;
1056 }
1057 break;
1058
1059 case 666:
1060 if(this->is_delta || this->is_scara) { // M666 - set trim for each axis in mm, NB negative mm trim is down
1061 if (gcode->has_letter('X')) trim_mm[0] = gcode->get_value('X');
1062 if (gcode->has_letter('Y')) trim_mm[1] = gcode->get_value('Y');
1063 if (gcode->has_letter('Z')) trim_mm[2] = gcode->get_value('Z');
1064
1065 // print the current trim values in mm
1066 gcode->stream->printf("X: %5.3f Y: %5.3f Z: %5.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
1067
1068 }
1069 break;
1070
1071 }
1072 }
1073 }
1074
1075 void Endstops::on_get_public_data(void* argument)
1076 {
1077 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
1078
1079 if(!pdr->starts_with(endstops_checksum)) return;
1080
1081 if(pdr->second_element_is(trim_checksum)) {
1082 pdr->set_data_ptr(&this->trim_mm);
1083 pdr->set_taken();
1084
1085 } else if(pdr->second_element_is(home_offset_checksum)) {
1086 // provided by caller
1087 float *data = static_cast<float *>(pdr->get_data_ptr());
1088 for (int i = 0; i < 3; ++i) {
1089 data[i]= homing_axis[i].home_offset;
1090 }
1091 pdr->set_taken();
1092
1093 } else if(pdr->second_element_is(saved_position_checksum)) {
1094 pdr->set_data_ptr(&this->saved_position);
1095 pdr->set_taken();
1096
1097 } else if(pdr->second_element_is(get_homing_status_checksum)) {
1098 bool *homing = static_cast<bool *>(pdr->get_data_ptr());
1099 *homing = this->status != NOT_HOMING;
1100 pdr->set_taken();
1101 }
1102 }
1103
1104 void Endstops::on_set_public_data(void* argument)
1105 {
1106 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
1107
1108 if(!pdr->starts_with(endstops_checksum)) return;
1109
1110 if(pdr->second_element_is(trim_checksum)) {
1111 float *t = static_cast<float*>(pdr->get_data_ptr());
1112 this->trim_mm[0] = t[0];
1113 this->trim_mm[1] = t[1];
1114 this->trim_mm[2] = t[2];
1115 pdr->set_taken();
1116
1117 } else if(pdr->second_element_is(home_offset_checksum)) {
1118 float *t = static_cast<float*>(pdr->get_data_ptr());
1119 if(!isnan(t[0])) homing_axis[0].home_offset= t[0];
1120 if(!isnan(t[1])) homing_axis[1].home_offset= t[1];
1121 if(!isnan(t[2])) homing_axis[2].home_offset= t[2];
1122 }
1123 }