fixing merge conflict
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include <string>
11 using std::string;
12 #include <math.h>
13 #include "Planner.h"
14 #include "Conveyor.h"
15 #include "Robot.h"
16 #include "libs/nuts_bolts.h"
17 #include "libs/Pin.h"
18 #include "libs/StepperMotor.h"
19 #include "../communication/utils/Gcode.h"
20 #include "arm_solutions/BaseSolution.h"
21 #include "arm_solutions/CartesianSolution.h"
22 #include "arm_solutions/RotatableCartesianSolution.h"
23 #include "arm_solutions/RostockSolution.h"
24
25 Robot::Robot(){
26 this->inch_mode = false;
27 this->absolute_mode = true;
28 this->motion_mode = MOTION_MODE_SEEK;
29 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
30 clear_vector(this->current_position);
31 clear_vector(this->last_milestone);
32 this->arm_solution = NULL;
33 seconds_per_minute = 60.0;
34 }
35
36 //Called when the module has just been loaded
37 void Robot::on_module_loaded() {
38 register_for_event(ON_CONFIG_RELOAD);
39 this->register_for_event(ON_GCODE_RECEIVED);
40
41 // Configuration
42 this->on_config_reload(this);
43
44 // Make our 3 StepperMotors
45 this->alpha_stepper_motor = this->kernel->step_ticker->add_stepper_motor( new StepperMotor(&alpha_step_pin,&alpha_dir_pin,&alpha_en_pin) );
46 this->beta_stepper_motor = this->kernel->step_ticker->add_stepper_motor( new StepperMotor(&beta_step_pin, &beta_dir_pin, &beta_en_pin ) );
47 this->gamma_stepper_motor = this->kernel->step_ticker->add_stepper_motor( new StepperMotor(&gamma_step_pin,&gamma_dir_pin,&gamma_en_pin) );
48
49 }
50
51 void Robot::on_config_reload(void* argument){
52 if (this->arm_solution) delete this->arm_solution;
53 int solution_checksum = get_checksum(this->kernel->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
54
55 // Note checksums are not const expressions when in debug mode, so don't use switch
56 if(solution_checksum == rostock_checksum) {
57 this->arm_solution = new RostockSolution(this->kernel->config);
58
59 }else if(solution_checksum == delta_checksum) {
60 // place holder for now
61 this->arm_solution = new RostockSolution(this->kernel->config);
62
63 }else if(solution_checksum == rotatable_cartesian_checksum) {
64 this->arm_solution = new RotatableCartesianSolution(this->kernel->config);
65
66 }else if(solution_checksum == cartesian_checksum) {
67 this->arm_solution = new CartesianSolution(this->kernel->config);
68
69 }else{
70 this->arm_solution = new CartesianSolution(this->kernel->config);
71 }
72
73
74 this->feed_rate = this->kernel->config->value(default_feed_rate_checksum )->by_default(100 )->as_number() / 60;
75 this->seek_rate = this->kernel->config->value(default_seek_rate_checksum )->by_default(100 )->as_number() / 60;
76 this->mm_per_line_segment = this->kernel->config->value(mm_per_line_segment_checksum )->by_default(0.0 )->as_number();
77 this->delta_segments_per_second = this->kernel->config->value(delta_segments_per_second_checksum )->by_default(0.0 )->as_number();
78 this->mm_per_arc_segment = this->kernel->config->value(mm_per_arc_segment_checksum )->by_default(0.5 )->as_number();
79 this->arc_correction = this->kernel->config->value(arc_correction_checksum )->by_default(5 )->as_number();
80 this->max_speeds[X_AXIS] = this->kernel->config->value(x_axis_max_speed_checksum )->by_default(60000 )->as_number();
81 this->max_speeds[Y_AXIS] = this->kernel->config->value(y_axis_max_speed_checksum )->by_default(60000 )->as_number();
82 this->max_speeds[Z_AXIS] = this->kernel->config->value(z_axis_max_speed_checksum )->by_default(300 )->as_number();
83 this->alpha_step_pin.from_string( this->kernel->config->value(alpha_step_pin_checksum )->by_default("2.0" )->as_string())->as_output();
84 this->alpha_dir_pin.from_string( this->kernel->config->value(alpha_dir_pin_checksum )->by_default("0.5" )->as_string())->as_output();
85 this->alpha_en_pin.from_string( this->kernel->config->value(alpha_en_pin_checksum )->by_default("0.4" )->as_string())->as_output()->as_open_drain();
86 this->beta_step_pin.from_string( this->kernel->config->value(beta_step_pin_checksum )->by_default("2.1" )->as_string())->as_output();
87 this->gamma_step_pin.from_string( this->kernel->config->value(gamma_step_pin_checksum )->by_default("2.2" )->as_string())->as_output();
88 this->gamma_dir_pin.from_string( this->kernel->config->value(gamma_dir_pin_checksum )->by_default("0.20" )->as_string())->as_output();
89 this->gamma_en_pin.from_string( this->kernel->config->value(gamma_en_pin_checksum )->by_default("0.19" )->as_string())->as_output()->as_open_drain();
90 this->beta_dir_pin.from_string( this->kernel->config->value(beta_dir_pin_checksum )->by_default("0.11" )->as_string())->as_output();
91 this->beta_en_pin.from_string( this->kernel->config->value(beta_en_pin_checksum )->by_default("0.10" )->as_string())->as_output()->as_open_drain();
92
93 }
94
95 //#pragma GCC push_options
96 //#pragma GCC optimize ("O0")
97
98
99 //A GCode has been received
100 void Robot::on_gcode_received(void * argument){
101 Gcode* gcode = static_cast<Gcode*>(argument);
102 this->process_gcode(gcode);
103 }
104
105 // We called process_gcode with a new gcode, and one of the functions
106 // determined the distance for that given gcode. So now we can attach this gcode to the right block
107 // and continue
108 void Robot::distance_in_gcode_is_known(Gcode* gcode){
109
110 //If the queue is empty, execute immediatly, otherwise attach to the last added block
111 if( this->kernel->conveyor->queue.size() == 0 ){
112 this->kernel->call_event(ON_GCODE_EXECUTE, gcode );
113 }else{
114 Block* block = this->kernel->conveyor->queue.get_ref( this->kernel->conveyor->queue.size() - 1 );
115 block->append_gcode(gcode);
116 }
117
118 }
119
120 //#pragma GCC pop_options
121
122 void Robot::reset_axis_position(double position, int axis) {
123 this->last_milestone[axis] = this->current_position[axis] = position;
124 this->arm_solution->millimeters_to_steps(this->current_position, this->kernel->planner->position);
125 }
126
127
128 //See if the current Gcode line has some orders for us
129 void Robot::process_gcode(Gcode* gcode){
130
131 //Temp variables, constant properties are stored in the object
132 uint8_t next_action = NEXT_ACTION_DEFAULT;
133 this->motion_mode = -1;
134
135 //G-letter Gcodes are mostly what the Robot module is interrested in, other modules also catch the gcode event and do stuff accordingly
136 if( gcode->has_g){
137 switch( gcode->g ){
138 case 0: this->motion_mode = MOTION_MODE_SEEK; break;
139 case 1: this->motion_mode = MOTION_MODE_LINEAR; break;
140 case 2: this->motion_mode = MOTION_MODE_CW_ARC; break;
141 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; break;
142 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
143 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
144 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
145 case 20: this->inch_mode = true; break;
146 case 21: this->inch_mode = false; break;
147 case 90: this->absolute_mode = true; break;
148 case 91: this->absolute_mode = false; break;
149 case 92: {
150 if(gcode->get_num_args() == 0){
151 clear_vector(this->last_milestone);
152 }else{
153 for (char letter = 'X'; letter <= 'Z'; letter++){
154 if ( gcode->has_letter(letter) )
155 this->last_milestone[letter-'X'] = this->to_millimeters(gcode->get_value(letter));
156 }
157 }
158 memcpy(this->current_position, this->last_milestone, sizeof(double)*3); // current_position[] = last_milestone[];
159 this->arm_solution->millimeters_to_steps(this->current_position, this->kernel->planner->position);
160 return; // TODO: Wait until queue empty
161 }
162 }
163 }else if( gcode->has_m){
164 switch( gcode->m ){
165 case 92: // M92 - set steps per mm
166 double steps[3];
167 this->arm_solution->get_steps_per_millimeter(steps);
168 if (gcode->has_letter('X'))
169 steps[0] = this->to_millimeters(gcode->get_value('X'));
170 if (gcode->has_letter('Y'))
171 steps[1] = this->to_millimeters(gcode->get_value('Y'));
172 if (gcode->has_letter('Z'))
173 steps[2] = this->to_millimeters(gcode->get_value('Z'));
174 if (gcode->has_letter('F'))
175 seconds_per_minute = gcode->get_value('F');
176 this->arm_solution->set_steps_per_millimeter(steps);
177 // update current position in steps
178 this->arm_solution->millimeters_to_steps(this->current_position, this->kernel->planner->position);
179 gcode->stream->printf("X:%g Y:%g Z:%g F:%g ", steps[0], steps[1], steps[2], seconds_per_minute);
180 gcode->add_nl = true;
181 return;
182 case 114: gcode->stream->printf("C: X:%1.3f Y:%1.3f Z:%1.3f ",
183 this->current_position[0],
184 this->current_position[1],
185 this->current_position[2]);
186 gcode->add_nl = true;
187 return;
188 case 220: // M220 - speed override percentage
189 if (gcode->has_letter('S'))
190 {
191 double factor = gcode->get_value('S');
192 // enforce minimum 1% speed
193 if (factor < 1.0)
194 factor = 1.0;
195 seconds_per_minute = factor * 0.6;
196 }
197 }
198 }
199 if( this->motion_mode < 0)
200 return;
201
202 //Get parameters
203 double target[3], offset[3];
204 clear_vector(target); clear_vector(offset);
205
206 memcpy(target, this->current_position, sizeof(target)); //default to last target
207
208 for(char letter = 'I'; letter <= 'K'; letter++){ if( gcode->has_letter(letter) ){ offset[letter-'I'] = this->to_millimeters(gcode->get_value(letter)); } }
209 for(char letter = 'X'; letter <= 'Z'; letter++){ if( gcode->has_letter(letter) ){ target[letter-'X'] = this->to_millimeters(gcode->get_value(letter)) + ( this->absolute_mode ? 0 : target[letter-'X']); } }
210
211 if( gcode->has_letter('F') )
212 {
213 if( this->motion_mode == MOTION_MODE_SEEK )
214 this->seek_rate = this->to_millimeters( gcode->get_value('F') ) / 60.0;
215 else
216 this->feed_rate = this->to_millimeters( gcode->get_value('F') ) / 60.0;
217 }
218
219 //Perform any physical actions
220 switch( next_action ){
221 case NEXT_ACTION_DEFAULT:
222 switch(this->motion_mode){
223 case MOTION_MODE_CANCEL: break;
224 case MOTION_MODE_SEEK : this->append_line(gcode, target, this->seek_rate ); break;
225 case MOTION_MODE_LINEAR: this->append_line(gcode, target, this->feed_rate ); break;
226 case MOTION_MODE_CW_ARC: case MOTION_MODE_CCW_ARC: this->compute_arc(gcode, offset, target ); break;
227 }
228 break;
229 }
230
231 // As far as the parser is concerned, the position is now == target. In reality the
232 // motion control system might still be processing the action and the real tool position
233 // in any intermediate location.
234 memcpy(this->current_position, target, sizeof(double)*3); // this->position[] = target[];
235
236 }
237
238 // Convert target from millimeters to steps, and append this to the planner
239 void Robot::append_milestone( double target[], double rate ){
240 int steps[3]; //Holds the result of the conversion
241
242 this->arm_solution->millimeters_to_steps( target, steps );
243
244 double deltas[3];
245 for(int axis=X_AXIS;axis<=Z_AXIS;axis++){deltas[axis]=target[axis]-this->last_milestone[axis];}
246
247
248 double millimeters_of_travel = sqrt( pow( deltas[X_AXIS], 2 ) + pow( deltas[Y_AXIS], 2 ) + pow( deltas[Z_AXIS], 2 ) );
249
250 for(int axis=X_AXIS;axis<=Z_AXIS;axis++){
251 if( this->max_speeds[axis] > 0 ){
252 double axis_speed = ( fabs(deltas[axis]) / ( millimeters_of_travel / rate )) * seconds_per_minute;
253 if( axis_speed > this->max_speeds[axis] ){
254 rate = rate * ( this->max_speeds[axis] / axis_speed );
255 }
256 }
257 }
258
259 this->kernel->planner->append_block( steps, rate * seconds_per_minute, millimeters_of_travel, deltas );
260
261 memcpy(this->last_milestone, target, sizeof(double)*3); // this->last_milestone[] = target[];
262
263 }
264
265 void Robot::append_line(Gcode* gcode, double target[], double rate ){
266
267 gcode->millimeters_of_travel = sqrt( pow( target[X_AXIS]-this->current_position[X_AXIS], 2 ) + pow( target[Y_AXIS]-this->current_position[Y_AXIS], 2 ) + pow( target[Z_AXIS]-this->current_position[Z_AXIS], 2 ) );
268
269 this->distance_in_gcode_is_known( gcode );
270
271
272 // We cut the line into smaller segments. This is not usefull in a cartesian robot, but necessary for robots with rotational axes.
273 // In cartesian robot, a high "mm_per_line_segment" setting will prevent waste.
274 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
275
276 uint16_t segments;
277
278 if(this->delta_segments_per_second > 1.0) {
279 // enabled if set to something > 1, it is set to 0.0 by default
280 // segment based on current speed and requested segments per second
281 // the faster the travel speed the fewer segments needed
282 // NOTE rate is mm/sec and we take into account any speed override
283 float seconds = 60.0/seconds_per_minute * gcode->millimeters_of_travel / rate;
284 segments= max(1, ceil(this->delta_segments_per_second * seconds));
285 // TODO if we are only moving in Z on a delta we don't really need to segment at all
286
287 }else{
288 if(this->mm_per_line_segment == 0.0){
289 segments= 1; // don't split it up
290 }else{
291 segments = ceil( gcode->millimeters_of_travel/ this->mm_per_line_segment);
292 }
293 }
294
295 // A vector to keep track of the endpoint of each segment
296 double temp_target[3];
297 //Initialize axes
298 memcpy( temp_target, this->current_position, sizeof(double)*3); // temp_target[] = this->current_position[];
299
300 //For each segment
301 for( int i=0; i<segments-1; i++ ){
302 for(int axis=X_AXIS; axis <= Z_AXIS; axis++ ){ temp_target[axis] += ( target[axis]-this->current_position[axis] )/segments; }
303 this->append_milestone(temp_target, rate);
304 }
305 this->append_milestone(target, rate);
306 }
307
308
309 void Robot::append_arc(Gcode* gcode, double target[], double offset[], double radius, bool is_clockwise ){
310
311 double center_axis0 = this->current_position[this->plane_axis_0] + offset[this->plane_axis_0];
312 double center_axis1 = this->current_position[this->plane_axis_1] + offset[this->plane_axis_1];
313 double linear_travel = target[this->plane_axis_2] - this->current_position[this->plane_axis_2];
314 double r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
315 double r_axis1 = -offset[this->plane_axis_1];
316 double rt_axis0 = target[this->plane_axis_0] - center_axis0;
317 double rt_axis1 = target[this->plane_axis_1] - center_axis1;
318
319 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
320 double angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
321 if (angular_travel < 0) { angular_travel += 2*M_PI; }
322 if (is_clockwise) { angular_travel -= 2*M_PI; }
323
324 gcode->millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
325
326 this->distance_in_gcode_is_known( gcode );
327
328 /*
329 if (gcode->millimeters_of_travel == 0.0) {
330 this->append_milestone(this->current_position, 0.0);
331 return;
332 }
333 */
334
335 uint16_t segments = floor(gcode->millimeters_of_travel/this->mm_per_arc_segment);
336
337 double theta_per_segment = angular_travel/segments;
338 double linear_per_segment = linear_travel/segments;
339
340 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
341 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
342 r_T = [cos(phi) -sin(phi);
343 sin(phi) cos(phi] * r ;
344 For arc generation, the center of the circle is the axis of rotation and the radius vector is
345 defined from the circle center to the initial position. Each line segment is formed by successive
346 vector rotations. This requires only two cos() and sin() computations to form the rotation
347 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
348 all double numbers are single precision on the Arduino. (True double precision will not have
349 round off issues for CNC applications.) Single precision error can accumulate to be greater than
350 tool precision in some cases. Therefore, arc path correction is implemented.
351
352 Small angle approximation may be used to reduce computation overhead further. This approximation
353 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
354 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
355 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
356 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
357 issue for CNC machines with the single precision Arduino calculations.
358 This approximation also allows mc_arc to immediately insert a line segment into the planner
359 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
360 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
361 This is important when there are successive arc motions.
362 */
363 // Vector rotation matrix values
364 double cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
365 double sin_T = theta_per_segment;
366
367 double arc_target[3];
368 double sin_Ti;
369 double cos_Ti;
370 double r_axisi;
371 uint16_t i;
372 int8_t count = 0;
373
374 // Initialize the linear axis
375 arc_target[this->plane_axis_2] = this->current_position[this->plane_axis_2];
376
377 for (i = 1; i<segments; i++) { // Increment (segments-1)
378
379 if (count < this->arc_correction ) {
380 // Apply vector rotation matrix
381 r_axisi = r_axis0*sin_T + r_axis1*cos_T;
382 r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
383 r_axis1 = r_axisi;
384 count++;
385 } else {
386 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
387 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
388 cos_Ti = cos(i*theta_per_segment);
389 sin_Ti = sin(i*theta_per_segment);
390 r_axis0 = -offset[this->plane_axis_0]*cos_Ti + offset[this->plane_axis_1]*sin_Ti;
391 r_axis1 = -offset[this->plane_axis_0]*sin_Ti - offset[this->plane_axis_1]*cos_Ti;
392 count = 0;
393 }
394
395 // Update arc_target location
396 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
397 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
398 arc_target[this->plane_axis_2] += linear_per_segment;
399 this->append_milestone(arc_target, this->feed_rate);
400
401 }
402 // Ensure last segment arrives at target location.
403 this->append_milestone(target, this->feed_rate);
404 }
405
406
407 void Robot::compute_arc(Gcode* gcode, double offset[], double target[]){
408
409 // Find the radius
410 double radius = hypot(offset[this->plane_axis_0], offset[this->plane_axis_1]);
411
412 // Set clockwise/counter-clockwise sign for mc_arc computations
413 bool is_clockwise = false;
414 if( this->motion_mode == MOTION_MODE_CW_ARC ){ is_clockwise = true; }
415
416 // Append arc
417 this->append_arc(gcode, target, offset, radius, is_clockwise );
418
419 }
420
421
422 // Convert from inches to millimeters ( our internal storage unit ) if needed
423 inline double Robot::to_millimeters( double value ){
424 return this->inch_mode ? value/25.4 : value;
425 }
426
427 double Robot::theta(double x, double y){
428 double t = atan(x/fabs(y));
429 if (y>0) {return(t);} else {if (t>0){return(M_PI-t);} else {return(-M_PI-t);}}
430 }
431
432 void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2){
433 this->plane_axis_0 = axis_0;
434 this->plane_axis_1 = axis_1;
435 this->plane_axis_2 = axis_2;
436 }
437
438