major bug fixes, way too many to enumerate
[clinton/Smoothieware.git] / src / modules / robot / Planner.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 using namespace std;
9 #include <vector>
10 #include "mbed.h"
11 #include "libs/nuts_bolts.h"
12 #include "libs/RingBuffer.h"
13 #include "../communication/utils/Gcode.h"
14 #include "libs/Module.h"
15 #include "libs/Kernel.h"
16 #include "Block.h"
17 #include "Planner.h"
18 #include "Player.h"
19
20
21 Planner::Planner(){
22 clear_vector(this->position);
23 clear_vector_double(this->previous_unit_vec);
24 this->previous_nominal_speed = 0.0;
25 this->has_deleted_block = false;
26 }
27
28 void Planner::on_module_loaded(){
29 this->on_config_reload(this);
30 }
31
32 void Planner::on_config_reload(void* argument){
33 this->acceleration = this->kernel->config->value(acceleration_checksum )->required()->as_number();
34 this->max_jerk = this->kernel->config->value(max_jerk_checksum )->required( )->as_number();
35 this->junction_deviation = this->kernel->config->value(junction_deviation_checksum )->by_default(0.05)->as_number();
36 }
37
38
39 // Append a block to the queue, compute it's speed factors
40 void Planner::append_block( int target[], double feed_rate, double distance, double deltas[] ){
41
42 // Do not append block with no movement
43 //if( target[ALPHA_STEPPER] == this->position[ALPHA_STEPPER] && target[BETA_STEPPER] == this->position[BETA_STEPPER] && target[GAMMA_STEPPER] == this->position[GAMMA_STEPPER] ){ this->computing = false; return; }
44
45 // Stall here if the queue is ful
46 while( this->kernel->player->queue.size() >= this->kernel->player->queue.capacity()-2 ){ wait_us(100); }
47
48 Block* block = this->kernel->player->new_block();
49 block->planner = this;
50
51 // Direction bits
52 block->direction_bits = 0;
53 char direction_bits[3] = {this->kernel->stepper->alpha_dir_pin, this->kernel->stepper->beta_dir_pin, this->kernel->stepper->gamma_dir_pin};
54 for( int stepper=ALPHA_STEPPER; stepper<=GAMMA_STEPPER; stepper++){
55 if( target[stepper] < position[stepper] ){ block->direction_bits |= (1<<direction_bits[stepper]); }
56 }
57
58 // Number of steps for each stepper
59 for( int stepper=ALPHA_STEPPER; stepper<=GAMMA_STEPPER; stepper++){ block->steps[stepper] = labs(target[stepper] - this->position[stepper]); }
60
61 // Max number of steps, for all axes
62 block->steps_event_count = max( block->steps[ALPHA_STEPPER], max( block->steps[BETA_STEPPER], block->steps[GAMMA_STEPPER] ) );
63 //if( block->steps_event_count == 0 ){ this->computing = false; return; }
64
65 block->millimeters = distance;
66 double inverse_millimeters = 0;
67 if( distance > 0 ){ inverse_millimeters = 1.0/distance; }
68
69 // Calculate speed in mm/minute for each axis. No divide by zero due to previous checks.
70 // NOTE: Minimum stepper speed is limited by MINIMUM_STEPS_PER_MINUTE in stepper.c
71 double inverse_minute = feed_rate * inverse_millimeters;
72 if( distance > 0 ){
73 block->nominal_speed = block->millimeters * inverse_minute; // (mm/min) Always > 0
74 block->nominal_rate = ceil(block->steps_event_count * inverse_minute); // (step/min) Always > 0
75 }else{
76 block->nominal_speed = 0;
77 block->nominal_rate = 0;
78 }
79
80 //this->kernel->serial->printf("nom_speed: %f nom_rate: %u step_event_count: %u block->steps_z: %u \r\n", block->nominal_speed, block->nominal_rate, block->steps_event_count, block->steps[2] );
81
82 // Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
83 // average travel per step event changes. For a line along one axis the travel per step event
84 // is equal to the travel/step in the particular axis. For a 45 degree line the steppers of both
85 // axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
86 // To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
87 // specifically for each line to compensate for this phenomenon:
88 // Convert universal acceleration for direction-dependent stepper rate change parameter
89 block->rate_delta = ceil( block->steps_event_count*inverse_millimeters * this->acceleration*60.0 / this->kernel->stepper->acceleration_ticks_per_second ); // (step/min/acceleration_tick)
90
91 // Compute path unit vector
92 double unit_vec[3];
93 unit_vec[X_AXIS] = deltas[X_AXIS]*inverse_millimeters;
94 unit_vec[Y_AXIS] = deltas[Y_AXIS]*inverse_millimeters;
95 unit_vec[Z_AXIS] = deltas[Z_AXIS]*inverse_millimeters;
96
97 // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
98 // Let a circle be tangent to both previous and current path line segments, where the junction
99 // deviation is defined as the distance from the junction to the closest edge of the circle,
100 // colinear with the circle center. The circular segment joining the two paths represents the
101 // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
102 // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
103 // path width or max_jerk in the previous grbl version. This approach does not actually deviate
104 // from path, but used as a robust way to compute cornering speeds, as it takes into account the
105 // nonlinearities of both the junction angle and junction velocity.
106 double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
107
108 if (this->kernel->player->queue.size() > 1 && (this->previous_nominal_speed > 0.0)) {
109 // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
110 // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
111 double cos_theta = - this->previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
112 - this->previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
113 - this->previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
114
115 // Skip and use default max junction speed for 0 degree acute junction.
116 if (cos_theta < 0.95) {
117 vmax_junction = min(this->previous_nominal_speed,block->nominal_speed);
118 // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
119 if (cos_theta > -0.95) {
120 // Compute maximum junction velocity based on maximum acceleration and junction deviation
121 double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
122 vmax_junction = min(vmax_junction,
123 sqrt(this->acceleration*60*60 * this->junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
124 }
125 }
126 }
127 block->max_entry_speed = vmax_junction;
128
129 // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
130 double v_allowable = this->max_allowable_speed(-this->acceleration,0.0,block->millimeters); //TODO: Get from config
131 block->entry_speed = min(vmax_junction, v_allowable);
132
133 // Initialize planner efficiency flags
134 // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
135 // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
136 // the current block and next block junction speeds are guaranteed to always be at their maximum
137 // junction speeds in deceleration and acceleration, respectively. This is due to how the current
138 // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
139 // the reverse and forward planners, the corresponding block junction speed will always be at the
140 // the maximum junction speed and may always be ignored for any speed reduction checks.
141 if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
142 else { block->nominal_length_flag = false; }
143 block->recalculate_flag = true; // Always calculate trapezoid for new block
144
145 // Update previous path unit_vector and nominal speed
146 memcpy(this->previous_unit_vec, unit_vec, sizeof(unit_vec)); // previous_unit_vec[] = unit_vec[]
147 this->previous_nominal_speed = block->nominal_speed;
148
149 // Update current position
150 memcpy(this->position, target, sizeof(int)*3);
151
152 // Math-heavy re-computing of the whole queue to take the new
153 this->recalculate();
154
155 // The block can now be used
156 block->ready();
157
158 }
159
160
161 // Recalculates the motion plan according to the following algorithm:
162 //
163 // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
164 // so that:
165 // a. The junction jerk is within the set limit
166 // b. No speed reduction within one block requires faster deceleration than the one, true constant
167 // acceleration.
168 // 2. Go over every block in chronological order and dial down junction speed reduction values if
169 // a. The speed increase within one block would require faster accelleration than the one, true
170 // constant acceleration.
171 //
172 // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
173 // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
174 // the set limit. Finally it will:
175 //
176 // 3. Recalculate trapezoids for all blocks.
177 //
178 void Planner::recalculate() {
179 //this->kernel->serial->printf("recalculate last: %p, queue size: %d \r\n", this->kernel->player->queue.get_ref( this->kernel->player->queue.size()-1 ), this->kernel->player->queue.size() );
180 this->reverse_pass();
181 this->forward_pass();
182 this->recalculate_trapezoids();
183 }
184
185 // Planner::recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
186 // implements the reverse pass.
187 void Planner::reverse_pass(){
188 // For each block
189 for( int index = this->kernel->player->queue.size()-1; index > 0; index-- ){ // Skip buffer tail/first block to prevent over-writing the initial entry speed.
190 this->kernel->player->queue.get_ref(index)->reverse_pass((index==this->kernel->player->queue.size()-1?NULL:this->kernel->player->queue.get_ref(index+1)), (index==0? (this->has_deleted_block?&(this->last_deleted_block):NULL) :this->kernel->player->queue.get_ref(index-1)));
191 }
192 }
193
194 // Planner::recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
195 // implements the forward pass.
196 void Planner::forward_pass() {
197 // For each block
198 for( int index = 0; index <= this->kernel->player->queue.size()-1; index++ ){
199 this->kernel->player->queue.get_ref(index)->forward_pass((index==0?NULL:this->kernel->player->queue.get_ref(index-1)),(index==this->kernel->player->queue.size()-1?NULL:this->kernel->player->queue.get_ref(index+1)));
200 }
201 }
202
203 // Recalculates the trapezoid speed profiles for flagged blocks in the plan according to the
204 // entry_speed for each junction and the entry_speed of the next junction. Must be called by
205 // planner_recalculate() after updating the blocks. Any recalulate flagged junction will
206 // compute the two adjacent trapezoids to the junction, since the junction speed corresponds
207 // to exit speed and entry speed of one another.
208 /*
209 void Planner::recalculate_trapezoids() {
210 // For each block
211 int size = this->kernel->player->queue.size();
212 for( int index = 0; index <= size-1; index++ ){ // We skip the first one because we need a previous
213 if( size-1 == index ){ //last block
214 Block* last = this->kernel->player->queue.get_ref(index);
215 last->calculate_trapezoid( last->entry_speed / last->nominal_speed, MINIMUM_PLANNER_SPEED / last->nominal_speed );
216 this->kernel->serial->printf("%p: %d/%d last r:%d \r\n", last, index, size-1, last->initial_rate);
217 }else{
218 Block* current = this->kernel->player->queue.get_ref(index);
219 Block* next = this->kernel->player->queue.get_ref(index+1);
220 if( current->recalculate_flag || next->recalculate_flag ){
221 current->calculate_trapezoid( current->entry_speed/current->nominal_speed, next->entry_speed/current->nominal_speed );
222 current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
223 this->kernel->serial->printf("%p: %d/%d other r:%d \r\n", current, index, size-1, current->initial_rate);
224 }else{
225 this->kernel->serial->printf("%p: %d/%d else r:%d \r\n", current, index, size-1, current->initial_rate);
226 }
227 }
228 }
229 }
230 */
231 void Planner::recalculate_trapezoids() {
232 int block_index = this->kernel->player->queue.head;
233 Block* current;
234 Block* next = NULL;
235
236 //this->kernel->serial->printf("tail:%d head:%d size:%d\r\n", this->kernel->player->queue.tail, this->kernel->player->queue.head, this->kernel->player->queue.size());
237
238 while(block_index != this->kernel->player->queue.tail){
239 current = next;
240 next = &this->kernel->player->queue.buffer[block_index];
241 //this->kernel->serial->printf("index:%d current:%p next:%p \r\n", block_index, current, next );
242 if( current ){
243 // Recalculate if current block entry or exit junction speed has changed.
244 if( current->recalculate_flag || next->recalculate_flag ){
245 current->calculate_trapezoid( current->entry_speed/current->nominal_speed, next->entry_speed/current->nominal_speed );
246 current->recalculate_flag = false;
247 }
248 }
249 block_index = this->kernel->player->queue.next_block_index( block_index );
250 }
251
252 // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
253 next->calculate_trapezoid( next->entry_speed/next->nominal_speed, MINIMUM_PLANNER_SPEED/next->nominal_speed); //TODO: Make configuration option
254 next->recalculate_flag = false;
255
256 }
257
258 // Debug function
259 void Planner::dump_queue(){
260 for( int index = 0; index <= this->kernel->player->queue.size()-1; index++ ){
261 if( index > 10 && index < this->kernel->player->queue.size()-10 ){ continue; }
262 this->kernel->serial->printf("block %03d > ", index);
263 this->kernel->player->queue.get_ref(index)->debug(this->kernel);
264 }
265 }
266
267 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
268 // acceleration within the allotted distance.
269 double Planner::max_allowable_speed(double acceleration, double target_velocity, double distance) {
270 return(
271 sqrt(target_velocity*target_velocity-2L*acceleration*60*60*distance) //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
272 );
273 }
274
275