(trunc): Remove #define to scm_truncate when the C library
[bpt/guile.git] / libguile / numbers.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004 Free Software Foundation, Inc.
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 \f
23 /* General assumptions:
24 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
25 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
26 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
27 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
28 * All objects satisfying SCM_FRACTIONP are never an integer.
29 */
30
31 /* TODO:
32
33 - see if special casing bignums and reals in integer-exponent when
34 possible (to use mpz_pow and mpf_pow_ui) is faster.
35
36 - look in to better short-circuiting of common cases in
37 integer-expt and elsewhere.
38
39 - see if direct mpz operations can help in ash and elsewhere.
40
41 */
42
43 /* tell glibc (2.3) to give prototype for C99 trunc() */
44 #define _GNU_SOURCE
45
46 #if HAVE_CONFIG_H
47 # include <config.h>
48 #endif
49
50 #include <math.h>
51 #include <ctype.h>
52 #include <string.h>
53 #include <gmp.h>
54
55 #include "libguile/_scm.h"
56 #include "libguile/feature.h"
57 #include "libguile/ports.h"
58 #include "libguile/root.h"
59 #include "libguile/smob.h"
60 #include "libguile/strings.h"
61
62 #include "libguile/validate.h"
63 #include "libguile/numbers.h"
64 #include "libguile/deprecation.h"
65
66 #include "libguile/eq.h"
67
68 \f
69
70 /*
71 Wonder if this might be faster for some of our code? A switch on
72 the numtag would jump directly to the right case, and the
73 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
74
75 #define SCM_I_NUMTAG_NOTNUM 0
76 #define SCM_I_NUMTAG_INUM 1
77 #define SCM_I_NUMTAG_BIG scm_tc16_big
78 #define SCM_I_NUMTAG_REAL scm_tc16_real
79 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
80 #define SCM_I_NUMTAG(x) \
81 (SCM_INUMP(x) ? SCM_I_NUMTAG_INUM \
82 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
83 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
84 : SCM_I_NUMTAG_NOTNUM)))
85 */
86 /* the macro above will not work as is with fractions */
87
88
89 #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
90
91 /* FLOBUFLEN is the maximum number of characters neccessary for the
92 * printed or scm_string representation of an inexact number.
93 */
94 #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
95
96 #if defined (SCO)
97 #if ! defined (HAVE_ISNAN)
98 #define HAVE_ISNAN
99 static int
100 isnan (double x)
101 {
102 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
103 }
104 #endif
105 #if ! defined (HAVE_ISINF)
106 #define HAVE_ISINF
107 static int
108 isinf (double x)
109 {
110 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
111 }
112
113 #endif
114 #endif
115
116
117 /* mpz_cmp_d only recognises infinities in gmp 4.2 and up.
118 For prior versions use an explicit check here. */
119 #if __GNU_MP_VERSION < 4 \
120 || (__GNU_MP_VERSION == 4 && __GNU_MP_VERSION_MINOR < 2)
121 #define xmpz_cmp_d(z, d) \
122 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
123 #else
124 #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
125 #endif
126
127 /* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
128 isinf. It does have finite and isnan though, hence the use of those.
129 fpclass would be a possibility on that system too. */
130 static int
131 xisinf (double x)
132 {
133 #if defined (HAVE_ISINF)
134 return isinf (x);
135 #elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
136 return (! (finite (x) || isnan (x)));
137 #else
138 return 0;
139 #endif
140 }
141
142 static int
143 xisnan (double x)
144 {
145 #if defined (HAVE_ISNAN)
146 return isnan (x);
147 #else
148 return 0;
149 #endif
150 }
151
152 \f
153
154 static mpz_t z_negative_one;
155
156 \f
157
158 SCM_C_INLINE_KEYWORD SCM
159 scm_i_mkbig ()
160 {
161 /* Return a newly created bignum. */
162 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
163 mpz_init (SCM_I_BIG_MPZ (z));
164 return z;
165 }
166
167 SCM_C_INLINE_KEYWORD static SCM
168 scm_i_clonebig (SCM src_big, int same_sign_p)
169 {
170 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
171 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
172 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
173 if (!same_sign_p)
174 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
175 return z;
176 }
177
178 SCM_C_INLINE_KEYWORD int
179 scm_i_bigcmp (SCM x, SCM y)
180 {
181 /* Return neg if x < y, pos if x > y, and 0 if x == y */
182 /* presume we already know x and y are bignums */
183 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
184 scm_remember_upto_here_2 (x, y);
185 return result;
186 }
187
188 SCM_C_INLINE_KEYWORD SCM
189 scm_i_dbl2big (double d)
190 {
191 /* results are only defined if d is an integer */
192 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
193 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
194 return z;
195 }
196
197 /* Convert a integer in double representation to a SCM number. */
198
199 SCM_C_INLINE_KEYWORD SCM
200 scm_i_dbl2num (double u)
201 {
202 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
203 powers of 2, so there's no rounding when making "double" values
204 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
205 get rounded on a 64-bit machine, hence the "+1".
206
207 The use of floor() to force to an integer value ensures we get a
208 "numerically closest" value without depending on how a
209 double->long cast or how mpz_set_d will round. For reference,
210 double->long probably follows the hardware rounding mode,
211 mpz_set_d truncates towards zero. */
212
213 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
214 representable as a double? */
215
216 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
217 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
218 return SCM_MAKINUM ((long) u);
219 else
220 return scm_i_dbl2big (u);
221 }
222
223 /* scm_i_big2dbl() rounds to the closest representable double, in accordance
224 with R5RS exact->inexact.
225
226 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
227 (ie. it truncates towards zero), then adjust to get the closest double by
228 examining the next lower bit and adding 1 if necessary.
229
230 Note that bignums exactly half way between representable doubles are
231 rounded to the next higher absolute value (ie. away from zero). This
232 seems like an adequate interpretation of R5RS "numerically closest", and
233 it's easier and faster than a full "nearest-even" style.
234
235 The bit test is done on the absolute value of the mpz_t, which means we
236 must use mpz_getlimbn. mpz_tstbit is not right, it treats negatives as
237 twos complement.
238
239 Prior to GMP 4.2, the rounding done by mpz_get_d was unspecified. It
240 happened to follow the hardware rounding mode, but on the absolute value
241 of its operand. This is not what we want, so we put the high
242 DBL_MANT_DIG bits into a temporary. This extra init/clear is a slowdown,
243 but doesn't matter too much since it's only for older GMP. */
244
245 double
246 scm_i_big2dbl (SCM b)
247 {
248 double result;
249 size_t bits;
250
251 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
252
253 #if __GNU_MP_VERSION < 4 \
254 || (__GNU_MP_VERSION == 4 && __GNU_MP_VERSION_MINOR < 2)
255 {
256 /* GMP prior to 4.2, force truncate towards zero */
257 mpz_t tmp;
258 if (bits > DBL_MANT_DIG)
259 {
260 size_t shift = bits - DBL_MANT_DIG;
261 mpz_init2 (tmp, DBL_MANT_DIG);
262 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
263 result = ldexp (mpz_get_d (tmp), shift);
264 mpz_clear (tmp);
265 }
266 else
267 {
268 result = mpz_get_d (SCM_I_BIG_MPZ (b));
269 }
270 }
271 #else
272 /* GMP 4.2 and up */
273 result = mpz_get_d (SCM_I_BIG_MPZ (b));
274 #endif
275
276 if (bits > DBL_MANT_DIG)
277 {
278 unsigned long pos = bits - DBL_MANT_DIG - 1;
279 /* test bit number "pos" in absolute value */
280 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
281 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
282 {
283 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
284 }
285 }
286
287 scm_remember_upto_here_1 (b);
288 return result;
289 }
290
291 SCM_C_INLINE_KEYWORD SCM
292 scm_i_normbig (SCM b)
293 {
294 /* convert a big back to a fixnum if it'll fit */
295 /* presume b is a bignum */
296 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
297 {
298 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
299 if (SCM_FIXABLE (val))
300 b = SCM_MAKINUM (val);
301 }
302 return b;
303 }
304
305 static SCM_C_INLINE_KEYWORD SCM
306 scm_i_mpz2num (mpz_t b)
307 {
308 /* convert a mpz number to a SCM number. */
309 if (mpz_fits_slong_p (b))
310 {
311 long val = mpz_get_si (b);
312 if (SCM_FIXABLE (val))
313 return SCM_MAKINUM (val);
314 }
315
316 {
317 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
318 mpz_init_set (SCM_I_BIG_MPZ (z), b);
319 return z;
320 }
321 }
322
323 /* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
324 static SCM scm_divide2real (SCM x, SCM y);
325
326 SCM
327 scm_make_ratio (SCM numerator, SCM denominator)
328 #define FUNC_NAME "make-ratio"
329 {
330 /* First make sure the arguments are proper.
331 */
332 if (SCM_INUMP (denominator))
333 {
334 if (SCM_EQ_P (denominator, SCM_INUM0))
335 scm_num_overflow ("make-ratio");
336 if (SCM_EQ_P (denominator, SCM_MAKINUM(1)))
337 return numerator;
338 }
339 else
340 {
341 if (!(SCM_BIGP(denominator)))
342 SCM_WRONG_TYPE_ARG (2, denominator);
343 }
344 if (!SCM_INUMP (numerator) && !SCM_BIGP (numerator))
345 SCM_WRONG_TYPE_ARG (1, numerator);
346
347 /* Then flip signs so that the denominator is positive.
348 */
349 if (SCM_NFALSEP (scm_negative_p (denominator)))
350 {
351 numerator = scm_difference (numerator, SCM_UNDEFINED);
352 denominator = scm_difference (denominator, SCM_UNDEFINED);
353 }
354
355 /* Now consider for each of the four fixnum/bignum combinations
356 whether the rational number is really an integer.
357 */
358 if (SCM_INUMP (numerator))
359 {
360 long x = SCM_INUM (numerator);
361 if (SCM_EQ_P (numerator, SCM_INUM0))
362 return SCM_INUM0;
363 if (SCM_INUMP (denominator))
364 {
365 long y;
366 y = SCM_INUM (denominator);
367 if (x == y)
368 return SCM_MAKINUM(1);
369 if ((x % y) == 0)
370 return SCM_MAKINUM (x / y);
371 }
372 else
373 {
374 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
375 of that value for the denominator, as a bignum. Apart from
376 that case, abs(bignum) > abs(inum) so inum/bignum is not an
377 integer. */
378 if (x == SCM_MOST_NEGATIVE_FIXNUM
379 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
380 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
381 return SCM_MAKINUM(-1);
382 }
383 }
384 else if (SCM_BIGP (numerator))
385 {
386 if (SCM_INUMP (denominator))
387 {
388 long yy = SCM_INUM (denominator);
389 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
390 return scm_divide (numerator, denominator);
391 }
392 else
393 {
394 if (SCM_EQ_P (numerator, denominator))
395 return SCM_MAKINUM(1);
396 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
397 SCM_I_BIG_MPZ (denominator)))
398 return scm_divide(numerator, denominator);
399 }
400 }
401
402 /* No, it's a proper fraction.
403 */
404 return scm_double_cell (scm_tc16_fraction,
405 SCM_UNPACK (numerator),
406 SCM_UNPACK (denominator), 0);
407 }
408 #undef FUNC_NAME
409
410 static void scm_i_fraction_reduce (SCM z)
411 {
412 if (!(SCM_FRACTION_REDUCED (z)))
413 {
414 SCM divisor;
415 divisor = scm_gcd (SCM_FRACTION_NUMERATOR (z), SCM_FRACTION_DENOMINATOR (z));
416 if (!(SCM_EQ_P (divisor, SCM_MAKINUM(1))))
417 {
418 /* is this safe? */
419 SCM_FRACTION_SET_NUMERATOR (z, scm_divide (SCM_FRACTION_NUMERATOR (z), divisor));
420 SCM_FRACTION_SET_DENOMINATOR (z, scm_divide (SCM_FRACTION_DENOMINATOR (z), divisor));
421 }
422 SCM_FRACTION_REDUCED_SET (z);
423 }
424 }
425
426 double
427 scm_i_fraction2double (SCM z)
428 {
429 return scm_num2dbl (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
430 SCM_FRACTION_DENOMINATOR (z)),
431 "fraction2real");
432 }
433
434 SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
435 (SCM x),
436 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
437 "otherwise.")
438 #define FUNC_NAME s_scm_exact_p
439 {
440 if (SCM_INUMP (x))
441 return SCM_BOOL_T;
442 if (SCM_BIGP (x))
443 return SCM_BOOL_T;
444 if (SCM_FRACTIONP (x))
445 return SCM_BOOL_T;
446 if (SCM_NUMBERP (x))
447 return SCM_BOOL_F;
448 SCM_WRONG_TYPE_ARG (1, x);
449 }
450 #undef FUNC_NAME
451
452
453 SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
454 (SCM n),
455 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
456 "otherwise.")
457 #define FUNC_NAME s_scm_odd_p
458 {
459 if (SCM_INUMP (n))
460 {
461 long val = SCM_INUM (n);
462 return SCM_BOOL ((val & 1L) != 0);
463 }
464 else if (SCM_BIGP (n))
465 {
466 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
467 scm_remember_upto_here_1 (n);
468 return SCM_BOOL (odd_p);
469 }
470 else if (!SCM_FALSEP (scm_inf_p (n)))
471 return SCM_BOOL_T;
472 else if (SCM_REALP (n))
473 {
474 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
475 if (rem == 1.0)
476 return SCM_BOOL_T;
477 else if (rem == 0.0)
478 return SCM_BOOL_F;
479 else
480 SCM_WRONG_TYPE_ARG (1, n);
481 }
482 else
483 SCM_WRONG_TYPE_ARG (1, n);
484 }
485 #undef FUNC_NAME
486
487
488 SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
489 (SCM n),
490 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
491 "otherwise.")
492 #define FUNC_NAME s_scm_even_p
493 {
494 if (SCM_INUMP (n))
495 {
496 long val = SCM_INUM (n);
497 return SCM_BOOL ((val & 1L) == 0);
498 }
499 else if (SCM_BIGP (n))
500 {
501 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
502 scm_remember_upto_here_1 (n);
503 return SCM_BOOL (even_p);
504 }
505 else if (!SCM_FALSEP (scm_inf_p (n)))
506 return SCM_BOOL_T;
507 else if (SCM_REALP (n))
508 {
509 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
510 if (rem == 1.0)
511 return SCM_BOOL_F;
512 else if (rem == 0.0)
513 return SCM_BOOL_T;
514 else
515 SCM_WRONG_TYPE_ARG (1, n);
516 }
517 else
518 SCM_WRONG_TYPE_ARG (1, n);
519 }
520 #undef FUNC_NAME
521
522 SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
523 (SCM n),
524 "Return @code{#t} if @var{n} is infinite, @code{#f}\n"
525 "otherwise.")
526 #define FUNC_NAME s_scm_inf_p
527 {
528 if (SCM_REALP (n))
529 return SCM_BOOL (xisinf (SCM_REAL_VALUE (n)));
530 else if (SCM_COMPLEXP (n))
531 return SCM_BOOL (xisinf (SCM_COMPLEX_REAL (n))
532 || xisinf (SCM_COMPLEX_IMAG (n)));
533 else
534 return SCM_BOOL_F;
535 }
536 #undef FUNC_NAME
537
538 SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
539 (SCM n),
540 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
541 "otherwise.")
542 #define FUNC_NAME s_scm_nan_p
543 {
544 if (SCM_REALP (n))
545 return SCM_BOOL (xisnan (SCM_REAL_VALUE (n)));
546 else if (SCM_COMPLEXP (n))
547 return SCM_BOOL (xisnan (SCM_COMPLEX_REAL (n))
548 || xisnan (SCM_COMPLEX_IMAG (n)));
549 else
550 return SCM_BOOL_F;
551 }
552 #undef FUNC_NAME
553
554 /* Guile's idea of infinity. */
555 static double guile_Inf;
556
557 /* Guile's idea of not a number. */
558 static double guile_NaN;
559
560 static void
561 guile_ieee_init (void)
562 {
563 #if defined (HAVE_ISINF) || defined (HAVE_FINITE)
564
565 /* Some version of gcc on some old version of Linux used to crash when
566 trying to make Inf and NaN. */
567
568 #ifdef INFINITY
569 /* C99 INFINITY, when available.
570 FIXME: The standard allows for INFINITY to be something that overflows
571 at compile time. We ought to have a configure test to check for that
572 before trying to use it. (But in practice we believe this is not a
573 problem on any system guile is likely to target.) */
574 guile_Inf = INFINITY;
575 #elif HAVE_DINFINITY
576 /* OSF */
577 extern unsigned int DINFINITY[2];
578 guile_Inf = (*(X_CAST(double *, DINFINITY)));
579 #else
580 double tmp = 1e+10;
581 guile_Inf = tmp;
582 for (;;)
583 {
584 guile_Inf *= 1e+10;
585 if (guile_Inf == tmp)
586 break;
587 tmp = guile_Inf;
588 }
589 #endif
590
591 #endif
592
593 #if defined (HAVE_ISNAN)
594
595 #ifdef NAN
596 /* C99 NAN, when available */
597 guile_NaN = NAN;
598 #elif HAVE_DQNAN
599 /* OSF */
600 extern unsigned int DQNAN[2];
601 guile_NaN = (*(X_CAST(double *, DQNAN)));
602 #else
603 guile_NaN = guile_Inf / guile_Inf;
604 #endif
605
606 #endif
607 }
608
609 SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
610 (void),
611 "Return Inf.")
612 #define FUNC_NAME s_scm_inf
613 {
614 static int initialized = 0;
615 if (! initialized)
616 {
617 guile_ieee_init ();
618 initialized = 1;
619 }
620 return scm_make_real (guile_Inf);
621 }
622 #undef FUNC_NAME
623
624 SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
625 (void),
626 "Return NaN.")
627 #define FUNC_NAME s_scm_nan
628 {
629 static int initialized = 0;
630 if (!initialized)
631 {
632 guile_ieee_init ();
633 initialized = 1;
634 }
635 return scm_make_real (guile_NaN);
636 }
637 #undef FUNC_NAME
638
639
640 SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
641 (SCM x),
642 "Return the absolute value of @var{x}.")
643 #define FUNC_NAME
644 {
645 if (SCM_INUMP (x))
646 {
647 long int xx = SCM_INUM (x);
648 if (xx >= 0)
649 return x;
650 else if (SCM_POSFIXABLE (-xx))
651 return SCM_MAKINUM (-xx);
652 else
653 return scm_i_long2big (-xx);
654 }
655 else if (SCM_BIGP (x))
656 {
657 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
658 if (sgn < 0)
659 return scm_i_clonebig (x, 0);
660 else
661 return x;
662 }
663 else if (SCM_REALP (x))
664 {
665 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
666 double xx = SCM_REAL_VALUE (x);
667 if (xx < 0.0)
668 return scm_make_real (-xx);
669 else
670 return x;
671 }
672 else if (SCM_FRACTIONP (x))
673 {
674 if (SCM_FALSEP (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
675 return x;
676 return scm_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
677 SCM_FRACTION_DENOMINATOR (x));
678 }
679 else
680 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
681 }
682 #undef FUNC_NAME
683
684
685 SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
686 /* "Return the quotient of the numbers @var{x} and @var{y}."
687 */
688 SCM
689 scm_quotient (SCM x, SCM y)
690 {
691 if (SCM_INUMP (x))
692 {
693 long xx = SCM_INUM (x);
694 if (SCM_INUMP (y))
695 {
696 long yy = SCM_INUM (y);
697 if (yy == 0)
698 scm_num_overflow (s_quotient);
699 else
700 {
701 long z = xx / yy;
702 if (SCM_FIXABLE (z))
703 return SCM_MAKINUM (z);
704 else
705 return scm_i_long2big (z);
706 }
707 }
708 else if (SCM_BIGP (y))
709 {
710 if ((SCM_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
711 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
712 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
713 {
714 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
715 scm_remember_upto_here_1 (y);
716 return SCM_MAKINUM (-1);
717 }
718 else
719 return SCM_MAKINUM (0);
720 }
721 else
722 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
723 }
724 else if (SCM_BIGP (x))
725 {
726 if (SCM_INUMP (y))
727 {
728 long yy = SCM_INUM (y);
729 if (yy == 0)
730 scm_num_overflow (s_quotient);
731 else if (yy == 1)
732 return x;
733 else
734 {
735 SCM result = scm_i_mkbig ();
736 if (yy < 0)
737 {
738 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
739 SCM_I_BIG_MPZ (x),
740 - yy);
741 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
742 }
743 else
744 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
745 scm_remember_upto_here_1 (x);
746 return scm_i_normbig (result);
747 }
748 }
749 else if (SCM_BIGP (y))
750 {
751 SCM result = scm_i_mkbig ();
752 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
753 SCM_I_BIG_MPZ (x),
754 SCM_I_BIG_MPZ (y));
755 scm_remember_upto_here_2 (x, y);
756 return scm_i_normbig (result);
757 }
758 else
759 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
760 }
761 else
762 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
763 }
764
765 SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
766 /* "Return the remainder of the numbers @var{x} and @var{y}.\n"
767 * "@lisp\n"
768 * "(remainder 13 4) @result{} 1\n"
769 * "(remainder -13 4) @result{} -1\n"
770 * "@end lisp"
771 */
772 SCM
773 scm_remainder (SCM x, SCM y)
774 {
775 if (SCM_INUMP (x))
776 {
777 if (SCM_INUMP (y))
778 {
779 long yy = SCM_INUM (y);
780 if (yy == 0)
781 scm_num_overflow (s_remainder);
782 else
783 {
784 long z = SCM_INUM (x) % yy;
785 return SCM_MAKINUM (z);
786 }
787 }
788 else if (SCM_BIGP (y))
789 {
790 if ((SCM_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
791 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
792 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
793 {
794 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
795 scm_remember_upto_here_1 (y);
796 return SCM_MAKINUM (0);
797 }
798 else
799 return x;
800 }
801 else
802 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
803 }
804 else if (SCM_BIGP (x))
805 {
806 if (SCM_INUMP (y))
807 {
808 long yy = SCM_INUM (y);
809 if (yy == 0)
810 scm_num_overflow (s_remainder);
811 else
812 {
813 SCM result = scm_i_mkbig ();
814 if (yy < 0)
815 yy = - yy;
816 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
817 scm_remember_upto_here_1 (x);
818 return scm_i_normbig (result);
819 }
820 }
821 else if (SCM_BIGP (y))
822 {
823 SCM result = scm_i_mkbig ();
824 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
825 SCM_I_BIG_MPZ (x),
826 SCM_I_BIG_MPZ (y));
827 scm_remember_upto_here_2 (x, y);
828 return scm_i_normbig (result);
829 }
830 else
831 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
832 }
833 else
834 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
835 }
836
837
838 SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
839 /* "Return the modulo of the numbers @var{x} and @var{y}.\n"
840 * "@lisp\n"
841 * "(modulo 13 4) @result{} 1\n"
842 * "(modulo -13 4) @result{} 3\n"
843 * "@end lisp"
844 */
845 SCM
846 scm_modulo (SCM x, SCM y)
847 {
848 if (SCM_INUMP (x))
849 {
850 long xx = SCM_INUM (x);
851 if (SCM_INUMP (y))
852 {
853 long yy = SCM_INUM (y);
854 if (yy == 0)
855 scm_num_overflow (s_modulo);
856 else
857 {
858 /* FIXME: I think this may be a bug on some arches -- results
859 of % with negative second arg are undefined... */
860 long z = xx % yy;
861 long result;
862
863 if (yy < 0)
864 {
865 if (z > 0)
866 result = z + yy;
867 else
868 result = z;
869 }
870 else
871 {
872 if (z < 0)
873 result = z + yy;
874 else
875 result = z;
876 }
877 return SCM_MAKINUM (result);
878 }
879 }
880 else if (SCM_BIGP (y))
881 {
882 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
883 {
884 mpz_t z_x;
885 SCM result;
886
887 if (sgn_y < 0)
888 {
889 SCM pos_y = scm_i_clonebig (y, 0);
890 /* do this after the last scm_op */
891 mpz_init_set_si (z_x, xx);
892 result = pos_y; /* re-use this bignum */
893 mpz_mod (SCM_I_BIG_MPZ (result),
894 z_x,
895 SCM_I_BIG_MPZ (pos_y));
896 scm_remember_upto_here_1 (pos_y);
897 }
898 else
899 {
900 result = scm_i_mkbig ();
901 /* do this after the last scm_op */
902 mpz_init_set_si (z_x, xx);
903 mpz_mod (SCM_I_BIG_MPZ (result),
904 z_x,
905 SCM_I_BIG_MPZ (y));
906 scm_remember_upto_here_1 (y);
907 }
908
909 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
910 mpz_add (SCM_I_BIG_MPZ (result),
911 SCM_I_BIG_MPZ (y),
912 SCM_I_BIG_MPZ (result));
913 scm_remember_upto_here_1 (y);
914 /* and do this before the next one */
915 mpz_clear (z_x);
916 return scm_i_normbig (result);
917 }
918 }
919 else
920 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
921 }
922 else if (SCM_BIGP (x))
923 {
924 if (SCM_INUMP (y))
925 {
926 long yy = SCM_INUM (y);
927 if (yy == 0)
928 scm_num_overflow (s_modulo);
929 else
930 {
931 SCM result = scm_i_mkbig ();
932 mpz_mod_ui (SCM_I_BIG_MPZ (result),
933 SCM_I_BIG_MPZ (x),
934 (yy < 0) ? - yy : yy);
935 scm_remember_upto_here_1 (x);
936 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
937 mpz_sub_ui (SCM_I_BIG_MPZ (result),
938 SCM_I_BIG_MPZ (result),
939 - yy);
940 return scm_i_normbig (result);
941 }
942 }
943 else if (SCM_BIGP (y))
944 {
945 {
946 SCM result = scm_i_mkbig ();
947 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
948 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
949 mpz_mod (SCM_I_BIG_MPZ (result),
950 SCM_I_BIG_MPZ (x),
951 SCM_I_BIG_MPZ (pos_y));
952
953 scm_remember_upto_here_1 (x);
954 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
955 mpz_add (SCM_I_BIG_MPZ (result),
956 SCM_I_BIG_MPZ (y),
957 SCM_I_BIG_MPZ (result));
958 scm_remember_upto_here_2 (y, pos_y);
959 return scm_i_normbig (result);
960 }
961 }
962 else
963 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
964 }
965 else
966 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
967 }
968
969 SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
970 /* "Return the greatest common divisor of all arguments.\n"
971 * "If called without arguments, 0 is returned."
972 */
973 SCM
974 scm_gcd (SCM x, SCM y)
975 {
976 if (SCM_UNBNDP (y))
977 return SCM_UNBNDP (x) ? SCM_INUM0 : x;
978
979 if (SCM_INUMP (x))
980 {
981 if (SCM_INUMP (y))
982 {
983 long xx = SCM_INUM (x);
984 long yy = SCM_INUM (y);
985 long u = xx < 0 ? -xx : xx;
986 long v = yy < 0 ? -yy : yy;
987 long result;
988 if (xx == 0)
989 result = v;
990 else if (yy == 0)
991 result = u;
992 else
993 {
994 long k = 1;
995 long t;
996 /* Determine a common factor 2^k */
997 while (!(1 & (u | v)))
998 {
999 k <<= 1;
1000 u >>= 1;
1001 v >>= 1;
1002 }
1003 /* Now, any factor 2^n can be eliminated */
1004 if (u & 1)
1005 t = -v;
1006 else
1007 {
1008 t = u;
1009 b3:
1010 t = SCM_SRS (t, 1);
1011 }
1012 if (!(1 & t))
1013 goto b3;
1014 if (t > 0)
1015 u = t;
1016 else
1017 v = -t;
1018 t = u - v;
1019 if (t != 0)
1020 goto b3;
1021 result = u * k;
1022 }
1023 return (SCM_POSFIXABLE (result)
1024 ? SCM_MAKINUM (result)
1025 : scm_i_long2big (result));
1026 }
1027 else if (SCM_BIGP (y))
1028 {
1029 SCM_SWAP (x, y);
1030 goto big_inum;
1031 }
1032 else
1033 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1034 }
1035 else if (SCM_BIGP (x))
1036 {
1037 if (SCM_INUMP (y))
1038 {
1039 unsigned long result;
1040 long yy;
1041 big_inum:
1042 yy = SCM_INUM (y);
1043 if (yy == 0)
1044 return scm_abs (x);
1045 if (yy < 0)
1046 yy = -yy;
1047 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1048 scm_remember_upto_here_1 (x);
1049 return (SCM_POSFIXABLE (result)
1050 ? SCM_MAKINUM (result)
1051 : scm_ulong2num (result));
1052 }
1053 else if (SCM_BIGP (y))
1054 {
1055 SCM result = scm_i_mkbig ();
1056 mpz_gcd (SCM_I_BIG_MPZ (result),
1057 SCM_I_BIG_MPZ (x),
1058 SCM_I_BIG_MPZ (y));
1059 scm_remember_upto_here_2 (x, y);
1060 return scm_i_normbig (result);
1061 }
1062 else
1063 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1064 }
1065 else
1066 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
1067 }
1068
1069 SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
1070 /* "Return the least common multiple of the arguments.\n"
1071 * "If called without arguments, 1 is returned."
1072 */
1073 SCM
1074 scm_lcm (SCM n1, SCM n2)
1075 {
1076 if (SCM_UNBNDP (n2))
1077 {
1078 if (SCM_UNBNDP (n1))
1079 return SCM_MAKINUM (1L);
1080 n2 = SCM_MAKINUM (1L);
1081 }
1082
1083 SCM_GASSERT2 (SCM_INUMP (n1) || SCM_BIGP (n1),
1084 g_lcm, n1, n2, SCM_ARG1, s_lcm);
1085 SCM_GASSERT2 (SCM_INUMP (n2) || SCM_BIGP (n2),
1086 g_lcm, n1, n2, SCM_ARGn, s_lcm);
1087
1088 if (SCM_INUMP (n1))
1089 {
1090 if (SCM_INUMP (n2))
1091 {
1092 SCM d = scm_gcd (n1, n2);
1093 if (SCM_EQ_P (d, SCM_INUM0))
1094 return d;
1095 else
1096 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1097 }
1098 else
1099 {
1100 /* inum n1, big n2 */
1101 inumbig:
1102 {
1103 SCM result = scm_i_mkbig ();
1104 long nn1 = SCM_INUM (n1);
1105 if (nn1 == 0) return SCM_INUM0;
1106 if (nn1 < 0) nn1 = - nn1;
1107 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1108 scm_remember_upto_here_1 (n2);
1109 return result;
1110 }
1111 }
1112 }
1113 else
1114 {
1115 /* big n1 */
1116 if (SCM_INUMP (n2))
1117 {
1118 SCM_SWAP (n1, n2);
1119 goto inumbig;
1120 }
1121 else
1122 {
1123 SCM result = scm_i_mkbig ();
1124 mpz_lcm(SCM_I_BIG_MPZ (result),
1125 SCM_I_BIG_MPZ (n1),
1126 SCM_I_BIG_MPZ (n2));
1127 scm_remember_upto_here_2(n1, n2);
1128 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1129 return result;
1130 }
1131 }
1132 }
1133
1134 #ifndef scm_long2num
1135 #define SCM_LOGOP_RETURN(x) scm_ulong2num(x)
1136 #else
1137 #define SCM_LOGOP_RETURN(x) SCM_MAKINUM(x)
1138 #endif
1139
1140 /* Emulating 2's complement bignums with sign magnitude arithmetic:
1141
1142 Logand:
1143 X Y Result Method:
1144 (len)
1145 + + + x (map digit:logand X Y)
1146 + - + x (map digit:logand X (lognot (+ -1 Y)))
1147 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1148 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1149
1150 Logior:
1151 X Y Result Method:
1152
1153 + + + (map digit:logior X Y)
1154 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1155 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1156 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1157
1158 Logxor:
1159 X Y Result Method:
1160
1161 + + + (map digit:logxor X Y)
1162 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1163 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1164 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1165
1166 Logtest:
1167 X Y Result
1168
1169 + + (any digit:logand X Y)
1170 + - (any digit:logand X (lognot (+ -1 Y)))
1171 - + (any digit:logand (lognot (+ -1 X)) Y)
1172 - - #t
1173
1174 */
1175
1176 SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
1177 (SCM n1, SCM n2),
1178 "Return the bitwise AND of the integer arguments.\n\n"
1179 "@lisp\n"
1180 "(logand) @result{} -1\n"
1181 "(logand 7) @result{} 7\n"
1182 "(logand #b111 #b011 #b001) @result{} 1\n"
1183 "@end lisp")
1184 #define FUNC_NAME s_scm_logand
1185 {
1186 long int nn1;
1187
1188 if (SCM_UNBNDP (n2))
1189 {
1190 if (SCM_UNBNDP (n1))
1191 return SCM_MAKINUM (-1);
1192 else if (!SCM_NUMBERP (n1))
1193 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1194 else if (SCM_NUMBERP (n1))
1195 return n1;
1196 else
1197 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1198 }
1199
1200 if (SCM_INUMP (n1))
1201 {
1202 nn1 = SCM_INUM (n1);
1203 if (SCM_INUMP (n2))
1204 {
1205 long nn2 = SCM_INUM (n2);
1206 return SCM_MAKINUM (nn1 & nn2);
1207 }
1208 else if SCM_BIGP (n2)
1209 {
1210 intbig:
1211 if (n1 == 0)
1212 return SCM_INUM0;
1213 {
1214 SCM result_z = scm_i_mkbig ();
1215 mpz_t nn1_z;
1216 mpz_init_set_si (nn1_z, nn1);
1217 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1218 scm_remember_upto_here_1 (n2);
1219 mpz_clear (nn1_z);
1220 return scm_i_normbig (result_z);
1221 }
1222 }
1223 else
1224 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1225 }
1226 else if (SCM_BIGP (n1))
1227 {
1228 if (SCM_INUMP (n2))
1229 {
1230 SCM_SWAP (n1, n2);
1231 nn1 = SCM_INUM (n1);
1232 goto intbig;
1233 }
1234 else if (SCM_BIGP (n2))
1235 {
1236 SCM result_z = scm_i_mkbig ();
1237 mpz_and (SCM_I_BIG_MPZ (result_z),
1238 SCM_I_BIG_MPZ (n1),
1239 SCM_I_BIG_MPZ (n2));
1240 scm_remember_upto_here_2 (n1, n2);
1241 return scm_i_normbig (result_z);
1242 }
1243 else
1244 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1245 }
1246 else
1247 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1248 }
1249 #undef FUNC_NAME
1250
1251
1252 SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
1253 (SCM n1, SCM n2),
1254 "Return the bitwise OR of the integer arguments.\n\n"
1255 "@lisp\n"
1256 "(logior) @result{} 0\n"
1257 "(logior 7) @result{} 7\n"
1258 "(logior #b000 #b001 #b011) @result{} 3\n"
1259 "@end lisp")
1260 #define FUNC_NAME s_scm_logior
1261 {
1262 long int nn1;
1263
1264 if (SCM_UNBNDP (n2))
1265 {
1266 if (SCM_UNBNDP (n1))
1267 return SCM_INUM0;
1268 else if (SCM_NUMBERP (n1))
1269 return n1;
1270 else
1271 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1272 }
1273
1274 if (SCM_INUMP (n1))
1275 {
1276 nn1 = SCM_INUM (n1);
1277 if (SCM_INUMP (n2))
1278 {
1279 long nn2 = SCM_INUM (n2);
1280 return SCM_MAKINUM (nn1 | nn2);
1281 }
1282 else if (SCM_BIGP (n2))
1283 {
1284 intbig:
1285 if (nn1 == 0)
1286 return n2;
1287 {
1288 SCM result_z = scm_i_mkbig ();
1289 mpz_t nn1_z;
1290 mpz_init_set_si (nn1_z, nn1);
1291 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1292 scm_remember_upto_here_1 (n2);
1293 mpz_clear (nn1_z);
1294 return result_z;
1295 }
1296 }
1297 else
1298 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1299 }
1300 else if (SCM_BIGP (n1))
1301 {
1302 if (SCM_INUMP (n2))
1303 {
1304 SCM_SWAP (n1, n2);
1305 nn1 = SCM_INUM (n1);
1306 goto intbig;
1307 }
1308 else if (SCM_BIGP (n2))
1309 {
1310 SCM result_z = scm_i_mkbig ();
1311 mpz_ior (SCM_I_BIG_MPZ (result_z),
1312 SCM_I_BIG_MPZ (n1),
1313 SCM_I_BIG_MPZ (n2));
1314 scm_remember_upto_here_2 (n1, n2);
1315 return result_z;
1316 }
1317 else
1318 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1319 }
1320 else
1321 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1322 }
1323 #undef FUNC_NAME
1324
1325
1326 SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
1327 (SCM n1, SCM n2),
1328 "Return the bitwise XOR of the integer arguments. A bit is\n"
1329 "set in the result if it is set in an odd number of arguments.\n"
1330 "@lisp\n"
1331 "(logxor) @result{} 0\n"
1332 "(logxor 7) @result{} 7\n"
1333 "(logxor #b000 #b001 #b011) @result{} 2\n"
1334 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1335 "@end lisp")
1336 #define FUNC_NAME s_scm_logxor
1337 {
1338 long int nn1;
1339
1340 if (SCM_UNBNDP (n2))
1341 {
1342 if (SCM_UNBNDP (n1))
1343 return SCM_INUM0;
1344 else if (SCM_NUMBERP (n1))
1345 return n1;
1346 else
1347 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1348 }
1349
1350 if (SCM_INUMP (n1))
1351 {
1352 nn1 = SCM_INUM (n1);
1353 if (SCM_INUMP (n2))
1354 {
1355 long nn2 = SCM_INUM (n2);
1356 return SCM_MAKINUM (nn1 ^ nn2);
1357 }
1358 else if (SCM_BIGP (n2))
1359 {
1360 intbig:
1361 {
1362 SCM result_z = scm_i_mkbig ();
1363 mpz_t nn1_z;
1364 mpz_init_set_si (nn1_z, nn1);
1365 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1366 scm_remember_upto_here_1 (n2);
1367 mpz_clear (nn1_z);
1368 return scm_i_normbig (result_z);
1369 }
1370 }
1371 else
1372 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1373 }
1374 else if (SCM_BIGP (n1))
1375 {
1376 if (SCM_INUMP (n2))
1377 {
1378 SCM_SWAP (n1, n2);
1379 nn1 = SCM_INUM (n1);
1380 goto intbig;
1381 }
1382 else if (SCM_BIGP (n2))
1383 {
1384 SCM result_z = scm_i_mkbig ();
1385 mpz_xor (SCM_I_BIG_MPZ (result_z),
1386 SCM_I_BIG_MPZ (n1),
1387 SCM_I_BIG_MPZ (n2));
1388 scm_remember_upto_here_2 (n1, n2);
1389 return scm_i_normbig (result_z);
1390 }
1391 else
1392 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1393 }
1394 else
1395 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1396 }
1397 #undef FUNC_NAME
1398
1399
1400 SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1401 (SCM j, SCM k),
1402 "@lisp\n"
1403 "(logtest j k) @equiv{} (not (zero? (logand j k)))\n\n"
1404 "(logtest #b0100 #b1011) @result{} #f\n"
1405 "(logtest #b0100 #b0111) @result{} #t\n"
1406 "@end lisp")
1407 #define FUNC_NAME s_scm_logtest
1408 {
1409 long int nj;
1410
1411 if (SCM_INUMP (j))
1412 {
1413 nj = SCM_INUM (j);
1414 if (SCM_INUMP (k))
1415 {
1416 long nk = SCM_INUM (k);
1417 return SCM_BOOL (nj & nk);
1418 }
1419 else if (SCM_BIGP (k))
1420 {
1421 intbig:
1422 if (nj == 0)
1423 return SCM_BOOL_F;
1424 {
1425 SCM result;
1426 mpz_t nj_z;
1427 mpz_init_set_si (nj_z, nj);
1428 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1429 scm_remember_upto_here_1 (k);
1430 result = SCM_BOOL (mpz_sgn (nj_z) != 0);
1431 mpz_clear (nj_z);
1432 return result;
1433 }
1434 }
1435 else
1436 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1437 }
1438 else if (SCM_BIGP (j))
1439 {
1440 if (SCM_INUMP (k))
1441 {
1442 SCM_SWAP (j, k);
1443 nj = SCM_INUM (j);
1444 goto intbig;
1445 }
1446 else if (SCM_BIGP (k))
1447 {
1448 SCM result;
1449 mpz_t result_z;
1450 mpz_init (result_z);
1451 mpz_and (result_z,
1452 SCM_I_BIG_MPZ (j),
1453 SCM_I_BIG_MPZ (k));
1454 scm_remember_upto_here_2 (j, k);
1455 result = SCM_BOOL (mpz_sgn (result_z) != 0);
1456 mpz_clear (result_z);
1457 return result;
1458 }
1459 else
1460 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1461 }
1462 else
1463 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
1464 }
1465 #undef FUNC_NAME
1466
1467
1468 SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
1469 (SCM index, SCM j),
1470 "@lisp\n"
1471 "(logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)\n\n"
1472 "(logbit? 0 #b1101) @result{} #t\n"
1473 "(logbit? 1 #b1101) @result{} #f\n"
1474 "(logbit? 2 #b1101) @result{} #t\n"
1475 "(logbit? 3 #b1101) @result{} #t\n"
1476 "(logbit? 4 #b1101) @result{} #f\n"
1477 "@end lisp")
1478 #define FUNC_NAME s_scm_logbit_p
1479 {
1480 unsigned long int iindex;
1481
1482 SCM_VALIDATE_INUM_MIN (SCM_ARG1, index, 0);
1483 iindex = (unsigned long int) SCM_INUM (index);
1484
1485 if (SCM_INUMP (j))
1486 {
1487 /* bits above what's in an inum follow the sign bit */
1488 iindex = min (iindex, SCM_LONG_BIT - 1);
1489 return SCM_BOOL ((1L << iindex) & SCM_INUM (j));
1490 }
1491 else if (SCM_BIGP (j))
1492 {
1493 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1494 scm_remember_upto_here_1 (j);
1495 return SCM_BOOL (val);
1496 }
1497 else
1498 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
1499 }
1500 #undef FUNC_NAME
1501
1502
1503 SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1504 (SCM n),
1505 "Return the integer which is the ones-complement of the integer\n"
1506 "argument.\n"
1507 "\n"
1508 "@lisp\n"
1509 "(number->string (lognot #b10000000) 2)\n"
1510 " @result{} \"-10000001\"\n"
1511 "(number->string (lognot #b0) 2)\n"
1512 " @result{} \"-1\"\n"
1513 "@end lisp")
1514 #define FUNC_NAME s_scm_lognot
1515 {
1516 if (SCM_INUMP (n)) {
1517 /* No overflow here, just need to toggle all the bits making up the inum.
1518 Enhancement: No need to strip the tag and add it back, could just xor
1519 a block of 1 bits, if that worked with the various debug versions of
1520 the SCM typedef. */
1521 return SCM_MAKINUM (~ SCM_INUM (n));
1522
1523 } else if (SCM_BIGP (n)) {
1524 SCM result = scm_i_mkbig ();
1525 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1526 scm_remember_upto_here_1 (n);
1527 return result;
1528
1529 } else {
1530 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1531 }
1532 }
1533 #undef FUNC_NAME
1534
1535 /* returns 0 if IN is not an integer. OUT must already be
1536 initialized. */
1537 static int
1538 coerce_to_big (SCM in, mpz_t out)
1539 {
1540 if (SCM_BIGP (in))
1541 mpz_set (out, SCM_I_BIG_MPZ (in));
1542 else if (SCM_INUMP (in))
1543 mpz_set_si (out, SCM_INUM (in));
1544 else
1545 return 0;
1546
1547 return 1;
1548 }
1549
1550 SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
1551 (SCM n, SCM k, SCM m),
1552 "Return @var{n} raised to the integer exponent\n"
1553 "@var{k}, modulo @var{m}.\n"
1554 "\n"
1555 "@lisp\n"
1556 "(modulo-expt 2 3 5)\n"
1557 " @result{} 3\n"
1558 "@end lisp")
1559 #define FUNC_NAME s_scm_modulo_expt
1560 {
1561 mpz_t n_tmp;
1562 mpz_t k_tmp;
1563 mpz_t m_tmp;
1564
1565 /* There are two classes of error we might encounter --
1566 1) Math errors, which we'll report by calling scm_num_overflow,
1567 and
1568 2) wrong-type errors, which of course we'll report by calling
1569 SCM_WRONG_TYPE_ARG.
1570 We don't report those errors immediately, however; instead we do
1571 some cleanup first. These variables tell us which error (if
1572 any) we should report after cleaning up.
1573 */
1574 int report_overflow = 0;
1575
1576 int position_of_wrong_type = 0;
1577 SCM value_of_wrong_type = SCM_INUM0;
1578
1579 SCM result = SCM_UNDEFINED;
1580
1581 mpz_init (n_tmp);
1582 mpz_init (k_tmp);
1583 mpz_init (m_tmp);
1584
1585 if (SCM_EQ_P (m, SCM_INUM0))
1586 {
1587 report_overflow = 1;
1588 goto cleanup;
1589 }
1590
1591 if (!coerce_to_big (n, n_tmp))
1592 {
1593 value_of_wrong_type = n;
1594 position_of_wrong_type = 1;
1595 goto cleanup;
1596 }
1597
1598 if (!coerce_to_big (k, k_tmp))
1599 {
1600 value_of_wrong_type = k;
1601 position_of_wrong_type = 2;
1602 goto cleanup;
1603 }
1604
1605 if (!coerce_to_big (m, m_tmp))
1606 {
1607 value_of_wrong_type = m;
1608 position_of_wrong_type = 3;
1609 goto cleanup;
1610 }
1611
1612 /* if the exponent K is negative, and we simply call mpz_powm, we
1613 will get a divide-by-zero exception when an inverse 1/n mod m
1614 doesn't exist (or is not unique). Since exceptions are hard to
1615 handle, we'll attempt the inversion "by hand" -- that way, we get
1616 a simple failure code, which is easy to handle. */
1617
1618 if (-1 == mpz_sgn (k_tmp))
1619 {
1620 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1621 {
1622 report_overflow = 1;
1623 goto cleanup;
1624 }
1625 mpz_neg (k_tmp, k_tmp);
1626 }
1627
1628 result = scm_i_mkbig ();
1629 mpz_powm (SCM_I_BIG_MPZ (result),
1630 n_tmp,
1631 k_tmp,
1632 m_tmp);
1633
1634 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1635 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1636
1637 cleanup:
1638 mpz_clear (m_tmp);
1639 mpz_clear (k_tmp);
1640 mpz_clear (n_tmp);
1641
1642 if (report_overflow)
1643 scm_num_overflow (FUNC_NAME);
1644
1645 if (position_of_wrong_type)
1646 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1647 value_of_wrong_type);
1648
1649 return scm_i_normbig (result);
1650 }
1651 #undef FUNC_NAME
1652
1653 SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
1654 (SCM n, SCM k),
1655 "Return @var{n} raised to the non-negative integer exponent\n"
1656 "@var{k}.\n"
1657 "\n"
1658 "@lisp\n"
1659 "(integer-expt 2 5)\n"
1660 " @result{} 32\n"
1661 "(integer-expt -3 3)\n"
1662 " @result{} -27\n"
1663 "@end lisp")
1664 #define FUNC_NAME s_scm_integer_expt
1665 {
1666 long i2 = 0;
1667 SCM z_i2 = SCM_BOOL_F;
1668 int i2_is_big = 0;
1669 SCM acc = SCM_MAKINUM (1L);
1670
1671 /* 0^0 == 1 according to R5RS */
1672 if (SCM_EQ_P (n, SCM_INUM0) || SCM_EQ_P (n, acc))
1673 return SCM_FALSEP (scm_zero_p(k)) ? n : acc;
1674 else if (SCM_EQ_P (n, SCM_MAKINUM (-1L)))
1675 return SCM_FALSEP (scm_even_p (k)) ? n : acc;
1676
1677 if (SCM_INUMP (k))
1678 i2 = SCM_INUM (k);
1679 else if (SCM_BIGP (k))
1680 {
1681 z_i2 = scm_i_clonebig (k, 1);
1682 scm_remember_upto_here_1 (k);
1683 i2_is_big = 1;
1684 }
1685 else if (SCM_REALP (k))
1686 {
1687 double r = SCM_REAL_VALUE (k);
1688 if (floor (r) != r)
1689 SCM_WRONG_TYPE_ARG (2, k);
1690 if ((r > SCM_MOST_POSITIVE_FIXNUM) || (r < SCM_MOST_NEGATIVE_FIXNUM))
1691 {
1692 z_i2 = scm_i_mkbig ();
1693 mpz_set_d (SCM_I_BIG_MPZ (z_i2), r);
1694 i2_is_big = 1;
1695 }
1696 else
1697 {
1698 i2 = r;
1699 }
1700 }
1701 else
1702 SCM_WRONG_TYPE_ARG (2, k);
1703
1704 if (i2_is_big)
1705 {
1706 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1707 {
1708 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1709 n = scm_divide (n, SCM_UNDEFINED);
1710 }
1711 while (1)
1712 {
1713 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1714 {
1715 return acc;
1716 }
1717 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1718 {
1719 return scm_product (acc, n);
1720 }
1721 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1722 acc = scm_product (acc, n);
1723 n = scm_product (n, n);
1724 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1725 }
1726 }
1727 else
1728 {
1729 if (i2 < 0)
1730 {
1731 i2 = -i2;
1732 n = scm_divide (n, SCM_UNDEFINED);
1733 }
1734 while (1)
1735 {
1736 if (0 == i2)
1737 return acc;
1738 if (1 == i2)
1739 return scm_product (acc, n);
1740 if (i2 & 1)
1741 acc = scm_product (acc, n);
1742 n = scm_product (n, n);
1743 i2 >>= 1;
1744 }
1745 }
1746 }
1747 #undef FUNC_NAME
1748
1749 SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1750 (SCM n, SCM cnt),
1751 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1752 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1753 "\n"
1754 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
1755 "@var{cnt} is negative it's a division, rounded towards negative\n"
1756 "infinity. (Note that this is not the same rounding as\n"
1757 "@code{quotient} does.)\n"
1758 "\n"
1759 "With @var{n} viewed as an infinite precision twos complement,\n"
1760 "@code{ash} means a left shift introducing zero bits, or a right\n"
1761 "shift dropping bits.\n"
1762 "\n"
1763 "@lisp\n"
1764 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1765 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
1766 "\n"
1767 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1768 "(ash -23 -2) @result{} -6\n"
1769 "@end lisp")
1770 #define FUNC_NAME s_scm_ash
1771 {
1772 long bits_to_shift;
1773
1774 SCM_VALIDATE_INUM (2, cnt);
1775
1776 bits_to_shift = SCM_INUM (cnt);
1777
1778 if (bits_to_shift < 0)
1779 {
1780 /* Shift right by abs(cnt) bits. This is realized as a division
1781 by div:=2^abs(cnt). However, to guarantee the floor
1782 rounding, negative values require some special treatment.
1783 */
1784 SCM div = scm_integer_expt (SCM_MAKINUM (2),
1785 SCM_MAKINUM (-bits_to_shift));
1786
1787 /* scm_quotient assumes its arguments are integers, but it's legal to (ash 1/2 -1) */
1788 if (SCM_FALSEP (scm_negative_p (n)))
1789 return scm_quotient (n, div);
1790 else
1791 return scm_sum (SCM_MAKINUM (-1L),
1792 scm_quotient (scm_sum (SCM_MAKINUM (1L), n), div));
1793 }
1794 else
1795 /* Shift left is done by multiplication with 2^CNT */
1796 return scm_product (n, scm_integer_expt (SCM_MAKINUM (2), cnt));
1797 }
1798 #undef FUNC_NAME
1799
1800
1801 SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1802 (SCM n, SCM start, SCM end),
1803 "Return the integer composed of the @var{start} (inclusive)\n"
1804 "through @var{end} (exclusive) bits of @var{n}. The\n"
1805 "@var{start}th bit becomes the 0-th bit in the result.\n"
1806 "\n"
1807 "@lisp\n"
1808 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1809 " @result{} \"1010\"\n"
1810 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1811 " @result{} \"10110\"\n"
1812 "@end lisp")
1813 #define FUNC_NAME s_scm_bit_extract
1814 {
1815 unsigned long int istart, iend, bits;
1816 SCM_VALIDATE_INUM_MIN_COPY (2, start,0, istart);
1817 SCM_VALIDATE_INUM_MIN_COPY (3, end, 0, iend);
1818 SCM_ASSERT_RANGE (3, end, (iend >= istart));
1819
1820 /* how many bits to keep */
1821 bits = iend - istart;
1822
1823 if (SCM_INUMP (n))
1824 {
1825 long int in = SCM_INUM (n);
1826
1827 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
1828 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
1829 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
1830
1831 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1832 {
1833 /* Since we emulate two's complement encoded numbers, this
1834 * special case requires us to produce a result that has
1835 * more bits than can be stored in a fixnum.
1836 */
1837 SCM result = scm_i_long2big (in);
1838 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1839 bits);
1840 return result;
1841 }
1842
1843 /* mask down to requisite bits */
1844 bits = min (bits, SCM_I_FIXNUM_BIT);
1845 return SCM_MAKINUM (in & ((1L << bits) - 1));
1846 }
1847 else if (SCM_BIGP (n))
1848 {
1849 SCM result;
1850 if (bits == 1)
1851 {
1852 result = SCM_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
1853 }
1854 else
1855 {
1856 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
1857 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
1858 such bits into a ulong. */
1859 result = scm_i_mkbig ();
1860 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
1861 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
1862 result = scm_i_normbig (result);
1863 }
1864 scm_remember_upto_here_1 (n);
1865 return result;
1866 }
1867 else
1868 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1869 }
1870 #undef FUNC_NAME
1871
1872
1873 static const char scm_logtab[] = {
1874 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
1875 };
1876
1877 SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1878 (SCM n),
1879 "Return the number of bits in integer @var{n}. If integer is\n"
1880 "positive, the 1-bits in its binary representation are counted.\n"
1881 "If negative, the 0-bits in its two's-complement binary\n"
1882 "representation are counted. If 0, 0 is returned.\n"
1883 "\n"
1884 "@lisp\n"
1885 "(logcount #b10101010)\n"
1886 " @result{} 4\n"
1887 "(logcount 0)\n"
1888 " @result{} 0\n"
1889 "(logcount -2)\n"
1890 " @result{} 1\n"
1891 "@end lisp")
1892 #define FUNC_NAME s_scm_logcount
1893 {
1894 if (SCM_INUMP (n))
1895 {
1896 unsigned long int c = 0;
1897 long int nn = SCM_INUM (n);
1898 if (nn < 0)
1899 nn = -1 - nn;
1900 while (nn)
1901 {
1902 c += scm_logtab[15 & nn];
1903 nn >>= 4;
1904 }
1905 return SCM_MAKINUM (c);
1906 }
1907 else if (SCM_BIGP (n))
1908 {
1909 unsigned long count;
1910 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
1911 count = mpz_popcount (SCM_I_BIG_MPZ (n));
1912 else
1913 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
1914 scm_remember_upto_here_1 (n);
1915 return SCM_MAKINUM (count);
1916 }
1917 else
1918 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1919 }
1920 #undef FUNC_NAME
1921
1922
1923 static const char scm_ilentab[] = {
1924 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
1925 };
1926
1927
1928 SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
1929 (SCM n),
1930 "Return the number of bits necessary to represent @var{n}.\n"
1931 "\n"
1932 "@lisp\n"
1933 "(integer-length #b10101010)\n"
1934 " @result{} 8\n"
1935 "(integer-length 0)\n"
1936 " @result{} 0\n"
1937 "(integer-length #b1111)\n"
1938 " @result{} 4\n"
1939 "@end lisp")
1940 #define FUNC_NAME s_scm_integer_length
1941 {
1942 if (SCM_INUMP (n))
1943 {
1944 unsigned long int c = 0;
1945 unsigned int l = 4;
1946 long int nn = SCM_INUM (n);
1947 if (nn < 0)
1948 nn = -1 - nn;
1949 while (nn)
1950 {
1951 c += 4;
1952 l = scm_ilentab [15 & nn];
1953 nn >>= 4;
1954 }
1955 return SCM_MAKINUM (c - 4 + l);
1956 }
1957 else if (SCM_BIGP (n))
1958 {
1959 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
1960 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
1961 1 too big, so check for that and adjust. */
1962 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
1963 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
1964 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
1965 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
1966 size--;
1967 scm_remember_upto_here_1 (n);
1968 return SCM_MAKINUM (size);
1969 }
1970 else
1971 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1972 }
1973 #undef FUNC_NAME
1974
1975 /*** NUMBERS -> STRINGS ***/
1976 #define SCM_MAX_DBL_PREC 60
1977 #define SCM_MAX_DBL_RADIX 36
1978
1979 /* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
1980 static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
1981 static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
1982
1983 static
1984 void init_dblprec(int *prec, int radix) {
1985 /* determine floating point precision by adding successively
1986 smaller increments to 1.0 until it is considered == 1.0 */
1987 double f = ((double)1.0)/radix;
1988 double fsum = 1.0 + f;
1989
1990 *prec = 0;
1991 while (fsum != 1.0)
1992 {
1993 if (++(*prec) > SCM_MAX_DBL_PREC)
1994 fsum = 1.0;
1995 else
1996 {
1997 f /= radix;
1998 fsum = f + 1.0;
1999 }
2000 }
2001 (*prec) -= 1;
2002 }
2003
2004 static
2005 void init_fx_radix(double *fx_list, int radix)
2006 {
2007 /* initialize a per-radix list of tolerances. When added
2008 to a number < 1.0, we can determine if we should raund
2009 up and quit converting a number to a string. */
2010 int i;
2011 fx_list[0] = 0.0;
2012 fx_list[1] = 0.5;
2013 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2014 fx_list[i] = (fx_list[i-1] / radix);
2015 }
2016
2017 /* use this array as a way to generate a single digit */
2018 static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2019
2020 static size_t
2021 idbl2str (double f, char *a, int radix)
2022 {
2023 int efmt, dpt, d, i, wp;
2024 double *fx;
2025 #ifdef DBL_MIN_10_EXP
2026 double f_cpy;
2027 int exp_cpy;
2028 #endif /* DBL_MIN_10_EXP */
2029 size_t ch = 0;
2030 int exp = 0;
2031
2032 if(radix < 2 ||
2033 radix > SCM_MAX_DBL_RADIX)
2034 {
2035 /* revert to existing behavior */
2036 radix = 10;
2037 }
2038
2039 wp = scm_dblprec[radix-2];
2040 fx = fx_per_radix[radix-2];
2041
2042 if (f == 0.0)
2043 {
2044 #ifdef HAVE_COPYSIGN
2045 double sgn = copysign (1.0, f);
2046
2047 if (sgn < 0.0)
2048 a[ch++] = '-';
2049 #endif
2050 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2051 }
2052
2053 if (xisinf (f))
2054 {
2055 if (f < 0)
2056 strcpy (a, "-inf.0");
2057 else
2058 strcpy (a, "+inf.0");
2059 return ch+6;
2060 }
2061 else if (xisnan (f))
2062 {
2063 strcpy (a, "+nan.0");
2064 return ch+6;
2065 }
2066
2067 if (f < 0.0)
2068 {
2069 f = -f;
2070 a[ch++] = '-';
2071 }
2072
2073 #ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2074 make-uniform-vector, from causing infinite loops. */
2075 /* just do the checking...if it passes, we do the conversion for our
2076 radix again below */
2077 f_cpy = f;
2078 exp_cpy = exp;
2079
2080 while (f_cpy < 1.0)
2081 {
2082 f_cpy *= 10.0;
2083 if (exp_cpy-- < DBL_MIN_10_EXP)
2084 {
2085 a[ch++] = '#';
2086 a[ch++] = '.';
2087 a[ch++] = '#';
2088 return ch;
2089 }
2090 }
2091 while (f_cpy > 10.0)
2092 {
2093 f_cpy *= 0.10;
2094 if (exp_cpy++ > DBL_MAX_10_EXP)
2095 {
2096 a[ch++] = '#';
2097 a[ch++] = '.';
2098 a[ch++] = '#';
2099 return ch;
2100 }
2101 }
2102 #endif
2103
2104 while (f < 1.0)
2105 {
2106 f *= radix;
2107 exp--;
2108 }
2109 while (f > radix)
2110 {
2111 f /= radix;
2112 exp++;
2113 }
2114
2115 if (f + fx[wp] >= radix)
2116 {
2117 f = 1.0;
2118 exp++;
2119 }
2120 zero:
2121 #ifdef ENGNOT
2122 /* adding 9999 makes this equivalent to abs(x) % 3 */
2123 dpt = (exp + 9999) % 3;
2124 exp -= dpt++;
2125 efmt = 1;
2126 #else
2127 efmt = (exp < -3) || (exp > wp + 2);
2128 if (!efmt)
2129 {
2130 if (exp < 0)
2131 {
2132 a[ch++] = '0';
2133 a[ch++] = '.';
2134 dpt = exp;
2135 while (++dpt)
2136 a[ch++] = '0';
2137 }
2138 else
2139 dpt = exp + 1;
2140 }
2141 else
2142 dpt = 1;
2143 #endif
2144
2145 do
2146 {
2147 d = f;
2148 f -= d;
2149 a[ch++] = number_chars[d];
2150 if (f < fx[wp])
2151 break;
2152 if (f + fx[wp] >= 1.0)
2153 {
2154 a[ch - 1] = number_chars[d+1];
2155 break;
2156 }
2157 f *= radix;
2158 if (!(--dpt))
2159 a[ch++] = '.';
2160 }
2161 while (wp--);
2162
2163 if (dpt > 0)
2164 {
2165 #ifndef ENGNOT
2166 if ((dpt > 4) && (exp > 6))
2167 {
2168 d = (a[0] == '-' ? 2 : 1);
2169 for (i = ch++; i > d; i--)
2170 a[i] = a[i - 1];
2171 a[d] = '.';
2172 efmt = 1;
2173 }
2174 else
2175 #endif
2176 {
2177 while (--dpt)
2178 a[ch++] = '0';
2179 a[ch++] = '.';
2180 }
2181 }
2182 if (a[ch - 1] == '.')
2183 a[ch++] = '0'; /* trailing zero */
2184 if (efmt && exp)
2185 {
2186 a[ch++] = 'e';
2187 if (exp < 0)
2188 {
2189 exp = -exp;
2190 a[ch++] = '-';
2191 }
2192 for (i = radix; i <= exp; i *= radix);
2193 for (i /= radix; i; i /= radix)
2194 {
2195 a[ch++] = number_chars[exp / i];
2196 exp %= i;
2197 }
2198 }
2199 return ch;
2200 }
2201
2202 static size_t
2203 iflo2str (SCM flt, char *str, int radix)
2204 {
2205 size_t i;
2206 if (SCM_REALP (flt))
2207 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
2208 else
2209 {
2210 i = idbl2str (SCM_COMPLEX_REAL (flt), str, radix);
2211 if (SCM_COMPLEX_IMAG (flt) != 0.0)
2212 {
2213 double imag = SCM_COMPLEX_IMAG (flt);
2214 /* Don't output a '+' for negative numbers or for Inf and
2215 NaN. They will provide their own sign. */
2216 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2217 str[i++] = '+';
2218 i += idbl2str (imag, &str[i], radix);
2219 str[i++] = 'i';
2220 }
2221 }
2222 return i;
2223 }
2224
2225 /* convert a long to a string (unterminated). returns the number of
2226 characters in the result.
2227 rad is output base
2228 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2229 size_t
2230 scm_iint2str (long num, int rad, char *p)
2231 {
2232 size_t j = 1;
2233 size_t i;
2234 unsigned long n = (num < 0) ? -num : num;
2235
2236 for (n /= rad; n > 0; n /= rad)
2237 j++;
2238
2239 i = j;
2240 if (num < 0)
2241 {
2242 *p++ = '-';
2243 j++;
2244 n = -num;
2245 }
2246 else
2247 n = num;
2248 while (i--)
2249 {
2250 int d = n % rad;
2251
2252 n /= rad;
2253 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2254 }
2255 return j;
2256 }
2257
2258 SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
2259 (SCM n, SCM radix),
2260 "Return a string holding the external representation of the\n"
2261 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2262 "inexact, a radix of 10 will be used.")
2263 #define FUNC_NAME s_scm_number_to_string
2264 {
2265 int base;
2266
2267 if (SCM_UNBNDP (radix))
2268 base = 10;
2269 else
2270 {
2271 SCM_VALIDATE_INUM (2, radix);
2272 base = SCM_INUM (radix);
2273 /* FIXME: ask if range limit was OK, and if so, document */
2274 SCM_ASSERT_RANGE (2, radix, (base >= 2) && (base <= 36));
2275 }
2276
2277 if (SCM_INUMP (n))
2278 {
2279 char num_buf [SCM_INTBUFLEN];
2280 size_t length = scm_iint2str (SCM_INUM (n), base, num_buf);
2281 return scm_mem2string (num_buf, length);
2282 }
2283 else if (SCM_BIGP (n))
2284 {
2285 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2286 scm_remember_upto_here_1 (n);
2287 return scm_take0str (str);
2288 }
2289 else if (SCM_FRACTIONP (n))
2290 {
2291 scm_i_fraction_reduce (n);
2292 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
2293 scm_mem2string ("/", 1),
2294 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2295 }
2296 else if (SCM_INEXACTP (n))
2297 {
2298 char num_buf [FLOBUFLEN];
2299 return scm_mem2string (num_buf, iflo2str (n, num_buf, base));
2300 }
2301 else
2302 SCM_WRONG_TYPE_ARG (1, n);
2303 }
2304 #undef FUNC_NAME
2305
2306
2307 /* These print routines used to be stubbed here so that scm_repl.c
2308 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
2309
2310 int
2311 scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2312 {
2313 char num_buf[FLOBUFLEN];
2314 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2315 return !0;
2316 }
2317
2318 int
2319 scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2320
2321 {
2322 char num_buf[FLOBUFLEN];
2323 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2324 return !0;
2325 }
2326
2327 int
2328 scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2329 {
2330 SCM str;
2331 scm_i_fraction_reduce (sexp);
2332 str = scm_number_to_string (sexp, SCM_UNDEFINED);
2333 scm_lfwrite (SCM_STRING_CHARS (str), SCM_STRING_LENGTH (str), port);
2334 scm_remember_upto_here_1 (str);
2335 return !0;
2336 }
2337
2338 int
2339 scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
2340 {
2341 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2342 scm_remember_upto_here_1 (exp);
2343 scm_lfwrite (str, (size_t) strlen (str), port);
2344 free (str);
2345 return !0;
2346 }
2347 /*** END nums->strs ***/
2348
2349
2350 /*** STRINGS -> NUMBERS ***/
2351
2352 /* The following functions implement the conversion from strings to numbers.
2353 * The implementation somehow follows the grammar for numbers as it is given
2354 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2355 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2356 * points should be noted about the implementation:
2357 * * Each function keeps a local index variable 'idx' that points at the
2358 * current position within the parsed string. The global index is only
2359 * updated if the function could parse the corresponding syntactic unit
2360 * successfully.
2361 * * Similarly, the functions keep track of indicators of inexactness ('#',
2362 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2363 * global exactness information is only updated after each part has been
2364 * successfully parsed.
2365 * * Sequences of digits are parsed into temporary variables holding fixnums.
2366 * Only if these fixnums would overflow, the result variables are updated
2367 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2368 * the temporary variables holding the fixnums are cleared, and the process
2369 * starts over again. If for example fixnums were able to store five decimal
2370 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2371 * and the result was computed as 12345 * 100000 + 67890. In other words,
2372 * only every five digits two bignum operations were performed.
2373 */
2374
2375 enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2376
2377 /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2378
2379 /* In non ASCII-style encodings the following macro might not work. */
2380 #define XDIGIT2UINT(d) \
2381 (isdigit ((int) (unsigned char) d) \
2382 ? (d) - '0' \
2383 : tolower ((int) (unsigned char) d) - 'a' + 10)
2384
2385 static SCM
2386 mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
2387 unsigned int radix, enum t_exactness *p_exactness)
2388 {
2389 unsigned int idx = *p_idx;
2390 unsigned int hash_seen = 0;
2391 scm_t_bits shift = 1;
2392 scm_t_bits add = 0;
2393 unsigned int digit_value;
2394 SCM result;
2395 char c;
2396
2397 if (idx == len)
2398 return SCM_BOOL_F;
2399
2400 c = mem[idx];
2401 if (!isxdigit ((int) (unsigned char) c))
2402 return SCM_BOOL_F;
2403 digit_value = XDIGIT2UINT (c);
2404 if (digit_value >= radix)
2405 return SCM_BOOL_F;
2406
2407 idx++;
2408 result = SCM_MAKINUM (digit_value);
2409 while (idx != len)
2410 {
2411 char c = mem[idx];
2412 if (isxdigit ((int) (unsigned char) c))
2413 {
2414 if (hash_seen)
2415 break;
2416 digit_value = XDIGIT2UINT (c);
2417 if (digit_value >= radix)
2418 break;
2419 }
2420 else if (c == '#')
2421 {
2422 hash_seen = 1;
2423 digit_value = 0;
2424 }
2425 else
2426 break;
2427
2428 idx++;
2429 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2430 {
2431 result = scm_product (result, SCM_MAKINUM (shift));
2432 if (add > 0)
2433 result = scm_sum (result, SCM_MAKINUM (add));
2434
2435 shift = radix;
2436 add = digit_value;
2437 }
2438 else
2439 {
2440 shift = shift * radix;
2441 add = add * radix + digit_value;
2442 }
2443 };
2444
2445 if (shift > 1)
2446 result = scm_product (result, SCM_MAKINUM (shift));
2447 if (add > 0)
2448 result = scm_sum (result, SCM_MAKINUM (add));
2449
2450 *p_idx = idx;
2451 if (hash_seen)
2452 *p_exactness = INEXACT;
2453
2454 return result;
2455 }
2456
2457
2458 /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2459 * covers the parts of the rules that start at a potential point. The value
2460 * of the digits up to the point have been parsed by the caller and are given
2461 * in variable result. The content of *p_exactness indicates, whether a hash
2462 * has already been seen in the digits before the point.
2463 */
2464
2465 /* In non ASCII-style encodings the following macro might not work. */
2466 #define DIGIT2UINT(d) ((d) - '0')
2467
2468 static SCM
2469 mem2decimal_from_point (SCM result, const char* mem, size_t len,
2470 unsigned int *p_idx, enum t_exactness *p_exactness)
2471 {
2472 unsigned int idx = *p_idx;
2473 enum t_exactness x = *p_exactness;
2474
2475 if (idx == len)
2476 return result;
2477
2478 if (mem[idx] == '.')
2479 {
2480 scm_t_bits shift = 1;
2481 scm_t_bits add = 0;
2482 unsigned int digit_value;
2483 SCM big_shift = SCM_MAKINUM (1);
2484
2485 idx++;
2486 while (idx != len)
2487 {
2488 char c = mem[idx];
2489 if (isdigit ((int) (unsigned char) c))
2490 {
2491 if (x == INEXACT)
2492 return SCM_BOOL_F;
2493 else
2494 digit_value = DIGIT2UINT (c);
2495 }
2496 else if (c == '#')
2497 {
2498 x = INEXACT;
2499 digit_value = 0;
2500 }
2501 else
2502 break;
2503
2504 idx++;
2505 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2506 {
2507 big_shift = scm_product (big_shift, SCM_MAKINUM (shift));
2508 result = scm_product (result, SCM_MAKINUM (shift));
2509 if (add > 0)
2510 result = scm_sum (result, SCM_MAKINUM (add));
2511
2512 shift = 10;
2513 add = digit_value;
2514 }
2515 else
2516 {
2517 shift = shift * 10;
2518 add = add * 10 + digit_value;
2519 }
2520 };
2521
2522 if (add > 0)
2523 {
2524 big_shift = scm_product (big_shift, SCM_MAKINUM (shift));
2525 result = scm_product (result, SCM_MAKINUM (shift));
2526 result = scm_sum (result, SCM_MAKINUM (add));
2527 }
2528
2529 result = scm_divide (result, big_shift);
2530
2531 /* We've seen a decimal point, thus the value is implicitly inexact. */
2532 x = INEXACT;
2533 }
2534
2535 if (idx != len)
2536 {
2537 int sign = 1;
2538 unsigned int start;
2539 char c;
2540 int exponent;
2541 SCM e;
2542
2543 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2544
2545 switch (mem[idx])
2546 {
2547 case 'd': case 'D':
2548 case 'e': case 'E':
2549 case 'f': case 'F':
2550 case 'l': case 'L':
2551 case 's': case 'S':
2552 idx++;
2553 start = idx;
2554 c = mem[idx];
2555 if (c == '-')
2556 {
2557 idx++;
2558 sign = -1;
2559 c = mem[idx];
2560 }
2561 else if (c == '+')
2562 {
2563 idx++;
2564 sign = 1;
2565 c = mem[idx];
2566 }
2567 else
2568 sign = 1;
2569
2570 if (!isdigit ((int) (unsigned char) c))
2571 return SCM_BOOL_F;
2572
2573 idx++;
2574 exponent = DIGIT2UINT (c);
2575 while (idx != len)
2576 {
2577 char c = mem[idx];
2578 if (isdigit ((int) (unsigned char) c))
2579 {
2580 idx++;
2581 if (exponent <= SCM_MAXEXP)
2582 exponent = exponent * 10 + DIGIT2UINT (c);
2583 }
2584 else
2585 break;
2586 }
2587
2588 if (exponent > SCM_MAXEXP)
2589 {
2590 size_t exp_len = idx - start;
2591 SCM exp_string = scm_mem2string (&mem[start], exp_len);
2592 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2593 scm_out_of_range ("string->number", exp_num);
2594 }
2595
2596 e = scm_integer_expt (SCM_MAKINUM (10), SCM_MAKINUM (exponent));
2597 if (sign == 1)
2598 result = scm_product (result, e);
2599 else
2600 result = scm_divide2real (result, e);
2601
2602 /* We've seen an exponent, thus the value is implicitly inexact. */
2603 x = INEXACT;
2604
2605 break;
2606
2607 default:
2608 break;
2609 }
2610 }
2611
2612 *p_idx = idx;
2613 if (x == INEXACT)
2614 *p_exactness = x;
2615
2616 return result;
2617 }
2618
2619
2620 /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2621
2622 static SCM
2623 mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
2624 unsigned int radix, enum t_exactness *p_exactness)
2625 {
2626 unsigned int idx = *p_idx;
2627 SCM result;
2628
2629 if (idx == len)
2630 return SCM_BOOL_F;
2631
2632 if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
2633 {
2634 *p_idx = idx+5;
2635 return scm_inf ();
2636 }
2637
2638 if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
2639 {
2640 enum t_exactness x = EXACT;
2641
2642 /* Cobble up the fractional part. We might want to set the
2643 NaN's mantissa from it. */
2644 idx += 4;
2645 mem2uinteger (mem, len, &idx, 10, &x);
2646 *p_idx = idx;
2647 return scm_nan ();
2648 }
2649
2650 if (mem[idx] == '.')
2651 {
2652 if (radix != 10)
2653 return SCM_BOOL_F;
2654 else if (idx + 1 == len)
2655 return SCM_BOOL_F;
2656 else if (!isdigit ((int) (unsigned char) mem[idx + 1]))
2657 return SCM_BOOL_F;
2658 else
2659 result = mem2decimal_from_point (SCM_MAKINUM (0), mem, len,
2660 p_idx, p_exactness);
2661 }
2662 else
2663 {
2664 enum t_exactness x = EXACT;
2665 SCM uinteger;
2666
2667 uinteger = mem2uinteger (mem, len, &idx, radix, &x);
2668 if (SCM_FALSEP (uinteger))
2669 return SCM_BOOL_F;
2670
2671 if (idx == len)
2672 result = uinteger;
2673 else if (mem[idx] == '/')
2674 {
2675 SCM divisor;
2676
2677 idx++;
2678
2679 divisor = mem2uinteger (mem, len, &idx, radix, &x);
2680 if (SCM_FALSEP (divisor))
2681 return SCM_BOOL_F;
2682
2683 /* both are int/big here, I assume */
2684 result = scm_make_ratio (uinteger, divisor);
2685 }
2686 else if (radix == 10)
2687 {
2688 result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
2689 if (SCM_FALSEP (result))
2690 return SCM_BOOL_F;
2691 }
2692 else
2693 result = uinteger;
2694
2695 *p_idx = idx;
2696 if (x == INEXACT)
2697 *p_exactness = x;
2698 }
2699
2700 /* When returning an inexact zero, make sure it is represented as a
2701 floating point value so that we can change its sign.
2702 */
2703 if (SCM_EQ_P (result, SCM_MAKINUM(0)) && *p_exactness == INEXACT)
2704 result = scm_make_real (0.0);
2705
2706 return result;
2707 }
2708
2709
2710 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2711
2712 static SCM
2713 mem2complex (const char* mem, size_t len, unsigned int idx,
2714 unsigned int radix, enum t_exactness *p_exactness)
2715 {
2716 char c;
2717 int sign = 0;
2718 SCM ureal;
2719
2720 if (idx == len)
2721 return SCM_BOOL_F;
2722
2723 c = mem[idx];
2724 if (c == '+')
2725 {
2726 idx++;
2727 sign = 1;
2728 }
2729 else if (c == '-')
2730 {
2731 idx++;
2732 sign = -1;
2733 }
2734
2735 if (idx == len)
2736 return SCM_BOOL_F;
2737
2738 ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
2739 if (SCM_FALSEP (ureal))
2740 {
2741 /* input must be either +i or -i */
2742
2743 if (sign == 0)
2744 return SCM_BOOL_F;
2745
2746 if (mem[idx] == 'i' || mem[idx] == 'I')
2747 {
2748 idx++;
2749 if (idx != len)
2750 return SCM_BOOL_F;
2751
2752 return scm_make_rectangular (SCM_MAKINUM (0), SCM_MAKINUM (sign));
2753 }
2754 else
2755 return SCM_BOOL_F;
2756 }
2757 else
2758 {
2759 if (sign == -1 && SCM_FALSEP (scm_nan_p (ureal)))
2760 ureal = scm_difference (ureal, SCM_UNDEFINED);
2761
2762 if (idx == len)
2763 return ureal;
2764
2765 c = mem[idx];
2766 switch (c)
2767 {
2768 case 'i': case 'I':
2769 /* either +<ureal>i or -<ureal>i */
2770
2771 idx++;
2772 if (sign == 0)
2773 return SCM_BOOL_F;
2774 if (idx != len)
2775 return SCM_BOOL_F;
2776 return scm_make_rectangular (SCM_MAKINUM (0), ureal);
2777
2778 case '@':
2779 /* polar input: <real>@<real>. */
2780
2781 idx++;
2782 if (idx == len)
2783 return SCM_BOOL_F;
2784 else
2785 {
2786 int sign;
2787 SCM angle;
2788 SCM result;
2789
2790 c = mem[idx];
2791 if (c == '+')
2792 {
2793 idx++;
2794 sign = 1;
2795 }
2796 else if (c == '-')
2797 {
2798 idx++;
2799 sign = -1;
2800 }
2801 else
2802 sign = 1;
2803
2804 angle = mem2ureal (mem, len, &idx, radix, p_exactness);
2805 if (SCM_FALSEP (angle))
2806 return SCM_BOOL_F;
2807 if (idx != len)
2808 return SCM_BOOL_F;
2809
2810 if (sign == -1 && SCM_FALSEP (scm_nan_p (ureal)))
2811 angle = scm_difference (angle, SCM_UNDEFINED);
2812
2813 result = scm_make_polar (ureal, angle);
2814 return result;
2815 }
2816 case '+':
2817 case '-':
2818 /* expecting input matching <real>[+-]<ureal>?i */
2819
2820 idx++;
2821 if (idx == len)
2822 return SCM_BOOL_F;
2823 else
2824 {
2825 int sign = (c == '+') ? 1 : -1;
2826 SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
2827
2828 if (SCM_FALSEP (imag))
2829 imag = SCM_MAKINUM (sign);
2830 else if (sign == -1 && SCM_FALSEP (scm_nan_p (ureal)))
2831 imag = scm_difference (imag, SCM_UNDEFINED);
2832
2833 if (idx == len)
2834 return SCM_BOOL_F;
2835 if (mem[idx] != 'i' && mem[idx] != 'I')
2836 return SCM_BOOL_F;
2837
2838 idx++;
2839 if (idx != len)
2840 return SCM_BOOL_F;
2841
2842 return scm_make_rectangular (ureal, imag);
2843 }
2844 default:
2845 return SCM_BOOL_F;
2846 }
2847 }
2848 }
2849
2850
2851 /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
2852
2853 enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
2854
2855 SCM
2856 scm_i_mem2number (const char* mem, size_t len, unsigned int default_radix)
2857 {
2858 unsigned int idx = 0;
2859 unsigned int radix = NO_RADIX;
2860 enum t_exactness forced_x = NO_EXACTNESS;
2861 enum t_exactness implicit_x = EXACT;
2862 SCM result;
2863
2864 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
2865 while (idx + 2 < len && mem[idx] == '#')
2866 {
2867 switch (mem[idx + 1])
2868 {
2869 case 'b': case 'B':
2870 if (radix != NO_RADIX)
2871 return SCM_BOOL_F;
2872 radix = DUAL;
2873 break;
2874 case 'd': case 'D':
2875 if (radix != NO_RADIX)
2876 return SCM_BOOL_F;
2877 radix = DEC;
2878 break;
2879 case 'i': case 'I':
2880 if (forced_x != NO_EXACTNESS)
2881 return SCM_BOOL_F;
2882 forced_x = INEXACT;
2883 break;
2884 case 'e': case 'E':
2885 if (forced_x != NO_EXACTNESS)
2886 return SCM_BOOL_F;
2887 forced_x = EXACT;
2888 break;
2889 case 'o': case 'O':
2890 if (radix != NO_RADIX)
2891 return SCM_BOOL_F;
2892 radix = OCT;
2893 break;
2894 case 'x': case 'X':
2895 if (radix != NO_RADIX)
2896 return SCM_BOOL_F;
2897 radix = HEX;
2898 break;
2899 default:
2900 return SCM_BOOL_F;
2901 }
2902 idx += 2;
2903 }
2904
2905 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2906 if (radix == NO_RADIX)
2907 result = mem2complex (mem, len, idx, default_radix, &implicit_x);
2908 else
2909 result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
2910
2911 if (SCM_FALSEP (result))
2912 return SCM_BOOL_F;
2913
2914 switch (forced_x)
2915 {
2916 case EXACT:
2917 if (SCM_INEXACTP (result))
2918 return scm_inexact_to_exact (result);
2919 else
2920 return result;
2921 case INEXACT:
2922 if (SCM_INEXACTP (result))
2923 return result;
2924 else
2925 return scm_exact_to_inexact (result);
2926 case NO_EXACTNESS:
2927 default:
2928 if (implicit_x == INEXACT)
2929 {
2930 if (SCM_INEXACTP (result))
2931 return result;
2932 else
2933 return scm_exact_to_inexact (result);
2934 }
2935 else
2936 return result;
2937 }
2938 }
2939
2940
2941 SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
2942 (SCM string, SCM radix),
2943 "Return a number of the maximally precise representation\n"
2944 "expressed by the given @var{string}. @var{radix} must be an\n"
2945 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
2946 "is a default radix that may be overridden by an explicit radix\n"
2947 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
2948 "supplied, then the default radix is 10. If string is not a\n"
2949 "syntactically valid notation for a number, then\n"
2950 "@code{string->number} returns @code{#f}.")
2951 #define FUNC_NAME s_scm_string_to_number
2952 {
2953 SCM answer;
2954 int base;
2955 SCM_VALIDATE_STRING (1, string);
2956 SCM_VALIDATE_INUM_MIN_DEF_COPY (2, radix,2,10, base);
2957 answer = scm_i_mem2number (SCM_STRING_CHARS (string),
2958 SCM_STRING_LENGTH (string),
2959 base);
2960 return scm_return_first (answer, string);
2961 }
2962 #undef FUNC_NAME
2963
2964
2965 /*** END strs->nums ***/
2966
2967
2968 SCM
2969 scm_make_real (double x)
2970 {
2971 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
2972
2973 SCM_REAL_VALUE (z) = x;
2974 return z;
2975 }
2976
2977
2978 SCM
2979 scm_make_complex (double x, double y)
2980 {
2981 if (y == 0.0)
2982 return scm_make_real (x);
2983 else
2984 {
2985 SCM z;
2986 SCM_NEWSMOB (z, scm_tc16_complex, scm_gc_malloc (sizeof (scm_t_complex),
2987 "complex"));
2988 SCM_COMPLEX_REAL (z) = x;
2989 SCM_COMPLEX_IMAG (z) = y;
2990 return z;
2991 }
2992 }
2993
2994
2995 SCM
2996 scm_bigequal (SCM x, SCM y)
2997 {
2998 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
2999 scm_remember_upto_here_2 (x, y);
3000 return SCM_BOOL (0 == result);
3001 }
3002
3003 SCM
3004 scm_real_equalp (SCM x, SCM y)
3005 {
3006 return SCM_BOOL (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3007 }
3008
3009 SCM
3010 scm_complex_equalp (SCM x, SCM y)
3011 {
3012 return SCM_BOOL (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
3013 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3014 }
3015
3016 SCM
3017 scm_i_fraction_equalp (SCM x, SCM y)
3018 {
3019 scm_i_fraction_reduce (x);
3020 scm_i_fraction_reduce (y);
3021 if (SCM_FALSEP (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
3022 SCM_FRACTION_NUMERATOR (y)))
3023 || SCM_FALSEP (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
3024 SCM_FRACTION_DENOMINATOR (y))))
3025 return SCM_BOOL_F;
3026 else
3027 return SCM_BOOL_T;
3028 }
3029
3030
3031 SCM_REGISTER_PROC (s_number_p, "number?", 1, 0, 0, scm_number_p);
3032 /* "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3033 * "else. Note that the sets of complex, real, rational and\n"
3034 * "integer values form subsets of the set of numbers, i. e. the\n"
3035 * "predicate will be fulfilled for any number."
3036 */
3037 SCM_DEFINE (scm_number_p, "complex?", 1, 0, 0,
3038 (SCM x),
3039 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
3040 "otherwise. Note that the sets of real, rational and integer\n"
3041 "values form subsets of the set of complex numbers, i. e. the\n"
3042 "predicate will also be fulfilled if @var{x} is a real,\n"
3043 "rational or integer number.")
3044 #define FUNC_NAME s_scm_number_p
3045 {
3046 return SCM_BOOL (SCM_NUMBERP (x));
3047 }
3048 #undef FUNC_NAME
3049
3050
3051 SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3052 (SCM x),
3053 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3054 "otherwise. Note that the set of integer values forms a subset of\n"
3055 "the set of real numbers, i. e. the predicate will also be\n"
3056 "fulfilled if @var{x} is an integer number.")
3057 #define FUNC_NAME s_scm_real_p
3058 {
3059 /* we can't represent irrational numbers. */
3060 return scm_rational_p (x);
3061 }
3062 #undef FUNC_NAME
3063
3064 SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
3065 (SCM x),
3066 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
3067 "otherwise. Note that the set of integer values forms a subset of\n"
3068 "the set of rational numbers, i. e. the predicate will also be\n"
3069 "fulfilled if @var{x} is an integer number.")
3070 #define FUNC_NAME s_scm_rational_p
3071 {
3072 if (SCM_INUMP (x))
3073 return SCM_BOOL_T;
3074 else if (SCM_IMP (x))
3075 return SCM_BOOL_F;
3076 else if (SCM_BIGP (x))
3077 return SCM_BOOL_T;
3078 else if (SCM_FRACTIONP (x))
3079 return SCM_BOOL_T;
3080 else if (SCM_REALP (x))
3081 /* due to their limited precision, all floating point numbers are
3082 rational as well. */
3083 return SCM_BOOL_T;
3084 else
3085 return SCM_BOOL_F;
3086 }
3087 #undef FUNC_NAME
3088
3089
3090 SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
3091 (SCM x),
3092 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3093 "else.")
3094 #define FUNC_NAME s_scm_integer_p
3095 {
3096 double r;
3097 if (SCM_INUMP (x))
3098 return SCM_BOOL_T;
3099 if (SCM_IMP (x))
3100 return SCM_BOOL_F;
3101 if (SCM_BIGP (x))
3102 return SCM_BOOL_T;
3103 if (!SCM_INEXACTP (x))
3104 return SCM_BOOL_F;
3105 if (SCM_COMPLEXP (x))
3106 return SCM_BOOL_F;
3107 r = SCM_REAL_VALUE (x);
3108 if (r == floor (r))
3109 return SCM_BOOL_T;
3110 return SCM_BOOL_F;
3111 }
3112 #undef FUNC_NAME
3113
3114
3115 SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
3116 (SCM x),
3117 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3118 "else.")
3119 #define FUNC_NAME s_scm_inexact_p
3120 {
3121 if (SCM_INEXACTP (x))
3122 return SCM_BOOL_T;
3123 if (SCM_NUMBERP (x))
3124 return SCM_BOOL_F;
3125 SCM_WRONG_TYPE_ARG (1, x);
3126 }
3127 #undef FUNC_NAME
3128
3129
3130 SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
3131 /* "Return @code{#t} if all parameters are numerically equal." */
3132 SCM
3133 scm_num_eq_p (SCM x, SCM y)
3134 {
3135 again:
3136 if (SCM_INUMP (x))
3137 {
3138 long xx = SCM_INUM (x);
3139 if (SCM_INUMP (y))
3140 {
3141 long yy = SCM_INUM (y);
3142 return SCM_BOOL (xx == yy);
3143 }
3144 else if (SCM_BIGP (y))
3145 return SCM_BOOL_F;
3146 else if (SCM_REALP (y))
3147 return SCM_BOOL ((double) xx == SCM_REAL_VALUE (y));
3148 else if (SCM_COMPLEXP (y))
3149 return SCM_BOOL (((double) xx == SCM_COMPLEX_REAL (y))
3150 && (0.0 == SCM_COMPLEX_IMAG (y)));
3151 else if (SCM_FRACTIONP (y))
3152 return SCM_BOOL_F;
3153 else
3154 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3155 }
3156 else if (SCM_BIGP (x))
3157 {
3158 if (SCM_INUMP (y))
3159 return SCM_BOOL_F;
3160 else if (SCM_BIGP (y))
3161 {
3162 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3163 scm_remember_upto_here_2 (x, y);
3164 return SCM_BOOL (0 == cmp);
3165 }
3166 else if (SCM_REALP (y))
3167 {
3168 int cmp;
3169 if (xisnan (SCM_REAL_VALUE (y)))
3170 return SCM_BOOL_F;
3171 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3172 scm_remember_upto_here_1 (x);
3173 return SCM_BOOL (0 == cmp);
3174 }
3175 else if (SCM_COMPLEXP (y))
3176 {
3177 int cmp;
3178 if (0.0 != SCM_COMPLEX_IMAG (y))
3179 return SCM_BOOL_F;
3180 if (xisnan (SCM_COMPLEX_REAL (y)))
3181 return SCM_BOOL_F;
3182 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3183 scm_remember_upto_here_1 (x);
3184 return SCM_BOOL (0 == cmp);
3185 }
3186 else if (SCM_FRACTIONP (y))
3187 return SCM_BOOL_F;
3188 else
3189 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3190 }
3191 else if (SCM_REALP (x))
3192 {
3193 if (SCM_INUMP (y))
3194 return SCM_BOOL (SCM_REAL_VALUE (x) == (double) SCM_INUM (y));
3195 else if (SCM_BIGP (y))
3196 {
3197 int cmp;
3198 if (xisnan (SCM_REAL_VALUE (x)))
3199 return SCM_BOOL_F;
3200 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3201 scm_remember_upto_here_1 (y);
3202 return SCM_BOOL (0 == cmp);
3203 }
3204 else if (SCM_REALP (y))
3205 return SCM_BOOL (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3206 else if (SCM_COMPLEXP (y))
3207 return SCM_BOOL ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
3208 && (0.0 == SCM_COMPLEX_IMAG (y)));
3209 else if (SCM_FRACTIONP (y))
3210 {
3211 double xx = SCM_REAL_VALUE (x);
3212 if (xisnan (xx))
3213 return SCM_BOOL_F;
3214 if (xisinf (xx))
3215 return SCM_BOOL (xx < 0.0);
3216 x = scm_inexact_to_exact (x); /* with x as frac or int */
3217 goto again;
3218 }
3219 else
3220 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3221 }
3222 else if (SCM_COMPLEXP (x))
3223 {
3224 if (SCM_INUMP (y))
3225 return SCM_BOOL ((SCM_COMPLEX_REAL (x) == (double) SCM_INUM (y))
3226 && (SCM_COMPLEX_IMAG (x) == 0.0));
3227 else if (SCM_BIGP (y))
3228 {
3229 int cmp;
3230 if (0.0 != SCM_COMPLEX_IMAG (x))
3231 return SCM_BOOL_F;
3232 if (xisnan (SCM_COMPLEX_REAL (x)))
3233 return SCM_BOOL_F;
3234 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3235 scm_remember_upto_here_1 (y);
3236 return SCM_BOOL (0 == cmp);
3237 }
3238 else if (SCM_REALP (y))
3239 return SCM_BOOL ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
3240 && (SCM_COMPLEX_IMAG (x) == 0.0));
3241 else if (SCM_COMPLEXP (y))
3242 return SCM_BOOL ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
3243 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
3244 else if (SCM_FRACTIONP (y))
3245 {
3246 double xx;
3247 if (SCM_COMPLEX_IMAG (x) != 0.0)
3248 return SCM_BOOL_F;
3249 xx = SCM_COMPLEX_REAL (x);
3250 if (xisnan (xx))
3251 return SCM_BOOL_F;
3252 if (xisinf (xx))
3253 return SCM_BOOL (xx < 0.0);
3254 x = scm_inexact_to_exact (x); /* with x as frac or int */
3255 goto again;
3256 }
3257 else
3258 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3259 }
3260 else if (SCM_FRACTIONP (x))
3261 {
3262 if (SCM_INUMP (y))
3263 return SCM_BOOL_F;
3264 else if (SCM_BIGP (y))
3265 return SCM_BOOL_F;
3266 else if (SCM_REALP (y))
3267 {
3268 double yy = SCM_REAL_VALUE (y);
3269 if (xisnan (yy))
3270 return SCM_BOOL_F;
3271 if (xisinf (yy))
3272 return SCM_BOOL (0.0 < yy);
3273 y = scm_inexact_to_exact (y); /* with y as frac or int */
3274 goto again;
3275 }
3276 else if (SCM_COMPLEXP (y))
3277 {
3278 double yy;
3279 if (SCM_COMPLEX_IMAG (y) != 0.0)
3280 return SCM_BOOL_F;
3281 yy = SCM_COMPLEX_REAL (y);
3282 if (xisnan (yy))
3283 return SCM_BOOL_F;
3284 if (xisinf (yy))
3285 return SCM_BOOL (0.0 < yy);
3286 y = scm_inexact_to_exact (y); /* with y as frac or int */
3287 goto again;
3288 }
3289 else if (SCM_FRACTIONP (y))
3290 return scm_i_fraction_equalp (x, y);
3291 else
3292 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3293 }
3294 else
3295 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
3296 }
3297
3298
3299 /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3300 done are good for inums, but for bignums an answer can almost always be
3301 had by just examining a few high bits of the operands, as done by GMP in
3302 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3303 of the float exponent to take into account. */
3304
3305 SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
3306 /* "Return @code{#t} if the list of parameters is monotonically\n"
3307 * "increasing."
3308 */
3309 SCM
3310 scm_less_p (SCM x, SCM y)
3311 {
3312 again:
3313 if (SCM_INUMP (x))
3314 {
3315 long xx = SCM_INUM (x);
3316 if (SCM_INUMP (y))
3317 {
3318 long yy = SCM_INUM (y);
3319 return SCM_BOOL (xx < yy);
3320 }
3321 else if (SCM_BIGP (y))
3322 {
3323 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3324 scm_remember_upto_here_1 (y);
3325 return SCM_BOOL (sgn > 0);
3326 }
3327 else if (SCM_REALP (y))
3328 return SCM_BOOL ((double) xx < SCM_REAL_VALUE (y));
3329 else if (SCM_FRACTIONP (y))
3330 {
3331 /* "x < a/b" becomes "x*b < a" */
3332 int_frac:
3333 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3334 y = SCM_FRACTION_NUMERATOR (y);
3335 goto again;
3336 }
3337 else
3338 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3339 }
3340 else if (SCM_BIGP (x))
3341 {
3342 if (SCM_INUMP (y))
3343 {
3344 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3345 scm_remember_upto_here_1 (x);
3346 return SCM_BOOL (sgn < 0);
3347 }
3348 else if (SCM_BIGP (y))
3349 {
3350 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3351 scm_remember_upto_here_2 (x, y);
3352 return SCM_BOOL (cmp < 0);
3353 }
3354 else if (SCM_REALP (y))
3355 {
3356 int cmp;
3357 if (xisnan (SCM_REAL_VALUE (y)))
3358 return SCM_BOOL_F;
3359 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3360 scm_remember_upto_here_1 (x);
3361 return SCM_BOOL (cmp < 0);
3362 }
3363 else if (SCM_FRACTIONP (y))
3364 goto int_frac;
3365 else
3366 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3367 }
3368 else if (SCM_REALP (x))
3369 {
3370 if (SCM_INUMP (y))
3371 return SCM_BOOL (SCM_REAL_VALUE (x) < (double) SCM_INUM (y));
3372 else if (SCM_BIGP (y))
3373 {
3374 int cmp;
3375 if (xisnan (SCM_REAL_VALUE (x)))
3376 return SCM_BOOL_F;
3377 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3378 scm_remember_upto_here_1 (y);
3379 return SCM_BOOL (cmp > 0);
3380 }
3381 else if (SCM_REALP (y))
3382 return SCM_BOOL (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
3383 else if (SCM_FRACTIONP (y))
3384 {
3385 double xx = SCM_REAL_VALUE (x);
3386 if (xisnan (xx))
3387 return SCM_BOOL_F;
3388 if (xisinf (xx))
3389 return SCM_BOOL (xx < 0.0);
3390 x = scm_inexact_to_exact (x); /* with x as frac or int */
3391 goto again;
3392 }
3393 else
3394 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3395 }
3396 else if (SCM_FRACTIONP (x))
3397 {
3398 if (SCM_INUMP (y) || SCM_BIGP (y))
3399 {
3400 /* "a/b < y" becomes "a < y*b" */
3401 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3402 x = SCM_FRACTION_NUMERATOR (x);
3403 goto again;
3404 }
3405 else if (SCM_REALP (y))
3406 {
3407 double yy = SCM_REAL_VALUE (y);
3408 if (xisnan (yy))
3409 return SCM_BOOL_F;
3410 if (xisinf (yy))
3411 return SCM_BOOL (0.0 < yy);
3412 y = scm_inexact_to_exact (y); /* with y as frac or int */
3413 goto again;
3414 }
3415 else if (SCM_FRACTIONP (y))
3416 {
3417 /* "a/b < c/d" becomes "a*d < c*b" */
3418 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3419 SCM_FRACTION_DENOMINATOR (y));
3420 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3421 SCM_FRACTION_DENOMINATOR (x));
3422 x = new_x;
3423 y = new_y;
3424 goto again;
3425 }
3426 else
3427 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3428 }
3429 else
3430 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
3431 }
3432
3433
3434 SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
3435 /* "Return @code{#t} if the list of parameters is monotonically\n"
3436 * "decreasing."
3437 */
3438 #define FUNC_NAME s_scm_gr_p
3439 SCM
3440 scm_gr_p (SCM x, SCM y)
3441 {
3442 if (!SCM_NUMBERP (x))
3443 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3444 else if (!SCM_NUMBERP (y))
3445 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3446 else
3447 return scm_less_p (y, x);
3448 }
3449 #undef FUNC_NAME
3450
3451
3452 SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
3453 /* "Return @code{#t} if the list of parameters is monotonically\n"
3454 * "non-decreasing."
3455 */
3456 #define FUNC_NAME s_scm_leq_p
3457 SCM
3458 scm_leq_p (SCM x, SCM y)
3459 {
3460 if (!SCM_NUMBERP (x))
3461 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3462 else if (!SCM_NUMBERP (y))
3463 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
3464 else if (SCM_NFALSEP (scm_nan_p (x)) || SCM_NFALSEP (scm_nan_p (y)))
3465 return SCM_BOOL_F;
3466 else
3467 return SCM_BOOL_NOT (scm_less_p (y, x));
3468 }
3469 #undef FUNC_NAME
3470
3471
3472 SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
3473 /* "Return @code{#t} if the list of parameters is monotonically\n"
3474 * "non-increasing."
3475 */
3476 #define FUNC_NAME s_scm_geq_p
3477 SCM
3478 scm_geq_p (SCM x, SCM y)
3479 {
3480 if (!SCM_NUMBERP (x))
3481 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3482 else if (!SCM_NUMBERP (y))
3483 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
3484 else if (SCM_NFALSEP (scm_nan_p (x)) || SCM_NFALSEP (scm_nan_p (y)))
3485 return SCM_BOOL_F;
3486 else
3487 return SCM_BOOL_NOT (scm_less_p (x, y));
3488 }
3489 #undef FUNC_NAME
3490
3491
3492 SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
3493 /* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3494 * "zero."
3495 */
3496 SCM
3497 scm_zero_p (SCM z)
3498 {
3499 if (SCM_INUMP (z))
3500 return SCM_BOOL (SCM_EQ_P (z, SCM_INUM0));
3501 else if (SCM_BIGP (z))
3502 return SCM_BOOL_F;
3503 else if (SCM_REALP (z))
3504 return SCM_BOOL (SCM_REAL_VALUE (z) == 0.0);
3505 else if (SCM_COMPLEXP (z))
3506 return SCM_BOOL (SCM_COMPLEX_REAL (z) == 0.0
3507 && SCM_COMPLEX_IMAG (z) == 0.0);
3508 else if (SCM_FRACTIONP (z))
3509 return SCM_BOOL_F;
3510 else
3511 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
3512 }
3513
3514
3515 SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
3516 /* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3517 * "zero."
3518 */
3519 SCM
3520 scm_positive_p (SCM x)
3521 {
3522 if (SCM_INUMP (x))
3523 return SCM_BOOL (SCM_INUM (x) > 0);
3524 else if (SCM_BIGP (x))
3525 {
3526 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3527 scm_remember_upto_here_1 (x);
3528 return SCM_BOOL (sgn > 0);
3529 }
3530 else if (SCM_REALP (x))
3531 return SCM_BOOL(SCM_REAL_VALUE (x) > 0.0);
3532 else if (SCM_FRACTIONP (x))
3533 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
3534 else
3535 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
3536 }
3537
3538
3539 SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
3540 /* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3541 * "zero."
3542 */
3543 SCM
3544 scm_negative_p (SCM x)
3545 {
3546 if (SCM_INUMP (x))
3547 return SCM_BOOL (SCM_INUM (x) < 0);
3548 else if (SCM_BIGP (x))
3549 {
3550 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3551 scm_remember_upto_here_1 (x);
3552 return SCM_BOOL (sgn < 0);
3553 }
3554 else if (SCM_REALP (x))
3555 return SCM_BOOL(SCM_REAL_VALUE (x) < 0.0);
3556 else if (SCM_FRACTIONP (x))
3557 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
3558 else
3559 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
3560 }
3561
3562
3563 /* scm_min and scm_max return an inexact when either argument is inexact, as
3564 required by r5rs. On that basis, for exact/inexact combinations the
3565 exact is converted to inexact to compare and possibly return. This is
3566 unlike scm_less_p above which takes some trouble to preserve all bits in
3567 its test, such trouble is not required for min and max. */
3568
3569 SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
3570 /* "Return the maximum of all parameter values."
3571 */
3572 SCM
3573 scm_max (SCM x, SCM y)
3574 {
3575 if (SCM_UNBNDP (y))
3576 {
3577 if (SCM_UNBNDP (x))
3578 SCM_WTA_DISPATCH_0 (g_max, s_max);
3579 else if (SCM_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3580 return x;
3581 else
3582 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
3583 }
3584
3585 if (SCM_INUMP (x))
3586 {
3587 long xx = SCM_INUM (x);
3588 if (SCM_INUMP (y))
3589 {
3590 long yy = SCM_INUM (y);
3591 return (xx < yy) ? y : x;
3592 }
3593 else if (SCM_BIGP (y))
3594 {
3595 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3596 scm_remember_upto_here_1 (y);
3597 return (sgn < 0) ? x : y;
3598 }
3599 else if (SCM_REALP (y))
3600 {
3601 double z = xx;
3602 /* if y==NaN then ">" is false and we return NaN */
3603 return (z > SCM_REAL_VALUE (y)) ? scm_make_real (z) : y;
3604 }
3605 else if (SCM_FRACTIONP (y))
3606 {
3607 use_less:
3608 return (SCM_FALSEP (scm_less_p (x, y)) ? x : y);
3609 }
3610 else
3611 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3612 }
3613 else if (SCM_BIGP (x))
3614 {
3615 if (SCM_INUMP (y))
3616 {
3617 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3618 scm_remember_upto_here_1 (x);
3619 return (sgn < 0) ? y : x;
3620 }
3621 else if (SCM_BIGP (y))
3622 {
3623 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3624 scm_remember_upto_here_2 (x, y);
3625 return (cmp > 0) ? x : y;
3626 }
3627 else if (SCM_REALP (y))
3628 {
3629 /* if y==NaN then xx>yy is false, so we return the NaN y */
3630 double xx, yy;
3631 big_real:
3632 xx = scm_i_big2dbl (x);
3633 yy = SCM_REAL_VALUE (y);
3634 return (xx > yy ? scm_make_real (xx) : y);
3635 }
3636 else if (SCM_FRACTIONP (y))
3637 {
3638 goto use_less;
3639 }
3640 else
3641 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3642 }
3643 else if (SCM_REALP (x))
3644 {
3645 if (SCM_INUMP (y))
3646 {
3647 double z = SCM_INUM (y);
3648 /* if x==NaN then "<" is false and we return NaN */
3649 return (SCM_REAL_VALUE (x) < z) ? scm_make_real (z) : x;
3650 }
3651 else if (SCM_BIGP (y))
3652 {
3653 SCM_SWAP (x, y);
3654 goto big_real;
3655 }
3656 else if (SCM_REALP (y))
3657 {
3658 /* if x==NaN then our explicit check means we return NaN
3659 if y==NaN then ">" is false and we return NaN
3660 calling isnan is unavoidable, since it's the only way to know
3661 which of x or y causes any compares to be false */
3662 double xx = SCM_REAL_VALUE (x);
3663 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3664 }
3665 else if (SCM_FRACTIONP (y))
3666 {
3667 double yy = scm_i_fraction2double (y);
3668 double xx = SCM_REAL_VALUE (x);
3669 return (xx < yy) ? scm_make_real (yy) : x;
3670 }
3671 else
3672 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3673 }
3674 else if (SCM_FRACTIONP (x))
3675 {
3676 if (SCM_INUMP (y))
3677 {
3678 goto use_less;
3679 }
3680 else if (SCM_BIGP (y))
3681 {
3682 goto use_less;
3683 }
3684 else if (SCM_REALP (y))
3685 {
3686 double xx = scm_i_fraction2double (x);
3687 return (xx < SCM_REAL_VALUE (y)) ? y : scm_make_real (xx);
3688 }
3689 else if (SCM_FRACTIONP (y))
3690 {
3691 goto use_less;
3692 }
3693 else
3694 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3695 }
3696 else
3697 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
3698 }
3699
3700
3701 SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
3702 /* "Return the minium of all parameter values."
3703 */
3704 SCM
3705 scm_min (SCM x, SCM y)
3706 {
3707 if (SCM_UNBNDP (y))
3708 {
3709 if (SCM_UNBNDP (x))
3710 SCM_WTA_DISPATCH_0 (g_min, s_min);
3711 else if (SCM_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3712 return x;
3713 else
3714 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
3715 }
3716
3717 if (SCM_INUMP (x))
3718 {
3719 long xx = SCM_INUM (x);
3720 if (SCM_INUMP (y))
3721 {
3722 long yy = SCM_INUM (y);
3723 return (xx < yy) ? x : y;
3724 }
3725 else if (SCM_BIGP (y))
3726 {
3727 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3728 scm_remember_upto_here_1 (y);
3729 return (sgn < 0) ? y : x;
3730 }
3731 else if (SCM_REALP (y))
3732 {
3733 double z = xx;
3734 /* if y==NaN then "<" is false and we return NaN */
3735 return (z < SCM_REAL_VALUE (y)) ? scm_make_real (z) : y;
3736 }
3737 else if (SCM_FRACTIONP (y))
3738 {
3739 use_less:
3740 return (SCM_FALSEP (scm_less_p (x, y)) ? y : x);
3741 }
3742 else
3743 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3744 }
3745 else if (SCM_BIGP (x))
3746 {
3747 if (SCM_INUMP (y))
3748 {
3749 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3750 scm_remember_upto_here_1 (x);
3751 return (sgn < 0) ? x : y;
3752 }
3753 else if (SCM_BIGP (y))
3754 {
3755 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3756 scm_remember_upto_here_2 (x, y);
3757 return (cmp > 0) ? y : x;
3758 }
3759 else if (SCM_REALP (y))
3760 {
3761 /* if y==NaN then xx<yy is false, so we return the NaN y */
3762 double xx, yy;
3763 big_real:
3764 xx = scm_i_big2dbl (x);
3765 yy = SCM_REAL_VALUE (y);
3766 return (xx < yy ? scm_make_real (xx) : y);
3767 }
3768 else if (SCM_FRACTIONP (y))
3769 {
3770 goto use_less;
3771 }
3772 else
3773 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3774 }
3775 else if (SCM_REALP (x))
3776 {
3777 if (SCM_INUMP (y))
3778 {
3779 double z = SCM_INUM (y);
3780 /* if x==NaN then "<" is false and we return NaN */
3781 return (z < SCM_REAL_VALUE (x)) ? scm_make_real (z) : x;
3782 }
3783 else if (SCM_BIGP (y))
3784 {
3785 SCM_SWAP (x, y);
3786 goto big_real;
3787 }
3788 else if (SCM_REALP (y))
3789 {
3790 /* if x==NaN then our explicit check means we return NaN
3791 if y==NaN then "<" is false and we return NaN
3792 calling isnan is unavoidable, since it's the only way to know
3793 which of x or y causes any compares to be false */
3794 double xx = SCM_REAL_VALUE (x);
3795 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
3796 }
3797 else if (SCM_FRACTIONP (y))
3798 {
3799 double yy = scm_i_fraction2double (y);
3800 double xx = SCM_REAL_VALUE (x);
3801 return (yy < xx) ? scm_make_real (yy) : x;
3802 }
3803 else
3804 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3805 }
3806 else if (SCM_FRACTIONP (x))
3807 {
3808 if (SCM_INUMP (y))
3809 {
3810 goto use_less;
3811 }
3812 else if (SCM_BIGP (y))
3813 {
3814 goto use_less;
3815 }
3816 else if (SCM_REALP (y))
3817 {
3818 double xx = scm_i_fraction2double (x);
3819 return (SCM_REAL_VALUE (y) < xx) ? y : scm_make_real (xx);
3820 }
3821 else if (SCM_FRACTIONP (y))
3822 {
3823 goto use_less;
3824 }
3825 else
3826 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3827 }
3828 else
3829 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
3830 }
3831
3832
3833 SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
3834 /* "Return the sum of all parameter values. Return 0 if called without\n"
3835 * "any parameters."
3836 */
3837 SCM
3838 scm_sum (SCM x, SCM y)
3839 {
3840 if (SCM_UNBNDP (y))
3841 {
3842 if (SCM_NUMBERP (x)) return x;
3843 if (SCM_UNBNDP (x)) return SCM_INUM0;
3844 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
3845 }
3846
3847 if (SCM_INUMP (x))
3848 {
3849 if (SCM_INUMP (y))
3850 {
3851 long xx = SCM_INUM (x);
3852 long yy = SCM_INUM (y);
3853 long int z = xx + yy;
3854 return SCM_FIXABLE (z) ? SCM_MAKINUM (z) : scm_i_long2big (z);
3855 }
3856 else if (SCM_BIGP (y))
3857 {
3858 SCM_SWAP (x, y);
3859 goto add_big_inum;
3860 }
3861 else if (SCM_REALP (y))
3862 {
3863 long int xx = SCM_INUM (x);
3864 return scm_make_real (xx + SCM_REAL_VALUE (y));
3865 }
3866 else if (SCM_COMPLEXP (y))
3867 {
3868 long int xx = SCM_INUM (x);
3869 return scm_make_complex (xx + SCM_COMPLEX_REAL (y),
3870 SCM_COMPLEX_IMAG (y));
3871 }
3872 else if (SCM_FRACTIONP (y))
3873 return scm_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
3874 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3875 SCM_FRACTION_DENOMINATOR (y));
3876 else
3877 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3878 } else if (SCM_BIGP (x))
3879 {
3880 if (SCM_INUMP (y))
3881 {
3882 long int inum;
3883 int bigsgn;
3884 add_big_inum:
3885 inum = SCM_INUM (y);
3886 if (inum == 0)
3887 return x;
3888 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3889 if (inum < 0)
3890 {
3891 SCM result = scm_i_mkbig ();
3892 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
3893 scm_remember_upto_here_1 (x);
3894 /* we know the result will have to be a bignum */
3895 if (bigsgn == -1)
3896 return result;
3897 return scm_i_normbig (result);
3898 }
3899 else
3900 {
3901 SCM result = scm_i_mkbig ();
3902 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
3903 scm_remember_upto_here_1 (x);
3904 /* we know the result will have to be a bignum */
3905 if (bigsgn == 1)
3906 return result;
3907 return scm_i_normbig (result);
3908 }
3909 }
3910 else if (SCM_BIGP (y))
3911 {
3912 SCM result = scm_i_mkbig ();
3913 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
3914 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
3915 mpz_add (SCM_I_BIG_MPZ (result),
3916 SCM_I_BIG_MPZ (x),
3917 SCM_I_BIG_MPZ (y));
3918 scm_remember_upto_here_2 (x, y);
3919 /* we know the result will have to be a bignum */
3920 if (sgn_x == sgn_y)
3921 return result;
3922 return scm_i_normbig (result);
3923 }
3924 else if (SCM_REALP (y))
3925 {
3926 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
3927 scm_remember_upto_here_1 (x);
3928 return scm_make_real (result);
3929 }
3930 else if (SCM_COMPLEXP (y))
3931 {
3932 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
3933 + SCM_COMPLEX_REAL (y));
3934 scm_remember_upto_here_1 (x);
3935 return scm_make_complex (real_part, SCM_COMPLEX_IMAG (y));
3936 }
3937 else if (SCM_FRACTIONP (y))
3938 return scm_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
3939 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3940 SCM_FRACTION_DENOMINATOR (y));
3941 else
3942 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3943 }
3944 else if (SCM_REALP (x))
3945 {
3946 if (SCM_INUMP (y))
3947 return scm_make_real (SCM_REAL_VALUE (x) + SCM_INUM (y));
3948 else if (SCM_BIGP (y))
3949 {
3950 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
3951 scm_remember_upto_here_1 (y);
3952 return scm_make_real (result);
3953 }
3954 else if (SCM_REALP (y))
3955 return scm_make_real (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
3956 else if (SCM_COMPLEXP (y))
3957 return scm_make_complex (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
3958 SCM_COMPLEX_IMAG (y));
3959 else if (SCM_FRACTIONP (y))
3960 return scm_make_real (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
3961 else
3962 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3963 }
3964 else if (SCM_COMPLEXP (x))
3965 {
3966 if (SCM_INUMP (y))
3967 return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_INUM (y),
3968 SCM_COMPLEX_IMAG (x));
3969 else if (SCM_BIGP (y))
3970 {
3971 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
3972 + SCM_COMPLEX_REAL (x));
3973 scm_remember_upto_here_1 (y);
3974 return scm_make_complex (real_part, SCM_COMPLEX_IMAG (x));
3975 }
3976 else if (SCM_REALP (y))
3977 return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
3978 SCM_COMPLEX_IMAG (x));
3979 else if (SCM_COMPLEXP (y))
3980 return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
3981 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
3982 else if (SCM_FRACTIONP (y))
3983 return scm_make_complex (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
3984 SCM_COMPLEX_IMAG (x));
3985 else
3986 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3987 }
3988 else if (SCM_FRACTIONP (x))
3989 {
3990 if (SCM_INUMP (y))
3991 return scm_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
3992 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
3993 SCM_FRACTION_DENOMINATOR (x));
3994 else if (SCM_BIGP (y))
3995 return scm_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
3996 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
3997 SCM_FRACTION_DENOMINATOR (x));
3998 else if (SCM_REALP (y))
3999 return scm_make_real (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
4000 else if (SCM_COMPLEXP (y))
4001 return scm_make_complex (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
4002 SCM_COMPLEX_IMAG (y));
4003 else if (SCM_FRACTIONP (y))
4004 /* a/b + c/d = (ad + bc) / bd */
4005 return scm_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4006 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4007 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4008 else
4009 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4010 }
4011 else
4012 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
4013 }
4014
4015
4016 SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
4017 /* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
4018 * the sum of all but the first argument are subtracted from the first
4019 * argument. */
4020 #define FUNC_NAME s_difference
4021 SCM
4022 scm_difference (SCM x, SCM y)
4023 {
4024 if (SCM_UNBNDP (y))
4025 {
4026 if (SCM_UNBNDP (x))
4027 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4028 else
4029 if (SCM_INUMP (x))
4030 {
4031 long xx = -SCM_INUM (x);
4032 if (SCM_FIXABLE (xx))
4033 return SCM_MAKINUM (xx);
4034 else
4035 return scm_i_long2big (xx);
4036 }
4037 else if (SCM_BIGP (x))
4038 /* FIXME: do we really need to normalize here? */
4039 return scm_i_normbig (scm_i_clonebig (x, 0));
4040 else if (SCM_REALP (x))
4041 return scm_make_real (-SCM_REAL_VALUE (x));
4042 else if (SCM_COMPLEXP (x))
4043 return scm_make_complex (-SCM_COMPLEX_REAL (x),
4044 -SCM_COMPLEX_IMAG (x));
4045 else if (SCM_FRACTIONP (x))
4046 return scm_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
4047 SCM_FRACTION_DENOMINATOR (x));
4048 else
4049 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
4050 }
4051
4052 if (SCM_INUMP (x))
4053 {
4054 if (SCM_INUMP (y))
4055 {
4056 long int xx = SCM_INUM (x);
4057 long int yy = SCM_INUM (y);
4058 long int z = xx - yy;
4059 if (SCM_FIXABLE (z))
4060 return SCM_MAKINUM (z);
4061 else
4062 return scm_i_long2big (z);
4063 }
4064 else if (SCM_BIGP (y))
4065 {
4066 /* inum-x - big-y */
4067 long xx = SCM_INUM (x);
4068
4069 if (xx == 0)
4070 return scm_i_clonebig (y, 0);
4071 else
4072 {
4073 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4074 SCM result = scm_i_mkbig ();
4075
4076 if (xx >= 0)
4077 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4078 else
4079 {
4080 /* x - y == -(y + -x) */
4081 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4082 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4083 }
4084 scm_remember_upto_here_1 (y);
4085
4086 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4087 /* we know the result will have to be a bignum */
4088 return result;
4089 else
4090 return scm_i_normbig (result);
4091 }
4092 }
4093 else if (SCM_REALP (y))
4094 {
4095 long int xx = SCM_INUM (x);
4096 return scm_make_real (xx - SCM_REAL_VALUE (y));
4097 }
4098 else if (SCM_COMPLEXP (y))
4099 {
4100 long int xx = SCM_INUM (x);
4101 return scm_make_complex (xx - SCM_COMPLEX_REAL (y),
4102 - SCM_COMPLEX_IMAG (y));
4103 }
4104 else if (SCM_FRACTIONP (y))
4105 /* a - b/c = (ac - b) / c */
4106 return scm_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4107 SCM_FRACTION_NUMERATOR (y)),
4108 SCM_FRACTION_DENOMINATOR (y));
4109 else
4110 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4111 }
4112 else if (SCM_BIGP (x))
4113 {
4114 if (SCM_INUMP (y))
4115 {
4116 /* big-x - inum-y */
4117 long yy = SCM_INUM (y);
4118 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4119
4120 scm_remember_upto_here_1 (x);
4121 if (sgn_x == 0)
4122 return SCM_FIXABLE (-yy) ? SCM_MAKINUM (-yy) : scm_long2num (-yy);
4123 else
4124 {
4125 SCM result = scm_i_mkbig ();
4126
4127 if (yy >= 0)
4128 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4129 else
4130 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
4131 scm_remember_upto_here_1 (x);
4132
4133 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4134 /* we know the result will have to be a bignum */
4135 return result;
4136 else
4137 return scm_i_normbig (result);
4138 }
4139 }
4140 else if (SCM_BIGP (y))
4141 {
4142 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4143 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4144 SCM result = scm_i_mkbig ();
4145 mpz_sub (SCM_I_BIG_MPZ (result),
4146 SCM_I_BIG_MPZ (x),
4147 SCM_I_BIG_MPZ (y));
4148 scm_remember_upto_here_2 (x, y);
4149 /* we know the result will have to be a bignum */
4150 if ((sgn_x == 1) && (sgn_y == -1))
4151 return result;
4152 if ((sgn_x == -1) && (sgn_y == 1))
4153 return result;
4154 return scm_i_normbig (result);
4155 }
4156 else if (SCM_REALP (y))
4157 {
4158 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4159 scm_remember_upto_here_1 (x);
4160 return scm_make_real (result);
4161 }
4162 else if (SCM_COMPLEXP (y))
4163 {
4164 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4165 - SCM_COMPLEX_REAL (y));
4166 scm_remember_upto_here_1 (x);
4167 return scm_make_complex (real_part, - SCM_COMPLEX_IMAG (y));
4168 }
4169 else if (SCM_FRACTIONP (y))
4170 return scm_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4171 SCM_FRACTION_NUMERATOR (y)),
4172 SCM_FRACTION_DENOMINATOR (y));
4173 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4174 }
4175 else if (SCM_REALP (x))
4176 {
4177 if (SCM_INUMP (y))
4178 return scm_make_real (SCM_REAL_VALUE (x) - SCM_INUM (y));
4179 else if (SCM_BIGP (y))
4180 {
4181 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4182 scm_remember_upto_here_1 (x);
4183 return scm_make_real (result);
4184 }
4185 else if (SCM_REALP (y))
4186 return scm_make_real (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
4187 else if (SCM_COMPLEXP (y))
4188 return scm_make_complex (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
4189 -SCM_COMPLEX_IMAG (y));
4190 else if (SCM_FRACTIONP (y))
4191 return scm_make_real (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
4192 else
4193 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4194 }
4195 else if (SCM_COMPLEXP (x))
4196 {
4197 if (SCM_INUMP (y))
4198 return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_INUM (y),
4199 SCM_COMPLEX_IMAG (x));
4200 else if (SCM_BIGP (y))
4201 {
4202 double real_part = (SCM_COMPLEX_REAL (x)
4203 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4204 scm_remember_upto_here_1 (x);
4205 return scm_make_complex (real_part, SCM_COMPLEX_IMAG (y));
4206 }
4207 else if (SCM_REALP (y))
4208 return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
4209 SCM_COMPLEX_IMAG (x));
4210 else if (SCM_COMPLEXP (y))
4211 return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
4212 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
4213 else if (SCM_FRACTIONP (y))
4214 return scm_make_complex (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
4215 SCM_COMPLEX_IMAG (x));
4216 else
4217 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4218 }
4219 else if (SCM_FRACTIONP (x))
4220 {
4221 if (SCM_INUMP (y))
4222 /* a/b - c = (a - cb) / b */
4223 return scm_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4224 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4225 SCM_FRACTION_DENOMINATOR (x));
4226 else if (SCM_BIGP (y))
4227 return scm_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4228 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4229 SCM_FRACTION_DENOMINATOR (x));
4230 else if (SCM_REALP (y))
4231 return scm_make_real (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
4232 else if (SCM_COMPLEXP (y))
4233 return scm_make_complex (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
4234 -SCM_COMPLEX_IMAG (y));
4235 else if (SCM_FRACTIONP (y))
4236 /* a/b - c/d = (ad - bc) / bd */
4237 return scm_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4238 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4239 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4240 else
4241 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4242 }
4243 else
4244 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
4245 }
4246 #undef FUNC_NAME
4247
4248
4249 SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
4250 /* "Return the product of all arguments. If called without arguments,\n"
4251 * "1 is returned."
4252 */
4253 SCM
4254 scm_product (SCM x, SCM y)
4255 {
4256 if (SCM_UNBNDP (y))
4257 {
4258 if (SCM_UNBNDP (x))
4259 return SCM_MAKINUM (1L);
4260 else if (SCM_NUMBERP (x))
4261 return x;
4262 else
4263 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
4264 }
4265
4266 if (SCM_INUMP (x))
4267 {
4268 long xx;
4269
4270 intbig:
4271 xx = SCM_INUM (x);
4272
4273 switch (xx)
4274 {
4275 case 0: return x; break;
4276 case 1: return y; break;
4277 }
4278
4279 if (SCM_INUMP (y))
4280 {
4281 long yy = SCM_INUM (y);
4282 long kk = xx * yy;
4283 SCM k = SCM_MAKINUM (kk);
4284 if ((kk == SCM_INUM (k)) && (kk / xx == yy))
4285 return k;
4286 else
4287 {
4288 SCM result = scm_i_long2big (xx);
4289 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4290 return scm_i_normbig (result);
4291 }
4292 }
4293 else if (SCM_BIGP (y))
4294 {
4295 SCM result = scm_i_mkbig ();
4296 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4297 scm_remember_upto_here_1 (y);
4298 return result;
4299 }
4300 else if (SCM_REALP (y))
4301 return scm_make_real (xx * SCM_REAL_VALUE (y));
4302 else if (SCM_COMPLEXP (y))
4303 return scm_make_complex (xx * SCM_COMPLEX_REAL (y),
4304 xx * SCM_COMPLEX_IMAG (y));
4305 else if (SCM_FRACTIONP (y))
4306 return scm_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4307 SCM_FRACTION_DENOMINATOR (y));
4308 else
4309 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4310 }
4311 else if (SCM_BIGP (x))
4312 {
4313 if (SCM_INUMP (y))
4314 {
4315 SCM_SWAP (x, y);
4316 goto intbig;
4317 }
4318 else if (SCM_BIGP (y))
4319 {
4320 SCM result = scm_i_mkbig ();
4321 mpz_mul (SCM_I_BIG_MPZ (result),
4322 SCM_I_BIG_MPZ (x),
4323 SCM_I_BIG_MPZ (y));
4324 scm_remember_upto_here_2 (x, y);
4325 return result;
4326 }
4327 else if (SCM_REALP (y))
4328 {
4329 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4330 scm_remember_upto_here_1 (x);
4331 return scm_make_real (result);
4332 }
4333 else if (SCM_COMPLEXP (y))
4334 {
4335 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4336 scm_remember_upto_here_1 (x);
4337 return scm_make_complex (z * SCM_COMPLEX_REAL (y),
4338 z * SCM_COMPLEX_IMAG (y));
4339 }
4340 else if (SCM_FRACTIONP (y))
4341 return scm_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4342 SCM_FRACTION_DENOMINATOR (y));
4343 else
4344 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4345 }
4346 else if (SCM_REALP (x))
4347 {
4348 if (SCM_INUMP (y))
4349 return scm_make_real (SCM_INUM (y) * SCM_REAL_VALUE (x));
4350 else if (SCM_BIGP (y))
4351 {
4352 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4353 scm_remember_upto_here_1 (y);
4354 return scm_make_real (result);
4355 }
4356 else if (SCM_REALP (y))
4357 return scm_make_real (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
4358 else if (SCM_COMPLEXP (y))
4359 return scm_make_complex (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
4360 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
4361 else if (SCM_FRACTIONP (y))
4362 return scm_make_real (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
4363 else
4364 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4365 }
4366 else if (SCM_COMPLEXP (x))
4367 {
4368 if (SCM_INUMP (y))
4369 return scm_make_complex (SCM_INUM (y) * SCM_COMPLEX_REAL (x),
4370 SCM_INUM (y) * SCM_COMPLEX_IMAG (x));
4371 else if (SCM_BIGP (y))
4372 {
4373 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4374 scm_remember_upto_here_1 (y);
4375 return scm_make_complex (z * SCM_COMPLEX_REAL (x),
4376 z * SCM_COMPLEX_IMAG (x));
4377 }
4378 else if (SCM_REALP (y))
4379 return scm_make_complex (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
4380 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4381 else if (SCM_COMPLEXP (y))
4382 {
4383 return scm_make_complex (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
4384 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4385 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4386 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4387 }
4388 else if (SCM_FRACTIONP (y))
4389 {
4390 double yy = scm_i_fraction2double (y);
4391 return scm_make_complex (yy * SCM_COMPLEX_REAL (x),
4392 yy * SCM_COMPLEX_IMAG (x));
4393 }
4394 else
4395 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4396 }
4397 else if (SCM_FRACTIONP (x))
4398 {
4399 if (SCM_INUMP (y))
4400 return scm_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4401 SCM_FRACTION_DENOMINATOR (x));
4402 else if (SCM_BIGP (y))
4403 return scm_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4404 SCM_FRACTION_DENOMINATOR (x));
4405 else if (SCM_REALP (y))
4406 return scm_make_real (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
4407 else if (SCM_COMPLEXP (y))
4408 {
4409 double xx = scm_i_fraction2double (x);
4410 return scm_make_complex (xx * SCM_COMPLEX_REAL (y),
4411 xx * SCM_COMPLEX_IMAG (y));
4412 }
4413 else if (SCM_FRACTIONP (y))
4414 /* a/b * c/d = ac / bd */
4415 return scm_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
4416 SCM_FRACTION_NUMERATOR (y)),
4417 scm_product (SCM_FRACTION_DENOMINATOR (x),
4418 SCM_FRACTION_DENOMINATOR (y)));
4419 else
4420 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4421 }
4422 else
4423 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
4424 }
4425
4426 double
4427 scm_num2dbl (SCM a, const char *why)
4428 #define FUNC_NAME why
4429 {
4430 if (SCM_INUMP (a))
4431 return (double) SCM_INUM (a);
4432 else if (SCM_BIGP (a))
4433 {
4434 double result = mpz_get_d (SCM_I_BIG_MPZ (a));
4435 scm_remember_upto_here_1 (a);
4436 return result;
4437 }
4438 else if (SCM_REALP (a))
4439 return (SCM_REAL_VALUE (a));
4440 else if (SCM_FRACTIONP (a))
4441 return scm_i_fraction2double (a);
4442 else
4443 SCM_WRONG_TYPE_ARG (SCM_ARGn, a);
4444 }
4445 #undef FUNC_NAME
4446
4447 #if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4448 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4449 #define ALLOW_DIVIDE_BY_ZERO
4450 /* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4451 #endif
4452
4453 /* The code below for complex division is adapted from the GNU
4454 libstdc++, which adapted it from f2c's libF77, and is subject to
4455 this copyright: */
4456
4457 /****************************************************************
4458 Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4459
4460 Permission to use, copy, modify, and distribute this software
4461 and its documentation for any purpose and without fee is hereby
4462 granted, provided that the above copyright notice appear in all
4463 copies and that both that the copyright notice and this
4464 permission notice and warranty disclaimer appear in supporting
4465 documentation, and that the names of AT&T Bell Laboratories or
4466 Bellcore or any of their entities not be used in advertising or
4467 publicity pertaining to distribution of the software without
4468 specific, written prior permission.
4469
4470 AT&T and Bellcore disclaim all warranties with regard to this
4471 software, including all implied warranties of merchantability
4472 and fitness. In no event shall AT&T or Bellcore be liable for
4473 any special, indirect or consequential damages or any damages
4474 whatsoever resulting from loss of use, data or profits, whether
4475 in an action of contract, negligence or other tortious action,
4476 arising out of or in connection with the use or performance of
4477 this software.
4478 ****************************************************************/
4479
4480 SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
4481 /* Divide the first argument by the product of the remaining
4482 arguments. If called with one argument @var{z1}, 1/@var{z1} is
4483 returned. */
4484 #define FUNC_NAME s_divide
4485 static SCM
4486 scm_i_divide (SCM x, SCM y, int inexact)
4487 {
4488 double a;
4489
4490 if (SCM_UNBNDP (y))
4491 {
4492 if (SCM_UNBNDP (x))
4493 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
4494 else if (SCM_INUMP (x))
4495 {
4496 long xx = SCM_INUM (x);
4497 if (xx == 1 || xx == -1)
4498 return x;
4499 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4500 else if (xx == 0)
4501 scm_num_overflow (s_divide);
4502 #endif
4503 else
4504 {
4505 if (inexact)
4506 return scm_make_real (1.0 / (double) xx);
4507 else return scm_make_ratio (SCM_MAKINUM(1), x);
4508 }
4509 }
4510 else if (SCM_BIGP (x))
4511 {
4512 if (inexact)
4513 return scm_make_real (1.0 / scm_i_big2dbl (x));
4514 else return scm_make_ratio (SCM_MAKINUM(1), x);
4515 }
4516 else if (SCM_REALP (x))
4517 {
4518 double xx = SCM_REAL_VALUE (x);
4519 #ifndef ALLOW_DIVIDE_BY_ZERO
4520 if (xx == 0.0)
4521 scm_num_overflow (s_divide);
4522 else
4523 #endif
4524 return scm_make_real (1.0 / xx);
4525 }
4526 else if (SCM_COMPLEXP (x))
4527 {
4528 double r = SCM_COMPLEX_REAL (x);
4529 double i = SCM_COMPLEX_IMAG (x);
4530 if (r <= i)
4531 {
4532 double t = r / i;
4533 double d = i * (1.0 + t * t);
4534 return scm_make_complex (t / d, -1.0 / d);
4535 }
4536 else
4537 {
4538 double t = i / r;
4539 double d = r * (1.0 + t * t);
4540 return scm_make_complex (1.0 / d, -t / d);
4541 }
4542 }
4543 else if (SCM_FRACTIONP (x))
4544 return scm_make_ratio (SCM_FRACTION_DENOMINATOR (x),
4545 SCM_FRACTION_NUMERATOR (x));
4546 else
4547 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
4548 }
4549
4550 if (SCM_INUMP (x))
4551 {
4552 long xx = SCM_INUM (x);
4553 if (SCM_INUMP (y))
4554 {
4555 long yy = SCM_INUM (y);
4556 if (yy == 0)
4557 {
4558 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4559 scm_num_overflow (s_divide);
4560 #else
4561 return scm_make_real ((double) xx / (double) yy);
4562 #endif
4563 }
4564 else if (xx % yy != 0)
4565 {
4566 if (inexact)
4567 return scm_make_real ((double) xx / (double) yy);
4568 else return scm_make_ratio (x, y);
4569 }
4570 else
4571 {
4572 long z = xx / yy;
4573 if (SCM_FIXABLE (z))
4574 return SCM_MAKINUM (z);
4575 else
4576 return scm_i_long2big (z);
4577 }
4578 }
4579 else if (SCM_BIGP (y))
4580 {
4581 if (inexact)
4582 return scm_make_real ((double) xx / scm_i_big2dbl (y));
4583 else return scm_make_ratio (x, y);
4584 }
4585 else if (SCM_REALP (y))
4586 {
4587 double yy = SCM_REAL_VALUE (y);
4588 #ifndef ALLOW_DIVIDE_BY_ZERO
4589 if (yy == 0.0)
4590 scm_num_overflow (s_divide);
4591 else
4592 #endif
4593 return scm_make_real ((double) xx / yy);
4594 }
4595 else if (SCM_COMPLEXP (y))
4596 {
4597 a = xx;
4598 complex_div: /* y _must_ be a complex number */
4599 {
4600 double r = SCM_COMPLEX_REAL (y);
4601 double i = SCM_COMPLEX_IMAG (y);
4602 if (r <= i)
4603 {
4604 double t = r / i;
4605 double d = i * (1.0 + t * t);
4606 return scm_make_complex ((a * t) / d, -a / d);
4607 }
4608 else
4609 {
4610 double t = i / r;
4611 double d = r * (1.0 + t * t);
4612 return scm_make_complex (a / d, -(a * t) / d);
4613 }
4614 }
4615 }
4616 else if (SCM_FRACTIONP (y))
4617 /* a / b/c = ac / b */
4618 return scm_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4619 SCM_FRACTION_NUMERATOR (y));
4620 else
4621 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4622 }
4623 else if (SCM_BIGP (x))
4624 {
4625 if (SCM_INUMP (y))
4626 {
4627 long int yy = SCM_INUM (y);
4628 if (yy == 0)
4629 {
4630 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4631 scm_num_overflow (s_divide);
4632 #else
4633 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4634 scm_remember_upto_here_1 (x);
4635 return (sgn == 0) ? scm_nan () : scm_inf ();
4636 #endif
4637 }
4638 else if (yy == 1)
4639 return x;
4640 else
4641 {
4642 /* FIXME: HMM, what are the relative performance issues here?
4643 We need to test. Is it faster on average to test
4644 divisible_p, then perform whichever operation, or is it
4645 faster to perform the integer div opportunistically and
4646 switch to real if there's a remainder? For now we take the
4647 middle ground: test, then if divisible, use the faster div
4648 func. */
4649
4650 long abs_yy = yy < 0 ? -yy : yy;
4651 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
4652
4653 if (divisible_p)
4654 {
4655 SCM result = scm_i_mkbig ();
4656 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
4657 scm_remember_upto_here_1 (x);
4658 if (yy < 0)
4659 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4660 return scm_i_normbig (result);
4661 }
4662 else
4663 {
4664 if (inexact)
4665 return scm_make_real (scm_i_big2dbl (x) / (double) yy);
4666 else return scm_make_ratio (x, y);
4667 }
4668 }
4669 }
4670 else if (SCM_BIGP (y))
4671 {
4672 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
4673 if (y_is_zero)
4674 {
4675 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4676 scm_num_overflow (s_divide);
4677 #else
4678 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4679 scm_remember_upto_here_1 (x);
4680 return (sgn == 0) ? scm_nan () : scm_inf ();
4681 #endif
4682 }
4683 else
4684 {
4685 /* big_x / big_y */
4686 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
4687 SCM_I_BIG_MPZ (y));
4688 if (divisible_p)
4689 {
4690 SCM result = scm_i_mkbig ();
4691 mpz_divexact (SCM_I_BIG_MPZ (result),
4692 SCM_I_BIG_MPZ (x),
4693 SCM_I_BIG_MPZ (y));
4694 scm_remember_upto_here_2 (x, y);
4695 return scm_i_normbig (result);
4696 }
4697 else
4698 {
4699 if (inexact)
4700 {
4701 double dbx = mpz_get_d (SCM_I_BIG_MPZ (x));
4702 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4703 scm_remember_upto_here_2 (x, y);
4704 return scm_make_real (dbx / dby);
4705 }
4706 else return scm_make_ratio (x, y);
4707 }
4708 }
4709 }
4710 else if (SCM_REALP (y))
4711 {
4712 double yy = SCM_REAL_VALUE (y);
4713 #ifndef ALLOW_DIVIDE_BY_ZERO
4714 if (yy == 0.0)
4715 scm_num_overflow (s_divide);
4716 else
4717 #endif
4718 return scm_make_real (scm_i_big2dbl (x) / yy);
4719 }
4720 else if (SCM_COMPLEXP (y))
4721 {
4722 a = scm_i_big2dbl (x);
4723 goto complex_div;
4724 }
4725 else if (SCM_FRACTIONP (y))
4726 return scm_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4727 SCM_FRACTION_NUMERATOR (y));
4728 else
4729 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4730 }
4731 else if (SCM_REALP (x))
4732 {
4733 double rx = SCM_REAL_VALUE (x);
4734 if (SCM_INUMP (y))
4735 {
4736 long int yy = SCM_INUM (y);
4737 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4738 if (yy == 0)
4739 scm_num_overflow (s_divide);
4740 else
4741 #endif
4742 return scm_make_real (rx / (double) yy);
4743 }
4744 else if (SCM_BIGP (y))
4745 {
4746 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4747 scm_remember_upto_here_1 (y);
4748 return scm_make_real (rx / dby);
4749 }
4750 else if (SCM_REALP (y))
4751 {
4752 double yy = SCM_REAL_VALUE (y);
4753 #ifndef ALLOW_DIVIDE_BY_ZERO
4754 if (yy == 0.0)
4755 scm_num_overflow (s_divide);
4756 else
4757 #endif
4758 return scm_make_real (rx / yy);
4759 }
4760 else if (SCM_COMPLEXP (y))
4761 {
4762 a = rx;
4763 goto complex_div;
4764 }
4765 else if (SCM_FRACTIONP (y))
4766 return scm_make_real (rx / scm_i_fraction2double (y));
4767 else
4768 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4769 }
4770 else if (SCM_COMPLEXP (x))
4771 {
4772 double rx = SCM_COMPLEX_REAL (x);
4773 double ix = SCM_COMPLEX_IMAG (x);
4774 if (SCM_INUMP (y))
4775 {
4776 long int yy = SCM_INUM (y);
4777 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4778 if (yy == 0)
4779 scm_num_overflow (s_divide);
4780 else
4781 #endif
4782 {
4783 double d = yy;
4784 return scm_make_complex (rx / d, ix / d);
4785 }
4786 }
4787 else if (SCM_BIGP (y))
4788 {
4789 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4790 scm_remember_upto_here_1 (y);
4791 return scm_make_complex (rx / dby, ix / dby);
4792 }
4793 else if (SCM_REALP (y))
4794 {
4795 double yy = SCM_REAL_VALUE (y);
4796 #ifndef ALLOW_DIVIDE_BY_ZERO
4797 if (yy == 0.0)
4798 scm_num_overflow (s_divide);
4799 else
4800 #endif
4801 return scm_make_complex (rx / yy, ix / yy);
4802 }
4803 else if (SCM_COMPLEXP (y))
4804 {
4805 double ry = SCM_COMPLEX_REAL (y);
4806 double iy = SCM_COMPLEX_IMAG (y);
4807 if (ry <= iy)
4808 {
4809 double t = ry / iy;
4810 double d = iy * (1.0 + t * t);
4811 return scm_make_complex ((rx * t + ix) / d, (ix * t - rx) / d);
4812 }
4813 else
4814 {
4815 double t = iy / ry;
4816 double d = ry * (1.0 + t * t);
4817 return scm_make_complex ((rx + ix * t) / d, (ix - rx * t) / d);
4818 }
4819 }
4820 else if (SCM_FRACTIONP (y))
4821 {
4822 double yy = scm_i_fraction2double (y);
4823 return scm_make_complex (rx / yy, ix / yy);
4824 }
4825 else
4826 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4827 }
4828 else if (SCM_FRACTIONP (x))
4829 {
4830 if (SCM_INUMP (y))
4831 {
4832 long int yy = SCM_INUM (y);
4833 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4834 if (yy == 0)
4835 scm_num_overflow (s_divide);
4836 else
4837 #endif
4838 return scm_make_ratio (SCM_FRACTION_NUMERATOR (x),
4839 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4840 }
4841 else if (SCM_BIGP (y))
4842 {
4843 return scm_make_ratio (SCM_FRACTION_NUMERATOR (x),
4844 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4845 }
4846 else if (SCM_REALP (y))
4847 {
4848 double yy = SCM_REAL_VALUE (y);
4849 #ifndef ALLOW_DIVIDE_BY_ZERO
4850 if (yy == 0.0)
4851 scm_num_overflow (s_divide);
4852 else
4853 #endif
4854 return scm_make_real (scm_i_fraction2double (x) / yy);
4855 }
4856 else if (SCM_COMPLEXP (y))
4857 {
4858 a = scm_i_fraction2double (x);
4859 goto complex_div;
4860 }
4861 else if (SCM_FRACTIONP (y))
4862 return scm_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4863 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
4864 else
4865 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4866 }
4867 else
4868 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
4869 }
4870
4871 SCM
4872 scm_divide (SCM x, SCM y)
4873 {
4874 return scm_i_divide (x, y, 0);
4875 }
4876
4877 static SCM scm_divide2real (SCM x, SCM y)
4878 {
4879 return scm_i_divide (x, y, 1);
4880 }
4881 #undef FUNC_NAME
4882
4883
4884 double
4885 scm_asinh (double x)
4886 {
4887 #if HAVE_ASINH
4888 return asinh (x);
4889 #else
4890 #define asinh scm_asinh
4891 return log (x + sqrt (x * x + 1));
4892 #endif
4893 }
4894 SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
4895 /* "Return the inverse hyperbolic sine of @var{x}."
4896 */
4897
4898
4899 double
4900 scm_acosh (double x)
4901 {
4902 #if HAVE_ACOSH
4903 return acosh (x);
4904 #else
4905 #define acosh scm_acosh
4906 return log (x + sqrt (x * x - 1));
4907 #endif
4908 }
4909 SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
4910 /* "Return the inverse hyperbolic cosine of @var{x}."
4911 */
4912
4913
4914 double
4915 scm_atanh (double x)
4916 {
4917 #if HAVE_ATANH
4918 return atanh (x);
4919 #else
4920 #define atanh scm_atanh
4921 return 0.5 * log ((1 + x) / (1 - x));
4922 #endif
4923 }
4924 SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
4925 /* "Return the inverse hyperbolic tangent of @var{x}."
4926 */
4927
4928
4929 /* XXX - eventually, we should remove this definition of scm_round and
4930 rename scm_round_number to scm_round. Likewise for scm_truncate
4931 and scm_truncate_number.
4932 */
4933
4934 double
4935 scm_truncate (double x)
4936 {
4937 #if HAVE_TRUNC
4938 return trunc (x);
4939 #else
4940 if (x < 0.0)
4941 return -floor (-x);
4942 return floor (x);
4943 #endif
4944 }
4945
4946 /* scm_round is done using floor(x+0.5) to round to nearest and with
4947 half-way case (ie. when x is an integer plus 0.5) going upwards. Then
4948 half-way cases are identified and adjusted down if the round-upwards
4949 didn't give the desired even integer.
4950
4951 "plus_half == result" identifies a half-way case. If plus_half, which is
4952 x + 0.5, is an integer then x must be an integer plus 0.5.
4953
4954 An odd "result" value is identified with result/2 != floor(result/2).
4955 This is done with plus_half, since that value is ready for use sooner in
4956 a pipelined cpu, and we're already requiring plus_half == result.
4957
4958 Note however that we need to be careful when x is big and already an
4959 integer. In that case "x+0.5" may round to an adjacent integer, causing
4960 us to return such a value, incorrectly. For instance if the hardware is
4961 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
4962 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
4963 returned. Or if the hardware is in round-upwards mode, then other bigger
4964 values like say x == 2^128 will see x+0.5 rounding up to the next higher
4965 representable value, 2^128+2^76 (or whatever), again incorrect.
4966
4967 These bad roundings of x+0.5 are avoided by testing at the start whether
4968 x is already an integer. If it is then clearly that's the desired result
4969 already. And if it's not then the exponent must be small enough to allow
4970 an 0.5 to be represented, and hence added without a bad rounding. */
4971
4972 double
4973 scm_round (double x)
4974 {
4975 double plus_half, result;
4976
4977 if (x == floor (x))
4978 return x;
4979
4980 plus_half = x + 0.5;
4981 result = floor (plus_half);
4982 /* Adjust so that the scm_round is towards even. */
4983 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
4984 ? result - 1
4985 : result);
4986 }
4987
4988 SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
4989 (SCM x),
4990 "Round the number @var{x} towards zero.")
4991 #define FUNC_NAME s_scm_truncate_number
4992 {
4993 if (SCM_FALSEP (scm_negative_p (x)))
4994 return scm_floor (x);
4995 else
4996 return scm_ceiling (x);
4997 }
4998 #undef FUNC_NAME
4999
5000 static SCM exactly_one_half;
5001
5002 SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5003 (SCM x),
5004 "Round the number @var{x} towards the nearest integer. "
5005 "When it is exactly halfway between two integers, "
5006 "round towards the even one.")
5007 #define FUNC_NAME s_scm_round_number
5008 {
5009 if (SCM_INUMP (x) || SCM_BIGP (x))
5010 return x;
5011 else if (SCM_REALP (x))
5012 return scm_make_real (scm_round (SCM_REAL_VALUE (x)));
5013 else
5014 {
5015 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5016 single quotient+remainder division then examining to see which way
5017 the rounding should go. */
5018 SCM plus_half = scm_sum (x, exactly_one_half);
5019 SCM result = scm_floor (plus_half);
5020 /* Adjust so that the scm_round is towards even. */
5021 if (!SCM_FALSEP (scm_num_eq_p (plus_half, result))
5022 && !SCM_FALSEP (scm_odd_p (result)))
5023 return scm_difference (result, SCM_MAKINUM (1));
5024 else
5025 return result;
5026 }
5027 }
5028 #undef FUNC_NAME
5029
5030 SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5031 (SCM x),
5032 "Round the number @var{x} towards minus infinity.")
5033 #define FUNC_NAME s_scm_floor
5034 {
5035 if (SCM_INUMP (x) || SCM_BIGP (x))
5036 return x;
5037 else if (SCM_REALP (x))
5038 return scm_make_real (floor (SCM_REAL_VALUE (x)));
5039 else if (SCM_FRACTIONP (x))
5040 {
5041 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5042 SCM_FRACTION_DENOMINATOR (x));
5043 if (SCM_FALSEP (scm_negative_p (x)))
5044 {
5045 /* For positive x, rounding towards zero is correct. */
5046 return q;
5047 }
5048 else
5049 {
5050 /* For negative x, we need to return q-1 unless x is an
5051 integer. But fractions are never integer, per our
5052 assumptions. */
5053 return scm_difference (q, SCM_MAKINUM (1));
5054 }
5055 }
5056 else
5057 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5058 }
5059 #undef FUNC_NAME
5060
5061 SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5062 (SCM x),
5063 "Round the number @var{x} towards infinity.")
5064 #define FUNC_NAME s_scm_ceiling
5065 {
5066 if (SCM_INUMP (x) || SCM_BIGP (x))
5067 return x;
5068 else if (SCM_REALP (x))
5069 return scm_make_real (ceil (SCM_REAL_VALUE (x)));
5070 else if (SCM_FRACTIONP (x))
5071 {
5072 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5073 SCM_FRACTION_DENOMINATOR (x));
5074 if (SCM_FALSEP (scm_positive_p (x)))
5075 {
5076 /* For negative x, rounding towards zero is correct. */
5077 return q;
5078 }
5079 else
5080 {
5081 /* For positive x, we need to return q+1 unless x is an
5082 integer. But fractions are never integer, per our
5083 assumptions. */
5084 return scm_sum (q, SCM_MAKINUM (1));
5085 }
5086 }
5087 else
5088 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5089 }
5090 #undef FUNC_NAME
5091
5092 SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
5093 /* "Return the square root of the real number @var{x}."
5094 */
5095 SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
5096 /* "Return the absolute value of the real number @var{x}."
5097 */
5098 SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
5099 /* "Return the @var{x}th power of e."
5100 */
5101 SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
5102 /* "Return the natural logarithm of the real number @var{x}."
5103 */
5104 SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
5105 /* "Return the sine of the real number @var{x}."
5106 */
5107 SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
5108 /* "Return the cosine of the real number @var{x}."
5109 */
5110 SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
5111 /* "Return the tangent of the real number @var{x}."
5112 */
5113 SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
5114 /* "Return the arc sine of the real number @var{x}."
5115 */
5116 SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
5117 /* "Return the arc cosine of the real number @var{x}."
5118 */
5119 SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
5120 /* "Return the arc tangent of the real number @var{x}."
5121 */
5122 SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
5123 /* "Return the hyperbolic sine of the real number @var{x}."
5124 */
5125 SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
5126 /* "Return the hyperbolic cosine of the real number @var{x}."
5127 */
5128 SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
5129 /* "Return the hyperbolic tangent of the real number @var{x}."
5130 */
5131
5132 struct dpair
5133 {
5134 double x, y;
5135 };
5136
5137 static void scm_two_doubles (SCM x,
5138 SCM y,
5139 const char *sstring,
5140 struct dpair * xy);
5141
5142 static void
5143 scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
5144 {
5145 if (SCM_INUMP (x))
5146 xy->x = SCM_INUM (x);
5147 else if (SCM_BIGP (x))
5148 xy->x = scm_i_big2dbl (x);
5149 else if (SCM_REALP (x))
5150 xy->x = SCM_REAL_VALUE (x);
5151 else if (SCM_FRACTIONP (x))
5152 xy->x = scm_i_fraction2double (x);
5153 else
5154 scm_wrong_type_arg (sstring, SCM_ARG1, x);
5155
5156 if (SCM_INUMP (y))
5157 xy->y = SCM_INUM (y);
5158 else if (SCM_BIGP (y))
5159 xy->y = scm_i_big2dbl (y);
5160 else if (SCM_REALP (y))
5161 xy->y = SCM_REAL_VALUE (y);
5162 else if (SCM_FRACTIONP (y))
5163 xy->y = scm_i_fraction2double (y);
5164 else
5165 scm_wrong_type_arg (sstring, SCM_ARG2, y);
5166 }
5167
5168
5169 SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
5170 (SCM x, SCM y),
5171 "Return @var{x} raised to the power of @var{y}. This\n"
5172 "procedure does not accept complex arguments.")
5173 #define FUNC_NAME s_scm_sys_expt
5174 {
5175 struct dpair xy;
5176 scm_two_doubles (x, y, FUNC_NAME, &xy);
5177 return scm_make_real (pow (xy.x, xy.y));
5178 }
5179 #undef FUNC_NAME
5180
5181
5182 SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
5183 (SCM x, SCM y),
5184 "Return the arc tangent of the two arguments @var{x} and\n"
5185 "@var{y}. This is similar to calculating the arc tangent of\n"
5186 "@var{x} / @var{y}, except that the signs of both arguments\n"
5187 "are used to determine the quadrant of the result. This\n"
5188 "procedure does not accept complex arguments.")
5189 #define FUNC_NAME s_scm_sys_atan2
5190 {
5191 struct dpair xy;
5192 scm_two_doubles (x, y, FUNC_NAME, &xy);
5193 return scm_make_real (atan2 (xy.x, xy.y));
5194 }
5195 #undef FUNC_NAME
5196
5197
5198 SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
5199 (SCM real, SCM imaginary),
5200 "Return a complex number constructed of the given @var{real} and\n"
5201 "@var{imaginary} parts.")
5202 #define FUNC_NAME s_scm_make_rectangular
5203 {
5204 struct dpair xy;
5205 scm_two_doubles (real, imaginary, FUNC_NAME, &xy);
5206 return scm_make_complex (xy.x, xy.y);
5207 }
5208 #undef FUNC_NAME
5209
5210
5211
5212 SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
5213 (SCM x, SCM y),
5214 "Return the complex number @var{x} * e^(i * @var{y}).")
5215 #define FUNC_NAME s_scm_make_polar
5216 {
5217 struct dpair xy;
5218 double s, c;
5219 scm_two_doubles (x, y, FUNC_NAME, &xy);
5220 #if HAVE_SINCOS
5221 sincos (xy.y, &s, &c);
5222 #else
5223 s = sin (xy.y);
5224 c = cos (xy.y);
5225 #endif
5226 return scm_make_complex (xy.x * c, xy.x * s);
5227 }
5228 #undef FUNC_NAME
5229
5230
5231 SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
5232 /* "Return the real part of the number @var{z}."
5233 */
5234 SCM
5235 scm_real_part (SCM z)
5236 {
5237 if (SCM_INUMP (z))
5238 return z;
5239 else if (SCM_BIGP (z))
5240 return z;
5241 else if (SCM_REALP (z))
5242 return z;
5243 else if (SCM_COMPLEXP (z))
5244 return scm_make_real (SCM_COMPLEX_REAL (z));
5245 else if (SCM_FRACTIONP (z))
5246 return z;
5247 else
5248 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
5249 }
5250
5251
5252 SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
5253 /* "Return the imaginary part of the number @var{z}."
5254 */
5255 SCM
5256 scm_imag_part (SCM z)
5257 {
5258 if (SCM_INUMP (z))
5259 return SCM_INUM0;
5260 else if (SCM_BIGP (z))
5261 return SCM_INUM0;
5262 else if (SCM_REALP (z))
5263 return scm_flo0;
5264 else if (SCM_COMPLEXP (z))
5265 return scm_make_real (SCM_COMPLEX_IMAG (z));
5266 else if (SCM_FRACTIONP (z))
5267 return SCM_INUM0;
5268 else
5269 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
5270 }
5271
5272 SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5273 /* "Return the numerator of the number @var{z}."
5274 */
5275 SCM
5276 scm_numerator (SCM z)
5277 {
5278 if (SCM_INUMP (z))
5279 return z;
5280 else if (SCM_BIGP (z))
5281 return z;
5282 else if (SCM_FRACTIONP (z))
5283 {
5284 scm_i_fraction_reduce (z);
5285 return SCM_FRACTION_NUMERATOR (z);
5286 }
5287 else if (SCM_REALP (z))
5288 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5289 else
5290 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5291 }
5292
5293
5294 SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5295 /* "Return the denominator of the number @var{z}."
5296 */
5297 SCM
5298 scm_denominator (SCM z)
5299 {
5300 if (SCM_INUMP (z))
5301 return SCM_MAKINUM (1);
5302 else if (SCM_BIGP (z))
5303 return SCM_MAKINUM (1);
5304 else if (SCM_FRACTIONP (z))
5305 {
5306 scm_i_fraction_reduce (z);
5307 return SCM_FRACTION_DENOMINATOR (z);
5308 }
5309 else if (SCM_REALP (z))
5310 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5311 else
5312 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5313 }
5314
5315 SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
5316 /* "Return the magnitude of the number @var{z}. This is the same as\n"
5317 * "@code{abs} for real arguments, but also allows complex numbers."
5318 */
5319 SCM
5320 scm_magnitude (SCM z)
5321 {
5322 if (SCM_INUMP (z))
5323 {
5324 long int zz = SCM_INUM (z);
5325 if (zz >= 0)
5326 return z;
5327 else if (SCM_POSFIXABLE (-zz))
5328 return SCM_MAKINUM (-zz);
5329 else
5330 return scm_i_long2big (-zz);
5331 }
5332 else if (SCM_BIGP (z))
5333 {
5334 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5335 scm_remember_upto_here_1 (z);
5336 if (sgn < 0)
5337 return scm_i_clonebig (z, 0);
5338 else
5339 return z;
5340 }
5341 else if (SCM_REALP (z))
5342 return scm_make_real (fabs (SCM_REAL_VALUE (z)));
5343 else if (SCM_COMPLEXP (z))
5344 return scm_make_real (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
5345 else if (SCM_FRACTIONP (z))
5346 {
5347 if (SCM_FALSEP (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5348 return z;
5349 return scm_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
5350 SCM_FRACTION_DENOMINATOR (z));
5351 }
5352 else
5353 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
5354 }
5355
5356
5357 SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
5358 /* "Return the angle of the complex number @var{z}."
5359 */
5360 SCM
5361 scm_angle (SCM z)
5362 {
5363 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
5364 scm_flo0 to save allocating a new flonum with scm_make_real each time.
5365 But if atan2 follows the floating point rounding mode, then the value
5366 is not a constant. Maybe it'd be close enough though. */
5367 if (SCM_INUMP (z))
5368 {
5369 if (SCM_INUM (z) >= 0)
5370 return scm_flo0;
5371 else
5372 return scm_make_real (atan2 (0.0, -1.0));
5373 }
5374 else if (SCM_BIGP (z))
5375 {
5376 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5377 scm_remember_upto_here_1 (z);
5378 if (sgn < 0)
5379 return scm_make_real (atan2 (0.0, -1.0));
5380 else
5381 return scm_flo0;
5382 }
5383 else if (SCM_REALP (z))
5384 {
5385 if (SCM_REAL_VALUE (z) >= 0)
5386 return scm_flo0;
5387 else
5388 return scm_make_real (atan2 (0.0, -1.0));
5389 }
5390 else if (SCM_COMPLEXP (z))
5391 return scm_make_real (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
5392 else if (SCM_FRACTIONP (z))
5393 {
5394 if (SCM_FALSEP (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5395 return scm_flo0;
5396 else return scm_make_real (atan2 (0.0, -1.0));
5397 }
5398 else
5399 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
5400 }
5401
5402
5403 SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5404 /* Convert the number @var{x} to its inexact representation.\n"
5405 */
5406 SCM
5407 scm_exact_to_inexact (SCM z)
5408 {
5409 if (SCM_INUMP (z))
5410 return scm_make_real ((double) SCM_INUM (z));
5411 else if (SCM_BIGP (z))
5412 return scm_make_real (scm_i_big2dbl (z));
5413 else if (SCM_FRACTIONP (z))
5414 return scm_make_real (scm_i_fraction2double (z));
5415 else if (SCM_INEXACTP (z))
5416 return z;
5417 else
5418 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5419 }
5420
5421
5422 SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
5423 (SCM z),
5424 "Return an exact number that is numerically closest to @var{z}.")
5425 #define FUNC_NAME s_scm_inexact_to_exact
5426 {
5427 if (SCM_INUMP (z))
5428 return z;
5429 else if (SCM_BIGP (z))
5430 return z;
5431 else if (SCM_REALP (z))
5432 {
5433 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5434 SCM_OUT_OF_RANGE (1, z);
5435 else
5436 {
5437 mpq_t frac;
5438 SCM q;
5439
5440 mpq_init (frac);
5441 mpq_set_d (frac, SCM_REAL_VALUE (z));
5442 q = scm_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
5443 scm_i_mpz2num (mpq_denref (frac)));
5444
5445 /* When scm_make_ratio throws, we leak the memory allocated
5446 for frac...
5447 */
5448 mpq_clear (frac);
5449 return q;
5450 }
5451 }
5452 else if (SCM_FRACTIONP (z))
5453 return z;
5454 else
5455 SCM_WRONG_TYPE_ARG (1, z);
5456 }
5457 #undef FUNC_NAME
5458
5459 SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
5460 (SCM x, SCM err),
5461 "Return an exact number that is within @var{err} of @var{x}.")
5462 #define FUNC_NAME s_scm_rationalize
5463 {
5464 if (SCM_INUMP (x))
5465 return x;
5466 else if (SCM_BIGP (x))
5467 return x;
5468 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
5469 {
5470 /* Use continued fractions to find closest ratio. All
5471 arithmetic is done with exact numbers.
5472 */
5473
5474 SCM ex = scm_inexact_to_exact (x);
5475 SCM int_part = scm_floor (ex);
5476 SCM tt = SCM_MAKINUM (1);
5477 SCM a1 = SCM_MAKINUM (0), a2 = SCM_MAKINUM (1), a = SCM_MAKINUM (0);
5478 SCM b1 = SCM_MAKINUM (1), b2 = SCM_MAKINUM (0), b = SCM_MAKINUM (0);
5479 SCM rx;
5480 int i = 0;
5481
5482 if (!SCM_FALSEP (scm_num_eq_p (ex, int_part)))
5483 return ex;
5484
5485 ex = scm_difference (ex, int_part); /* x = x-int_part */
5486 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
5487
5488 /* We stop after a million iterations just to be absolutely sure
5489 that we don't go into an infinite loop. The process normally
5490 converges after less than a dozen iterations.
5491 */
5492
5493 err = scm_abs (err);
5494 while (++i < 1000000)
5495 {
5496 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
5497 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
5498 if (SCM_FALSEP (scm_zero_p (b)) && /* b != 0 */
5499 SCM_FALSEP
5500 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
5501 err))) /* abs(x-a/b) <= err */
5502 {
5503 SCM res = scm_sum (int_part, scm_divide (a, b));
5504 if (SCM_FALSEP (scm_exact_p (x))
5505 || SCM_FALSEP (scm_exact_p (err)))
5506 return scm_exact_to_inexact (res);
5507 else
5508 return res;
5509 }
5510 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
5511 SCM_UNDEFINED);
5512 tt = scm_floor (rx); /* tt = floor (rx) */
5513 a2 = a1;
5514 b2 = b1;
5515 a1 = a;
5516 b1 = b;
5517 }
5518 scm_num_overflow (s_scm_rationalize);
5519 }
5520 else
5521 SCM_WRONG_TYPE_ARG (1, x);
5522 }
5523 #undef FUNC_NAME
5524
5525 /* if you need to change this, change test-num2integral.c as well */
5526 #if SCM_SIZEOF_LONG_LONG != 0
5527 # ifndef LLONG_MAX
5528 # define ULLONG_MAX ((unsigned long long) (-1))
5529 # define LLONG_MAX ((long long) (ULLONG_MAX >> 1))
5530 # define LLONG_MIN (~LLONG_MAX)
5531 # endif
5532 #endif
5533
5534 /* Parameters for creating integer conversion routines.
5535
5536 Define the following preprocessor macros before including
5537 "libguile/num2integral.i.c":
5538
5539 NUM2INTEGRAL - the name of the function for converting from a
5540 Scheme object to the integral type. This function will be
5541 defined when including "num2integral.i.c".
5542
5543 INTEGRAL2NUM - the name of the function for converting from the
5544 integral type to a Scheme object. This function will be defined.
5545
5546 INTEGRAL2BIG - the name of an internal function that createas a
5547 bignum from the integral type. This function will be defined.
5548 The name should start with "scm_i_".
5549
5550 ITYPE - the name of the integral type.
5551
5552 UNSIGNED - Define this to 1 when ITYPE is an unsigned type. Define
5553 it to 0 otherwise.
5554
5555 UNSIGNED_ITYPE - the name of the the unsigned variant of the
5556 integral type. If you don't define this, it defaults to
5557 "unsigned ITYPE" for signed types and simply "ITYPE" for unsigned
5558 ones.
5559
5560 SIZEOF_ITYPE - an expression giving the size of the integral type
5561 in bytes. This expression must be computable by the
5562 preprocessor. (SIZEOF_FOO values are calculated by configure.in
5563 for common types).
5564
5565 */
5566
5567 #define NUM2INTEGRAL scm_num2short
5568 #define INTEGRAL2NUM scm_short2num
5569 #define INTEGRAL2BIG scm_i_short2big
5570 #define UNSIGNED 0
5571 #define ITYPE short
5572 #define SIZEOF_ITYPE SIZEOF_SHORT
5573 #include "libguile/num2integral.i.c"
5574
5575 #define NUM2INTEGRAL scm_num2ushort
5576 #define INTEGRAL2NUM scm_ushort2num
5577 #define INTEGRAL2BIG scm_i_ushort2big
5578 #define UNSIGNED 1
5579 #define ITYPE unsigned short
5580 #define SIZEOF_ITYPE SIZEOF_UNSIGNED_SHORT
5581 #include "libguile/num2integral.i.c"
5582
5583 #define NUM2INTEGRAL scm_num2int
5584 #define INTEGRAL2NUM scm_int2num
5585 #define INTEGRAL2BIG scm_i_int2big
5586 #define UNSIGNED 0
5587 #define ITYPE int
5588 #define SIZEOF_ITYPE SIZEOF_INT
5589 #include "libguile/num2integral.i.c"
5590
5591 #define NUM2INTEGRAL scm_num2uint
5592 #define INTEGRAL2NUM scm_uint2num
5593 #define INTEGRAL2BIG scm_i_uint2big
5594 #define UNSIGNED 1
5595 #define ITYPE unsigned int
5596 #define SIZEOF_ITYPE SIZEOF_UNSIGNED_INT
5597 #include "libguile/num2integral.i.c"
5598
5599 #define NUM2INTEGRAL scm_num2long
5600 #define INTEGRAL2NUM scm_long2num
5601 #define INTEGRAL2BIG scm_i_long2big
5602 #define UNSIGNED 0
5603 #define ITYPE long
5604 #define SIZEOF_ITYPE SIZEOF_LONG
5605 #include "libguile/num2integral.i.c"
5606
5607 #define NUM2INTEGRAL scm_num2ulong
5608 #define INTEGRAL2NUM scm_ulong2num
5609 #define INTEGRAL2BIG scm_i_ulong2big
5610 #define UNSIGNED 1
5611 #define ITYPE unsigned long
5612 #define SIZEOF_ITYPE SIZEOF_UNSIGNED_LONG
5613 #include "libguile/num2integral.i.c"
5614
5615 #define NUM2INTEGRAL scm_num2ptrdiff
5616 #define INTEGRAL2NUM scm_ptrdiff2num
5617 #define INTEGRAL2BIG scm_i_ptrdiff2big
5618 #define UNSIGNED 0
5619 #define ITYPE scm_t_ptrdiff
5620 #define UNSIGNED_ITYPE size_t
5621 #define SIZEOF_ITYPE SCM_SIZEOF_SCM_T_PTRDIFF
5622 #include "libguile/num2integral.i.c"
5623
5624 #define NUM2INTEGRAL scm_num2size
5625 #define INTEGRAL2NUM scm_size2num
5626 #define INTEGRAL2BIG scm_i_size2big
5627 #define UNSIGNED 1
5628 #define ITYPE size_t
5629 #define SIZEOF_ITYPE SIZEOF_SIZE_T
5630 #include "libguile/num2integral.i.c"
5631
5632 #if SCM_SIZEOF_LONG_LONG != 0
5633
5634 #ifndef ULONG_LONG_MAX
5635 #define ULONG_LONG_MAX (~0ULL)
5636 #endif
5637
5638 #define NUM2INTEGRAL scm_num2long_long
5639 #define INTEGRAL2NUM scm_long_long2num
5640 #define INTEGRAL2BIG scm_i_long_long2big
5641 #define UNSIGNED 0
5642 #define ITYPE long long
5643 #define SIZEOF_ITYPE SIZEOF_LONG_LONG
5644 #include "libguile/num2integral.i.c"
5645
5646 #define NUM2INTEGRAL scm_num2ulong_long
5647 #define INTEGRAL2NUM scm_ulong_long2num
5648 #define INTEGRAL2BIG scm_i_ulong_long2big
5649 #define UNSIGNED 1
5650 #define ITYPE unsigned long long
5651 #define SIZEOF_ITYPE SIZEOF_UNSIGNED_LONG_LONG
5652 #include "libguile/num2integral.i.c"
5653
5654 #endif /* SCM_SIZEOF_LONG_LONG != 0 */
5655
5656 #define NUM2FLOAT scm_num2float
5657 #define FLOAT2NUM scm_float2num
5658 #define FTYPE float
5659 #include "libguile/num2float.i.c"
5660
5661 #define NUM2FLOAT scm_num2double
5662 #define FLOAT2NUM scm_double2num
5663 #define FTYPE double
5664 #include "libguile/num2float.i.c"
5665
5666 #ifdef GUILE_DEBUG
5667
5668 #ifndef SIZE_MAX
5669 #define SIZE_MAX ((size_t) (-1))
5670 #endif
5671 #ifndef PTRDIFF_MIN
5672 #define PTRDIFF_MIN \
5673 ((scm_t_ptrdiff) ((scm_t_ptrdiff) 1 \
5674 << ((sizeof (scm_t_ptrdiff) * SCM_CHAR_BIT) - 1)))
5675 #endif
5676 #ifndef PTRDIFF_MAX
5677 #define PTRDIFF_MAX (~ PTRDIFF_MIN)
5678 #endif
5679
5680 #define CHECK(type, v) \
5681 do \
5682 { \
5683 if ((v) != scm_num2##type (scm_##type##2num (v), 1, "check_sanity")) \
5684 abort (); \
5685 } \
5686 while (0)
5687
5688 static void
5689 check_sanity ()
5690 {
5691 CHECK (short, 0);
5692 CHECK (ushort, 0U);
5693 CHECK (int, 0);
5694 CHECK (uint, 0U);
5695 CHECK (long, 0L);
5696 CHECK (ulong, 0UL);
5697 CHECK (size, 0);
5698 CHECK (ptrdiff, 0);
5699
5700 CHECK (short, -1);
5701 CHECK (int, -1);
5702 CHECK (long, -1L);
5703 CHECK (ptrdiff, -1);
5704
5705 CHECK (short, SHRT_MAX);
5706 CHECK (short, SHRT_MIN);
5707 CHECK (ushort, USHRT_MAX);
5708 CHECK (int, INT_MAX);
5709 CHECK (int, INT_MIN);
5710 CHECK (uint, UINT_MAX);
5711 CHECK (long, LONG_MAX);
5712 CHECK (long, LONG_MIN);
5713 CHECK (ulong, ULONG_MAX);
5714 CHECK (size, SIZE_MAX);
5715 CHECK (ptrdiff, PTRDIFF_MAX);
5716 CHECK (ptrdiff, PTRDIFF_MIN);
5717
5718 #if SCM_SIZEOF_LONG_LONG != 0
5719 CHECK (long_long, 0LL);
5720 CHECK (ulong_long, 0ULL);
5721 CHECK (long_long, -1LL);
5722 CHECK (long_long, LLONG_MAX);
5723 CHECK (long_long, LLONG_MIN);
5724 CHECK (ulong_long, ULLONG_MAX);
5725 #endif
5726 }
5727
5728 #undef CHECK
5729
5730 #define CHECK \
5731 scm_internal_catch (SCM_BOOL_T, check_body, &data, check_handler, &data); \
5732 if (!SCM_FALSEP (data)) abort();
5733
5734 static SCM
5735 check_body (void *data)
5736 {
5737 SCM num = *(SCM *) data;
5738 scm_num2ulong (num, 1, NULL);
5739
5740 return SCM_UNSPECIFIED;
5741 }
5742
5743 static SCM
5744 check_handler (void *data, SCM tag, SCM throw_args)
5745 {
5746 SCM *num = (SCM *) data;
5747 *num = SCM_BOOL_F;
5748
5749 return SCM_UNSPECIFIED;
5750 }
5751
5752 SCM_DEFINE (scm_sys_check_number_conversions, "%check-number-conversions", 0, 0, 0,
5753 (void),
5754 "Number conversion sanity checking.")
5755 #define FUNC_NAME s_scm_sys_check_number_conversions
5756 {
5757 SCM data = SCM_MAKINUM (-1);
5758 CHECK;
5759 data = scm_int2num (INT_MIN);
5760 CHECK;
5761 data = scm_ulong2num (ULONG_MAX);
5762 data = scm_difference (SCM_INUM0, data);
5763 CHECK;
5764 data = scm_ulong2num (ULONG_MAX);
5765 data = scm_sum (SCM_MAKINUM (1), data); data = scm_difference (SCM_INUM0, data);
5766 CHECK;
5767 data = scm_int2num (-10000); data = scm_product (data, data); data = scm_product (data, data);
5768 CHECK;
5769
5770 return SCM_UNSPECIFIED;
5771 }
5772 #undef FUNC_NAME
5773
5774 #endif
5775
5776 void
5777 scm_init_numbers ()
5778 {
5779 int i;
5780
5781 mpz_init_set_si (z_negative_one, -1);
5782
5783 /* It may be possible to tune the performance of some algorithms by using
5784 * the following constants to avoid the creation of bignums. Please, before
5785 * using these values, remember the two rules of program optimization:
5786 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
5787 scm_c_define ("most-positive-fixnum",
5788 SCM_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
5789 scm_c_define ("most-negative-fixnum",
5790 SCM_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
5791
5792 scm_add_feature ("complex");
5793 scm_add_feature ("inexact");
5794 scm_flo0 = scm_make_real (0.0);
5795
5796 /* determine floating point precision */
5797 for(i=2; i <= SCM_MAX_DBL_RADIX; ++i)
5798 {
5799 init_dblprec(&scm_dblprec[i-2],i);
5800 init_fx_radix(fx_per_radix[i-2],i);
5801 }
5802 #ifdef DBL_DIG
5803 /* hard code precision for base 10 if the preprocessor tells us to... */
5804 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
5805 #endif
5806
5807 #ifdef GUILE_DEBUG
5808 check_sanity ();
5809 #endif
5810
5811 exactly_one_half = scm_permanent_object (scm_divide (SCM_MAKINUM (1),
5812 SCM_MAKINUM (2)));
5813 #include "libguile/numbers.x"
5814 }
5815
5816 /*
5817 Local Variables:
5818 c-file-style: "gnu"
5819 End:
5820 */