Improve correctness and consistency of 'eval-when' usage.
[bpt/guile.git] / module / language / tree-il / fix-letrec.scm
1 ;;; transformation of letrec into simpler forms
2
3 ;; Copyright (C) 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4
5 ;;;; This library is free software; you can redistribute it and/or
6 ;;;; modify it under the terms of the GNU Lesser General Public
7 ;;;; License as published by the Free Software Foundation; either
8 ;;;; version 3 of the License, or (at your option) any later version.
9 ;;;;
10 ;;;; This library is distributed in the hope that it will be useful,
11 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 ;;;; Lesser General Public License for more details.
14 ;;;;
15 ;;;; You should have received a copy of the GNU Lesser General Public
16 ;;;; License along with this library; if not, write to the Free Software
17 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18
19 (define-module (language tree-il fix-letrec)
20 #:use-module (system base syntax)
21 #:use-module (srfi srfi-1)
22 #:use-module (srfi srfi-11)
23 #:use-module (language tree-il)
24 #:use-module (language tree-il effects)
25 #:export (fix-letrec!))
26
27 ;; For a detailed discussion, see "Fixing Letrec: A Faithful Yet
28 ;; Efficient Implementation of Scheme's Recursive Binding Construct", by
29 ;; Oscar Waddell, Dipanwita Sarkar, and R. Kent Dybvig.
30
31 (define fix-fold
32 (make-tree-il-folder unref ref set simple lambda complex))
33
34 (define (simple-expression? x bound-vars simple-primcall?)
35 (record-case x
36 ((<void>) #t)
37 ((<const>) #t)
38 ((<lexical-ref> gensym)
39 (not (memq gensym bound-vars)))
40 ((<conditional> test consequent alternate)
41 (and (simple-expression? test bound-vars simple-primcall?)
42 (simple-expression? consequent bound-vars simple-primcall?)
43 (simple-expression? alternate bound-vars simple-primcall?)))
44 ((<sequence> exps)
45 (and-map (lambda (x) (simple-expression? x bound-vars simple-primcall?))
46 exps))
47 ((<application> proc args)
48 (and (primitive-ref? proc)
49 (simple-primcall? x)
50 (and-map (lambda (x)
51 (simple-expression? x bound-vars simple-primcall?))
52 args)))
53 (else #f)))
54
55 (define (partition-vars x)
56 (let-values
57 (((unref ref set simple lambda* complex)
58 (fix-fold x
59 (lambda (x unref ref set simple lambda* complex)
60 (record-case x
61 ((<lexical-ref> gensym)
62 (values (delq gensym unref)
63 (lset-adjoin eq? ref gensym)
64 set
65 simple
66 lambda*
67 complex))
68 ((<lexical-set> gensym)
69 (values unref
70 ref
71 (lset-adjoin eq? set gensym)
72 simple
73 lambda*
74 complex))
75 ((<letrec> gensyms)
76 (values (append gensyms unref)
77 ref
78 set
79 simple
80 lambda*
81 complex))
82 ((<let> gensyms)
83 (values (append gensyms unref)
84 ref
85 set
86 simple
87 lambda*
88 complex))
89 (else
90 (values unref ref set simple lambda* complex))))
91 (lambda (x unref ref set simple lambda* complex)
92 (record-case x
93 ((<letrec> in-order? (orig-gensyms gensyms) vals)
94 (define compute-effects
95 (make-effects-analyzer (lambda (x) (memq x set))))
96 (define (effect-free-primcall? x)
97 (let ((effects (compute-effects x)))
98 (effect-free?
99 (exclude-effects effects (logior &allocation
100 &type-check)))))
101 (define (effect+exception-free-primcall? x)
102 (let ((effects (compute-effects x)))
103 (effect-free?
104 (exclude-effects effects &allocation))))
105 (let lp ((gensyms orig-gensyms) (vals vals)
106 (s '()) (l '()) (c '()))
107 (cond
108 ((null? gensyms)
109 ;; Unreferenced complex vars are still
110 ;; complex for letrec*. We need to update
111 ;; our algorithm to "Fixing letrec reloaded"
112 ;; to fix this.
113 (values (if in-order?
114 (lset-difference eq? unref c)
115 unref)
116 ref
117 set
118 (append s simple)
119 (append l lambda*)
120 (append c complex)))
121 ((memq (car gensyms) unref)
122 ;; See above note about unref and letrec*.
123 (if (and in-order?
124 (not (lambda? (car vals)))
125 (not (simple-expression?
126 (car vals) orig-gensyms
127 effect+exception-free-primcall?)))
128 (lp (cdr gensyms) (cdr vals)
129 s l (cons (car gensyms) c))
130 (lp (cdr gensyms) (cdr vals)
131 s l c)))
132 ((memq (car gensyms) set)
133 (lp (cdr gensyms) (cdr vals)
134 s l (cons (car gensyms) c)))
135 ((lambda? (car vals))
136 (lp (cdr gensyms) (cdr vals)
137 s (cons (car gensyms) l) c))
138 ((simple-expression?
139 (car vals) orig-gensyms
140 (if in-order?
141 effect+exception-free-primcall?
142 effect-free-primcall?))
143 ;; For letrec*, we can't consider e.g. `car' to be
144 ;; "simple", as it could raise an exception. Hence
145 ;; effect+exception-free-primitive? above.
146 (lp (cdr gensyms) (cdr vals)
147 (cons (car gensyms) s) l c))
148 (else
149 (lp (cdr gensyms) (cdr vals)
150 s l (cons (car gensyms) c))))))
151 ((<let> (orig-gensyms gensyms) vals)
152 ;; The point is to compile let-bound lambdas as
153 ;; efficiently as we do letrec-bound lambdas, so
154 ;; we use the same algorithm for analyzing the
155 ;; gensyms. There is no problem recursing into the
156 ;; bindings after the let, because all variables
157 ;; have been renamed.
158 (let lp ((gensyms orig-gensyms) (vals vals)
159 (s '()) (l '()) (c '()))
160 (cond
161 ((null? gensyms)
162 (values unref
163 ref
164 set
165 (append s simple)
166 (append l lambda*)
167 (append c complex)))
168 ((memq (car gensyms) unref)
169 (lp (cdr gensyms) (cdr vals)
170 s l c))
171 ((memq (car gensyms) set)
172 (lp (cdr gensyms) (cdr vals)
173 s l (cons (car gensyms) c)))
174 ((and (lambda? (car vals))
175 (not (memq (car gensyms) set)))
176 (lp (cdr gensyms) (cdr vals)
177 s (cons (car gensyms) l) c))
178 ;; There is no difference between simple and
179 ;; complex, for the purposes of let. Just lump
180 ;; them all into complex.
181 (else
182 (lp (cdr gensyms) (cdr vals)
183 s l (cons (car gensyms) c))))))
184 (else
185 (values unref ref set simple lambda* complex))))
186 '()
187 '()
188 '()
189 '()
190 '()
191 '())))
192 (values unref simple lambda* complex)))
193
194 (define (make-sequence* src exps)
195 (let lp ((in exps) (out '()))
196 (if (null? (cdr in))
197 (if (null? out)
198 (car in)
199 (make-sequence src (reverse (cons (car in) out))))
200 (let ((head (car in)))
201 (record-case head
202 ((<lambda>) (lp (cdr in) out))
203 ((<const>) (lp (cdr in) out))
204 ((<lexical-ref>) (lp (cdr in) out))
205 ((<void>) (lp (cdr in) out))
206 (else (lp (cdr in) (cons head out))))))))
207
208 (define (fix-letrec! x)
209 (let-values (((unref simple lambda* complex) (partition-vars x)))
210 (post-order!
211 (lambda (x)
212 (record-case x
213
214 ;; Sets to unreferenced variables may be replaced by their
215 ;; expression, called for effect.
216 ((<lexical-set> gensym exp)
217 (if (memq gensym unref)
218 (make-sequence* #f (list exp (make-void #f)))
219 x))
220
221 ((<letrec> src in-order? names gensyms vals body)
222 (let ((binds (map list gensyms names vals)))
223 ;; The bindings returned by this function need to appear in the same
224 ;; order that they appear in the letrec.
225 (define (lookup set)
226 (let lp ((binds binds))
227 (cond
228 ((null? binds) '())
229 ((memq (caar binds) set)
230 (cons (car binds) (lp (cdr binds))))
231 (else (lp (cdr binds))))))
232 (let ((u (lookup unref))
233 (s (lookup simple))
234 (l (lookup lambda*))
235 (c (lookup complex)))
236 ;; Bind "simple" bindings, and locations for complex
237 ;; bindings.
238 (make-let
239 src
240 (append (map cadr s) (map cadr c))
241 (append (map car s) (map car c))
242 (append (map caddr s) (map (lambda (x) (make-void #f)) c))
243 ;; Bind lambdas using the fixpoint operator.
244 (make-fix
245 src (map cadr l) (map car l) (map caddr l)
246 (make-sequence*
247 src
248 (append
249 ;; The right-hand-sides of the unreferenced
250 ;; bindings, for effect.
251 (map caddr u)
252 (cond
253 ((null? c)
254 ;; No complex bindings, just emit the body.
255 (list body))
256 (in-order?
257 ;; For letrec*, assign complex bindings in order, then the
258 ;; body.
259 (append
260 (map (lambda (c)
261 (make-lexical-set #f (cadr c) (car c)
262 (caddr c)))
263 c)
264 (list body)))
265 (else
266 ;; Otherwise for plain letrec, evaluate the "complex"
267 ;; bindings, in a `let' to indicate that order doesn't
268 ;; matter, and bind to their variables.
269 (list
270 (let ((tmps (map (lambda (x) (gensym)) c)))
271 (make-let
272 #f (map cadr c) tmps (map caddr c)
273 (make-sequence
274 #f
275 (map (lambda (x tmp)
276 (make-lexical-set
277 #f (cadr x) (car x)
278 (make-lexical-ref #f (cadr x) tmp)))
279 c tmps))))
280 body))))))))))
281
282 ((<let> src names gensyms vals body)
283 (let ((binds (map list gensyms names vals)))
284 (define (lookup set)
285 (map (lambda (v) (assq v binds))
286 (lset-intersection eq? gensyms set)))
287 (let ((u (lookup unref))
288 (l (lookup lambda*))
289 (c (lookup complex)))
290 (make-sequence*
291 src
292 (append
293 ;; unreferenced bindings, called for effect.
294 (map caddr u)
295 (list
296 ;; unassigned lambdas use fix.
297 (make-fix src (map cadr l) (map car l) (map caddr l)
298 ;; and the "complex" bindings.
299 (make-let src (map cadr c) (map car c) (map caddr c)
300 body))))))))
301
302 (else x)))
303 x)))
304
305 ;;; Local Variables:
306 ;;; eval: (put 'record-case 'scheme-indent-function 1)
307 ;;; End: