add a set_g92 x,y,z to config
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10
11 #include "Robot.h"
12 #include "Planner.h"
13 #include "Conveyor.h"
14 #include "Pin.h"
15 #include "StepperMotor.h"
16 #include "Gcode.h"
17 #include "PublicDataRequest.h"
18 #include "PublicData.h"
19 #include "arm_solutions/BaseSolution.h"
20 #include "arm_solutions/CartesianSolution.h"
21 #include "arm_solutions/RotatableCartesianSolution.h"
22 #include "arm_solutions/LinearDeltaSolution.h"
23 #include "arm_solutions/RotaryDeltaSolution.h"
24 #include "arm_solutions/HBotSolution.h"
25 #include "arm_solutions/CoreXZSolution.h"
26 #include "arm_solutions/MorganSCARASolution.h"
27 #include "StepTicker.h"
28 #include "checksumm.h"
29 #include "utils.h"
30 #include "ConfigValue.h"
31 #include "libs/StreamOutput.h"
32 #include "StreamOutputPool.h"
33 #include "ExtruderPublicAccess.h"
34 #include "GcodeDispatch.h"
35 #include "ActuatorCoordinates.h"
36
37 #include "mbed.h" // for us_ticker_read()
38 #include "mri.h"
39
40 #include <fastmath.h>
41 #include <string>
42 #include <algorithm>
43 using std::string;
44
45 #define default_seek_rate_checksum CHECKSUM("default_seek_rate")
46 #define default_feed_rate_checksum CHECKSUM("default_feed_rate")
47 #define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
48 #define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
49 #define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
50 #define mm_max_arc_error_checksum CHECKSUM("mm_max_arc_error")
51 #define arc_correction_checksum CHECKSUM("arc_correction")
52 #define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
53 #define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
54 #define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
55 #define segment_z_moves_checksum CHECKSUM("segment_z_moves")
56 #define save_g92_checksum CHECKSUM("save_g92")
57 #define set_g92_checksum CHECKSUM("set_g92")
58
59 // arm solutions
60 #define arm_solution_checksum CHECKSUM("arm_solution")
61 #define cartesian_checksum CHECKSUM("cartesian")
62 #define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
63 #define rostock_checksum CHECKSUM("rostock")
64 #define linear_delta_checksum CHECKSUM("linear_delta")
65 #define rotary_delta_checksum CHECKSUM("rotary_delta")
66 #define delta_checksum CHECKSUM("delta")
67 #define hbot_checksum CHECKSUM("hbot")
68 #define corexy_checksum CHECKSUM("corexy")
69 #define corexz_checksum CHECKSUM("corexz")
70 #define kossel_checksum CHECKSUM("kossel")
71 #define morgan_checksum CHECKSUM("morgan")
72
73 // new-style actuator stuff
74 #define actuator_checksum CHEKCSUM("actuator")
75
76 #define step_pin_checksum CHECKSUM("step_pin")
77 #define dir_pin_checksum CHEKCSUM("dir_pin")
78 #define en_pin_checksum CHECKSUM("en_pin")
79
80 #define steps_per_mm_checksum CHECKSUM("steps_per_mm")
81 #define max_rate_checksum CHECKSUM("max_rate")
82 #define acceleration_checksum CHECKSUM("acceleration")
83 #define z_acceleration_checksum CHECKSUM("z_acceleration")
84
85 #define alpha_checksum CHECKSUM("alpha")
86 #define beta_checksum CHECKSUM("beta")
87 #define gamma_checksum CHECKSUM("gamma")
88
89 #define laser_module_default_power_checksum CHECKSUM("laser_module_default_power")
90
91 #define ARC_ANGULAR_TRAVEL_EPSILON 5E-7F // Float (radians)
92 #define PI 3.14159265358979323846F // force to be float, do not use M_PI
93
94 // The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
95 // It takes care of cutting arcs into segments, same thing for line that are too long
96
97 Robot::Robot()
98 {
99 this->inch_mode = false;
100 this->absolute_mode = true;
101 this->e_absolute_mode = true;
102 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
103 memset(this->last_milestone, 0, sizeof last_milestone);
104 memset(this->last_machine_position, 0, sizeof last_machine_position);
105 this->arm_solution = NULL;
106 seconds_per_minute = 60.0F;
107 this->clearToolOffset();
108 this->compensationTransform = nullptr;
109 this->get_e_scale_fnc= nullptr;
110 this->wcs_offsets.fill(wcs_t(0.0F, 0.0F, 0.0F));
111 this->g92_offset = wcs_t(0.0F, 0.0F, 0.0F);
112 this->next_command_is_MCS = false;
113 this->disable_segmentation= false;
114 this->disable_arm_solution= false;
115 this->n_motors= 0;
116 }
117
118 //Called when the module has just been loaded
119 void Robot::on_module_loaded()
120 {
121 this->register_for_event(ON_GCODE_RECEIVED);
122
123 // Configuration
124 this->load_config();
125 }
126
127 #define ACTUATOR_CHECKSUMS(X) { \
128 CHECKSUM(X "_step_pin"), \
129 CHECKSUM(X "_dir_pin"), \
130 CHECKSUM(X "_en_pin"), \
131 CHECKSUM(X "_steps_per_mm"), \
132 CHECKSUM(X "_max_rate"), \
133 CHECKSUM(X "_acceleration") \
134 }
135
136 void Robot::load_config()
137 {
138 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
139 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
140 // To make adding those solution easier, they have their own, separate object.
141 // Here we read the config to find out which arm solution to use
142 if (this->arm_solution) delete this->arm_solution;
143 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
144 // Note checksums are not const expressions when in debug mode, so don't use switch
145 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
146 this->arm_solution = new HBotSolution(THEKERNEL->config);
147
148 } else if(solution_checksum == corexz_checksum) {
149 this->arm_solution = new CoreXZSolution(THEKERNEL->config);
150
151 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
152 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
153
154 } else if(solution_checksum == rotatable_cartesian_checksum) {
155 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
156
157 } else if(solution_checksum == rotary_delta_checksum) {
158 this->arm_solution = new RotaryDeltaSolution(THEKERNEL->config);
159
160 } else if(solution_checksum == morgan_checksum) {
161 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
162
163 } else if(solution_checksum == cartesian_checksum) {
164 this->arm_solution = new CartesianSolution(THEKERNEL->config);
165
166 } else {
167 this->arm_solution = new CartesianSolution(THEKERNEL->config);
168 }
169
170 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
171 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
172 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
173 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
174 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.0f)->as_number();
175 this->mm_max_arc_error = THEKERNEL->config->value(mm_max_arc_error_checksum )->by_default( 0.01f)->as_number();
176 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
177
178 // in mm/sec but specified in config as mm/min
179 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
180 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
181 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
182
183 this->segment_z_moves = THEKERNEL->config->value(segment_z_moves_checksum )->by_default(true)->as_bool();
184 this->save_g92 = THEKERNEL->config->value(save_g92_checksum )->by_default(false)->as_bool();
185 string g92 = THEKERNEL->config->value(set_g92_checksum )->by_default("")->as_string();
186 if(!g92.empty()) {
187 // optional setting for a fixed G92 offset
188 std::vector<float> t= parse_number_list(g92.c_str());
189 if(t.size() == 3) {
190 g92_offset = wcs_t(t[0], t[1], t[2]);
191 }
192 }
193
194 // default s value for laser
195 this->s_value = THEKERNEL->config->value(laser_module_default_power_checksum)->by_default(0.8F)->as_number();
196
197 // Make our Primary XYZ StepperMotors
198 uint16_t const checksums[][6] = {
199 ACTUATOR_CHECKSUMS("alpha"), // X
200 ACTUATOR_CHECKSUMS("beta"), // Y
201 ACTUATOR_CHECKSUMS("gamma"), // Z
202 };
203
204 // default acceleration setting, can be overriden with newer per axis settings
205 this->default_acceleration= THEKERNEL->config->value(acceleration_checksum)->by_default(100.0F )->as_number(); // Acceleration is in mm/s^2
206
207 // make each motor
208 for (size_t a = X_AXIS; a <= Z_AXIS; a++) {
209 Pin pins[3]; //step, dir, enable
210 for (size_t i = 0; i < 3; i++) {
211 pins[i].from_string(THEKERNEL->config->value(checksums[a][i])->by_default("nc")->as_string())->as_output();
212 }
213 StepperMotor *sm = new StepperMotor(pins[0], pins[1], pins[2]);
214 // register this motor (NB This must be 0,1,2) of the actuators array
215 uint8_t n= register_motor(sm);
216 if(n != a) {
217 // this is a fatal error
218 THEKERNEL->streams->printf("FATAL: motor %d does not match index %d\n", n, a);
219 __debugbreak();
220 }
221
222 actuators[a]->change_steps_per_mm(THEKERNEL->config->value(checksums[a][3])->by_default(a == 2 ? 2560.0F : 80.0F)->as_number());
223 actuators[a]->set_max_rate(THEKERNEL->config->value(checksums[a][4])->by_default(30000.0F)->as_number()/60.0F); // it is in mm/min and converted to mm/sec
224 actuators[a]->set_acceleration(THEKERNEL->config->value(checksums[a][5])->by_default(NAN)->as_number()); // mm/secs²
225 }
226
227 check_max_actuator_speeds(); // check the configs are sane
228
229 // if we have not specified a z acceleration see if the legacy config was set
230 if(isnan(actuators[Z_AXIS]->get_acceleration())) {
231 float acc= THEKERNEL->config->value(z_acceleration_checksum)->by_default(NAN)->as_number(); // disabled by default
232 if(!isnan(acc)) {
233 actuators[Z_AXIS]->set_acceleration(acc);
234 }
235 }
236
237 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
238 // so the first move can be correct if homing is not performed
239 ActuatorCoordinates actuator_pos;
240 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
241 for (size_t i = 0; i < n_motors; i++)
242 actuators[i]->change_last_milestone(actuator_pos[i]);
243
244 //this->clearToolOffset();
245 }
246
247 uint8_t Robot::register_motor(StepperMotor *motor)
248 {
249 // register this motor with the step ticker
250 THEKERNEL->step_ticker->register_motor(motor);
251 if(n_motors >= k_max_actuators) {
252 // this is a fatal error
253 THEKERNEL->streams->printf("FATAL: too many motors, increase k_max_actuators\n");
254 __debugbreak();
255 }
256 actuators.push_back(motor);
257 return n_motors++;
258 }
259
260 void Robot::push_state()
261 {
262 bool am = this->absolute_mode;
263 bool em = this->e_absolute_mode;
264 bool im = this->inch_mode;
265 saved_state_t s(this->feed_rate, this->seek_rate, am, em, im, current_wcs);
266 state_stack.push(s);
267 }
268
269 void Robot::pop_state()
270 {
271 if(!state_stack.empty()) {
272 auto s = state_stack.top();
273 state_stack.pop();
274 this->feed_rate = std::get<0>(s);
275 this->seek_rate = std::get<1>(s);
276 this->absolute_mode = std::get<2>(s);
277 this->e_absolute_mode = std::get<3>(s);
278 this->inch_mode = std::get<4>(s);
279 this->current_wcs = std::get<5>(s);
280 }
281 }
282
283 std::vector<Robot::wcs_t> Robot::get_wcs_state() const
284 {
285 std::vector<wcs_t> v;
286 v.push_back(wcs_t(current_wcs, MAX_WCS, 0));
287 for(auto& i : wcs_offsets) {
288 v.push_back(i);
289 }
290 v.push_back(g92_offset);
291 v.push_back(tool_offset);
292 return v;
293 }
294
295 int Robot::print_position(uint8_t subcode, char *buf, size_t bufsize) const
296 {
297 // M114.1 is a new way to do this (similar to how GRBL does it).
298 // it returns the realtime position based on the current step position of the actuators.
299 // this does require a FK to get a machine position from the actuator position
300 // and then invert all the transforms to get a workspace position from machine position
301 // M114 just does it the old way uses last_milestone and does inversse transforms to get the requested position
302 int n = 0;
303 if(subcode == 0) { // M114 print WCS
304 wcs_t pos= mcs2wcs(last_milestone);
305 n = snprintf(buf, bufsize, "C: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
306
307 } else if(subcode == 4) { // M114.4 print last milestone (which should be the same as machine position if axis are not moving and no level compensation)
308 n = snprintf(buf, bufsize, "LMS: X:%1.4f Y:%1.4f Z:%1.4f", last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
309
310 } else if(subcode == 5) { // M114.5 print last machine position (which should be the same as M114.1 if axis are not moving and no level compensation)
311 n = snprintf(buf, bufsize, "LMP: X:%1.4f Y:%1.4f Z:%1.4f", last_machine_position[X_AXIS], last_machine_position[Y_AXIS], last_machine_position[Z_AXIS]);
312
313 } else {
314 // get real time positions
315 // current actuator position in mm
316 ActuatorCoordinates current_position{
317 actuators[X_AXIS]->get_current_position(),
318 actuators[Y_AXIS]->get_current_position(),
319 actuators[Z_AXIS]->get_current_position()
320 };
321
322 // get machine position from the actuator position using FK
323 float mpos[3];
324 arm_solution->actuator_to_cartesian(current_position, mpos);
325
326 if(subcode == 1) { // M114.1 print realtime WCS
327 // FIXME this currently includes the compensation transform which is incorrect so will be slightly off if it is in effect (but by very little)
328 wcs_t pos= mcs2wcs(mpos);
329 n = snprintf(buf, bufsize, "WPOS: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
330
331 } else if(subcode == 2) { // M114.2 print realtime Machine coordinate system
332 n = snprintf(buf, bufsize, "MPOS: X:%1.4f Y:%1.4f Z:%1.4f", mpos[X_AXIS], mpos[Y_AXIS], mpos[Z_AXIS]);
333
334 } else if(subcode == 3) { // M114.3 print realtime actuator position
335 n = snprintf(buf, bufsize, "APOS: X:%1.4f Y:%1.4f Z:%1.4f", current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
336 }
337 }
338 return n;
339 }
340
341 // converts current last milestone (machine position without compensation transform) to work coordinate system (inverse transform)
342 Robot::wcs_t Robot::mcs2wcs(const Robot::wcs_t& pos) const
343 {
344 return std::make_tuple(
345 std::get<X_AXIS>(pos) - std::get<X_AXIS>(wcs_offsets[current_wcs]) + std::get<X_AXIS>(g92_offset) - std::get<X_AXIS>(tool_offset),
346 std::get<Y_AXIS>(pos) - std::get<Y_AXIS>(wcs_offsets[current_wcs]) + std::get<Y_AXIS>(g92_offset) - std::get<Y_AXIS>(tool_offset),
347 std::get<Z_AXIS>(pos) - std::get<Z_AXIS>(wcs_offsets[current_wcs]) + std::get<Z_AXIS>(g92_offset) - std::get<Z_AXIS>(tool_offset)
348 );
349 }
350
351 // this does a sanity check that actuator speeds do not exceed steps rate capability
352 // we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
353 void Robot::check_max_actuator_speeds()
354 {
355 for (size_t i = 0; i < n_motors; i++) {
356 float step_freq = actuators[i]->get_max_rate() * actuators[i]->get_steps_per_mm();
357 if (step_freq > THEKERNEL->base_stepping_frequency) {
358 actuators[i]->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / actuators[i]->get_steps_per_mm()));
359 THEKERNEL->streams->printf("WARNING: actuator %d rate exceeds base_stepping_frequency * ..._steps_per_mm: %f, setting to %f\n", i, step_freq, actuators[i]->get_max_rate());
360 }
361 }
362 }
363
364 //A GCode has been received
365 //See if the current Gcode line has some orders for us
366 void Robot::on_gcode_received(void *argument)
367 {
368 Gcode *gcode = static_cast<Gcode *>(argument);
369
370 enum MOTION_MODE_T motion_mode= NONE;
371
372 if( gcode->has_g) {
373 switch( gcode->g ) {
374 case 0: motion_mode = SEEK; break;
375 case 1: motion_mode = LINEAR; break;
376 case 2: motion_mode = CW_ARC; break;
377 case 3: motion_mode = CCW_ARC; break;
378 case 4: { // G4 pause
379 uint32_t delay_ms = 0;
380 if (gcode->has_letter('P')) {
381 delay_ms = gcode->get_int('P');
382 }
383 if (gcode->has_letter('S')) {
384 delay_ms += gcode->get_int('S') * 1000;
385 }
386 if (delay_ms > 0) {
387 // drain queue
388 THEKERNEL->conveyor->wait_for_idle();
389 // wait for specified time
390 uint32_t start = us_ticker_read(); // mbed call
391 while ((us_ticker_read() - start) < delay_ms * 1000) {
392 THEKERNEL->call_event(ON_IDLE, this);
393 if(THEKERNEL->is_halted()) return;
394 }
395 }
396 }
397 break;
398
399 case 10: // G10 L2 [L20] Pn Xn Yn Zn set WCS
400 if(gcode->has_letter('L') && (gcode->get_int('L') == 2 || gcode->get_int('L') == 20) && gcode->has_letter('P')) {
401 size_t n = gcode->get_uint('P');
402 if(n == 0) n = current_wcs; // set current coordinate system
403 else --n;
404 if(n < MAX_WCS) {
405 float x, y, z;
406 std::tie(x, y, z) = wcs_offsets[n];
407 if(gcode->get_int('L') == 20) {
408 // this makes the current machine position (less compensation transform) the offset
409 // get current position in WCS
410 wcs_t pos= mcs2wcs(last_milestone);
411
412 if(gcode->has_letter('X')){
413 x -= to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
414 }
415
416 if(gcode->has_letter('Y')){
417 y -= to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
418 }
419 if(gcode->has_letter('Z')) {
420 z -= to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
421 }
422
423 } else {
424 // the value is the offset from machine zero
425 if(gcode->has_letter('X')) x = to_millimeters(gcode->get_value('X'));
426 if(gcode->has_letter('Y')) y = to_millimeters(gcode->get_value('Y'));
427 if(gcode->has_letter('Z')) z = to_millimeters(gcode->get_value('Z'));
428 }
429 wcs_offsets[n] = wcs_t(x, y, z);
430 }
431 }
432 break;
433
434 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
435 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
436 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
437 case 20: this->inch_mode = true; break;
438 case 21: this->inch_mode = false; break;
439
440 case 54: case 55: case 56: case 57: case 58: case 59:
441 // select WCS 0-8: G54..G59, G59.1, G59.2, G59.3
442 current_wcs = gcode->g - 54;
443 if(gcode->g == 59 && gcode->subcode > 0) {
444 current_wcs += gcode->subcode;
445 if(current_wcs >= MAX_WCS) current_wcs = MAX_WCS - 1;
446 }
447 break;
448
449 case 90: this->absolute_mode = true; this->e_absolute_mode = true; break;
450 case 91: this->absolute_mode = false; this->e_absolute_mode = false; break;
451
452 case 92: {
453 if(gcode->subcode == 1 || gcode->subcode == 2 || gcode->get_num_args() == 0) {
454 // reset G92 offsets to 0
455 g92_offset = wcs_t(0, 0, 0);
456
457 } else if(gcode->subcode == 3) {
458 // initialize G92 to the specified values, only used for saving it with M500
459 float x= 0, y= 0, z= 0;
460 if(gcode->has_letter('X')) x= gcode->get_value('X');
461 if(gcode->has_letter('Y')) y= gcode->get_value('Y');
462 if(gcode->has_letter('Z')) z= gcode->get_value('Z');
463 g92_offset = wcs_t(x, y, z);
464
465 } else {
466 // standard setting of the g92 offsets, making current WCS position whatever the coordinate arguments are
467 float x, y, z;
468 std::tie(x, y, z) = g92_offset;
469 // get current position in WCS
470 wcs_t pos= mcs2wcs(last_milestone);
471
472 // adjust g92 offset to make the current wpos == the value requested
473 if(gcode->has_letter('X')){
474 x += to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
475 }
476 if(gcode->has_letter('Y')){
477 y += to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
478 }
479 if(gcode->has_letter('Z')) {
480 z += to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
481 }
482 g92_offset = wcs_t(x, y, z);
483 }
484
485 #if MAX_ROBOT_ACTUATORS > 3
486 if(gcode->subcode == 0 && (gcode->has_letter('E') || gcode->get_num_args() == 0)){
487 // reset the E position, legacy for 3d Printers to be reprap compatible
488 // find the selected extruder
489 // NOTE this will only work when E is 0 if volumetric and/or scaling is used as the actuator last milestone will be different if it was scaled
490 for (int i = E_AXIS; i < n_motors; ++i) {
491 if(actuators[i]->is_selected()) {
492 float e= gcode->has_letter('E') ? gcode->get_value('E') : 0;
493 last_milestone[i]= last_machine_position[i]= e;
494 actuators[i]->change_last_milestone(e);
495 break;
496 }
497 }
498 }
499 #endif
500
501 return;
502 }
503 }
504
505 } else if( gcode->has_m) {
506 switch( gcode->m ) {
507 // case 0: // M0 feed hold, (M0.1 is release feed hold, except we are in feed hold)
508 // if(THEKERNEL->is_grbl_mode()) THEKERNEL->set_feed_hold(gcode->subcode == 0);
509 // break;
510
511 case 30: // M30 end of program in grbl mode (otherwise it is delete sdcard file)
512 if(!THEKERNEL->is_grbl_mode()) break;
513 // fall through to M2
514 case 2: // M2 end of program
515 current_wcs = 0;
516 absolute_mode = true;
517 break;
518 case 17:
519 THEKERNEL->call_event(ON_ENABLE, (void*)1); // turn all enable pins on
520 break;
521
522 case 18: // this used to support parameters, now it ignores them
523 case 84:
524 THEKERNEL->conveyor->wait_for_idle();
525 THEKERNEL->call_event(ON_ENABLE, nullptr); // turn all enable pins off
526 break;
527
528 case 82: e_absolute_mode= true; break;
529 case 83: e_absolute_mode= false; break;
530
531 case 92: // M92 - set steps per mm
532 if (gcode->has_letter('X'))
533 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
534 if (gcode->has_letter('Y'))
535 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
536 if (gcode->has_letter('Z'))
537 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
538
539 gcode->stream->printf("X:%f Y:%f Z:%f ", actuators[0]->get_steps_per_mm(), actuators[1]->get_steps_per_mm(), actuators[2]->get_steps_per_mm());
540 gcode->add_nl = true;
541 check_max_actuator_speeds();
542 return;
543
544 case 114:{
545 char buf[64];
546 int n= print_position(gcode->subcode, buf, sizeof buf);
547 if(n > 0) gcode->txt_after_ok.append(buf, n);
548 return;
549 }
550
551 case 120: // push state
552 push_state();
553 break;
554
555 case 121: // pop state
556 pop_state();
557 break;
558
559 case 203: // M203 Set maximum feedrates in mm/sec, M203.1 set maximum actuator feedrates
560 if(gcode->get_num_args() == 0) {
561 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
562 gcode->stream->printf(" %c: %g ", 'X' + i, gcode->subcode == 0 ? this->max_speeds[i] : actuators[i]->get_max_rate());
563 }
564 gcode->add_nl = true;
565
566 }else{
567 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
568 if (gcode->has_letter('X' + i)) {
569 float v= gcode->get_value('X'+i);
570 if(gcode->subcode == 0) this->max_speeds[i]= v;
571 else if(gcode->subcode == 1) actuators[i]->set_max_rate(v);
572 }
573 }
574
575 // this format is deprecated
576 if(gcode->subcode == 0 && (gcode->has_letter('A') || gcode->has_letter('B') || gcode->has_letter('C'))) {
577 gcode->stream->printf("NOTE this format is deprecated, Use M203.1 instead\n");
578 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
579 if (gcode->has_letter('A' + i)) {
580 float v= gcode->get_value('A'+i);
581 actuators[i]->set_max_rate(v);
582 }
583 }
584 }
585
586 if(gcode->subcode == 1) check_max_actuator_speeds();
587 }
588 break;
589
590 case 204: // M204 Snnn - set default acceleration to nnn, Xnnn Ynnn Znnn sets axis specific acceleration
591 if (gcode->has_letter('S')) {
592 float acc = gcode->get_value('S'); // mm/s^2
593 // enforce minimum
594 if (acc < 1.0F) acc = 1.0F;
595 this->default_acceleration = acc;
596 }
597 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
598 if (gcode->has_letter(i+'X')) {
599 float acc = gcode->get_value(i+'X'); // mm/s^2
600 // enforce positive
601 if (acc <= 0.0F) acc = NAN;
602 actuators[i]->set_acceleration(acc);
603 }
604 }
605 break;
606
607 case 205: // M205 Xnnn - set junction deviation, Z - set Z junction deviation, Snnn - Set minimum planner speed
608 if (gcode->has_letter('X')) {
609 float jd = gcode->get_value('X');
610 // enforce minimum
611 if (jd < 0.0F)
612 jd = 0.0F;
613 THEKERNEL->planner->junction_deviation = jd;
614 }
615 if (gcode->has_letter('Z')) {
616 float jd = gcode->get_value('Z');
617 // enforce minimum, -1 disables it and uses regular junction deviation
618 if (jd <= -1.0F)
619 jd = NAN;
620 THEKERNEL->planner->z_junction_deviation = jd;
621 }
622 if (gcode->has_letter('S')) {
623 float mps = gcode->get_value('S');
624 // enforce minimum
625 if (mps < 0.0F)
626 mps = 0.0F;
627 THEKERNEL->planner->minimum_planner_speed = mps;
628 }
629 break;
630
631 case 220: // M220 - speed override percentage
632 if (gcode->has_letter('S')) {
633 float factor = gcode->get_value('S');
634 // enforce minimum 10% speed
635 if (factor < 10.0F)
636 factor = 10.0F;
637 // enforce maximum 10x speed
638 if (factor > 1000.0F)
639 factor = 1000.0F;
640
641 seconds_per_minute = 6000.0F / factor;
642 } else {
643 gcode->stream->printf("Speed factor at %6.2f %%\n", 6000.0F / seconds_per_minute);
644 }
645 break;
646
647 case 400: // wait until all moves are done up to this point
648 THEKERNEL->conveyor->wait_for_idle();
649 break;
650
651 case 500: // M500 saves some volatile settings to config override file
652 case 503: { // M503 just prints the settings
653 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->get_steps_per_mm(), actuators[1]->get_steps_per_mm(), actuators[2]->get_steps_per_mm());
654
655 // only print XYZ if not NAN
656 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f ", default_acceleration);
657 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
658 if(!isnan(actuators[i]->get_acceleration())) gcode->stream->printf("%c%1.5f ", 'X'+i, actuators[i]->get_acceleration());
659 }
660 gcode->stream->printf("\n");
661
662 gcode->stream->printf(";X- Junction Deviation, Z- Z junction deviation, S - Minimum Planner speed mm/sec:\nM205 X%1.5f Z%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, isnan(THEKERNEL->planner->z_junction_deviation)?-1:THEKERNEL->planner->z_junction_deviation, THEKERNEL->planner->minimum_planner_speed);
663
664 gcode->stream->printf(";Max cartesian feedrates in mm/sec:\nM203 X%1.5f Y%1.5f Z%1.5f\n", this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS]);
665 gcode->stream->printf(";Max actuator feedrates in mm/sec:\nM203.1 X%1.5f Y%1.5f Z%1.5f\n", actuators[X_AXIS]->get_max_rate(), actuators[Y_AXIS]->get_max_rate(), actuators[Z_AXIS]->get_max_rate());
666
667 // get or save any arm solution specific optional values
668 BaseSolution::arm_options_t options;
669 if(arm_solution->get_optional(options) && !options.empty()) {
670 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
671 for(auto &i : options) {
672 gcode->stream->printf(" %c%1.4f", i.first, i.second);
673 }
674 gcode->stream->printf("\n");
675 }
676
677 // save wcs_offsets and current_wcs
678 // TODO this may need to be done whenever they change to be compliant
679 gcode->stream->printf(";WCS settings\n");
680 gcode->stream->printf("%s\n", wcs2gcode(current_wcs).c_str());
681 int n = 1;
682 for(auto &i : wcs_offsets) {
683 if(i != wcs_t(0, 0, 0)) {
684 float x, y, z;
685 std::tie(x, y, z) = i;
686 gcode->stream->printf("G10 L2 P%d X%f Y%f Z%f ; %s\n", n, x, y, z, wcs2gcode(n-1).c_str());
687 }
688 ++n;
689 }
690 if(save_g92) {
691 // linuxcnc saves G92, so we do too if configured, default is to not save to maintain backward compatibility
692 // also it needs to be used to set Z0 on rotary deltas as M206/306 can't be used, so saving it is necessary in that case
693 if(g92_offset != wcs_t(0, 0, 0)) {
694 float x, y, z;
695 std::tie(x, y, z) = g92_offset;
696 gcode->stream->printf("G92.3 X%f Y%f Z%f\n", x, y, z); // sets G92 to the specified values
697 }
698 }
699 }
700 break;
701
702 case 665: { // M665 set optional arm solution variables based on arm solution.
703 // the parameter args could be any letter each arm solution only accepts certain ones
704 BaseSolution::arm_options_t options = gcode->get_args();
705 options.erase('S'); // don't include the S
706 options.erase('U'); // don't include the U
707 if(options.size() > 0) {
708 // set the specified options
709 arm_solution->set_optional(options);
710 }
711 options.clear();
712 if(arm_solution->get_optional(options)) {
713 // foreach optional value
714 for(auto &i : options) {
715 // print all current values of supported options
716 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
717 gcode->add_nl = true;
718 }
719 }
720
721 if(gcode->has_letter('S')) { // set delta segments per second, not saved by M500
722 this->delta_segments_per_second = gcode->get_value('S');
723 gcode->stream->printf("Delta segments set to %8.4f segs/sec\n", this->delta_segments_per_second);
724
725 } else if(gcode->has_letter('U')) { // or set mm_per_line_segment, not saved by M500
726 this->mm_per_line_segment = gcode->get_value('U');
727 this->delta_segments_per_second = 0;
728 gcode->stream->printf("mm per line segment set to %8.4f\n", this->mm_per_line_segment);
729 }
730
731 break;
732 }
733 }
734 }
735
736 if( motion_mode != NONE) {
737 is_g123= motion_mode != SEEK;
738 process_move(gcode, motion_mode);
739
740 }else{
741 is_g123= false;
742 }
743
744 next_command_is_MCS = false; // must be on same line as G0 or G1
745 }
746
747 // process a G0/G1/G2/G3
748 void Robot::process_move(Gcode *gcode, enum MOTION_MODE_T motion_mode)
749 {
750 // we have a G0/G1/G2/G3 so extract parameters and apply offsets to get machine coordinate target
751 // get XYZ and one E (which goes to the selected extruder)
752 float param[4]{NAN, NAN, NAN, NAN};
753
754 // process primary axis
755 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
756 char letter= 'X'+i;
757 if( gcode->has_letter(letter) ) {
758 param[i] = this->to_millimeters(gcode->get_value(letter));
759 }
760 }
761
762 float offset[3]{0,0,0};
763 for(char letter = 'I'; letter <= 'K'; letter++) {
764 if( gcode->has_letter(letter) ) {
765 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
766 }
767 }
768
769 // calculate target in machine coordinates (less compensation transform which needs to be done after segmentation)
770 float target[n_motors];
771 memcpy(target, last_milestone, n_motors*sizeof(float));
772
773 if(!next_command_is_MCS) {
774 if(this->absolute_mode) {
775 // apply wcs offsets and g92 offset and tool offset
776 if(!isnan(param[X_AXIS])) {
777 target[X_AXIS]= param[X_AXIS] + std::get<X_AXIS>(wcs_offsets[current_wcs]) - std::get<X_AXIS>(g92_offset) + std::get<X_AXIS>(tool_offset);
778 }
779
780 if(!isnan(param[Y_AXIS])) {
781 target[Y_AXIS]= param[Y_AXIS] + std::get<Y_AXIS>(wcs_offsets[current_wcs]) - std::get<Y_AXIS>(g92_offset) + std::get<Y_AXIS>(tool_offset);
782 }
783
784 if(!isnan(param[Z_AXIS])) {
785 target[Z_AXIS]= param[Z_AXIS] + std::get<Z_AXIS>(wcs_offsets[current_wcs]) - std::get<Z_AXIS>(g92_offset) + std::get<Z_AXIS>(tool_offset);
786 }
787
788 }else{
789 // they are deltas from the last_milestone if specified
790 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
791 if(!isnan(param[i])) target[i] = param[i] + last_milestone[i];
792 }
793 }
794
795 }else{
796 // already in machine coordinates, we do not add tool offset for that
797 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
798 if(!isnan(param[i])) target[i] = param[i];
799 }
800 }
801
802 // process extruder parameters, for active extruder only (only one active extruder at a time)
803 selected_extruder= 0;
804 if(gcode->has_letter('E')) {
805 for (int i = E_AXIS; i < n_motors; ++i) {
806 // find first selected extruder
807 if(actuators[i]->is_selected()) {
808 param[E_AXIS]= gcode->get_value('E');
809 selected_extruder= i;
810 break;
811 }
812 }
813 }
814
815 // do E for the selected extruder
816 float delta_e= NAN;
817 if(selected_extruder > 0 && !isnan(param[E_AXIS])) {
818 if(this->e_absolute_mode) {
819 target[selected_extruder]= param[E_AXIS];
820 delta_e= target[selected_extruder] - last_milestone[selected_extruder];
821 }else{
822 delta_e= param[E_AXIS];
823 target[selected_extruder] = delta_e + last_milestone[selected_extruder];
824 }
825 }
826
827 if( gcode->has_letter('F') ) {
828 if( motion_mode == SEEK )
829 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
830 else
831 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
832 }
833
834 // S is modal When specified on a G0/1/2/3 command
835 if(gcode->has_letter('S')) s_value= gcode->get_value('S');
836
837 bool moved= false;
838
839 // Perform any physical actions
840 switch(motion_mode) {
841 case NONE: break;
842
843 case SEEK:
844 moved= this->append_line(gcode, target, this->seek_rate / seconds_per_minute, delta_e );
845 break;
846
847 case LINEAR:
848 moved= this->append_line(gcode, target, this->feed_rate / seconds_per_minute, delta_e );
849 break;
850
851 case CW_ARC:
852 case CCW_ARC:
853 // Note arcs are not currently supported by extruder based machines, as 3D slicers do not use arcs (G2/G3)
854 moved= this->compute_arc(gcode, offset, target, motion_mode);
855 break;
856 }
857
858 if(moved) {
859 // set last_milestone to the calculated target
860 memcpy(last_milestone, target, n_motors*sizeof(float));
861 }
862 }
863
864 // reset the machine position for all axis. Used for homing.
865 // During homing compensation is turned off
866 // once homed and reset_axis called compensation is used for the move to origin and back off home if enabled,
867 // so in those cases the final position is compensated.
868 void Robot::reset_axis_position(float x, float y, float z)
869 {
870 // these are set to the same as compensation was not used to get to the current position
871 last_machine_position[X_AXIS]= last_milestone[X_AXIS] = x;
872 last_machine_position[Y_AXIS]= last_milestone[Y_AXIS] = y;
873 last_machine_position[Z_AXIS]= last_milestone[Z_AXIS] = z;
874
875 // now set the actuator positions to match
876 ActuatorCoordinates actuator_pos;
877 arm_solution->cartesian_to_actuator(this->last_machine_position, actuator_pos);
878 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
879 actuators[i]->change_last_milestone(actuator_pos[i]);
880 }
881
882 // Reset the position for an axis (used in homing, and to reset extruder after suspend)
883 void Robot::reset_axis_position(float position, int axis)
884 {
885 last_milestone[axis] = position;
886 if(axis <= Z_AXIS) {
887 reset_axis_position(last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
888 #if MAX_ROBOT_ACTUATORS > 3
889 }else{
890 // extruders need to be set not calculated
891 last_machine_position[axis]= position;
892 #endif
893 }
894 }
895
896 // similar to reset_axis_position but directly sets the actuator positions in actuators units (eg mm for cartesian, degrees for rotary delta)
897 // then sets the axis positions to match. currently only called from Endstops.cpp and RotaryDeltaCalibration.cpp
898 void Robot::reset_actuator_position(const ActuatorCoordinates &ac)
899 {
900 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
901 actuators[i]->change_last_milestone(ac[i]);
902
903 // now correct axis positions then recorrect actuator to account for rounding
904 reset_position_from_current_actuator_position();
905 }
906
907 // Use FK to find out where actuator is and reset to match
908 void Robot::reset_position_from_current_actuator_position()
909 {
910 ActuatorCoordinates actuator_pos;
911 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
912 // NOTE actuator::current_position is curently NOT the same as actuator::last_milestone after an abrupt abort
913 actuator_pos[i] = actuators[i]->get_current_position();
914 }
915
916 // discover machine position from where actuators actually are
917 arm_solution->actuator_to_cartesian(actuator_pos, last_machine_position);
918 // FIXME problem is this includes any compensation transform, and without an inverse compensation we cannot get a correct last_milestone
919 memcpy(last_milestone, last_machine_position, sizeof last_milestone);
920
921 // now reset actuator::last_milestone, NOTE this may lose a little precision as FK is not always entirely accurate.
922 // NOTE This is required to sync the machine position with the actuator position, we do a somewhat redundant cartesian_to_actuator() call
923 // to get everything in perfect sync.
924 arm_solution->cartesian_to_actuator(last_machine_position, actuator_pos);
925 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
926 actuators[i]->change_last_milestone(actuator_pos[i]);
927 }
928
929 // Convert target (in machine coordinates) to machine_position, then convert to actuator position and append this to the planner
930 // target is in machine coordinates without the compensation transform, however we save a last_machine_position that includes
931 // all transforms and is what we actually convert to actuator positions
932 bool Robot::append_milestone(const float target[], float rate_mm_s)
933 {
934 float deltas[n_motors];
935 float transformed_target[n_motors]; // adjust target for bed compensation
936 float unit_vec[N_PRIMARY_AXIS];
937
938 // unity transform by default
939 memcpy(transformed_target, target, n_motors*sizeof(float));
940
941 // check function pointer and call if set to transform the target to compensate for bed
942 if(compensationTransform) {
943 // some compensation strategies can transform XYZ, some just change Z
944 compensationTransform(transformed_target);
945 }
946
947 bool move= false;
948 float sos= 0; // sun of squares for just XYZ
949
950 // find distance moved by each axis, use transformed target from the current machine position
951 for (size_t i = 0; i < n_motors; i++) {
952 deltas[i] = transformed_target[i] - last_machine_position[i];
953 if(deltas[i] == 0) continue;
954 // at least one non zero delta
955 move = true;
956 if(i <= Z_AXIS) {
957 sos += powf(deltas[i], 2);
958 }
959 }
960
961 // nothing moved
962 if(!move) return false;
963
964 // see if this is a primary axis move or not
965 bool auxilliary_move= deltas[X_AXIS] == 0 && deltas[Y_AXIS] == 0 && deltas[Z_AXIS] == 0;
966
967 // total movement, use XYZ if a primary axis otherwise we calculate distance for E after scaling to mm
968 float distance= auxilliary_move ? 0 : sqrtf(sos);
969
970 // it is unlikely but we need to protect against divide by zero, so ignore insanely small moves here
971 // as the last milestone won't be updated we do not actually lose any moves as they will be accounted for in the next move
972 if(!auxilliary_move && distance < 0.00001F) return false;
973
974
975 if(!auxilliary_move) {
976 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
977 // find distance unit vector for primary axis only
978 unit_vec[i] = deltas[i] / distance;
979
980 // Do not move faster than the configured cartesian limits for XYZ
981 if ( max_speeds[i] > 0 ) {
982 float axis_speed = fabsf(unit_vec[i] * rate_mm_s);
983
984 if (axis_speed > max_speeds[i])
985 rate_mm_s *= ( max_speeds[i] / axis_speed );
986 }
987 }
988 }
989
990 // find actuator position given the machine position, use actual adjusted target
991 ActuatorCoordinates actuator_pos;
992 if(!disable_arm_solution) {
993 arm_solution->cartesian_to_actuator( transformed_target, actuator_pos );
994
995 }else{
996 // basically the same as cartesian, would be used for special homing situations like for scara
997 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
998 actuator_pos[i] = transformed_target[i];
999 }
1000 }
1001
1002 #if MAX_ROBOT_ACTUATORS > 3
1003 sos= 0;
1004 // for the extruders just copy the position, and possibly scale it from mm³ to mm
1005 for (size_t i = E_AXIS; i < n_motors; i++) {
1006 actuator_pos[i]= transformed_target[i];
1007 if(get_e_scale_fnc) {
1008 // NOTE this relies on the fact only one extruder is active at a time
1009 // scale for volumetric or flow rate
1010 // TODO is this correct? scaling the absolute target? what if the scale changes?
1011 // for volumetric it basically converts mm³ to mm, but what about flow rate?
1012 actuator_pos[i] *= get_e_scale_fnc();
1013 }
1014 if(auxilliary_move) {
1015 // for E only moves we need to use the scaled E to calculate the distance
1016 sos += pow(actuator_pos[i] - actuators[i]->get_last_milestone(), 2);
1017 }
1018 }
1019 if(auxilliary_move) {
1020 distance= sqrtf(sos); // distance in mm of the e move
1021 if(distance < 0.00001F) return false;
1022 }
1023 #endif
1024
1025 // use default acceleration to start with
1026 float acceleration = default_acceleration;
1027
1028 float isecs = rate_mm_s / distance;
1029
1030 // check per-actuator speed limits
1031 for (size_t actuator = 0; actuator < n_motors; actuator++) {
1032 float d = fabsf(actuator_pos[actuator] - actuators[actuator]->get_last_milestone());
1033 if(d == 0 || !actuators[actuator]->is_selected()) continue; // no movement for this actuator
1034
1035 float actuator_rate= d * isecs;
1036 if (actuator_rate > actuators[actuator]->get_max_rate()) {
1037 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
1038 isecs = rate_mm_s / distance;
1039 }
1040
1041 // adjust acceleration to lowest found, for now just primary axis unless it is an auxiliary move
1042 // TODO we may need to do all of them, check E won't limit XYZ.. it does on long E moves, but not checking it could exceed the E acceleration.
1043 if(auxilliary_move || actuator <= Z_AXIS) {
1044 float ma = actuators[actuator]->get_acceleration(); // in mm/sec²
1045 if(!isnan(ma)) { // if axis does not have acceleration set then it uses the default_acceleration
1046 float ca = fabsf((d/distance) * acceleration);
1047 if (ca > ma) {
1048 acceleration *= ( ma / ca );
1049 }
1050 }
1051 }
1052 }
1053
1054 // Append the block to the planner
1055 // NOTE that distance here should be either the distance travelled by the XYZ axis, or the E mm travel if a solo E move
1056 if(THEKERNEL->planner->append_block( actuator_pos, n_motors, rate_mm_s, distance, auxilliary_move ? nullptr : unit_vec, acceleration, s_value, is_g123)) {
1057 // this is the machine position
1058 memcpy(this->last_machine_position, transformed_target, n_motors*sizeof(float));
1059 return true;
1060 }
1061
1062 // no actual move
1063 return false;
1064 }
1065
1066 // Used to plan a single move used by things like endstops when homing, zprobe, extruder firmware retracts etc.
1067 bool Robot::delta_move(const float *delta, float rate_mm_s, uint8_t naxis)
1068 {
1069 if(THEKERNEL->is_halted()) return false;
1070
1071 // catch negative or zero feed rates
1072 if(rate_mm_s <= 0.0F) {
1073 return false;
1074 }
1075
1076 // get the absolute target position, default is current last_milestone
1077 float target[n_motors];
1078 memcpy(target, last_milestone, n_motors*sizeof(float));
1079
1080 // add in the deltas to get new target
1081 for (int i= 0; i < naxis; i++) {
1082 target[i] += delta[i];
1083 }
1084
1085 // submit for planning and if moved update last_milestone
1086 if(append_milestone(target, rate_mm_s)) {
1087 memcpy(last_milestone, target, n_motors*sizeof(float));
1088 return true;
1089 }
1090
1091 return false;
1092 }
1093
1094 // Append a move to the queue ( cutting it into segments if needed )
1095 bool Robot::append_line(Gcode *gcode, const float target[], float rate_mm_s, float delta_e)
1096 {
1097 // catch negative or zero feed rates and return the same error as GRBL does
1098 if(rate_mm_s <= 0.0F) {
1099 gcode->is_error= true;
1100 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1101 return false;
1102 }
1103
1104 // Find out the distance for this move in XYZ in MCS
1105 float millimeters_of_travel = sqrtf(powf( target[X_AXIS] - last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - last_milestone[Z_AXIS], 2 ));
1106
1107 if(millimeters_of_travel < 0.00001F) {
1108 // we have no movement in XYZ, probably E only extrude or retract
1109 return this->append_milestone(target, rate_mm_s);
1110 }
1111
1112 /*
1113 For extruders, we need to do some extra work to limit the volumetric rate if specified...
1114 If using volumetric limts we need to be using volumetric extrusion for this to work as Ennn needs to be in mm³ not mm
1115 We ask Extruder to do all the work but we need to pass in the relevant data.
1116 NOTE we need to do this before we segment the line (for deltas)
1117 */
1118 if(!isnan(delta_e) && gcode->has_g && gcode->g == 1) {
1119 float data[2]= {delta_e, rate_mm_s / millimeters_of_travel};
1120 if(PublicData::set_value(extruder_checksum, target_checksum, data)) {
1121 rate_mm_s *= data[1]; // adjust the feedrate
1122 }
1123 }
1124
1125 // We cut the line into smaller segments. This is only needed on a cartesian robot for zgrid, but always necessary for robots with rotational axes like Deltas.
1126 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second
1127 // The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
1128 uint16_t segments;
1129
1130 if(this->disable_segmentation || (!segment_z_moves && !gcode->has_letter('X') && !gcode->has_letter('Y'))) {
1131 segments= 1;
1132
1133 } else if(this->delta_segments_per_second > 1.0F) {
1134 // enabled if set to something > 1, it is set to 0.0 by default
1135 // segment based on current speed and requested segments per second
1136 // the faster the travel speed the fewer segments needed
1137 // NOTE rate is mm/sec and we take into account any speed override
1138 float seconds = millimeters_of_travel / rate_mm_s;
1139 segments = max(1.0F, ceilf(this->delta_segments_per_second * seconds));
1140 // TODO if we are only moving in Z on a delta we don't really need to segment at all
1141
1142 } else {
1143 if(this->mm_per_line_segment == 0.0F) {
1144 segments = 1; // don't split it up
1145 } else {
1146 segments = ceilf( millimeters_of_travel / this->mm_per_line_segment);
1147 }
1148 }
1149
1150 bool moved= false;
1151 if (segments > 1) {
1152 // A vector to keep track of the endpoint of each segment
1153 float segment_delta[n_motors];
1154 float segment_end[n_motors];
1155 memcpy(segment_end, last_milestone, n_motors*sizeof(float));
1156
1157 // How far do we move each segment?
1158 for (int i = 0; i < n_motors; i++)
1159 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
1160
1161 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
1162 // We always add another point after this loop so we stop at segments-1, ie i < segments
1163 for (int i = 1; i < segments; i++) {
1164 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
1165 for (int i = 0; i < n_motors; i++)
1166 segment_end[i] += segment_delta[i];
1167
1168 // Append the end of this segment to the queue
1169 bool b= this->append_milestone(segment_end, rate_mm_s);
1170 moved= moved || b;
1171 }
1172 }
1173
1174 // Append the end of this full move to the queue
1175 if(this->append_milestone(target, rate_mm_s)) moved= true;
1176
1177 this->next_command_is_MCS = false; // always reset this
1178
1179 return moved;
1180 }
1181
1182
1183 // Append an arc to the queue ( cutting it into segments as needed )
1184 // TODO does not support any E parameters so cannot be used for 3D printing.
1185 bool Robot::append_arc(Gcode * gcode, const float target[], const float offset[], float radius, bool is_clockwise )
1186 {
1187 float rate_mm_s= this->feed_rate / seconds_per_minute;
1188 // catch negative or zero feed rates and return the same error as GRBL does
1189 if(rate_mm_s <= 0.0F) {
1190 gcode->is_error= true;
1191 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1192 return false;
1193 }
1194
1195 // Scary math
1196 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
1197 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
1198 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1199 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
1200 float r_axis1 = -offset[this->plane_axis_1];
1201 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
1202 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
1203
1204 // Patch from GRBL Firmware - Christoph Baumann 04072015
1205 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
1206 float angular_travel = atan2f(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
1207 if (is_clockwise) { // Correct atan2 output per direction
1208 if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= (2 * PI); }
1209 } else {
1210 if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += (2 * PI); }
1211 }
1212
1213 // Find the distance for this gcode
1214 float millimeters_of_travel = hypotf(angular_travel * radius, fabsf(linear_travel));
1215
1216 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
1217 if( millimeters_of_travel < 0.00001F ) {
1218 return false;
1219 }
1220
1221 // limit segments by maximum arc error
1222 float arc_segment = this->mm_per_arc_segment;
1223 if ((this->mm_max_arc_error > 0) && (2 * radius > this->mm_max_arc_error)) {
1224 float min_err_segment = 2 * sqrtf((this->mm_max_arc_error * (2 * radius - this->mm_max_arc_error)));
1225 if (this->mm_per_arc_segment < min_err_segment) {
1226 arc_segment = min_err_segment;
1227 }
1228 }
1229 // Figure out how many segments for this gcode
1230 // TODO for deltas we need to make sure we are at least as many segments as requested, also if mm_per_line_segment is set we need to use the
1231 uint16_t segments = ceilf(millimeters_of_travel / arc_segment);
1232
1233 //printf("Radius %f - Segment Length %f - Number of Segments %d\r\n",radius,arc_segment,segments); // Testing Purposes ONLY
1234 float theta_per_segment = angular_travel / segments;
1235 float linear_per_segment = linear_travel / segments;
1236
1237 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
1238 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
1239 r_T = [cos(phi) -sin(phi);
1240 sin(phi) cos(phi] * r ;
1241 For arc generation, the center of the circle is the axis of rotation and the radius vector is
1242 defined from the circle center to the initial position. Each line segment is formed by successive
1243 vector rotations. This requires only two cos() and sin() computations to form the rotation
1244 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1245 all float numbers are single precision on the Arduino. (True float precision will not have
1246 round off issues for CNC applications.) Single precision error can accumulate to be greater than
1247 tool precision in some cases. Therefore, arc path correction is implemented.
1248
1249 Small angle approximation may be used to reduce computation overhead further. This approximation
1250 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
1251 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
1252 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
1253 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
1254 issue for CNC machines with the single precision Arduino calculations.
1255 This approximation also allows mc_arc to immediately insert a line segment into the planner
1256 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
1257 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
1258 This is important when there are successive arc motions.
1259 */
1260 // Vector rotation matrix values
1261 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1262 float sin_T = theta_per_segment;
1263
1264 float arc_target[3];
1265 float sin_Ti;
1266 float cos_Ti;
1267 float r_axisi;
1268 uint16_t i;
1269 int8_t count = 0;
1270
1271 // Initialize the linear axis
1272 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
1273
1274 bool moved= false;
1275 for (i = 1; i < segments; i++) { // Increment (segments-1)
1276 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
1277
1278 if (count < this->arc_correction ) {
1279 // Apply vector rotation matrix
1280 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
1281 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
1282 r_axis1 = r_axisi;
1283 count++;
1284 } else {
1285 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
1286 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
1287 cos_Ti = cosf(i * theta_per_segment);
1288 sin_Ti = sinf(i * theta_per_segment);
1289 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
1290 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
1291 count = 0;
1292 }
1293
1294 // Update arc_target location
1295 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
1296 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
1297 arc_target[this->plane_axis_2] += linear_per_segment;
1298
1299 // Append this segment to the queue
1300 bool b= this->append_milestone(arc_target, rate_mm_s);
1301 moved= moved || b;
1302 }
1303
1304 // Ensure last segment arrives at target location.
1305 if(this->append_milestone(target, rate_mm_s)) moved= true;
1306
1307 return moved;
1308 }
1309
1310 // Do the math for an arc and add it to the queue
1311 bool Robot::compute_arc(Gcode * gcode, const float offset[], const float target[], enum MOTION_MODE_T motion_mode)
1312 {
1313
1314 // Find the radius
1315 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
1316
1317 // Set clockwise/counter-clockwise sign for mc_arc computations
1318 bool is_clockwise = false;
1319 if( motion_mode == CW_ARC ) {
1320 is_clockwise = true;
1321 }
1322
1323 // Append arc
1324 return this->append_arc(gcode, target, offset, radius, is_clockwise );
1325 }
1326
1327
1328 float Robot::theta(float x, float y)
1329 {
1330 float t = atanf(x / fabs(y));
1331 if (y > 0) {
1332 return(t);
1333 } else {
1334 if (t > 0) {
1335 return(PI - t);
1336 } else {
1337 return(-PI - t);
1338 }
1339 }
1340 }
1341
1342 void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
1343 {
1344 this->plane_axis_0 = axis_0;
1345 this->plane_axis_1 = axis_1;
1346 this->plane_axis_2 = axis_2;
1347 }
1348
1349 void Robot::clearToolOffset()
1350 {
1351 this->tool_offset= wcs_t(0,0,0);
1352 }
1353
1354 void Robot::setToolOffset(const float offset[3])
1355 {
1356 this->tool_offset= wcs_t(offset[0], offset[1], offset[2]);
1357 }
1358
1359 float Robot::get_feed_rate() const
1360 {
1361 return THEKERNEL->gcode_dispatch->get_modal_command() == 0 ? seek_rate : feed_rate;
1362 }