Only lazily compile where profitable
[bpt/guile.git] / module / ice-9 / match.upstream.scm
1 ;;;; match.scm -- portable hygienic pattern matcher -*- coding: utf-8 -*-
2 ;;
3 ;; This code is written by Alex Shinn and placed in the
4 ;; Public Domain. All warranties are disclaimed.
5
6 ;;> @example-import[(srfi 9)]
7
8 ;;> This is a full superset of the popular @hyperlink[
9 ;;> "http://www.cs.indiana.edu/scheme-repository/code.match.html"]{match}
10 ;;> package by Andrew Wright, written in fully portable @scheme{syntax-rules}
11 ;;> and thus preserving hygiene.
12
13 ;;> The most notable extensions are the ability to use @emph{non-linear}
14 ;;> patterns - patterns in which the same identifier occurs multiple
15 ;;> times, tail patterns after ellipsis, and the experimental tree patterns.
16
17 ;;> @subsubsection{Patterns}
18
19 ;;> Patterns are written to look like the printed representation of
20 ;;> the objects they match. The basic usage is
21
22 ;;> @scheme{(match expr (pat body ...) ...)}
23
24 ;;> where the result of @var{expr} is matched against each pattern in
25 ;;> turn, and the corresponding body is evaluated for the first to
26 ;;> succeed. Thus, a list of three elements matches a list of three
27 ;;> elements.
28
29 ;;> @example{(let ((ls (list 1 2 3))) (match ls ((1 2 3) #t)))}
30
31 ;;> If no patterns match an error is signalled.
32
33 ;;> Identifiers will match anything, and make the corresponding
34 ;;> binding available in the body.
35
36 ;;> @example{(match (list 1 2 3) ((a b c) b))}
37
38 ;;> If the same identifier occurs multiple times, the first instance
39 ;;> will match anything, but subsequent instances must match a value
40 ;;> which is @scheme{equal?} to the first.
41
42 ;;> @example{(match (list 1 2 1) ((a a b) 1) ((a b a) 2))}
43
44 ;;> The special identifier @scheme{_} matches anything, no matter how
45 ;;> many times it is used, and does not bind the result in the body.
46
47 ;;> @example{(match (list 1 2 1) ((_ _ b) 1) ((a b a) 2))}
48
49 ;;> To match a literal identifier (or list or any other literal), use
50 ;;> @scheme{quote}.
51
52 ;;> @example{(match 'a ('b 1) ('a 2))}
53
54 ;;> Analogous to its normal usage in scheme, @scheme{quasiquote} can
55 ;;> be used to quote a mostly literally matching object with selected
56 ;;> parts unquoted.
57
58 ;;> @example|{(match (list 1 2 3) (`(1 ,b ,c) (list b c)))}|
59
60 ;;> Often you want to match any number of a repeated pattern. Inside
61 ;;> a list pattern you can append @scheme{...} after an element to
62 ;;> match zero or more of that pattern (like a regexp Kleene star).
63
64 ;;> @example{(match (list 1 2) ((1 2 3 ...) #t))}
65 ;;> @example{(match (list 1 2 3) ((1 2 3 ...) #t))}
66 ;;> @example{(match (list 1 2 3 3 3) ((1 2 3 ...) #t))}
67
68 ;;> Pattern variables matched inside the repeated pattern are bound to
69 ;;> a list of each matching instance in the body.
70
71 ;;> @example{(match (list 1 2) ((a b c ...) c))}
72 ;;> @example{(match (list 1 2 3) ((a b c ...) c))}
73 ;;> @example{(match (list 1 2 3 4 5) ((a b c ...) c))}
74
75 ;;> More than one @scheme{...} may not be used in the same list, since
76 ;;> this would require exponential backtracking in the general case.
77 ;;> However, @scheme{...} need not be the final element in the list,
78 ;;> and may be succeeded by a fixed number of patterns.
79
80 ;;> @example{(match (list 1 2 3 4) ((a b c ... d e) c))}
81 ;;> @example{(match (list 1 2 3 4 5) ((a b c ... d e) c))}
82 ;;> @example{(match (list 1 2 3 4 5 6 7) ((a b c ... d e) c))}
83
84 ;;> @scheme{___} is provided as an alias for @scheme{...} when it is
85 ;;> inconvenient to use the ellipsis (as in a syntax-rules template).
86
87 ;;> The @scheme{..1} syntax is exactly like the @scheme{...} except
88 ;;> that it matches one or more repetitions (like a regexp "+").
89
90 ;;> @example{(match (list 1 2) ((a b c ..1) c))}
91 ;;> @example{(match (list 1 2 3) ((a b c ..1) c))}
92
93 ;;> The boolean operators @scheme{and}, @scheme{or} and @scheme{not}
94 ;;> can be used to group and negate patterns analogously to their
95 ;;> Scheme counterparts.
96
97 ;;> The @scheme{and} operator ensures that all subpatterns match.
98 ;;> This operator is often used with the idiom @scheme{(and x pat)} to
99 ;;> bind @var{x} to the entire value that matches @var{pat}
100 ;;> (c.f. "as-patterns" in ML or Haskell). Another common use is in
101 ;;> conjunction with @scheme{not} patterns to match a general case
102 ;;> with certain exceptions.
103
104 ;;> @example{(match 1 ((and) #t))}
105 ;;> @example{(match 1 ((and x) x))}
106 ;;> @example{(match 1 ((and x 1) x))}
107
108 ;;> The @scheme{or} operator ensures that at least one subpattern
109 ;;> matches. If the same identifier occurs in different subpatterns,
110 ;;> it is matched independently. All identifiers from all subpatterns
111 ;;> are bound if the @scheme{or} operator matches, but the binding is
112 ;;> only defined for identifiers from the subpattern which matched.
113
114 ;;> @example{(match 1 ((or) #t) (else #f))}
115 ;;> @example{(match 1 ((or x) x))}
116 ;;> @example{(match 1 ((or x 2) x))}
117
118 ;;> The @scheme{not} operator succeeds if the given pattern doesn't
119 ;;> match. None of the identifiers used are available in the body.
120
121 ;;> @example{(match 1 ((not 2) #t))}
122
123 ;;> The more general operator @scheme{?} can be used to provide a
124 ;;> predicate. The usage is @scheme{(? predicate pat ...)} where
125 ;;> @var{predicate} is a Scheme expression evaluating to a predicate
126 ;;> called on the value to match, and any optional patterns after the
127 ;;> predicate are then matched as in an @scheme{and} pattern.
128
129 ;;> @example{(match 1 ((? odd? x) x))}
130
131 ;;> The field operator @scheme{=} is used to extract an arbitrary
132 ;;> field and match against it. It is useful for more complex or
133 ;;> conditional destructuring that can't be more directly expressed in
134 ;;> the pattern syntax. The usage is @scheme{(= field pat)}, where
135 ;;> @var{field} can be any expression, and should result in a
136 ;;> procedure of one argument, which is applied to the value to match
137 ;;> to generate a new value to match against @var{pat}.
138
139 ;;> Thus the pattern @scheme{(and (= car x) (= cdr y))} is equivalent
140 ;;> to @scheme{(x . y)}, except it will result in an immediate error
141 ;;> if the value isn't a pair.
142
143 ;;> @example{(match '(1 . 2) ((= car x) x))}
144 ;;> @example{(match 4 ((= sqrt x) x))}
145
146 ;;> The record operator @scheme{$} is used as a concise way to match
147 ;;> records defined by SRFI-9 (or SRFI-99). The usage is
148 ;;> @scheme{($ rtd field ...)}, where @var{rtd} should be the record
149 ;;> type descriptor specified as the first argument to
150 ;;> @scheme{define-record-type}, and each @var{field} is a subpattern
151 ;;> matched against the fields of the record in order. Not all fields
152 ;;> must be present.
153
154 ;;> @example{
155 ;;> (let ()
156 ;;> (define-record-type employee
157 ;;> (make-employee name title)
158 ;;> employee?
159 ;;> (name get-name)
160 ;;> (title get-title))
161 ;;> (match (make-employee "Bob" "Doctor")
162 ;;> (($ employee n t) (list t n))))
163 ;;> }
164
165 ;;> The @scheme{set!} and @scheme{get!} operators are used to bind an
166 ;;> identifier to the setter and getter of a field, respectively. The
167 ;;> setter is a procedure of one argument, which mutates the field to
168 ;;> that argument. The getter is a procedure of no arguments which
169 ;;> returns the current value of the field.
170
171 ;;> @example{(let ((x (cons 1 2))) (match x ((1 . (set! s)) (s 3) x)))}
172 ;;> @example{(match '(1 . 2) ((1 . (get! g)) (g)))}
173
174 ;;> The new operator @scheme{***} can be used to search a tree for
175 ;;> subpatterns. A pattern of the form @scheme{(x *** y)} represents
176 ;;> the subpattern @var{y} located somewhere in a tree where the path
177 ;;> from the current object to @var{y} can be seen as a list of the
178 ;;> form @scheme{(x ...)}. @var{y} can immediately match the current
179 ;;> object in which case the path is the empty list. In a sense it's
180 ;;> a 2-dimensional version of the @scheme{...} pattern.
181
182 ;;> As a common case the pattern @scheme{(_ *** y)} can be used to
183 ;;> search for @var{y} anywhere in a tree, regardless of the path
184 ;;> used.
185
186 ;;> @example{(match '(a (a (a b))) ((x *** 'b) x))}
187 ;;> @example{(match '(a (b) (c (d e) (f g))) ((x *** 'g) x))}
188
189 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
190 ;; Notes
191
192 ;; The implementation is a simple generative pattern matcher - each
193 ;; pattern is expanded into the required tests, calling a failure
194 ;; continuation if the tests fail. This makes the logic easy to
195 ;; follow and extend, but produces sub-optimal code in cases where you
196 ;; have many similar clauses due to repeating the same tests.
197 ;; Nonetheless a smart compiler should be able to remove the redundant
198 ;; tests. For MATCH-LET and DESTRUCTURING-BIND type uses there is no
199 ;; performance hit.
200
201 ;; The original version was written on 2006/11/29 and described in the
202 ;; following Usenet post:
203 ;; http://groups.google.com/group/comp.lang.scheme/msg/0941234de7112ffd
204 ;; and is still available at
205 ;; http://synthcode.com/scheme/match-simple.scm
206 ;; It's just 80 lines for the core MATCH, and an extra 40 lines for
207 ;; MATCH-LET, MATCH-LAMBDA and other syntactic sugar.
208 ;;
209 ;; A variant of this file which uses COND-EXPAND in a few places for
210 ;; performance can be found at
211 ;; http://synthcode.com/scheme/match-cond-expand.scm
212 ;;
213 ;; 2012/05/23 - fixing combinatorial explosion of code in certain or patterns
214 ;; 2011/09/25 - fixing bug when directly matching an identifier repeated in
215 ;; the pattern (thanks to Stefan Israelsson Tampe)
216 ;; 2011/01/27 - fixing bug when matching tail patterns against improper lists
217 ;; 2010/09/26 - adding `..1' patterns (thanks to Ludovic Courtès)
218 ;; 2010/09/07 - fixing identifier extraction in some `...' and `***' patterns
219 ;; 2009/11/25 - adding `***' tree search patterns
220 ;; 2008/03/20 - fixing bug where (a ...) matched non-lists
221 ;; 2008/03/15 - removing redundant check in vector patterns
222 ;; 2008/03/06 - you can use `...' portably now (thanks to Taylor Campbell)
223 ;; 2007/09/04 - fixing quasiquote patterns
224 ;; 2007/07/21 - allowing ellipse patterns in non-final list positions
225 ;; 2007/04/10 - fixing potential hygiene issue in match-check-ellipse
226 ;; (thanks to Taylor Campbell)
227 ;; 2007/04/08 - clean up, commenting
228 ;; 2006/12/24 - bugfixes
229 ;; 2006/12/01 - non-linear patterns, shared variables in OR, get!/set!
230
231 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
232 ;; force compile-time syntax errors with useful messages
233
234 (define-syntax match-syntax-error
235 (syntax-rules ()
236 ((_) (match-syntax-error "invalid match-syntax-error usage"))))
237
238 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
239
240 ;;> @subsubsection{Syntax}
241
242 ;;> @subsubsubsection{@rawcode{(match expr (pattern . body) ...)@br{}
243 ;;> (match expr (pattern (=> failure) . body) ...)}}
244
245 ;;> The result of @var{expr} is matched against each @var{pattern} in
246 ;;> turn, according to the pattern rules described in the previous
247 ;;> section, until the the first @var{pattern} matches. When a match is
248 ;;> found, the corresponding @var{body}s are evaluated in order,
249 ;;> and the result of the last expression is returned as the result
250 ;;> of the entire @scheme{match}. If a @var{failure} is provided,
251 ;;> then it is bound to a procedure of no arguments which continues,
252 ;;> processing at the next @var{pattern}. If no @var{pattern} matches,
253 ;;> an error is signalled.
254
255 ;; The basic interface. MATCH just performs some basic syntax
256 ;; validation, binds the match expression to a temporary variable `v',
257 ;; and passes it on to MATCH-NEXT. It's a constant throughout the
258 ;; code below that the binding `v' is a direct variable reference, not
259 ;; an expression.
260
261 (define-syntax match
262 (syntax-rules ()
263 ((match)
264 (match-syntax-error "missing match expression"))
265 ((match atom)
266 (match-syntax-error "no match clauses"))
267 ((match (app ...) (pat . body) ...)
268 (let ((v (app ...)))
269 (match-next v ((app ...) (set! (app ...))) (pat . body) ...)))
270 ((match #(vec ...) (pat . body) ...)
271 (let ((v #(vec ...)))
272 (match-next v (v (set! v)) (pat . body) ...)))
273 ((match atom (pat . body) ...)
274 (let ((v atom))
275 (match-next v (atom (set! atom)) (pat . body) ...)))
276 ))
277
278 ;; MATCH-NEXT passes each clause to MATCH-ONE in turn with its failure
279 ;; thunk, which is expanded by recursing MATCH-NEXT on the remaining
280 ;; clauses. `g+s' is a list of two elements, the get! and set!
281 ;; expressions respectively.
282
283 (define-syntax match-next
284 (syntax-rules (=>)
285 ;; no more clauses, the match failed
286 ((match-next v g+s)
287 ;; Here we call error in non-tail context, so that the backtrace
288 ;; can show the source location of the failing match form.
289 (begin
290 (error 'match "no matching pattern" v)
291 #f))
292 ;; named failure continuation
293 ((match-next v g+s (pat (=> failure) . body) . rest)
294 (let ((failure (lambda () (match-next v g+s . rest))))
295 ;; match-one analyzes the pattern for us
296 (match-one v pat g+s (match-drop-ids (begin . body)) (failure) ())))
297 ;; anonymous failure continuation, give it a dummy name
298 ((match-next v g+s (pat . body) . rest)
299 (match-next v g+s (pat (=> failure) . body) . rest))))
300
301 ;; MATCH-ONE first checks for ellipse patterns, otherwise passes on to
302 ;; MATCH-TWO.
303
304 (define-syntax match-one
305 (syntax-rules ()
306 ;; If it's a list of two or more values, check to see if the
307 ;; second one is an ellipse and handle accordingly, otherwise go
308 ;; to MATCH-TWO.
309 ((match-one v (p q . r) g+s sk fk i)
310 (match-check-ellipse
311 q
312 (match-extract-vars p (match-gen-ellipses v p r g+s sk fk i) i ())
313 (match-two v (p q . r) g+s sk fk i)))
314 ;; Go directly to MATCH-TWO.
315 ((match-one . x)
316 (match-two . x))))
317
318 ;; This is the guts of the pattern matcher. We are passed a lot of
319 ;; information in the form:
320 ;;
321 ;; (match-two var pattern getter setter success-k fail-k (ids ...))
322 ;;
323 ;; usually abbreviated
324 ;;
325 ;; (match-two v p g+s sk fk i)
326 ;;
327 ;; where VAR is the symbol name of the current variable we are
328 ;; matching, PATTERN is the current pattern, getter and setter are the
329 ;; corresponding accessors (e.g. CAR and SET-CAR! of the pair holding
330 ;; VAR), SUCCESS-K is the success continuation, FAIL-K is the failure
331 ;; continuation (which is just a thunk call and is thus safe to expand
332 ;; multiple times) and IDS are the list of identifiers bound in the
333 ;; pattern so far.
334
335 (define-syntax match-two
336 (syntax-rules (_ ___ ..1 *** quote quasiquote ? $ = and or not set! get!)
337 ((match-two v () g+s (sk ...) fk i)
338 (if (null? v) (sk ... i) fk))
339 ((match-two v (quote p) g+s (sk ...) fk i)
340 (if (equal? v 'p) (sk ... i) fk))
341 ((match-two v (quasiquote p) . x)
342 (match-quasiquote v p . x))
343 ((match-two v (and) g+s (sk ...) fk i) (sk ... i))
344 ((match-two v (and p q ...) g+s sk fk i)
345 (match-one v p g+s (match-one v (and q ...) g+s sk fk) fk i))
346 ((match-two v (or) g+s sk fk i) fk)
347 ((match-two v (or p) . x)
348 (match-one v p . x))
349 ((match-two v (or p ...) g+s sk fk i)
350 (match-extract-vars (or p ...) (match-gen-or v (p ...) g+s sk fk i) i ()))
351 ((match-two v (not p) g+s (sk ...) fk i)
352 (match-one v p g+s (match-drop-ids fk) (sk ... i) i))
353 ((match-two v (get! getter) (g s) (sk ...) fk i)
354 (let ((getter (lambda () g))) (sk ... i)))
355 ((match-two v (set! setter) (g (s ...)) (sk ...) fk i)
356 (let ((setter (lambda (x) (s ... x)))) (sk ... i)))
357 ((match-two v (? pred . p) g+s sk fk i)
358 (if (pred v) (match-one v (and . p) g+s sk fk i) fk))
359 ((match-two v (= proc p) . x)
360 (let ((w (proc v))) (match-one w p . x)))
361 ((match-two v (p ___ . r) g+s sk fk i)
362 (match-extract-vars p (match-gen-ellipses v p r g+s sk fk i) i ()))
363 ((match-two v (p) g+s sk fk i)
364 (if (and (pair? v) (null? (cdr v)))
365 (let ((w (car v)))
366 (match-one w p ((car v) (set-car! v)) sk fk i))
367 fk))
368 ((match-two v (p *** q) g+s sk fk i)
369 (match-extract-vars p (match-gen-search v p q g+s sk fk i) i ()))
370 ((match-two v (p *** . q) g+s sk fk i)
371 (match-syntax-error "invalid use of ***" (p *** . q)))
372 ((match-two v (p ..1) g+s sk fk i)
373 (if (pair? v)
374 (match-one v (p ___) g+s sk fk i)
375 fk))
376 ((match-two v ($ rec p ...) g+s sk fk i)
377 (if (is-a? v rec)
378 (match-record-refs v rec 0 (p ...) g+s sk fk i)
379 fk))
380 ((match-two v (p . q) g+s sk fk i)
381 (if (pair? v)
382 (let ((w (car v)) (x (cdr v)))
383 (match-one w p ((car v) (set-car! v))
384 (match-one x q ((cdr v) (set-cdr! v)) sk fk)
385 fk
386 i))
387 fk))
388 ((match-two v #(p ...) g+s . x)
389 (match-vector v 0 () (p ...) . x))
390 ((match-two v _ g+s (sk ...) fk i) (sk ... i))
391 ;; Not a pair or vector or special literal, test to see if it's a
392 ;; new symbol, in which case we just bind it, or if it's an
393 ;; already bound symbol or some other literal, in which case we
394 ;; compare it with EQUAL?.
395 ((match-two v x g+s (sk ...) fk (id ...))
396 (let-syntax
397 ((new-sym?
398 (syntax-rules (id ...)
399 ((new-sym? x sk2 fk2) sk2)
400 ((new-sym? y sk2 fk2) fk2))))
401 (new-sym? random-sym-to-match
402 (let ((x v)) (sk ... (id ... x)))
403 (if (equal? v x) (sk ... (id ...)) fk))))
404 ))
405
406 ;; QUASIQUOTE patterns
407
408 (define-syntax match-quasiquote
409 (syntax-rules (unquote unquote-splicing quasiquote)
410 ((_ v (unquote p) g+s sk fk i)
411 (match-one v p g+s sk fk i))
412 ((_ v ((unquote-splicing p) . rest) g+s sk fk i)
413 (if (pair? v)
414 (match-one v
415 (p . tmp)
416 (match-quasiquote tmp rest g+s sk fk)
417 fk
418 i)
419 fk))
420 ((_ v (quasiquote p) g+s sk fk i . depth)
421 (match-quasiquote v p g+s sk fk i #f . depth))
422 ((_ v (unquote p) g+s sk fk i x . depth)
423 (match-quasiquote v p g+s sk fk i . depth))
424 ((_ v (unquote-splicing p) g+s sk fk i x . depth)
425 (match-quasiquote v p g+s sk fk i . depth))
426 ((_ v (p . q) g+s sk fk i . depth)
427 (if (pair? v)
428 (let ((w (car v)) (x (cdr v)))
429 (match-quasiquote
430 w p g+s
431 (match-quasiquote-step x q g+s sk fk depth)
432 fk i . depth))
433 fk))
434 ((_ v #(elt ...) g+s sk fk i . depth)
435 (if (vector? v)
436 (let ((ls (vector->list v)))
437 (match-quasiquote ls (elt ...) g+s sk fk i . depth))
438 fk))
439 ((_ v x g+s sk fk i . depth)
440 (match-one v 'x g+s sk fk i))))
441
442 (define-syntax match-quasiquote-step
443 (syntax-rules ()
444 ((match-quasiquote-step x q g+s sk fk depth i)
445 (match-quasiquote x q g+s sk fk i . depth))))
446
447 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
448 ;; Utilities
449
450 ;; Takes two values and just expands into the first.
451 (define-syntax match-drop-ids
452 (syntax-rules ()
453 ((_ expr ids ...) expr)))
454
455 (define-syntax match-tuck-ids
456 (syntax-rules ()
457 ((_ (letish args (expr ...)) ids ...)
458 (letish args (expr ... ids ...)))))
459
460 (define-syntax match-drop-first-arg
461 (syntax-rules ()
462 ((_ arg expr) expr)))
463
464 ;; To expand an OR group we try each clause in succession, passing the
465 ;; first that succeeds to the success continuation. On failure for
466 ;; any clause, we just try the next clause, finally resorting to the
467 ;; failure continuation fk if all clauses fail. The only trick is
468 ;; that we want to unify the identifiers, so that the success
469 ;; continuation can refer to a variable from any of the OR clauses.
470
471 (define-syntax match-gen-or
472 (syntax-rules ()
473 ((_ v p g+s (sk ...) fk (i ...) ((id id-ls) ...))
474 (let ((sk2 (lambda (id ...) (sk ... (i ... id ...)))))
475 (match-gen-or-step v p g+s (match-drop-ids (sk2 id ...)) fk (i ...))))))
476
477 (define-syntax match-gen-or-step
478 (syntax-rules ()
479 ((_ v () g+s sk fk . x)
480 ;; no OR clauses, call the failure continuation
481 fk)
482 ((_ v (p) . x)
483 ;; last (or only) OR clause, just expand normally
484 (match-one v p . x))
485 ((_ v (p . q) g+s sk fk i)
486 ;; match one and try the remaining on failure
487 (let ((fk2 (lambda () (match-gen-or-step v q g+s sk fk i))))
488 (match-one v p g+s sk (fk2) i)))
489 ))
490
491 ;; We match a pattern (p ...) by matching the pattern p in a loop on
492 ;; each element of the variable, accumulating the bound ids into lists.
493
494 ;; Look at the body of the simple case - it's just a named let loop,
495 ;; matching each element in turn to the same pattern. The only trick
496 ;; is that we want to keep track of the lists of each extracted id, so
497 ;; when the loop recurses we cons the ids onto their respective list
498 ;; variables, and on success we bind the ids (what the user input and
499 ;; expects to see in the success body) to the reversed accumulated
500 ;; list IDs.
501
502 (define-syntax match-gen-ellipses
503 (syntax-rules ()
504 ((_ v p () g+s (sk ...) fk i ((id id-ls) ...))
505 (match-check-identifier p
506 ;; simplest case equivalent to (p ...), just bind the list
507 (let ((p v))
508 (if (list? p)
509 (sk ... i)
510 fk))
511 ;; simple case, match all elements of the list
512 (let loop ((ls v) (id-ls '()) ...)
513 (cond
514 ((null? ls)
515 (let ((id (reverse id-ls)) ...) (sk ... i)))
516 ((pair? ls)
517 (let ((w (car ls)))
518 (match-one w p ((car ls) (set-car! ls))
519 (match-drop-ids (loop (cdr ls) (cons id id-ls) ...))
520 fk i)))
521 (else
522 fk)))))
523 ((_ v p r g+s (sk ...) fk i ((id id-ls) ...))
524 ;; general case, trailing patterns to match, keep track of the
525 ;; remaining list length so we don't need any backtracking
526 (match-verify-no-ellipses
527 r
528 (let* ((tail-len (length 'r))
529 (ls v)
530 (len (and (list? ls) (length ls))))
531 (if (or (not len) (< len tail-len))
532 fk
533 (let loop ((ls ls) (n len) (id-ls '()) ...)
534 (cond
535 ((= n tail-len)
536 (let ((id (reverse id-ls)) ...)
537 (match-one ls r (#f #f) (sk ...) fk i)))
538 ((pair? ls)
539 (let ((w (car ls)))
540 (match-one w p ((car ls) (set-car! ls))
541 (match-drop-ids
542 (loop (cdr ls) (- n 1) (cons id id-ls) ...))
543 fk
544 i)))
545 (else
546 fk)))))))))
547
548 ;; This is just a safety check. Although unlike syntax-rules we allow
549 ;; trailing patterns after an ellipses, we explicitly disable multiple
550 ;; ellipses at the same level. This is because in the general case
551 ;; such patterns are exponential in the number of ellipses, and we
552 ;; don't want to make it easy to construct very expensive operations
553 ;; with simple looking patterns. For example, it would be O(n^2) for
554 ;; patterns like (a ... b ...) because we must consider every trailing
555 ;; element for every possible break for the leading "a ...".
556
557 (define-syntax match-verify-no-ellipses
558 (syntax-rules ()
559 ((_ (x . y) sk)
560 (match-check-ellipse
561 x
562 (match-syntax-error
563 "multiple ellipse patterns not allowed at same level")
564 (match-verify-no-ellipses y sk)))
565 ((_ () sk)
566 sk)
567 ((_ x sk)
568 (match-syntax-error "dotted tail not allowed after ellipse" x))))
569
570 ;; To implement the tree search, we use two recursive procedures. TRY
571 ;; attempts to match Y once, and on success it calls the normal SK on
572 ;; the accumulated list ids as in MATCH-GEN-ELLIPSES. On failure, we
573 ;; call NEXT which first checks if the current value is a list
574 ;; beginning with X, then calls TRY on each remaining element of the
575 ;; list. Since TRY will recursively call NEXT again on failure, this
576 ;; effects a full depth-first search.
577 ;;
578 ;; The failure continuation throughout is a jump to the next step in
579 ;; the tree search, initialized with the original failure continuation
580 ;; FK.
581
582 (define-syntax match-gen-search
583 (syntax-rules ()
584 ((match-gen-search v p q g+s sk fk i ((id id-ls) ...))
585 (letrec ((try (lambda (w fail id-ls ...)
586 (match-one w q g+s
587 (match-tuck-ids
588 (let ((id (reverse id-ls)) ...)
589 sk))
590 (next w fail id-ls ...) i)))
591 (next (lambda (w fail id-ls ...)
592 (if (not (pair? w))
593 (fail)
594 (let ((u (car w)))
595 (match-one
596 u p ((car w) (set-car! w))
597 (match-drop-ids
598 ;; accumulate the head variables from
599 ;; the p pattern, and loop over the tail
600 (let ((id-ls (cons id id-ls)) ...)
601 (let lp ((ls (cdr w)))
602 (if (pair? ls)
603 (try (car ls)
604 (lambda () (lp (cdr ls)))
605 id-ls ...)
606 (fail)))))
607 (fail) i))))))
608 ;; the initial id-ls binding here is a dummy to get the right
609 ;; number of '()s
610 (let ((id-ls '()) ...)
611 (try v (lambda () fk) id-ls ...))))))
612
613 ;; Vector patterns are just more of the same, with the slight
614 ;; exception that we pass around the current vector index being
615 ;; matched.
616
617 (define-syntax match-vector
618 (syntax-rules (___)
619 ((_ v n pats (p q) . x)
620 (match-check-ellipse q
621 (match-gen-vector-ellipses v n pats p . x)
622 (match-vector-two v n pats (p q) . x)))
623 ((_ v n pats (p ___) sk fk i)
624 (match-gen-vector-ellipses v n pats p sk fk i))
625 ((_ . x)
626 (match-vector-two . x))))
627
628 ;; Check the exact vector length, then check each element in turn.
629
630 (define-syntax match-vector-two
631 (syntax-rules ()
632 ((_ v n ((pat index) ...) () sk fk i)
633 (if (vector? v)
634 (let ((len (vector-length v)))
635 (if (= len n)
636 (match-vector-step v ((pat index) ...) sk fk i)
637 fk))
638 fk))
639 ((_ v n (pats ...) (p . q) . x)
640 (match-vector v (+ n 1) (pats ... (p n)) q . x))))
641
642 (define-syntax match-vector-step
643 (syntax-rules ()
644 ((_ v () (sk ...) fk i) (sk ... i))
645 ((_ v ((pat index) . rest) sk fk i)
646 (let ((w (vector-ref v index)))
647 (match-one w pat ((vector-ref v index) (vector-set! v index))
648 (match-vector-step v rest sk fk)
649 fk i)))))
650
651 ;; With a vector ellipse pattern we first check to see if the vector
652 ;; length is at least the required length.
653
654 (define-syntax match-gen-vector-ellipses
655 (syntax-rules ()
656 ((_ v n ((pat index) ...) p sk fk i)
657 (if (vector? v)
658 (let ((len (vector-length v)))
659 (if (>= len n)
660 (match-vector-step v ((pat index) ...)
661 (match-vector-tail v p n len sk fk)
662 fk i)
663 fk))
664 fk))))
665
666 (define-syntax match-vector-tail
667 (syntax-rules ()
668 ((_ v p n len sk fk i)
669 (match-extract-vars p (match-vector-tail-two v p n len sk fk i) i ()))))
670
671 (define-syntax match-vector-tail-two
672 (syntax-rules ()
673 ((_ v p n len (sk ...) fk i ((id id-ls) ...))
674 (let loop ((j n) (id-ls '()) ...)
675 (if (>= j len)
676 (let ((id (reverse id-ls)) ...) (sk ... i))
677 (let ((w (vector-ref v j)))
678 (match-one w p ((vector-ref v j) (vetor-set! v j))
679 (match-drop-ids (loop (+ j 1) (cons id id-ls) ...))
680 fk i)))))))
681
682 (define-syntax match-record-refs
683 (syntax-rules ()
684 ((_ v rec n (p . q) g+s sk fk i)
685 (let ((w (slot-ref rec v n)))
686 (match-one w p ((slot-ref rec v n) (slot-set! rec v n))
687 (match-record-refs v rec (+ n 1) q g+s sk fk) fk i)))
688 ((_ v rec n () g+s (sk ...) fk i)
689 (sk ... i))))
690
691 ;; Extract all identifiers in a pattern. A little more complicated
692 ;; than just looking for symbols, we need to ignore special keywords
693 ;; and non-pattern forms (such as the predicate expression in ?
694 ;; patterns), and also ignore previously bound identifiers.
695 ;;
696 ;; Calls the continuation with all new vars as a list of the form
697 ;; ((orig-var tmp-name) ...), where tmp-name can be used to uniquely
698 ;; pair with the original variable (e.g. it's used in the ellipse
699 ;; generation for list variables).
700 ;;
701 ;; (match-extract-vars pattern continuation (ids ...) (new-vars ...))
702
703 (define-syntax match-extract-vars
704 (syntax-rules (_ ___ ..1 *** ? $ = quote quasiquote and or not get! set!)
705 ((match-extract-vars (? pred . p) . x)
706 (match-extract-vars p . x))
707 ((match-extract-vars ($ rec . p) . x)
708 (match-extract-vars p . x))
709 ((match-extract-vars (= proc p) . x)
710 (match-extract-vars p . x))
711 ((match-extract-vars (quote x) (k ...) i v)
712 (k ... v))
713 ((match-extract-vars (quasiquote x) k i v)
714 (match-extract-quasiquote-vars x k i v (#t)))
715 ((match-extract-vars (and . p) . x)
716 (match-extract-vars p . x))
717 ((match-extract-vars (or . p) . x)
718 (match-extract-vars p . x))
719 ((match-extract-vars (not . p) . x)
720 (match-extract-vars p . x))
721 ;; A non-keyword pair, expand the CAR with a continuation to
722 ;; expand the CDR.
723 ((match-extract-vars (p q . r) k i v)
724 (match-check-ellipse
725 q
726 (match-extract-vars (p . r) k i v)
727 (match-extract-vars p (match-extract-vars-step (q . r) k i v) i ())))
728 ((match-extract-vars (p . q) k i v)
729 (match-extract-vars p (match-extract-vars-step q k i v) i ()))
730 ((match-extract-vars #(p ...) . x)
731 (match-extract-vars (p ...) . x))
732 ((match-extract-vars _ (k ...) i v) (k ... v))
733 ((match-extract-vars ___ (k ...) i v) (k ... v))
734 ((match-extract-vars *** (k ...) i v) (k ... v))
735 ((match-extract-vars ..1 (k ...) i v) (k ... v))
736 ;; This is the main part, the only place where we might add a new
737 ;; var if it's an unbound symbol.
738 ((match-extract-vars p (k ...) (i ...) v)
739 (let-syntax
740 ((new-sym?
741 (syntax-rules (i ...)
742 ((new-sym? p sk fk) sk)
743 ((new-sym? any sk fk) fk))))
744 (new-sym? random-sym-to-match
745 (k ... ((p p-ls) . v))
746 (k ... v))))
747 ))
748
749 ;; Stepper used in the above so it can expand the CAR and CDR
750 ;; separately.
751
752 (define-syntax match-extract-vars-step
753 (syntax-rules ()
754 ((_ p k i v ((v2 v2-ls) ...))
755 (match-extract-vars p k (v2 ... . i) ((v2 v2-ls) ... . v)))
756 ))
757
758 (define-syntax match-extract-quasiquote-vars
759 (syntax-rules (quasiquote unquote unquote-splicing)
760 ((match-extract-quasiquote-vars (quasiquote x) k i v d)
761 (match-extract-quasiquote-vars x k i v (#t . d)))
762 ((match-extract-quasiquote-vars (unquote-splicing x) k i v d)
763 (match-extract-quasiquote-vars (unquote x) k i v d))
764 ((match-extract-quasiquote-vars (unquote x) k i v (#t))
765 (match-extract-vars x k i v))
766 ((match-extract-quasiquote-vars (unquote x) k i v (#t . d))
767 (match-extract-quasiquote-vars x k i v d))
768 ((match-extract-quasiquote-vars (x . y) k i v (#t . d))
769 (match-extract-quasiquote-vars
770 x
771 (match-extract-quasiquote-vars-step y k i v d) i ()))
772 ((match-extract-quasiquote-vars #(x ...) k i v (#t . d))
773 (match-extract-quasiquote-vars (x ...) k i v d))
774 ((match-extract-quasiquote-vars x (k ...) i v (#t . d))
775 (k ... v))
776 ))
777
778 (define-syntax match-extract-quasiquote-vars-step
779 (syntax-rules ()
780 ((_ x k i v d ((v2 v2-ls) ...))
781 (match-extract-quasiquote-vars x k (v2 ... . i) ((v2 v2-ls) ... . v) d))
782 ))
783
784
785 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
786 ;; Gimme some sugar baby.
787
788 ;;> Shortcut for @scheme{lambda} + @scheme{match}. Creates a
789 ;;> procedure of one argument, and matches that argument against each
790 ;;> clause.
791
792 (define-syntax match-lambda
793 (syntax-rules ()
794 ((_ (pattern . body) ...) (lambda (expr) (match expr (pattern . body) ...)))))
795
796 ;;> Similar to @scheme{match-lambda}. Creates a procedure of any
797 ;;> number of arguments, and matches the argument list against each
798 ;;> clause.
799
800 (define-syntax match-lambda*
801 (syntax-rules ()
802 ((_ (pattern . body) ...) (lambda expr (match expr (pattern . body) ...)))))
803
804 ;;> Matches each var to the corresponding expression, and evaluates
805 ;;> the body with all match variables in scope. Raises an error if
806 ;;> any of the expressions fail to match. Syntax analogous to named
807 ;;> let can also be used for recursive functions which match on their
808 ;;> arguments as in @scheme{match-lambda*}.
809
810 (define-syntax match-let
811 (syntax-rules ()
812 ((_ ((var value) ...) . body)
813 (match-let/helper let () () ((var value) ...) . body))
814 ((_ loop ((var init) ...) . body)
815 (match-named-let loop ((var init) ...) . body))))
816
817 ;;> Similar to @scheme{match-let}, but analogously to @scheme{letrec}
818 ;;> matches and binds the variables with all match variables in scope.
819
820 (define-syntax match-letrec
821 (syntax-rules ()
822 ((_ ((var value) ...) . body)
823 (match-let/helper letrec () () ((var value) ...) . body))))
824
825 (define-syntax match-let/helper
826 (syntax-rules ()
827 ((_ let ((var expr) ...) () () . body)
828 (let ((var expr) ...) . body))
829 ((_ let ((var expr) ...) ((pat tmp) ...) () . body)
830 (let ((var expr) ...)
831 (match-let* ((pat tmp) ...)
832 . body)))
833 ((_ let (v ...) (p ...) (((a . b) expr) . rest) . body)
834 (match-let/helper
835 let (v ... (tmp expr)) (p ... ((a . b) tmp)) rest . body))
836 ((_ let (v ...) (p ...) ((#(a ...) expr) . rest) . body)
837 (match-let/helper
838 let (v ... (tmp expr)) (p ... (#(a ...) tmp)) rest . body))
839 ((_ let (v ...) (p ...) ((a expr) . rest) . body)
840 (match-let/helper let (v ... (a expr)) (p ...) rest . body))))
841
842 (define-syntax match-named-let
843 (syntax-rules ()
844 ((_ loop ((pat expr var) ...) () . body)
845 (let loop ((var expr) ...)
846 (match-let ((pat var) ...)
847 . body)))
848 ((_ loop (v ...) ((pat expr) . rest) . body)
849 (match-named-let loop (v ... (pat expr tmp)) rest . body))))
850
851 ;;> @subsubsubsection{@rawcode{(match-let* ((var value) ...) body ...)}}
852
853 ;;> Similar to @scheme{match-let}, but analogously to @scheme{let*}
854 ;;> matches and binds the variables in sequence, with preceding match
855 ;;> variables in scope.
856
857 (define-syntax match-let*
858 (syntax-rules ()
859 ((_ () . body)
860 (begin . body))
861 ((_ ((pat expr) . rest) . body)
862 (match expr (pat (match-let* rest . body))))))
863
864
865 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
866 ;; Otherwise COND-EXPANDed bits.
867
868 ;; This *should* work, but doesn't :(
869 ;; (define-syntax match-check-ellipse
870 ;; (syntax-rules (...)
871 ;; ((_ ... sk fk) sk)
872 ;; ((_ x sk fk) fk)))
873
874 ;; This is a little more complicated, and introduces a new let-syntax,
875 ;; but should work portably in any R[56]RS Scheme. Taylor Campbell
876 ;; originally came up with the idea.
877 (define-syntax match-check-ellipse
878 (syntax-rules ()
879 ;; these two aren't necessary but provide fast-case failures
880 ((match-check-ellipse (a . b) success-k failure-k) failure-k)
881 ((match-check-ellipse #(a ...) success-k failure-k) failure-k)
882 ;; matching an atom
883 ((match-check-ellipse id success-k failure-k)
884 (let-syntax ((ellipse? (syntax-rules ()
885 ;; iff `id' is `...' here then this will
886 ;; match a list of any length
887 ((ellipse? (foo id) sk fk) sk)
888 ((ellipse? other sk fk) fk))))
889 ;; this list of three elements will only many the (foo id) list
890 ;; above if `id' is `...'
891 (ellipse? (a b c) success-k failure-k)))))
892
893
894 ;; This is portable but can be more efficient with non-portable
895 ;; extensions. This trick was originally discovered by Oleg Kiselyov.
896
897 (define-syntax match-check-identifier
898 (syntax-rules ()
899 ;; fast-case failures, lists and vectors are not identifiers
900 ((_ (x . y) success-k failure-k) failure-k)
901 ((_ #(x ...) success-k failure-k) failure-k)
902 ;; x is an atom
903 ((_ x success-k failure-k)
904 (let-syntax
905 ((sym?
906 (syntax-rules ()
907 ;; if the symbol `abracadabra' matches x, then x is a
908 ;; symbol
909 ((sym? x sk fk) sk)
910 ;; otherwise x is a non-symbol datum
911 ((sym? y sk fk) fk))))
912 (sym? abracadabra success-k failure-k)))))