Ensure Conveyor::on_block_end gets called last
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "libs/nuts_bolts.h"
11 #include <math.h>
12 #include <string>
13 #include "Block.h"
14 #include "Planner.h"
15 #include "Conveyor.h"
16 using std::string;
17 #include <vector>
18 #include "../communication/utils/Gcode.h"
19
20 // A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
21 // It's stacked on a queue, and that queue is then executed in order, to move the motors.
22 // Most of the accel math is also done in this class
23 // And GCode objects for use in on_gcode_execute are also help in here
24
25 Block::Block()
26 {
27 clear();
28 }
29
30 void Block::clear()
31 {
32 //commands.clear();
33 //travel_distances.clear();
34 gcodes.clear();
35 clear_vector(this->steps);
36
37 steps_event_count= 0;
38 nominal_rate= 0;
39 nominal_speed= 0.0F;
40 millimeters= 0.0F;
41 entry_speed= 0.0F;
42 rate_delta= 0.0F;
43 initial_rate= -1;
44 final_rate= -1;
45 accelerate_until= 0;
46 decelerate_after= 0;
47 direction_bits= 0;
48 recalculate_flag= false;
49 nominal_length_flag= false;
50 max_entry_speed= 0.0F;
51 is_ready= false;
52 times_taken= 0;
53 }
54
55 void Block::debug()
56 {
57 THEKERNEL->serial->printf("%p: steps:X%04d Y%04d Z%04d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d entry/max: %10.4f/%10.4f taken:%d ready:%d recalc:%d\r\n",
58 this,
59 this->steps[0],
60 this->steps[1],
61 this->steps[2],
62 this->steps_event_count,
63 this->nominal_rate,
64 this->nominal_speed,
65 this->millimeters,
66 this->rate_delta,
67 this->accelerate_until,
68 this->decelerate_after,
69 this->initial_rate,
70 this->final_rate,
71 this->entry_speed,
72 this->max_entry_speed,
73 this->times_taken,
74 this->is_ready,
75 recalculate_flag?1:0
76 );
77 }
78
79
80 /* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
81 // The factors represent a factor of braking and must be in the range 0.0-1.0.
82 // +--------+ <- nominal_rate
83 // / \
84 // nominal_rate*entry_factor -> + \
85 // | + <- nominal_rate*exit_factor
86 // +-------------+
87 // time -->
88 */
89 void Block::calculate_trapezoid( float entryfactor, float exitfactor )
90 {
91
92 // The planner passes us factors, we need to transform them in rates
93 this->initial_rate = ceil(this->nominal_rate * entryfactor); // (step/min)
94 this->final_rate = ceil(this->nominal_rate * exitfactor); // (step/min)
95
96 // How many steps to accelerate and decelerate
97 float acceleration_per_minute = this->rate_delta * THEKERNEL->stepper->acceleration_ticks_per_second * 60.0; // ( step/min^2)
98 int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_minute ) );
99 int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate, -acceleration_per_minute ) );
100
101 // Calculate the size of Plateau of Nominal Rate ( during which we don't accelerate nor decelerate, but just cruise )
102 int plateau_steps = this->steps_event_count - accelerate_steps - decelerate_steps;
103
104 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
105 // have to use intersection_distance() to calculate when to abort acceleration and start braking
106 // in order to reach the final_rate exactly at the end of this block.
107 if (plateau_steps < 0) {
108 accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_minute, this->steps_event_count));
109 accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
110 accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
111 plateau_steps = 0;
112 }
113 this->accelerate_until = accelerate_steps;
114 this->decelerate_after = accelerate_steps + plateau_steps;
115
116 }
117
118 // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
119 // given acceleration:
120 float Block::estimate_acceleration_distance(float initialrate, float targetrate, float acceleration)
121 {
122 return( ((targetrate * targetrate) - (initialrate * initialrate)) / (2.0F * acceleration));
123 }
124
125 // This function gives you the point at which you must start braking (at the rate of -acceleration) if
126 // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
127 // a total travel of distance. This can be used to compute the intersection point between acceleration and
128 // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
129 //
130 /* + <- some maximum rate we don't care about
131 /|\
132 / | \
133 / | + <- final_rate
134 / | |
135 initial_rate -> +----+--+
136 ^ ^
137 | |
138 intersection_distance distance */
139 float Block::intersection_distance(float initialrate, float finalrate, float acceleration, float distance)
140 {
141 return((2 * acceleration * distance - initialrate * initialrate + finalrate * finalrate) / (4 * acceleration));
142 }
143
144 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
145 // acceleration within the allotted distance.
146 inline float max_allowable_speed(float acceleration, float target_velocity, float distance)
147 {
148 return(
149 sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance) //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
150 );
151 }
152
153
154 // Called by Planner::recalculate() when scanning the plan from last to first entry.
155 void Block::reverse_pass(Block *next)
156 {
157
158 if (next) {
159 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
160 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
161 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
162 if (this->entry_speed != this->max_entry_speed) {
163
164 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
165 // for max allowable speed if block is decelerating and nominal length is false.
166 if ((!this->nominal_length_flag) && (this->max_entry_speed > next->entry_speed)) {
167 this->entry_speed = min( this->max_entry_speed, max_allowable_speed(-THEKERNEL->planner->acceleration, next->entry_speed, this->millimeters));
168 } else {
169 this->entry_speed = this->max_entry_speed;
170 }
171
172 }
173 } // Skip last block. Already initialized and set for recalculation.
174
175 }
176
177
178 // Called by Planner::recalculate() when scanning the plan from first to last entry.
179 void Block::forward_pass(Block *previous)
180 {
181
182 if(!previous) {
183 return; // Begin planning after buffer_tail
184 }
185
186 // If the previous block is an acceleration block, but it is not long enough to complete the
187 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
188 // speeds have already been reset, maximized, and reverse planned by reverse planner.
189 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
190 if (!previous->nominal_length_flag) {
191 if (previous->entry_speed < this->entry_speed) {
192 float entry_speed = min( this->entry_speed,
193 max_allowable_speed(-THEKERNEL->planner->acceleration, previous->entry_speed, previous->millimeters) );
194
195 // Check for junction speed change
196 if (this->entry_speed != entry_speed) {
197 this->entry_speed = entry_speed;
198 }
199 }
200 }
201
202 }
203
204 // Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
205 void Block::append_gcode(Gcode* gcode)
206 {
207 Gcode new_gcode = *gcode;
208 gcodes.push_back(new_gcode);
209 }
210
211 void Block::begin()
212 {
213 recalculate_flag = false;
214
215 // execute all the gcodes related to this block
216 for(unsigned int index = 0; index < gcodes.size(); index++)
217 THEKERNEL->call_event(ON_GCODE_EXECUTE, &(gcodes[index]));
218
219 THEKERNEL->call_event(ON_BLOCK_BEGIN, this);
220 }
221
222 // Signal the conveyor that this block is ready to be injected into the system
223 void Block::ready()
224 {
225 this->is_ready = true;
226 }
227
228 // Mark the block as taken by one more module
229 void Block::take()
230 {
231 this->times_taken++;
232 }
233
234 // Mark the block as no longer taken by one module, go to next block if this free's it
235 void Block::release()
236 {
237 if (--this->times_taken <= 0)
238 THEKERNEL->call_event(ON_BLOCK_END, this);
239
240 // ensure conveyor gets called last
241 THEKERNEL->conveyor->on_block_end(this);
242 }