various bug fixes
[clinton/Smoothieware.git] / src / modules / robot / Planner.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 using namespace std;
9 #include <vector>
10 #include "mbed.h"
11 #include "libs/nuts_bolts.h"
12 #include "libs/RingBuffer.h"
13 #include "../communication/utils/Gcode.h"
14 #include "libs/Module.h"
15 #include "libs/Kernel.h"
16 #include "Block.h"
17 #include "Planner.h"
18
19
20
21 Planner::Planner(){
22 clear_vector(this->position);
23 clear_vector_double(this->previous_unit_vec);
24 this->previous_nominal_speed = 0.0;
25 this->has_deleted_block = false;
26 }
27
28 void Planner::on_module_loaded(){
29 this->on_config_reload(this);
30 }
31
32 void Planner::on_config_reload(void* argument){
33 this->acceleration = this->kernel->config->value(acceleration_checksum )->required()->as_number();
34 this->max_jerk = this->kernel->config->value(max_jerk_checksum )->required( )->as_number();
35 this->junction_deviation = this->kernel->config->value(junction_deviation_checksum )->by_default(0.05)->as_number();
36 }
37
38
39 // Append a block to the queue, compute it's speed factors
40 void Planner::append_block( int target[], double feed_rate, double distance, double deltas[] ){
41
42 // Do not append block with no movement
43 //if( target[ALPHA_STEPPER] == this->position[ALPHA_STEPPER] && target[BETA_STEPPER] == this->position[BETA_STEPPER] && target[GAMMA_STEPPER] == this->position[GAMMA_STEPPER] ){ this->computing = false; return; }
44
45 // Stall here if the queue is ful
46 while( this->queue.size() >= this->queue.capacity() ){ wait_us(100); }
47
48 // Clean up the vector of commands in the block we are about to replace
49 // It is quite strange to do this here, we really should do it inside Block->pop_and_execute_gcode
50 // but that function is called inside an interrupt and thus can break everything if the interrupt was trigerred during a memory access
51 Block* block = this->queue.get_ref( this->queue.size()-1 );
52 if( block->planner == this ){
53 for(short index=0; index<block->commands.size(); index++){
54 block->commands.pop_back();
55 block->travel_distances.pop_back();
56 }
57 }
58
59 this->queue.push_back(Block());
60 block = this->queue.get_ref( this->queue.size()-1 );
61 block->planner = this;
62
63 this->computing = true; //TODO: Check if this is necessary
64
65 // Direction bits
66 block->direction_bits = 0;
67 char direction_bits[3] = {this->kernel->stepper->alpha_dir_pin, this->kernel->stepper->beta_dir_pin, this->kernel->stepper->gamma_dir_pin};
68 for( int stepper=ALPHA_STEPPER; stepper<=GAMMA_STEPPER; stepper++){
69 if( target[stepper] < position[stepper] ){ block->direction_bits |= (1<<direction_bits[stepper]); }
70 }
71
72 // Number of steps for each stepper
73 for( int stepper=ALPHA_STEPPER; stepper<=GAMMA_STEPPER; stepper++){ block->steps[stepper] = labs(target[stepper] - this->position[stepper]); }
74
75
76 // Max number of steps, for all axes
77 block->steps_event_count = max( block->steps[ALPHA_STEPPER], max( block->steps[BETA_STEPPER], block->steps[GAMMA_STEPPER] ) );
78 //if( block->steps_event_count == 0 ){ this->computing = false; return; }
79
80 block->millimeters = distance;
81 double inverse_millimeters = 0;
82 if( distance > 0 ){ inverse_millimeters = 1.0/distance; }
83
84 // Calculate speed in mm/minute for each axis. No divide by zero due to previous checks.
85 // NOTE: Minimum stepper speed is limited by MINIMUM_STEPS_PER_MINUTE in stepper.c
86 double inverse_minute = feed_rate * inverse_millimeters;
87 if( distance > 0 ){
88 block->nominal_speed = block->millimeters * inverse_minute; // (mm/min) Always > 0
89 block->nominal_rate = ceil(block->steps_event_count * inverse_minute); // (step/min) Always > 0
90 }else{
91 block->nominal_speed = 0;
92 block->nominal_rate = 0;
93 }
94
95 //this->kernel->serial->printf("nom_speed: %f nom_rate: %u step_event_count: %u block->steps_z: %u \r\n", block->nominal_speed, block->nominal_rate, block->steps_event_count, block->steps[2] );
96
97 // Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
98 // average travel per step event changes. For a line along one axis the travel per step event
99 // is equal to the travel/step in the particular axis. For a 45 degree line the steppers of both
100 // axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
101 // To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
102 // specifically for each line to compensate for this phenomenon:
103 // Convert universal acceleration for direction-dependent stepper rate change parameter
104 block->rate_delta = ceil( block->steps_event_count*inverse_millimeters * this->acceleration*60.0 / this->kernel->stepper->acceleration_ticks_per_second ); // (step/min/acceleration_tick)
105
106
107 // Compute path unit vector
108 double unit_vec[3];
109 unit_vec[X_AXIS] = deltas[X_AXIS]*inverse_millimeters;
110 unit_vec[Y_AXIS] = deltas[Y_AXIS]*inverse_millimeters;
111 unit_vec[Z_AXIS] = deltas[Z_AXIS]*inverse_millimeters;
112
113 // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
114 // Let a circle be tangent to both previous and current path line segments, where the junction
115 // deviation is defined as the distance from the junction to the closest edge of the circle,
116 // colinear with the circle center. The circular segment joining the two paths represents the
117 // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
118 // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
119 // path width or max_jerk in the previous grbl version. This approach does not actually deviate
120 // from path, but used as a robust way to compute cornering speeds, as it takes into account the
121 // nonlinearities of both the junction angle and junction velocity.
122 double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
123
124 if (this->queue.size() > 1 && (this->previous_nominal_speed > 0.0)) {
125 // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
126 // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
127 double cos_theta = - this->previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
128 - this->previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
129 - this->previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
130
131 // Skip and use default max junction speed for 0 degree acute junction.
132 if (cos_theta < 0.95) {
133 vmax_junction = min(this->previous_nominal_speed,block->nominal_speed);
134 // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
135 if (cos_theta > -0.95) {
136 // Compute maximum junction velocity based on maximum acceleration and junction deviation
137 double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
138 vmax_junction = min(vmax_junction,
139 sqrt(this->acceleration*60*60 * this->junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
140 }
141 }
142 }
143 block->max_entry_speed = vmax_junction;
144
145 // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
146 double v_allowable = this->max_allowable_speed(-this->acceleration,0.0,block->millimeters); //TODO: Get from config
147 block->entry_speed = min(vmax_junction, v_allowable);
148
149 // Initialize planner efficiency flags
150 // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
151 // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
152 // the current block and next block junction speeds are guaranteed to always be at their maximum
153 // junction speeds in deceleration and acceleration, respectively. This is due to how the current
154 // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
155 // the reverse and forward planners, the corresponding block junction speed will always be at the
156 // the maximum junction speed and may always be ignored for any speed reduction checks.
157 if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
158 else { block->nominal_length_flag = false; }
159 block->recalculate_flag = true; // Always calculate trapezoid for new block
160
161 // Update previous path unit_vector and nominal speed
162 memcpy(this->previous_unit_vec, unit_vec, sizeof(unit_vec)); // previous_unit_vec[] = unit_vec[]
163 this->previous_nominal_speed = block->nominal_speed;
164
165 memcpy(this->position, target, sizeof(int)*3);
166 this->recalculate();
167 this->computing = false;
168 block->computed = true;
169
170 this->kernel->call_event(ON_STEPPER_WAKE_UP, this);
171 }
172
173 // Gcodes are attached to their respective block in the queue so that the on_gcode_execute event can be called with the gcode when the block is executed
174 void Planner::attach_gcode_to_queue(Gcode* gcode){
175 //If the queue is empty, execute immediatly, otherwise attach to the last added block
176 if( this->queue.size() == 0 ){
177 this->kernel->call_event(ON_GCODE_EXECUTE, gcode );
178 }else{
179 this->queue.get_ref( this->queue.size() - 1 )->append_gcode(gcode);
180 }
181 }
182
183
184
185 // Recalculates the motion plan according to the following algorithm:
186 //
187 // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
188 // so that:
189 // a. The junction jerk is within the set limit
190 // b. No speed reduction within one block requires faster deceleration than the one, true constant
191 // acceleration.
192 // 2. Go over every block in chronological order and dial down junction speed reduction values if
193 // a. The speed increase within one block would require faster accelleration than the one, true
194 // constant acceleration.
195 //
196 // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
197 // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
198 // the set limit. Finally it will:
199 //
200 // 3. Recalculate trapezoids for all blocks.
201 //
202 void Planner::recalculate() {
203 this->reverse_pass();
204 this->forward_pass();
205 this->recalculate_trapezoids();
206 }
207
208 // Planner::recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
209 // implements the reverse pass.
210 void Planner::reverse_pass(){
211 // For each block
212 for( int index = this->queue.size()-1; index > 0; index-- ){ // Skip buffer tail/first block to prevent over-writing the initial entry speed.
213 this->queue.get_ref(index)->reverse_pass((index==this->queue.size()-1?NULL:this->queue.get_ref(index+1)), (index==0? (this->has_deleted_block?&(this->last_deleted_block):NULL) :this->queue.get_ref(index-1)));
214 }
215 }
216
217 // Planner::recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
218 // implements the forward pass.
219 void Planner::forward_pass() {
220 // For each block
221 for( int index = 0; index <= this->queue.size()-1; index++ ){
222 this->queue.get_ref(index)->forward_pass((index==0?NULL:this->queue.get_ref(index-1)),(index==this->queue.size()-1?NULL:this->queue.get_ref(index+1)));
223 }
224 }
225
226 // Recalculates the trapezoid speed profiles for flagged blocks in the plan according to the
227 // entry_speed for each junction and the entry_speed of the next junction. Must be called by
228 // planner_recalculate() after updating the blocks. Any recalulate flagged junction will
229 // compute the two adjacent trapezoids to the junction, since the junction speed corresponds
230 // to exit speed and entry speed of one another.
231 void Planner::recalculate_trapezoids() {
232 // For each block
233 for( int index = 0; index <= this->queue.size()-1; index++ ){ // We skip the first one because we need a previous
234
235 if( this->queue.size()-1 == index ){ //last block
236 Block* last = this->queue.get_ref(index);
237 last->calculate_trapezoid( last->entry_speed / last->nominal_speed, MINIMUM_PLANNER_SPEED / last->nominal_speed );
238 }else{
239 Block* current = this->queue.get_ref(index);
240 Block* next = this->queue.get_ref(index+1);
241 if( current->recalculate_flag || next->recalculate_flag ){
242 current->calculate_trapezoid( current->entry_speed/current->nominal_speed, next->entry_speed/current->nominal_speed );
243 current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
244 }
245 }
246 }
247 }
248
249 // Get the first block in the queue, or return NULL
250 Block* Planner::get_current_block(){
251 if( this->queue.size() == 0 ){ return NULL; }
252 return this->queue.get_ref(0);
253 }
254
255
256 // We are done with this block, discard it
257 void Planner::discard_current_block(){
258 //this->has_deleted_block = true;
259 //this->queue.get(0,this->last_deleted_block );
260 this->queue.delete_first();
261 }
262
263 // Debug function
264 void Planner::dump_queue(){
265 for( int index = 0; index <= this->queue.size()-1; index++ ){
266 if( index > 10 && index < this->queue.size()-10 ){ continue; }
267 this->kernel->serial->printf("block %03d > ", index);
268 this->queue.get_ref(index)->debug(this->kernel);
269 }
270 }
271
272
273
274 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
275 // acceleration within the allotted distance.
276 double Planner::max_allowable_speed(double acceleration, double target_velocity, double distance) {
277 return(
278 sqrt(target_velocity*target_velocity-2L*acceleration*60*60*distance) //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
279 );
280 }
281
282