renamed all references to the Player module to Conveyor
[clinton/Smoothieware.git] / src / modules / robot / Planner.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 using namespace std;
9 #include <vector>
10 #include "libs/nuts_bolts.h"
11 #include "libs/RingBuffer.h"
12 #include "../communication/utils/Gcode.h"
13 #include "libs/Module.h"
14 #include "libs/Kernel.h"
15 #include "Block.h"
16 #include "Planner.h"
17 #include "Conveyor.h"
18
19
20 Planner::Planner(){
21 clear_vector(this->position);
22 clear_vector_double(this->previous_unit_vec);
23 this->previous_nominal_speed = 0.0;
24 this->has_deleted_block = false;
25 }
26
27 void Planner::on_module_loaded(){
28 this->on_config_reload(this);
29 }
30
31 void Planner::on_config_reload(void* argument){
32 this->acceleration = this->kernel->config->value(acceleration_checksum )->by_default(100 )->as_number() * 60 * 60; // Acceleration is in mm/minute^2, see https://github.com/grbl/grbl/commit/9141ad282540eaa50a41283685f901f29c24ddbd#planner.c
33 this->max_jerk = this->kernel->config->value(max_jerk_checksum )->by_default(100 )->as_number();
34 this->junction_deviation = this->kernel->config->value(junction_deviation_checksum )->by_default(0.05)->as_number();
35 }
36
37
38 // Append a block to the queue, compute it's speed factors
39 void Planner::append_block( int target[], double feed_rate, double distance, double deltas[] ){
40
41 //printf("new block\r\n");
42
43 // Stall here if the queue is ful
44 this->kernel->conveyor->wait_for_queue(2);
45
46 Block* block = this->kernel->conveyor->new_block();
47 block->planner = this;
48
49 // Direction bits
50 block->direction_bits = 0;
51 for( int stepper=ALPHA_STEPPER; stepper<=GAMMA_STEPPER; stepper++){
52 if( target[stepper] < position[stepper] ){ block->direction_bits |= (1<<stepper); }
53 }
54
55 // Number of steps for each stepper
56 for( int stepper=ALPHA_STEPPER; stepper<=GAMMA_STEPPER; stepper++){ block->steps[stepper] = labs(target[stepper] - this->position[stepper]); }
57
58 // Max number of steps, for all axes
59 block->steps_event_count = max( block->steps[ALPHA_STEPPER], max( block->steps[BETA_STEPPER], block->steps[GAMMA_STEPPER] ) );
60 //if( block->steps_event_count == 0 ){ this->computing = false; return; }
61
62 block->millimeters = distance;
63 double inverse_millimeters = 0;
64 if( distance > 0 ){ inverse_millimeters = 1.0/distance; }
65
66 // Calculate speed in mm/minute for each axis. No divide by zero due to previous checks.
67 // NOTE: Minimum stepper speed is limited by MINIMUM_STEPS_PER_MINUTE in stepper.c
68 double inverse_minute = feed_rate * inverse_millimeters;
69 if( distance > 0 ){
70 block->nominal_speed = block->millimeters * inverse_minute; // (mm/min) Always > 0
71 block->nominal_rate = ceil(block->steps_event_count * inverse_minute); // (step/min) Always > 0
72 }else{
73 block->nominal_speed = 0;
74 block->nominal_rate = 0;
75 }
76
77 //this->kernel->streams->printf("nom_speed: %f nom_rate: %u step_event_count: %u block->steps_z: %u \r\n", block->nominal_speed, block->nominal_rate, block->steps_event_count, block->steps[2] );
78
79 // Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
80 // average travel per step event changes. For a line along one axis the travel per step event
81 // is equal to the travel/step in the particular axis. For a 45 degree line the steppers of both
82 // axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
83 // To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
84 // specifically for each line to compensate for this phenomenon:
85 // Convert universal acceleration for direction-dependent stepper rate change parameter
86 block->rate_delta = (float)( ( block->steps_event_count*inverse_millimeters * this->acceleration ) / ( this->kernel->stepper->acceleration_ticks_per_second * 60 ) ); // (step/min/acceleration_tick)
87
88
89 // Compute path unit vector
90 double unit_vec[3];
91 unit_vec[X_AXIS] = deltas[X_AXIS]*inverse_millimeters;
92 unit_vec[Y_AXIS] = deltas[Y_AXIS]*inverse_millimeters;
93 unit_vec[Z_AXIS] = deltas[Z_AXIS]*inverse_millimeters;
94
95 // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
96 // Let a circle be tangent to both previous and current path line segments, where the junction
97 // deviation is defined as the distance from the junction to the closest edge of the circle,
98 // colinear with the circle center. The circular segment joining the two paths represents the
99 // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
100 // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
101 // path width or max_jerk in the previous grbl version. This approach does not actually deviate
102 // from path, but used as a robust way to compute cornering speeds, as it takes into account the
103 // nonlinearities of both the junction angle and junction velocity.
104 double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
105
106 if (this->kernel->conveyor->queue.size() > 1 && (this->previous_nominal_speed > 0.0)) {
107 // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
108 // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
109 double cos_theta = - this->previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
110 - this->previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
111 - this->previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
112
113 // Skip and use default max junction speed for 0 degree acute junction.
114 if (cos_theta < 0.95) {
115 vmax_junction = min(this->previous_nominal_speed,block->nominal_speed);
116 // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
117 if (cos_theta > -0.95) {
118 // Compute maximum junction velocity based on maximum acceleration and junction deviation
119 double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
120 vmax_junction = min(vmax_junction,
121 sqrt(this->acceleration * this->junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
122 }
123 }
124 }
125 block->max_entry_speed = vmax_junction;
126
127 // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
128 double v_allowable = this->max_allowable_speed(-this->acceleration,0.0,block->millimeters); //TODO: Get from config
129 block->entry_speed = min(vmax_junction, v_allowable);
130
131 // Initialize planner efficiency flags
132 // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
133 // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
134 // the current block and next block junction speeds are guaranteed to always be at their maximum
135 // junction speeds in deceleration and acceleration, respectively. This is due to how the current
136 // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
137 // the reverse and forward planners, the corresponding block junction speed will always be at the
138 // the maximum junction speed and may always be ignored for any speed reduction checks.
139 if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
140 else { block->nominal_length_flag = false; }
141 block->recalculate_flag = true; // Always calculate trapezoid for new block
142
143 // Update previous path unit_vector and nominal speed
144 memcpy(this->previous_unit_vec, unit_vec, sizeof(unit_vec)); // previous_unit_vec[] = unit_vec[]
145 this->previous_nominal_speed = block->nominal_speed;
146
147 // Update current position
148 memcpy(this->position, target, sizeof(int)*3);
149
150 // Math-heavy re-computing of the whole queue to take the new
151 this->recalculate();
152
153 // The block can now be used
154 block->ready();
155
156 }
157
158
159 // Recalculates the motion plan according to the following algorithm:
160 //
161 // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
162 // so that:
163 // a. The junction jerk is within the set limit
164 // b. No speed reduction within one block requires faster deceleration than the one, true constant
165 // acceleration.
166 // 2. Go over every block in chronological order and dial down junction speed reduction values if
167 // a. The speed increase within one block would require faster accelleration than the one, true
168 // constant acceleration.
169 //
170 // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
171 // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
172 // the set limit. Finally it will:
173 //
174 // 3. Recalculate trapezoids for all blocks.
175 //
176 void Planner::recalculate() {
177 //this->kernel->streams->printf("recalculate last: %p, queue size: %d \r\n", this->kernel->conveyor->queue.get_ref( this->kernel->conveyor->queue.size()-1 ), this->kernel->conveyor->queue.size() );
178 this->reverse_pass();
179 this->forward_pass();
180 this->recalculate_trapezoids();
181 }
182
183 // Planner::recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
184 // implements the reverse pass.
185 void Planner::reverse_pass(){
186 // For each block
187 int block_index = this->kernel->conveyor->queue.tail;
188 Block* blocks[3] = {NULL,NULL,NULL};
189
190 while(block_index!=this->kernel->conveyor->queue.head){
191 block_index = this->kernel->conveyor->queue.prev_block_index( block_index );
192 blocks[2] = blocks[1];
193 blocks[1] = blocks[0];
194 blocks[0] = &this->kernel->conveyor->queue.buffer[block_index];
195 if( blocks[1] == NULL ){ continue; }
196 blocks[1]->reverse_pass(blocks[2], blocks[0]);
197 }
198
199 }
200
201 // Planner::recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
202 // implements the forward pass.
203 void Planner::forward_pass() {
204 // For each block
205 int block_index = this->kernel->conveyor->queue.head;
206 Block* blocks[3] = {NULL,NULL,NULL};
207
208 while(block_index!=this->kernel->conveyor->queue.tail){
209 blocks[0] = blocks[1];
210 blocks[1] = blocks[2];
211 blocks[2] = &this->kernel->conveyor->queue.buffer[block_index];
212 if( blocks[0] == NULL ){ continue; }
213 blocks[1]->forward_pass(blocks[0],blocks[2]);
214 block_index = this->kernel->conveyor->queue.next_block_index( block_index );
215 }
216 blocks[2]->forward_pass(blocks[1],NULL);
217
218 }
219
220 // Recalculates the trapezoid speed profiles for flagged blocks in the plan according to the
221 // entry_speed for each junction and the entry_speed of the next junction. Must be called by
222 // planner_recalculate() after updating the blocks. Any recalulate flagged junction will
223 // compute the two adjacent trapezoids to the junction, since the junction speed corresponds
224 // to exit speed and entry speed of one another.
225 void Planner::recalculate_trapezoids() {
226 int block_index = this->kernel->conveyor->queue.head;
227 Block* current;
228 Block* next = NULL;
229
230 while(block_index != this->kernel->conveyor->queue.tail){
231 current = next;
232 next = &this->kernel->conveyor->queue.buffer[block_index];
233 //this->kernel->streams->printf("index:%d current:%p next:%p \r\n", block_index, current, next );
234 if( current ){
235 // Recalculate if current block entry or exit junction speed has changed.
236 if( current->recalculate_flag || next->recalculate_flag ){
237 current->calculate_trapezoid( current->entry_speed/current->nominal_speed, next->entry_speed/current->nominal_speed );
238 current->recalculate_flag = false;
239 }
240 }
241 block_index = this->kernel->conveyor->queue.next_block_index( block_index );
242 }
243
244 // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
245 next->calculate_trapezoid( next->entry_speed/next->nominal_speed, MINIMUM_PLANNER_SPEED/next->nominal_speed); //TODO: Make configuration option
246 next->recalculate_flag = false;
247
248 }
249
250 // Debug function
251 void Planner::dump_queue(){
252 for( int index = 0; index <= this->kernel->conveyor->queue.size()-1; index++ ){
253 if( index > 10 && index < this->kernel->conveyor->queue.size()-10 ){ continue; }
254 this->kernel->streams->printf("block %03d > ", index);
255 this->kernel->conveyor->queue.get_ref(index)->debug(this->kernel);
256 }
257 }
258
259 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
260 // acceleration within the allotted distance.
261 double Planner::max_allowable_speed(double acceleration, double target_velocity, double distance) {
262 return(
263 //sqrt(target_velocity*target_velocity-2L*acceleration*60*60*distance) //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
264 sqrt(target_velocity*target_velocity-2L*acceleration*distance) //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
265 );
266 }
267
268