* api-evaluation.texi (Loading): Document custom reader.
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 2.1 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;;; {Features}
37 ;;;
38
39 (define (provide sym)
40 (if (not (memq sym *features*))
41 (set! *features* (cons sym *features*))))
42
43 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
44 ;; provided? also checks to see if the module is available. We should do that
45 ;; too, but don't.
46
47 (define (provided? feature)
48 (and (memq feature *features*) #t))
49
50 ;; let format alias simple-format until the more complete version is loaded
51
52 (define format simple-format)
53
54 ;; this is scheme wrapping the C code so the final pred call is a tail call,
55 ;; per SRFI-13 spec
56 (define (string-any char_pred s . rest)
57 (let ((start (if (null? rest)
58 0 (car rest)))
59 (end (if (or (null? rest) (null? (cdr rest)))
60 (string-length s) (cadr rest))))
61 (if (and (procedure? char_pred)
62 (> end start)
63 (<= end (string-length s))) ;; let c-code handle range error
64 (or (string-any-c-code char_pred s start (1- end))
65 (char_pred (string-ref s (1- end))))
66 (string-any-c-code char_pred s start end))))
67
68 ;; this is scheme wrapping the C code so the final pred call is a tail call,
69 ;; per SRFI-13 spec
70 (define (string-every char_pred s . rest)
71 (let ((start (if (null? rest)
72 0 (car rest)))
73 (end (if (or (null? rest) (null? (cdr rest)))
74 (string-length s) (cadr rest))))
75 (if (and (procedure? char_pred)
76 (> end start)
77 (<= end (string-length s))) ;; let c-code handle range error
78 (and (string-every-c-code char_pred s start (1- end))
79 (char_pred (string-ref s (1- end))))
80 (string-every-c-code char_pred s start end))))
81
82 ;; A variant of string-fill! that we keep for compatability
83 ;;
84 (define (substring-fill! str start end fill)
85 (string-fill! str fill start end))
86
87 \f
88
89 ;;; {EVAL-CASE}
90 ;;;
91
92 ;; (eval-case ((situation*) forms)* (else forms)?)
93 ;;
94 ;; Evaluate certain code based on the situation that eval-case is used
95 ;; in. The only defined situation right now is `load-toplevel' which
96 ;; triggers for code evaluated at the top-level, for example from the
97 ;; REPL or when loading a file.
98
99 (define eval-case
100 (procedure->memoizing-macro
101 (lambda (exp env)
102 (define (toplevel-env? env)
103 (or (not (pair? env)) (not (pair? (car env)))))
104 (define (syntax)
105 (error "syntax error in eval-case"))
106 (let loop ((clauses (cdr exp)))
107 (cond
108 ((null? clauses)
109 #f)
110 ((not (list? (car clauses)))
111 (syntax))
112 ((eq? 'else (caar clauses))
113 (or (null? (cdr clauses))
114 (syntax))
115 (cons 'begin (cdar clauses)))
116 ((not (list? (caar clauses)))
117 (syntax))
118 ((and (toplevel-env? env)
119 (memq 'load-toplevel (caar clauses)))
120 (cons 'begin (cdar clauses)))
121 (else
122 (loop (cdr clauses))))))))
123
124 \f
125
126 ;;; {Defmacros}
127 ;;;
128 ;;; Depends on: features, eval-case
129 ;;;
130
131 (define macro-table (make-weak-key-hash-table 61))
132 (define xformer-table (make-weak-key-hash-table 61))
133
134 (define (defmacro? m) (hashq-ref macro-table m))
135 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
136 (define (defmacro-transformer m) (hashq-ref xformer-table m))
137 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
138
139 (define defmacro:transformer
140 (lambda (f)
141 (let* ((xform (lambda (exp env)
142 (copy-tree (apply f (cdr exp)))))
143 (a (procedure->memoizing-macro xform)))
144 (assert-defmacro?! a)
145 (set-defmacro-transformer! a f)
146 a)))
147
148
149 (define defmacro
150 (let ((defmacro-transformer
151 (lambda (name parms . body)
152 (let ((transformer `(lambda ,parms ,@body)))
153 `(eval-case
154 ((load-toplevel)
155 (define ,name (defmacro:transformer ,transformer)))
156 (else
157 (error "defmacro can only be used at the top level")))))))
158 (defmacro:transformer defmacro-transformer)))
159
160 (define defmacro:syntax-transformer
161 (lambda (f)
162 (procedure->syntax
163 (lambda (exp env)
164 (copy-tree (apply f (cdr exp)))))))
165
166
167 ;; XXX - should the definition of the car really be looked up in the
168 ;; current module?
169
170 (define (macroexpand-1 e)
171 (cond
172 ((pair? e) (let* ((a (car e))
173 (val (and (symbol? a) (local-ref (list a)))))
174 (if (defmacro? val)
175 (apply (defmacro-transformer val) (cdr e))
176 e)))
177 (#t e)))
178
179 (define (macroexpand e)
180 (cond
181 ((pair? e) (let* ((a (car e))
182 (val (and (symbol? a) (local-ref (list a)))))
183 (if (defmacro? val)
184 (macroexpand (apply (defmacro-transformer val) (cdr e)))
185 e)))
186 (#t e)))
187
188 (provide 'defmacro)
189
190 \f
191
192 ;;; {Deprecation}
193 ;;;
194 ;;; Depends on: defmacro
195 ;;;
196
197 (defmacro begin-deprecated forms
198 (if (include-deprecated-features)
199 (cons begin forms)
200 #f))
201
202 \f
203
204 ;;; {R4RS compliance}
205 ;;;
206
207 (primitive-load-path "ice-9/r4rs.scm")
208
209 \f
210
211 ;;; {Simple Debugging Tools}
212 ;;;
213
214 ;; peek takes any number of arguments, writes them to the
215 ;; current ouput port, and returns the last argument.
216 ;; It is handy to wrap around an expression to look at
217 ;; a value each time is evaluated, e.g.:
218 ;;
219 ;; (+ 10 (troublesome-fn))
220 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
221 ;;
222
223 (define (peek . stuff)
224 (newline)
225 (display ";;; ")
226 (write stuff)
227 (newline)
228 (car (last-pair stuff)))
229
230 (define pk peek)
231
232 (define (warn . stuff)
233 (with-output-to-port (current-error-port)
234 (lambda ()
235 (newline)
236 (display ";;; WARNING ")
237 (display stuff)
238 (newline)
239 (car (last-pair stuff)))))
240
241 \f
242
243 ;;; {Trivial Functions}
244 ;;;
245
246 (define (identity x) x)
247 (define (and=> value procedure) (and value (procedure value)))
248 (define call/cc call-with-current-continuation)
249
250 ;;; apply-to-args is functionally redundant with apply and, worse,
251 ;;; is less general than apply since it only takes two arguments.
252 ;;;
253 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
254 ;;; perform binding in many circumstances when the "let" family of
255 ;;; of forms don't cut it. E.g.:
256 ;;;
257 ;;; (apply-to-args (return-3d-mouse-coords)
258 ;;; (lambda (x y z)
259 ;;; ...))
260 ;;;
261
262 (define (apply-to-args args fn) (apply fn args))
263
264 (defmacro false-if-exception (expr)
265 `(catch #t (lambda () ,expr)
266 (lambda args #f)))
267
268 \f
269
270 ;;; {General Properties}
271 ;;;
272
273 ;; This is a more modern interface to properties. It will replace all
274 ;; other property-like things eventually.
275
276 (define (make-object-property)
277 (let ((prop (primitive-make-property #f)))
278 (make-procedure-with-setter
279 (lambda (obj) (primitive-property-ref prop obj))
280 (lambda (obj val) (primitive-property-set! prop obj val)))))
281
282 \f
283
284 ;;; {Symbol Properties}
285 ;;;
286
287 (define (symbol-property sym prop)
288 (let ((pair (assoc prop (symbol-pref sym))))
289 (and pair (cdr pair))))
290
291 (define (set-symbol-property! sym prop val)
292 (let ((pair (assoc prop (symbol-pref sym))))
293 (if pair
294 (set-cdr! pair val)
295 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
296
297 (define (symbol-property-remove! sym prop)
298 (let ((pair (assoc prop (symbol-pref sym))))
299 (if pair
300 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
301
302 \f
303
304 ;;; {Arrays}
305 ;;;
306
307 (define (array-shape a)
308 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
309 (array-dimensions a)))
310
311 \f
312
313 ;;; {Keywords}
314 ;;;
315
316 (define (kw-arg-ref args kw)
317 (let ((rem (member kw args)))
318 (and rem (pair? (cdr rem)) (cadr rem))))
319
320 \f
321
322 ;;; {Structs}
323 ;;;
324
325 (define (struct-layout s)
326 (struct-ref (struct-vtable s) vtable-index-layout))
327
328 \f
329
330 ;;; {Environments}
331 ;;;
332
333 (define the-environment
334 (procedure->syntax
335 (lambda (x e)
336 e)))
337
338 (define the-root-environment (the-environment))
339
340 (define (environment-module env)
341 (let ((closure (and (pair? env) (car (last-pair env)))))
342 (and closure (eval-closure-module closure))))
343
344 \f
345
346 ;;; {Records}
347 ;;;
348
349 ;; Printing records: by default, records are printed as
350 ;;
351 ;; #<type-name field1: val1 field2: val2 ...>
352 ;;
353 ;; You can change that by giving a custom printing function to
354 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
355 ;; will be called like
356 ;;
357 ;; (<printer> object port)
358 ;;
359 ;; It should print OBJECT to PORT.
360
361 (define (inherit-print-state old-port new-port)
362 (if (get-print-state old-port)
363 (port-with-print-state new-port (get-print-state old-port))
364 new-port))
365
366 ;; 0: type-name, 1: fields
367 (define record-type-vtable
368 (make-vtable-vtable "prpr" 0
369 (lambda (s p)
370 (cond ((eq? s record-type-vtable)
371 (display "#<record-type-vtable>" p))
372 (else
373 (display "#<record-type " p)
374 (display (record-type-name s) p)
375 (display ">" p))))))
376
377 (define (record-type? obj)
378 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
379
380 (define (make-record-type type-name fields . opt)
381 (let ((printer-fn (and (pair? opt) (car opt))))
382 (let ((struct (make-struct record-type-vtable 0
383 (make-struct-layout
384 (apply string-append
385 (map (lambda (f) "pw") fields)))
386 (or printer-fn
387 (lambda (s p)
388 (display "#<" p)
389 (display type-name p)
390 (let loop ((fields fields)
391 (off 0))
392 (cond
393 ((not (null? fields))
394 (display " " p)
395 (display (car fields) p)
396 (display ": " p)
397 (display (struct-ref s off) p)
398 (loop (cdr fields) (+ 1 off)))))
399 (display ">" p)))
400 type-name
401 (copy-tree fields))))
402 ;; Temporary solution: Associate a name to the record type descriptor
403 ;; so that the object system can create a wrapper class for it.
404 (set-struct-vtable-name! struct (if (symbol? type-name)
405 type-name
406 (string->symbol type-name)))
407 struct)))
408
409 (define (record-type-name obj)
410 (if (record-type? obj)
411 (struct-ref obj vtable-offset-user)
412 (error 'not-a-record-type obj)))
413
414 (define (record-type-fields obj)
415 (if (record-type? obj)
416 (struct-ref obj (+ 1 vtable-offset-user))
417 (error 'not-a-record-type obj)))
418
419 (define (record-constructor rtd . opt)
420 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
421 (local-eval `(lambda ,field-names
422 (make-struct ',rtd 0 ,@(map (lambda (f)
423 (if (memq f field-names)
424 f
425 #f))
426 (record-type-fields rtd))))
427 the-root-environment)))
428
429 (define (record-predicate rtd)
430 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
431
432 (define (record-accessor rtd field-name)
433 (let* ((pos (list-index (record-type-fields rtd) field-name)))
434 (if (not pos)
435 (error 'no-such-field field-name))
436 (local-eval `(lambda (obj)
437 (and (eq? ',rtd (record-type-descriptor obj))
438 (struct-ref obj ,pos)))
439 the-root-environment)))
440
441 (define (record-modifier rtd field-name)
442 (let* ((pos (list-index (record-type-fields rtd) field-name)))
443 (if (not pos)
444 (error 'no-such-field field-name))
445 (local-eval `(lambda (obj val)
446 (and (eq? ',rtd (record-type-descriptor obj))
447 (struct-set! obj ,pos val)))
448 the-root-environment)))
449
450
451 (define (record? obj)
452 (and (struct? obj) (record-type? (struct-vtable obj))))
453
454 (define (record-type-descriptor obj)
455 (if (struct? obj)
456 (struct-vtable obj)
457 (error 'not-a-record obj)))
458
459 (provide 'record)
460
461 \f
462
463 ;;; {Booleans}
464 ;;;
465
466 (define (->bool x) (not (not x)))
467
468 \f
469
470 ;;; {Symbols}
471 ;;;
472
473 (define (symbol-append . args)
474 (string->symbol (apply string-append (map symbol->string args))))
475
476 (define (list->symbol . args)
477 (string->symbol (apply list->string args)))
478
479 (define (symbol . args)
480 (string->symbol (apply string args)))
481
482 \f
483
484 ;;; {Lists}
485 ;;;
486
487 (define (list-index l k)
488 (let loop ((n 0)
489 (l l))
490 (and (not (null? l))
491 (if (eq? (car l) k)
492 n
493 (loop (+ n 1) (cdr l))))))
494
495 \f
496
497 ;;; {and-map and or-map}
498 ;;;
499 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
500 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
501 ;;;
502
503 ;; and-map f l
504 ;;
505 ;; Apply f to successive elements of l until exhaustion or f returns #f.
506 ;; If returning early, return #f. Otherwise, return the last value returned
507 ;; by f. If f has never been called because l is empty, return #t.
508 ;;
509 (define (and-map f lst)
510 (let loop ((result #t)
511 (l lst))
512 (and result
513 (or (and (null? l)
514 result)
515 (loop (f (car l)) (cdr l))))))
516
517 ;; or-map f l
518 ;;
519 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
520 ;; If returning early, return the return value of f.
521 ;;
522 (define (or-map f lst)
523 (let loop ((result #f)
524 (l lst))
525 (or result
526 (and (not (null? l))
527 (loop (f (car l)) (cdr l))))))
528
529 \f
530
531 (if (provided? 'posix)
532 (primitive-load-path "ice-9/posix.scm"))
533
534 (if (provided? 'socket)
535 (primitive-load-path "ice-9/networking.scm"))
536
537 ;; For reference, Emacs file-exists-p uses stat in this same way.
538 ;; ENHANCE-ME: Catching an exception from stat is a bit wasteful, do this in
539 ;; C where all that's needed is to inspect the return from stat().
540 (define file-exists?
541 (if (provided? 'posix)
542 (lambda (str)
543 (->bool (false-if-exception (stat str))))
544 (lambda (str)
545 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
546 (lambda args #f))))
547 (if port (begin (close-port port) #t)
548 #f)))))
549
550 (define file-is-directory?
551 (if (provided? 'posix)
552 (lambda (str)
553 (eq? (stat:type (stat str)) 'directory))
554 (lambda (str)
555 (let ((port (catch 'system-error
556 (lambda () (open-file (string-append str "/.")
557 OPEN_READ))
558 (lambda args #f))))
559 (if port (begin (close-port port) #t)
560 #f)))))
561
562 (define (has-suffix? str suffix)
563 (let ((sufl (string-length suffix))
564 (sl (string-length str)))
565 (and (> sl sufl)
566 (string=? (substring str (- sl sufl) sl) suffix))))
567
568 (define (system-error-errno args)
569 (if (eq? (car args) 'system-error)
570 (car (list-ref args 4))
571 #f))
572
573 \f
574
575 ;;; {Error Handling}
576 ;;;
577
578 (define (error . args)
579 (save-stack)
580 (if (null? args)
581 (scm-error 'misc-error #f "?" #f #f)
582 (let loop ((msg "~A")
583 (rest (cdr args)))
584 (if (not (null? rest))
585 (loop (string-append msg " ~S")
586 (cdr rest))
587 (scm-error 'misc-error #f msg args #f)))))
588
589 ;; bad-throw is the hook that is called upon a throw to a an unhandled
590 ;; key (unless the throw has four arguments, in which case
591 ;; it's usually interpreted as an error throw.)
592 ;; If the key has a default handler (a throw-handler-default property),
593 ;; it is applied to the throw.
594 ;;
595 (define (bad-throw key . args)
596 (let ((default (symbol-property key 'throw-handler-default)))
597 (or (and default (apply default key args))
598 (apply error "unhandled-exception:" key args))))
599
600 \f
601
602 (define (tm:sec obj) (vector-ref obj 0))
603 (define (tm:min obj) (vector-ref obj 1))
604 (define (tm:hour obj) (vector-ref obj 2))
605 (define (tm:mday obj) (vector-ref obj 3))
606 (define (tm:mon obj) (vector-ref obj 4))
607 (define (tm:year obj) (vector-ref obj 5))
608 (define (tm:wday obj) (vector-ref obj 6))
609 (define (tm:yday obj) (vector-ref obj 7))
610 (define (tm:isdst obj) (vector-ref obj 8))
611 (define (tm:gmtoff obj) (vector-ref obj 9))
612 (define (tm:zone obj) (vector-ref obj 10))
613
614 (define (set-tm:sec obj val) (vector-set! obj 0 val))
615 (define (set-tm:min obj val) (vector-set! obj 1 val))
616 (define (set-tm:hour obj val) (vector-set! obj 2 val))
617 (define (set-tm:mday obj val) (vector-set! obj 3 val))
618 (define (set-tm:mon obj val) (vector-set! obj 4 val))
619 (define (set-tm:year obj val) (vector-set! obj 5 val))
620 (define (set-tm:wday obj val) (vector-set! obj 6 val))
621 (define (set-tm:yday obj val) (vector-set! obj 7 val))
622 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
623 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
624 (define (set-tm:zone obj val) (vector-set! obj 10 val))
625
626 (define (tms:clock obj) (vector-ref obj 0))
627 (define (tms:utime obj) (vector-ref obj 1))
628 (define (tms:stime obj) (vector-ref obj 2))
629 (define (tms:cutime obj) (vector-ref obj 3))
630 (define (tms:cstime obj) (vector-ref obj 4))
631
632 (define file-position ftell)
633 (define (file-set-position port offset . whence)
634 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
635 (seek port offset whence)))
636
637 (define (move->fdes fd/port fd)
638 (cond ((integer? fd/port)
639 (dup->fdes fd/port fd)
640 (close fd/port)
641 fd)
642 (else
643 (primitive-move->fdes fd/port fd)
644 (set-port-revealed! fd/port 1)
645 fd/port)))
646
647 (define (release-port-handle port)
648 (let ((revealed (port-revealed port)))
649 (if (> revealed 0)
650 (set-port-revealed! port (- revealed 1)))))
651
652 (define (dup->port port/fd mode . maybe-fd)
653 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
654 mode)))
655 (if (pair? maybe-fd)
656 (set-port-revealed! port 1))
657 port))
658
659 (define (dup->inport port/fd . maybe-fd)
660 (apply dup->port port/fd "r" maybe-fd))
661
662 (define (dup->outport port/fd . maybe-fd)
663 (apply dup->port port/fd "w" maybe-fd))
664
665 (define (dup port/fd . maybe-fd)
666 (if (integer? port/fd)
667 (apply dup->fdes port/fd maybe-fd)
668 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
669
670 (define (duplicate-port port modes)
671 (dup->port port modes))
672
673 (define (fdes->inport fdes)
674 (let loop ((rest-ports (fdes->ports fdes)))
675 (cond ((null? rest-ports)
676 (let ((result (fdopen fdes "r")))
677 (set-port-revealed! result 1)
678 result))
679 ((input-port? (car rest-ports))
680 (set-port-revealed! (car rest-ports)
681 (+ (port-revealed (car rest-ports)) 1))
682 (car rest-ports))
683 (else
684 (loop (cdr rest-ports))))))
685
686 (define (fdes->outport fdes)
687 (let loop ((rest-ports (fdes->ports fdes)))
688 (cond ((null? rest-ports)
689 (let ((result (fdopen fdes "w")))
690 (set-port-revealed! result 1)
691 result))
692 ((output-port? (car rest-ports))
693 (set-port-revealed! (car rest-ports)
694 (+ (port-revealed (car rest-ports)) 1))
695 (car rest-ports))
696 (else
697 (loop (cdr rest-ports))))))
698
699 (define (port->fdes port)
700 (set-port-revealed! port (+ (port-revealed port) 1))
701 (fileno port))
702
703 (define (setenv name value)
704 (if value
705 (putenv (string-append name "=" value))
706 (putenv name)))
707
708 (define (unsetenv name)
709 "Remove the entry for NAME from the environment."
710 (putenv name))
711
712 \f
713
714 ;;; {Load Paths}
715 ;;;
716
717 ;;; Here for backward compatability
718 ;;
719 (define scheme-file-suffix (lambda () ".scm"))
720
721 (define (in-vicinity vicinity file)
722 (let ((tail (let ((len (string-length vicinity)))
723 (if (zero? len)
724 #f
725 (string-ref vicinity (- len 1))))))
726 (string-append vicinity
727 (if (or (not tail)
728 (eq? tail #\/))
729 ""
730 "/")
731 file)))
732
733 \f
734
735 ;;; {Help for scm_shell}
736 ;;;
737 ;;; The argument-processing code used by Guile-based shells generates
738 ;;; Scheme code based on the argument list. This page contains help
739 ;;; functions for the code it generates.
740 ;;;
741
742 (define (command-line) (program-arguments))
743
744 ;; This is mostly for the internal use of the code generated by
745 ;; scm_compile_shell_switches.
746
747 (define (turn-on-debugging)
748 (debug-enable 'debug)
749 (debug-enable 'backtrace)
750 (read-enable 'positions))
751
752 (define (load-user-init)
753 (let* ((home (or (getenv "HOME")
754 (false-if-exception (passwd:dir (getpwuid (getuid))))
755 "/")) ;; fallback for cygwin etc.
756 (init-file (in-vicinity home ".guile")))
757 (if (file-exists? init-file)
758 (primitive-load init-file))))
759
760 \f
761
762 ;;; {Loading by paths}
763 ;;;
764
765 ;;; Load a Scheme source file named NAME, searching for it in the
766 ;;; directories listed in %load-path, and applying each of the file
767 ;;; name extensions listed in %load-extensions.
768 (define (load-from-path name)
769 (start-stack 'load-stack
770 (primitive-load-path name)))
771
772
773 \f
774
775 ;;; {Transcendental Functions}
776 ;;;
777 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
778 ;;; Written by Jerry D. Hedden, (C) FSF.
779 ;;; See the file `COPYING' for terms applying to this program.
780 ;;;
781
782 (define (exp z)
783 (if (real? z) ($exp z)
784 (make-polar ($exp (real-part z)) (imag-part z))))
785
786 (define (log z)
787 (if (and (real? z) (>= z 0))
788 ($log z)
789 (make-rectangular ($log (magnitude z)) (angle z))))
790
791 (define (sqrt z)
792 (if (real? z)
793 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
794 ($sqrt z))
795 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
796
797 (define expt
798 (let ((integer-expt integer-expt))
799 (lambda (z1 z2)
800 (cond ((and (exact? z2) (integer? z2))
801 (integer-expt z1 z2))
802 ((and (real? z2) (real? z1) (>= z1 0))
803 ($expt z1 z2))
804 (else
805 (exp (* z2 (log z1))))))))
806
807 (define (sinh z)
808 (if (real? z) ($sinh z)
809 (let ((x (real-part z)) (y (imag-part z)))
810 (make-rectangular (* ($sinh x) ($cos y))
811 (* ($cosh x) ($sin y))))))
812 (define (cosh z)
813 (if (real? z) ($cosh z)
814 (let ((x (real-part z)) (y (imag-part z)))
815 (make-rectangular (* ($cosh x) ($cos y))
816 (* ($sinh x) ($sin y))))))
817 (define (tanh z)
818 (if (real? z) ($tanh z)
819 (let* ((x (* 2 (real-part z)))
820 (y (* 2 (imag-part z)))
821 (w (+ ($cosh x) ($cos y))))
822 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
823
824 (define (asinh z)
825 (if (real? z) ($asinh z)
826 (log (+ z (sqrt (+ (* z z) 1))))))
827
828 (define (acosh z)
829 (if (and (real? z) (>= z 1))
830 ($acosh z)
831 (log (+ z (sqrt (- (* z z) 1))))))
832
833 (define (atanh z)
834 (if (and (real? z) (> z -1) (< z 1))
835 ($atanh z)
836 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
837
838 (define (sin z)
839 (if (real? z) ($sin z)
840 (let ((x (real-part z)) (y (imag-part z)))
841 (make-rectangular (* ($sin x) ($cosh y))
842 (* ($cos x) ($sinh y))))))
843 (define (cos z)
844 (if (real? z) ($cos z)
845 (let ((x (real-part z)) (y (imag-part z)))
846 (make-rectangular (* ($cos x) ($cosh y))
847 (- (* ($sin x) ($sinh y)))))))
848 (define (tan z)
849 (if (real? z) ($tan z)
850 (let* ((x (* 2 (real-part z)))
851 (y (* 2 (imag-part z)))
852 (w (+ ($cos x) ($cosh y))))
853 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
854
855 (define (asin z)
856 (if (and (real? z) (>= z -1) (<= z 1))
857 ($asin z)
858 (* -i (asinh (* +i z)))))
859
860 (define (acos z)
861 (if (and (real? z) (>= z -1) (<= z 1))
862 ($acos z)
863 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
864
865 (define (atan z . y)
866 (if (null? y)
867 (if (real? z) ($atan z)
868 (/ (log (/ (- +i z) (+ +i z))) +2i))
869 ($atan2 z (car y))))
870
871 (define (log10 arg)
872 (/ (log arg) (log 10)))
873
874 \f
875
876 ;;; {Reader Extensions}
877 ;;;
878 ;;; Reader code for various "#c" forms.
879 ;;;
880
881 (read-hash-extend #\' (lambda (c port)
882 (read port)))
883
884 (define read-eval? (make-fluid))
885 (fluid-set! read-eval? #f)
886 (read-hash-extend #\.
887 (lambda (c port)
888 (if (fluid-ref read-eval?)
889 (eval (read port) (interaction-environment))
890 (error
891 "#. read expansion found and read-eval? is #f."))))
892
893 \f
894
895 ;;; {Command Line Options}
896 ;;;
897
898 (define (get-option argv kw-opts kw-args return)
899 (cond
900 ((null? argv)
901 (return #f #f argv))
902
903 ((or (not (eq? #\- (string-ref (car argv) 0)))
904 (eq? (string-length (car argv)) 1))
905 (return 'normal-arg (car argv) (cdr argv)))
906
907 ((eq? #\- (string-ref (car argv) 1))
908 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
909 (string-length (car argv))))
910 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
911 (kw-opt? (member kw kw-opts))
912 (kw-arg? (member kw kw-args))
913 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
914 (substring (car argv)
915 (+ kw-arg-pos 1)
916 (string-length (car argv))))
917 (and kw-arg?
918 (begin (set! argv (cdr argv)) (car argv))))))
919 (if (or kw-opt? kw-arg?)
920 (return kw arg (cdr argv))
921 (return 'usage-error kw (cdr argv)))))
922
923 (else
924 (let* ((char (substring (car argv) 1 2))
925 (kw (symbol->keyword char)))
926 (cond
927
928 ((member kw kw-opts)
929 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
930 (new-argv (if (= 0 (string-length rest-car))
931 (cdr argv)
932 (cons (string-append "-" rest-car) (cdr argv)))))
933 (return kw #f new-argv)))
934
935 ((member kw kw-args)
936 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
937 (arg (if (= 0 (string-length rest-car))
938 (cadr argv)
939 rest-car))
940 (new-argv (if (= 0 (string-length rest-car))
941 (cddr argv)
942 (cdr argv))))
943 (return kw arg new-argv)))
944
945 (else (return 'usage-error kw argv)))))))
946
947 (define (for-next-option proc argv kw-opts kw-args)
948 (let loop ((argv argv))
949 (get-option argv kw-opts kw-args
950 (lambda (opt opt-arg argv)
951 (and opt (proc opt opt-arg argv loop))))))
952
953 (define (display-usage-report kw-desc)
954 (for-each
955 (lambda (kw)
956 (or (eq? (car kw) #t)
957 (eq? (car kw) 'else)
958 (let* ((opt-desc kw)
959 (help (cadr opt-desc))
960 (opts (car opt-desc))
961 (opts-proper (if (string? (car opts)) (cdr opts) opts))
962 (arg-name (if (string? (car opts))
963 (string-append "<" (car opts) ">")
964 ""))
965 (left-part (string-append
966 (with-output-to-string
967 (lambda ()
968 (map (lambda (x) (display (keyword->symbol x)) (display " "))
969 opts-proper)))
970 arg-name))
971 (middle-part (if (and (< (string-length left-part) 30)
972 (< (string-length help) 40))
973 (make-string (- 30 (string-length left-part)) #\ )
974 "\n\t")))
975 (display left-part)
976 (display middle-part)
977 (display help)
978 (newline))))
979 kw-desc))
980
981
982
983 (define (transform-usage-lambda cases)
984 (let* ((raw-usage (delq! 'else (map car cases)))
985 (usage-sans-specials (map (lambda (x)
986 (or (and (not (list? x)) x)
987 (and (symbol? (car x)) #t)
988 (and (boolean? (car x)) #t)
989 x))
990 raw-usage))
991 (usage-desc (delq! #t usage-sans-specials))
992 (kw-desc (map car usage-desc))
993 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
994 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
995 (transmogrified-cases (map (lambda (case)
996 (cons (let ((opts (car case)))
997 (if (or (boolean? opts) (eq? 'else opts))
998 opts
999 (cond
1000 ((symbol? (car opts)) opts)
1001 ((boolean? (car opts)) opts)
1002 ((string? (caar opts)) (cdar opts))
1003 (else (car opts)))))
1004 (cdr case)))
1005 cases)))
1006 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
1007 (lambda (%argv)
1008 (let %next-arg ((%argv %argv))
1009 (get-option %argv
1010 ',kw-opts
1011 ',kw-args
1012 (lambda (%opt %arg %new-argv)
1013 (case %opt
1014 ,@ transmogrified-cases))))))))
1015
1016
1017 \f
1018
1019 ;;; {Low Level Modules}
1020 ;;;
1021 ;;; These are the low level data structures for modules.
1022 ;;;
1023 ;;; Every module object is of the type 'module-type', which is a record
1024 ;;; consisting of the following members:
1025 ;;;
1026 ;;; - eval-closure: the function that defines for its module the strategy that
1027 ;;; shall be followed when looking up symbols in the module.
1028 ;;;
1029 ;;; An eval-closure is a function taking two arguments: the symbol to be
1030 ;;; looked up and a boolean value telling whether a binding for the symbol
1031 ;;; should be created if it does not exist yet. If the symbol lookup
1032 ;;; succeeded (either because an existing binding was found or because a new
1033 ;;; binding was created), a variable object representing the binding is
1034 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1035 ;;; closure does not take the module to be searched as an argument: During
1036 ;;; construction of the eval-closure, the eval-closure has to store the
1037 ;;; module it belongs to in its environment. This means, that any
1038 ;;; eval-closure can belong to only one module.
1039 ;;;
1040 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1041 ;;; special cases of eval-closures are to be distinguished: During startup
1042 ;;; the module system is not yet activated. In this phase, no modules are
1043 ;;; defined and all bindings are automatically stored by the system in the
1044 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1045 ;;; functions which require an eval-closure as their argument need to be
1046 ;;; passed the value #f.
1047 ;;;
1048 ;;; The other two special cases of eval-closures are the
1049 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1050 ;;; behave equally for the case that no new binding is to be created. The
1051 ;;; difference between the two comes in, when the boolean argument to the
1052 ;;; eval-closure indicates that a new binding shall be created if it is not
1053 ;;; found.
1054 ;;;
1055 ;;; Given that no new binding shall be created, both standard eval-closures
1056 ;;; define the following standard strategy of searching bindings in the
1057 ;;; module: First, the module's obarray is searched for the symbol. Second,
1058 ;;; if no binding for the symbol was found in the module's obarray, the
1059 ;;; module's binder procedure is exececuted. If this procedure did not
1060 ;;; return a binding for the symbol, the modules referenced in the module's
1061 ;;; uses list are recursively searched for a binding of the symbol. If the
1062 ;;; binding can not be found in these modules also, the symbol lookup has
1063 ;;; failed.
1064 ;;;
1065 ;;; If a new binding shall be created, the standard-interface-eval-closure
1066 ;;; immediately returns indicating failure. That is, it does not even try
1067 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1068 ;;; first search the obarray, and if no binding was found there, would
1069 ;;; create a new binding in the obarray, therefore not calling the binder
1070 ;;; procedure or searching the modules in the uses list.
1071 ;;;
1072 ;;; The explanation of the following members obarray, binder and uses
1073 ;;; assumes that the symbol lookup follows the strategy that is defined in
1074 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1075 ;;;
1076 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1077 ;;; hash table, the definitions are found that are local to the module (that
1078 ;;; is, not imported from other modules). When looking up bindings in the
1079 ;;; module, this hash table is searched first.
1080 ;;;
1081 ;;; - binder: either #f or a function taking a module and a symbol argument.
1082 ;;; If it is a function it is called after the obarray has been
1083 ;;; unsuccessfully searched for a binding. It then can provide bindings
1084 ;;; that would otherwise not be found locally in the module.
1085 ;;;
1086 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1087 ;;; These modules are the third place queried for bindings after the obarray
1088 ;;; has been unsuccessfully searched and the binder function did not deliver
1089 ;;; a result either.
1090 ;;;
1091 ;;; - transformer: either #f or a function taking a scheme expression as
1092 ;;; delivered by read. If it is a function, it will be called to perform
1093 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1094 ;;; expression. The output of the transformer function will then be passed
1095 ;;; to Guile's internal memoizer. This means that the output must be valid
1096 ;;; scheme code. The only exception is, that the output may make use of the
1097 ;;; syntax extensions provided to identify the modules that a binding
1098 ;;; belongs to.
1099 ;;;
1100 ;;; - name: the name of the module. This is used for all kinds of printing
1101 ;;; outputs. In certain places the module name also serves as a way of
1102 ;;; identification. When adding a module to the uses list of another
1103 ;;; module, it is made sure that the new uses list will not contain two
1104 ;;; modules of the same name.
1105 ;;;
1106 ;;; - kind: classification of the kind of module. The value is (currently?)
1107 ;;; only used for printing. It has no influence on how a module is treated.
1108 ;;; Currently the following values are used when setting the module kind:
1109 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1110 ;;; is set, it defaults to 'module.
1111 ;;;
1112 ;;; - duplicates-handlers
1113 ;;;
1114 ;;; - duplicates-interface
1115 ;;;
1116 ;;; - observers
1117 ;;;
1118 ;;; - weak-observers
1119 ;;;
1120 ;;; - observer-id
1121 ;;;
1122 ;;; In addition, the module may (must?) contain a binding for
1123 ;;; %module-public-interface... More explanations here...
1124 ;;;
1125 ;;; !!! warning: The interface to lazy binder procedures is going
1126 ;;; to be changed in an incompatible way to permit all the basic
1127 ;;; module ops to be virtualized.
1128 ;;;
1129 ;;; (make-module size use-list lazy-binding-proc) => module
1130 ;;; module-{obarray,uses,binder}[|-set!]
1131 ;;; (module? obj) => [#t|#f]
1132 ;;; (module-locally-bound? module symbol) => [#t|#f]
1133 ;;; (module-bound? module symbol) => [#t|#f]
1134 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1135 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1136 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1137 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1138 ;;; (module-symbol-binding module symbol opt-value)
1139 ;;; => [ <obj> | opt-value | an error occurs ]
1140 ;;; (module-make-local-var! module symbol) => #<variable...>
1141 ;;; (module-add! module symbol var) => unspecified
1142 ;;; (module-remove! module symbol) => unspecified
1143 ;;; (module-for-each proc module) => unspecified
1144 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1145 ;;; (set-current-module module) => unspecified
1146 ;;; (current-module) => #<module...>
1147 ;;;
1148 ;;;
1149
1150 \f
1151
1152 ;;; {Printing Modules}
1153 ;;;
1154
1155 ;; This is how modules are printed. You can re-define it.
1156 ;; (Redefining is actually more complicated than simply redefining
1157 ;; %print-module because that would only change the binding and not
1158 ;; the value stored in the vtable that determines how record are
1159 ;; printed. Sigh.)
1160
1161 (define (%print-module mod port) ; unused args: depth length style table)
1162 (display "#<" port)
1163 (display (or (module-kind mod) "module") port)
1164 (let ((name (module-name mod)))
1165 (if name
1166 (begin
1167 (display " " port)
1168 (display name port))))
1169 (display " " port)
1170 (display (number->string (object-address mod) 16) port)
1171 (display ">" port))
1172
1173 ;; module-type
1174 ;;
1175 ;; A module is characterized by an obarray in which local symbols
1176 ;; are interned, a list of modules, "uses", from which non-local
1177 ;; bindings can be inherited, and an optional lazy-binder which
1178 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1179 ;; bindings that would otherwise not be found locally in the module.
1180 ;;
1181 ;; NOTE: If you change anything here, you also need to change
1182 ;; libguile/modules.h.
1183 ;;
1184 (define module-type
1185 (make-record-type 'module
1186 '(obarray uses binder eval-closure transformer name kind
1187 duplicates-handlers duplicates-interface
1188 observers weak-observers observer-id)
1189 %print-module))
1190
1191 ;; make-module &opt size uses binder
1192 ;;
1193 ;; Create a new module, perhaps with a particular size of obarray,
1194 ;; initial uses list, or binding procedure.
1195 ;;
1196 (define make-module
1197 (lambda args
1198
1199 (define (parse-arg index default)
1200 (if (> (length args) index)
1201 (list-ref args index)
1202 default))
1203
1204 (if (> (length args) 3)
1205 (error "Too many args to make-module." args))
1206
1207 (let ((size (parse-arg 0 31))
1208 (uses (parse-arg 1 '()))
1209 (binder (parse-arg 2 #f)))
1210
1211 (if (not (integer? size))
1212 (error "Illegal size to make-module." size))
1213 (if (not (and (list? uses)
1214 (and-map module? uses)))
1215 (error "Incorrect use list." uses))
1216 (if (and binder (not (procedure? binder)))
1217 (error
1218 "Lazy-binder expected to be a procedure or #f." binder))
1219
1220 (let ((module (module-constructor (make-hash-table size)
1221 uses binder #f #f #f #f #f #f
1222 '()
1223 (make-weak-value-hash-table 31)
1224 0)))
1225
1226 ;; We can't pass this as an argument to module-constructor,
1227 ;; because we need it to close over a pointer to the module
1228 ;; itself.
1229 (set-module-eval-closure! module (standard-eval-closure module))
1230
1231 module))))
1232
1233 (define module-constructor (record-constructor module-type))
1234 (define module-obarray (record-accessor module-type 'obarray))
1235 (define set-module-obarray! (record-modifier module-type 'obarray))
1236 (define module-uses (record-accessor module-type 'uses))
1237 (define set-module-uses! (record-modifier module-type 'uses))
1238 (define module-binder (record-accessor module-type 'binder))
1239 (define set-module-binder! (record-modifier module-type 'binder))
1240
1241 ;; NOTE: This binding is used in libguile/modules.c.
1242 (define module-eval-closure (record-accessor module-type 'eval-closure))
1243
1244 (define module-transformer (record-accessor module-type 'transformer))
1245 (define set-module-transformer! (record-modifier module-type 'transformer))
1246 (define module-name (record-accessor module-type 'name))
1247 (define set-module-name! (record-modifier module-type 'name))
1248 (define module-kind (record-accessor module-type 'kind))
1249 (define set-module-kind! (record-modifier module-type 'kind))
1250 (define module-duplicates-handlers
1251 (record-accessor module-type 'duplicates-handlers))
1252 (define set-module-duplicates-handlers!
1253 (record-modifier module-type 'duplicates-handlers))
1254 (define module-duplicates-interface
1255 (record-accessor module-type 'duplicates-interface))
1256 (define set-module-duplicates-interface!
1257 (record-modifier module-type 'duplicates-interface))
1258 (define module-observers (record-accessor module-type 'observers))
1259 (define set-module-observers! (record-modifier module-type 'observers))
1260 (define module-weak-observers (record-accessor module-type 'weak-observers))
1261 (define module-observer-id (record-accessor module-type 'observer-id))
1262 (define set-module-observer-id! (record-modifier module-type 'observer-id))
1263 (define module? (record-predicate module-type))
1264
1265 (define set-module-eval-closure!
1266 (let ((setter (record-modifier module-type 'eval-closure)))
1267 (lambda (module closure)
1268 (setter module closure)
1269 ;; Make it possible to lookup the module from the environment.
1270 ;; This implementation is correct since an eval closure can belong
1271 ;; to maximally one module.
1272 (set-procedure-property! closure 'module module))))
1273
1274 \f
1275
1276 ;;; {Observer protocol}
1277 ;;;
1278
1279 (define (module-observe module proc)
1280 (set-module-observers! module (cons proc (module-observers module)))
1281 (cons module proc))
1282
1283 (define (module-observe-weak module proc)
1284 (let ((id (module-observer-id module)))
1285 (hash-set! (module-weak-observers module) id proc)
1286 (set-module-observer-id! module (+ 1 id))
1287 (cons module id)))
1288
1289 (define (module-unobserve token)
1290 (let ((module (car token))
1291 (id (cdr token)))
1292 (if (integer? id)
1293 (hash-remove! (module-weak-observers module) id)
1294 (set-module-observers! module (delq1! id (module-observers module)))))
1295 *unspecified*)
1296
1297 (define module-defer-observers #f)
1298 (define module-defer-observers-mutex (make-mutex))
1299 (define module-defer-observers-table (make-hash-table))
1300
1301 (define (module-modified m)
1302 (if module-defer-observers
1303 (hash-set! module-defer-observers-table m #t)
1304 (module-call-observers m)))
1305
1306 ;;; This function can be used to delay calls to observers so that they
1307 ;;; can be called once only in the face of massive updating of modules.
1308 ;;;
1309 (define (call-with-deferred-observers thunk)
1310 (dynamic-wind
1311 (lambda ()
1312 (lock-mutex module-defer-observers-mutex)
1313 (set! module-defer-observers #t))
1314 thunk
1315 (lambda ()
1316 (set! module-defer-observers #f)
1317 (hash-for-each (lambda (m dummy)
1318 (module-call-observers m))
1319 module-defer-observers-table)
1320 (hash-clear! module-defer-observers-table)
1321 (unlock-mutex module-defer-observers-mutex))))
1322
1323 (define (module-call-observers m)
1324 (for-each (lambda (proc) (proc m)) (module-observers m))
1325 (hash-fold (lambda (id proc res) (proc m)) #f (module-weak-observers m)))
1326
1327 \f
1328
1329 ;;; {Module Searching in General}
1330 ;;;
1331 ;;; We sometimes want to look for properties of a symbol
1332 ;;; just within the obarray of one module. If the property
1333 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1334 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1335 ;;;
1336 ;;;
1337 ;;; Other times, we want to test for a symbol property in the obarray
1338 ;;; of M and, if it is not found there, try each of the modules in the
1339 ;;; uses list of M. This is the normal way of testing for some
1340 ;;; property, so we state these properties without qualification as
1341 ;;; in: ``The symbol 'fnord is interned in module M because it is
1342 ;;; interned locally in module M2 which is a member of the uses list
1343 ;;; of M.''
1344 ;;;
1345
1346 ;; module-search fn m
1347 ;;
1348 ;; return the first non-#f result of FN applied to M and then to
1349 ;; the modules in the uses of m, and so on recursively. If all applications
1350 ;; return #f, then so does this function.
1351 ;;
1352 (define (module-search fn m v)
1353 (define (loop pos)
1354 (and (pair? pos)
1355 (or (module-search fn (car pos) v)
1356 (loop (cdr pos)))))
1357 (or (fn m v)
1358 (loop (module-uses m))))
1359
1360
1361 ;;; {Is a symbol bound in a module?}
1362 ;;;
1363 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1364 ;;; of S in M has been set to some well-defined value.
1365 ;;;
1366
1367 ;; module-locally-bound? module symbol
1368 ;;
1369 ;; Is a symbol bound (interned and defined) locally in a given module?
1370 ;;
1371 (define (module-locally-bound? m v)
1372 (let ((var (module-local-variable m v)))
1373 (and var
1374 (variable-bound? var))))
1375
1376 ;; module-bound? module symbol
1377 ;;
1378 ;; Is a symbol bound (interned and defined) anywhere in a given module
1379 ;; or its uses?
1380 ;;
1381 (define (module-bound? m v)
1382 (module-search module-locally-bound? m v))
1383
1384 ;;; {Is a symbol interned in a module?}
1385 ;;;
1386 ;;; Symbol S in Module M is interned if S occurs in
1387 ;;; of S in M has been set to some well-defined value.
1388 ;;;
1389 ;;; It is possible to intern a symbol in a module without providing
1390 ;;; an initial binding for the corresponding variable. This is done
1391 ;;; with:
1392 ;;; (module-add! module symbol (make-undefined-variable))
1393 ;;;
1394 ;;; In that case, the symbol is interned in the module, but not
1395 ;;; bound there. The unbound symbol shadows any binding for that
1396 ;;; symbol that might otherwise be inherited from a member of the uses list.
1397 ;;;
1398
1399 (define (module-obarray-get-handle ob key)
1400 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1401
1402 (define (module-obarray-ref ob key)
1403 ((if (symbol? key) hashq-ref hash-ref) ob key))
1404
1405 (define (module-obarray-set! ob key val)
1406 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1407
1408 (define (module-obarray-remove! ob key)
1409 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1410
1411 ;; module-symbol-locally-interned? module symbol
1412 ;;
1413 ;; is a symbol interned (not neccessarily defined) locally in a given module
1414 ;; or its uses? Interned symbols shadow inherited bindings even if
1415 ;; they are not themselves bound to a defined value.
1416 ;;
1417 (define (module-symbol-locally-interned? m v)
1418 (not (not (module-obarray-get-handle (module-obarray m) v))))
1419
1420 ;; module-symbol-interned? module symbol
1421 ;;
1422 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1423 ;; or its uses? Interned symbols shadow inherited bindings even if
1424 ;; they are not themselves bound to a defined value.
1425 ;;
1426 (define (module-symbol-interned? m v)
1427 (module-search module-symbol-locally-interned? m v))
1428
1429
1430 ;;; {Mapping modules x symbols --> variables}
1431 ;;;
1432
1433 ;; module-local-variable module symbol
1434 ;; return the local variable associated with a MODULE and SYMBOL.
1435 ;;
1436 ;;; This function is very important. It is the only function that can
1437 ;;; return a variable from a module other than the mutators that store
1438 ;;; new variables in modules. Therefore, this function is the location
1439 ;;; of the "lazy binder" hack.
1440 ;;;
1441 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1442 ;;; to a variable, return that variable object.
1443 ;;;
1444 ;;; If the symbols is not found at first, but the module has a lazy binder,
1445 ;;; then try the binder.
1446 ;;;
1447 ;;; If the symbol is not found at all, return #f.
1448 ;;;
1449 (define (module-local-variable m v)
1450 ; (caddr
1451 ; (list m v
1452 (let ((b (module-obarray-ref (module-obarray m) v)))
1453 (or (and (variable? b) b)
1454 (and (module-binder m)
1455 ((module-binder m) m v #f)))))
1456 ;))
1457
1458 ;; module-variable module symbol
1459 ;;
1460 ;; like module-local-variable, except search the uses in the
1461 ;; case V is not found in M.
1462 ;;
1463 ;; NOTE: This function is superseded with C code (see modules.c)
1464 ;;; when using the standard eval closure.
1465 ;;
1466 (define (module-variable m v)
1467 (module-search module-local-variable m v))
1468
1469
1470 ;;; {Mapping modules x symbols --> bindings}
1471 ;;;
1472 ;;; These are similar to the mapping to variables, except that the
1473 ;;; variable is dereferenced.
1474 ;;;
1475
1476 ;; module-symbol-binding module symbol opt-value
1477 ;;
1478 ;; return the binding of a variable specified by name within
1479 ;; a given module, signalling an error if the variable is unbound.
1480 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1481 ;; return OPT-VALUE.
1482 ;;
1483 (define (module-symbol-local-binding m v . opt-val)
1484 (let ((var (module-local-variable m v)))
1485 (if (and var (variable-bound? var))
1486 (variable-ref var)
1487 (if (not (null? opt-val))
1488 (car opt-val)
1489 (error "Locally unbound variable." v)))))
1490
1491 ;; module-symbol-binding module symbol opt-value
1492 ;;
1493 ;; return the binding of a variable specified by name within
1494 ;; a given module, signalling an error if the variable is unbound.
1495 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1496 ;; return OPT-VALUE.
1497 ;;
1498 (define (module-symbol-binding m v . opt-val)
1499 (let ((var (module-variable m v)))
1500 (if (and var (variable-bound? var))
1501 (variable-ref var)
1502 (if (not (null? opt-val))
1503 (car opt-val)
1504 (error "Unbound variable." v)))))
1505
1506
1507 \f
1508
1509 ;;; {Adding Variables to Modules}
1510 ;;;
1511
1512 ;; module-make-local-var! module symbol
1513 ;;
1514 ;; ensure a variable for V in the local namespace of M.
1515 ;; If no variable was already there, then create a new and uninitialzied
1516 ;; variable.
1517 ;;
1518 ;; This function is used in modules.c.
1519 ;;
1520 (define (module-make-local-var! m v)
1521 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1522 (and (variable? b)
1523 (begin
1524 ;; Mark as modified since this function is called when
1525 ;; the standard eval closure defines a binding
1526 (module-modified m)
1527 b)))
1528
1529 ;; No local variable yet, so we need to create a new one. That
1530 ;; new variable is initialized with the old imported value of V,
1531 ;; if there is one.
1532 (let ((imported-var (module-variable m v))
1533 (local-var (or (and (module-binder m)
1534 ((module-binder m) m v #t))
1535 (begin
1536 (let ((answer (make-undefined-variable)))
1537 (module-add! m v answer)
1538 answer)))))
1539 (if (and imported-var (not (variable-bound? local-var)))
1540 (variable-set! local-var (variable-ref imported-var)))
1541 local-var)))
1542
1543 ;; module-ensure-local-variable! module symbol
1544 ;;
1545 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1546 ;; there is no binding for SYMBOL, create a new uninitialized
1547 ;; variable. Return the local variable.
1548 ;;
1549 (define (module-ensure-local-variable! module symbol)
1550 (or (module-local-variable module symbol)
1551 (let ((var (make-undefined-variable)))
1552 (module-add! module symbol var)
1553 var)))
1554
1555 ;; module-add! module symbol var
1556 ;;
1557 ;; ensure a particular variable for V in the local namespace of M.
1558 ;;
1559 (define (module-add! m v var)
1560 (if (not (variable? var))
1561 (error "Bad variable to module-add!" var))
1562 (module-obarray-set! (module-obarray m) v var)
1563 (module-modified m))
1564
1565 ;; module-remove!
1566 ;;
1567 ;; make sure that a symbol is undefined in the local namespace of M.
1568 ;;
1569 (define (module-remove! m v)
1570 (module-obarray-remove! (module-obarray m) v)
1571 (module-modified m))
1572
1573 (define (module-clear! m)
1574 (hash-clear! (module-obarray m))
1575 (module-modified m))
1576
1577 ;; MODULE-FOR-EACH -- exported
1578 ;;
1579 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1580 ;;
1581 (define (module-for-each proc module)
1582 (hash-for-each proc (module-obarray module)))
1583
1584 (define (module-map proc module)
1585 (hash-map->list proc (module-obarray module)))
1586
1587 \f
1588
1589 ;;; {Low Level Bootstrapping}
1590 ;;;
1591
1592 ;; make-root-module
1593
1594 ;; A root module uses the pre-modules-obarray as its obarray. This
1595 ;; special obarray accumulates all bindings that have been established
1596 ;; before the module system is fully booted.
1597 ;;
1598 ;; (The obarray continues to be used by code that has been closed over
1599 ;; before the module system has been booted.)
1600
1601 (define (make-root-module)
1602 (let ((m (make-module 0)))
1603 (set-module-obarray! m (%get-pre-modules-obarray))
1604 m))
1605
1606 ;; make-scm-module
1607
1608 ;; The root interface is a module that uses the same obarray as the
1609 ;; root module. It does not allow new definitions, tho.
1610
1611 (define (make-scm-module)
1612 (let ((m (make-module 0)))
1613 (set-module-obarray! m (%get-pre-modules-obarray))
1614 (set-module-eval-closure! m (standard-interface-eval-closure m))
1615 m))
1616
1617
1618 \f
1619
1620 ;;; {Module-based Loading}
1621 ;;;
1622
1623 (define (save-module-excursion thunk)
1624 (let ((inner-module (current-module))
1625 (outer-module #f))
1626 (dynamic-wind (lambda ()
1627 (set! outer-module (current-module))
1628 (set-current-module inner-module)
1629 (set! inner-module #f))
1630 thunk
1631 (lambda ()
1632 (set! inner-module (current-module))
1633 (set-current-module outer-module)
1634 (set! outer-module #f)))))
1635
1636 (define basic-load load)
1637
1638 (define (load-module filename . reader)
1639 (save-module-excursion
1640 (lambda ()
1641 (let ((oldname (and (current-load-port)
1642 (port-filename (current-load-port)))))
1643 (apply basic-load
1644 (if (and oldname
1645 (> (string-length filename) 0)
1646 (not (char=? (string-ref filename 0) #\/))
1647 (not (string=? (dirname oldname) ".")))
1648 (string-append (dirname oldname) "/" filename)
1649 filename)
1650 reader)))))
1651
1652
1653 \f
1654
1655 ;;; {MODULE-REF -- exported}
1656 ;;;
1657
1658 ;; Returns the value of a variable called NAME in MODULE or any of its
1659 ;; used modules. If there is no such variable, then if the optional third
1660 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1661 ;;
1662 (define (module-ref module name . rest)
1663 (let ((variable (module-variable module name)))
1664 (if (and variable (variable-bound? variable))
1665 (variable-ref variable)
1666 (if (null? rest)
1667 (error "No variable named" name 'in module)
1668 (car rest) ; default value
1669 ))))
1670
1671 ;; MODULE-SET! -- exported
1672 ;;
1673 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1674 ;; to VALUE; if there is no such variable, an error is signaled.
1675 ;;
1676 (define (module-set! module name value)
1677 (let ((variable (module-variable module name)))
1678 (if variable
1679 (variable-set! variable value)
1680 (error "No variable named" name 'in module))))
1681
1682 ;; MODULE-DEFINE! -- exported
1683 ;;
1684 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1685 ;; variable, it is added first.
1686 ;;
1687 (define (module-define! module name value)
1688 (let ((variable (module-local-variable module name)))
1689 (if variable
1690 (begin
1691 (variable-set! variable value)
1692 (module-modified module))
1693 (let ((variable (make-variable value)))
1694 (module-add! module name variable)))))
1695
1696 ;; MODULE-DEFINED? -- exported
1697 ;;
1698 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1699 ;; uses)
1700 ;;
1701 (define (module-defined? module name)
1702 (let ((variable (module-variable module name)))
1703 (and variable (variable-bound? variable))))
1704
1705 ;; MODULE-USE! module interface
1706 ;;
1707 ;; Add INTERFACE to the list of interfaces used by MODULE.
1708 ;;
1709 (define (module-use! module interface)
1710 (set-module-uses! module
1711 (cons interface
1712 (filter (lambda (m)
1713 (not (equal? (module-name m)
1714 (module-name interface))))
1715 (module-uses module))))
1716 (module-modified module))
1717
1718 ;; MODULE-USE-INTERFACES! module interfaces
1719 ;;
1720 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1721 ;;
1722 (define (module-use-interfaces! module interfaces)
1723 (let* ((duplicates-handlers? (or (module-duplicates-handlers module)
1724 (default-duplicate-binding-procedures)))
1725 (uses (module-uses module)))
1726 ;; remove duplicates-interface
1727 (set! uses (delq! (module-duplicates-interface module) uses))
1728 ;; remove interfaces to be added
1729 (for-each (lambda (interface)
1730 (set! uses
1731 (filter (lambda (m)
1732 (not (equal? (module-name m)
1733 (module-name interface))))
1734 uses)))
1735 interfaces)
1736 ;; add interfaces to use list
1737 (set-module-uses! module uses)
1738 (for-each (lambda (interface)
1739 (and duplicates-handlers?
1740 ;; perform duplicate checking
1741 (process-duplicates module interface))
1742 (set! uses (cons interface uses))
1743 (set-module-uses! module uses))
1744 interfaces)
1745 ;; add duplicates interface
1746 (if (module-duplicates-interface module)
1747 (set-module-uses! module
1748 (cons (module-duplicates-interface module) uses)))
1749 (module-modified module)))
1750
1751 \f
1752
1753 ;;; {Recursive Namespaces}
1754 ;;;
1755 ;;; A hierarchical namespace emerges if we consider some module to be
1756 ;;; root, and variables bound to modules as nested namespaces.
1757 ;;;
1758 ;;; The routines in this file manage variable names in hierarchical namespace.
1759 ;;; Each variable name is a list of elements, looked up in successively nested
1760 ;;; modules.
1761 ;;;
1762 ;;; (nested-ref some-root-module '(foo bar baz))
1763 ;;; => <value of a variable named baz in the module bound to bar in
1764 ;;; the module bound to foo in some-root-module>
1765 ;;;
1766 ;;;
1767 ;;; There are:
1768 ;;;
1769 ;;; ;; a-root is a module
1770 ;;; ;; name is a list of symbols
1771 ;;;
1772 ;;; nested-ref a-root name
1773 ;;; nested-set! a-root name val
1774 ;;; nested-define! a-root name val
1775 ;;; nested-remove! a-root name
1776 ;;;
1777 ;;;
1778 ;;; (current-module) is a natural choice for a-root so for convenience there are
1779 ;;; also:
1780 ;;;
1781 ;;; local-ref name == nested-ref (current-module) name
1782 ;;; local-set! name val == nested-set! (current-module) name val
1783 ;;; local-define! name val == nested-define! (current-module) name val
1784 ;;; local-remove! name == nested-remove! (current-module) name
1785 ;;;
1786
1787
1788 (define (nested-ref root names)
1789 (let loop ((cur root)
1790 (elts names))
1791 (cond
1792 ((null? elts) cur)
1793 ((not (module? cur)) #f)
1794 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1795
1796 (define (nested-set! root names val)
1797 (let loop ((cur root)
1798 (elts names))
1799 (if (null? (cdr elts))
1800 (module-set! cur (car elts) val)
1801 (loop (module-ref cur (car elts)) (cdr elts)))))
1802
1803 (define (nested-define! root names val)
1804 (let loop ((cur root)
1805 (elts names))
1806 (if (null? (cdr elts))
1807 (module-define! cur (car elts) val)
1808 (loop (module-ref cur (car elts)) (cdr elts)))))
1809
1810 (define (nested-remove! root names)
1811 (let loop ((cur root)
1812 (elts names))
1813 (if (null? (cdr elts))
1814 (module-remove! cur (car elts))
1815 (loop (module-ref cur (car elts)) (cdr elts)))))
1816
1817 (define (local-ref names) (nested-ref (current-module) names))
1818 (define (local-set! names val) (nested-set! (current-module) names val))
1819 (define (local-define names val) (nested-define! (current-module) names val))
1820 (define (local-remove names) (nested-remove! (current-module) names))
1821
1822
1823 \f
1824
1825 ;;; {The (%app) module}
1826 ;;;
1827 ;;; The root of conventionally named objects not directly in the top level.
1828 ;;;
1829 ;;; (%app modules)
1830 ;;; (%app modules guile)
1831 ;;;
1832 ;;; The directory of all modules and the standard root module.
1833 ;;;
1834
1835 (define (module-public-interface m)
1836 (module-ref m '%module-public-interface #f))
1837 (define (set-module-public-interface! m i)
1838 (module-define! m '%module-public-interface i))
1839 (define (set-system-module! m s)
1840 (set-procedure-property! (module-eval-closure m) 'system-module s))
1841 (define the-root-module (make-root-module))
1842 (define the-scm-module (make-scm-module))
1843 (set-module-public-interface! the-root-module the-scm-module)
1844 (set-module-name! the-root-module '(guile))
1845 (set-module-name! the-scm-module '(guile))
1846 (set-module-kind! the-scm-module 'interface)
1847 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1848
1849 ;; NOTE: This binding is used in libguile/modules.c.
1850 ;;
1851 (define (make-modules-in module name)
1852 (if (null? name)
1853 module
1854 (cond
1855 ((module-ref module (car name) #f)
1856 => (lambda (m) (make-modules-in m (cdr name))))
1857 (else (let ((m (make-module 31)))
1858 (set-module-kind! m 'directory)
1859 (set-module-name! m (append (or (module-name module)
1860 '())
1861 (list (car name))))
1862 (module-define! module (car name) m)
1863 (make-modules-in m (cdr name)))))))
1864
1865 (define (beautify-user-module! module)
1866 (let ((interface (module-public-interface module)))
1867 (if (or (not interface)
1868 (eq? interface module))
1869 (let ((interface (make-module 31)))
1870 (set-module-name! interface (module-name module))
1871 (set-module-kind! interface 'interface)
1872 (set-module-public-interface! module interface))))
1873 (if (and (not (memq the-scm-module (module-uses module)))
1874 (not (eq? module the-root-module)))
1875 (set-module-uses! module
1876 (append (module-uses module) (list the-scm-module)))))
1877
1878 ;; NOTE: This binding is used in libguile/modules.c.
1879 ;;
1880 (define (resolve-module name . maybe-autoload)
1881 (let ((full-name (append '(%app modules) name)))
1882 (let ((already (nested-ref the-root-module full-name)))
1883 (if already
1884 ;; The module already exists...
1885 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1886 (not (module-public-interface already)))
1887 ;; ...but we are told to load and it doesn't contain source, so
1888 (begin
1889 (try-load-module name)
1890 already)
1891 ;; simply return it.
1892 already)
1893 (begin
1894 ;; Try to autoload it if we are told so
1895 (if (or (null? maybe-autoload) (car maybe-autoload))
1896 (try-load-module name))
1897 ;; Get/create it.
1898 (make-modules-in (current-module) full-name))))))
1899
1900 ;; Cheat. These bindings are needed by modules.c, but we don't want
1901 ;; to move their real definition here because that would be unnatural.
1902 ;;
1903 (define try-module-autoload #f)
1904 (define process-define-module #f)
1905 (define process-use-modules #f)
1906 (define module-export! #f)
1907
1908 ;; This boots the module system. All bindings needed by modules.c
1909 ;; must have been defined by now.
1910 ;;
1911 (set-current-module the-root-module)
1912
1913 (define %app (make-module 31))
1914 (define app %app) ;; for backwards compatability
1915 (local-define '(%app modules) (make-module 31))
1916 (local-define '(%app modules guile) the-root-module)
1917
1918 ;; (define-special-value '(%app modules new-ws) (lambda () (make-scm-module)))
1919
1920 (define (try-load-module name)
1921 (or (begin-deprecated (try-module-linked name))
1922 (try-module-autoload name)
1923 (begin-deprecated (try-module-dynamic-link name))))
1924
1925 (define (purify-module! module)
1926 "Removes bindings in MODULE which are inherited from the (guile) module."
1927 (let ((use-list (module-uses module)))
1928 (if (and (pair? use-list)
1929 (eq? (car (last-pair use-list)) the-scm-module))
1930 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1931
1932 ;; Return a module that is an interface to the module designated by
1933 ;; NAME.
1934 ;;
1935 ;; `resolve-interface' takes four keyword arguments:
1936 ;;
1937 ;; #:select SELECTION
1938 ;;
1939 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
1940 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1941 ;; is the name in the used module and SEEN is the name in the using
1942 ;; module. Note that SEEN is also passed through RENAMER, below. The
1943 ;; default is to select all bindings. If you specify no selection but
1944 ;; a renamer, only the bindings that already exist in the used module
1945 ;; are made available in the interface. Bindings that are added later
1946 ;; are not picked up.
1947 ;;
1948 ;; #:hide BINDINGS
1949 ;;
1950 ;; BINDINGS is a list of bindings which should not be imported.
1951 ;;
1952 ;; #:prefix PREFIX
1953 ;;
1954 ;; PREFIX is a symbol that will be appended to each exported name.
1955 ;; The default is to not perform any renaming.
1956 ;;
1957 ;; #:renamer RENAMER
1958 ;;
1959 ;; RENAMER is a procedure that takes a symbol and returns its new
1960 ;; name. The default is not perform any renaming.
1961 ;;
1962 ;; Signal "no code for module" error if module name is not resolvable
1963 ;; or its public interface is not available. Signal "no binding"
1964 ;; error if selected binding does not exist in the used module.
1965 ;;
1966 (define (resolve-interface name . args)
1967
1968 (define (get-keyword-arg args kw def)
1969 (cond ((memq kw args)
1970 => (lambda (kw-arg)
1971 (if (null? (cdr kw-arg))
1972 (error "keyword without value: " kw))
1973 (cadr kw-arg)))
1974 (else
1975 def)))
1976
1977 (let* ((select (get-keyword-arg args #:select #f))
1978 (hide (get-keyword-arg args #:hide '()))
1979 (renamer (or (get-keyword-arg args #:renamer #f)
1980 (let ((prefix (get-keyword-arg args #:prefix #f)))
1981 (and prefix (symbol-prefix-proc prefix)))
1982 identity))
1983 (module (resolve-module name))
1984 (public-i (and module (module-public-interface module))))
1985 (and (or (not module) (not public-i))
1986 (error "no code for module" name))
1987 (if (and (not select) (null? hide) (eq? renamer identity))
1988 public-i
1989 (let ((selection (or select (module-map (lambda (sym var) sym)
1990 public-i)))
1991 (custom-i (make-module 31)))
1992 (set-module-kind! custom-i 'custom-interface)
1993 (set-module-name! custom-i name)
1994 ;; XXX - should use a lazy binder so that changes to the
1995 ;; used module are picked up automatically.
1996 (for-each (lambda (bspec)
1997 (let* ((direct? (symbol? bspec))
1998 (orig (if direct? bspec (car bspec)))
1999 (seen (if direct? bspec (cdr bspec)))
2000 (var (or (module-local-variable public-i orig)
2001 (module-local-variable module orig)
2002 (error
2003 ;; fixme: format manually for now
2004 (simple-format
2005 #f "no binding `~A' in module ~A"
2006 orig name)))))
2007 (if (memq orig hide)
2008 (set! hide (delq! orig hide))
2009 (module-add! custom-i
2010 (renamer seen)
2011 var))))
2012 selection)
2013 ;; Check that we are not hiding bindings which don't exist
2014 (for-each (lambda (binding)
2015 (if (not (module-local-variable public-i binding))
2016 (error
2017 (simple-format
2018 #f "no binding `~A' to hide in module ~A"
2019 binding name))))
2020 hide)
2021 custom-i))))
2022
2023 (define (symbol-prefix-proc prefix)
2024 (lambda (symbol)
2025 (symbol-append prefix symbol)))
2026
2027 ;; This function is called from "modules.c". If you change it, be
2028 ;; sure to update "modules.c" as well.
2029
2030 (define (process-define-module args)
2031 (let* ((module-id (car args))
2032 (module (resolve-module module-id #f))
2033 (kws (cdr args))
2034 (unrecognized (lambda (arg)
2035 (error "unrecognized define-module argument" arg))))
2036 (beautify-user-module! module)
2037 (let loop ((kws kws)
2038 (reversed-interfaces '())
2039 (exports '())
2040 (re-exports '())
2041 (replacements '()))
2042
2043 (if (null? kws)
2044 (call-with-deferred-observers
2045 (lambda ()
2046 (module-use-interfaces! module (reverse reversed-interfaces))
2047 (module-export! module exports)
2048 (module-replace! module replacements)
2049 (module-re-export! module re-exports)))
2050 (case (car kws)
2051 ((#:use-module #:use-syntax)
2052 (or (pair? (cdr kws))
2053 (unrecognized kws))
2054 (let* ((interface-args (cadr kws))
2055 (interface (apply resolve-interface interface-args)))
2056 (and (eq? (car kws) #:use-syntax)
2057 (or (symbol? (caar interface-args))
2058 (error "invalid module name for use-syntax"
2059 (car interface-args)))
2060 (set-module-transformer!
2061 module
2062 (module-ref interface
2063 (car (last-pair (car interface-args)))
2064 #f)))
2065 (loop (cddr kws)
2066 (cons interface reversed-interfaces)
2067 exports
2068 re-exports
2069 replacements)))
2070 ((#:autoload)
2071 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2072 (unrecognized kws))
2073 (loop (cdddr kws)
2074 (cons (make-autoload-interface module
2075 (cadr kws)
2076 (caddr kws))
2077 reversed-interfaces)
2078 exports
2079 re-exports
2080 replacements))
2081 ((#:no-backtrace)
2082 (set-system-module! module #t)
2083 (loop (cdr kws) reversed-interfaces exports re-exports replacements))
2084 ((#:pure)
2085 (purify-module! module)
2086 (loop (cdr kws) reversed-interfaces exports re-exports replacements))
2087 ((#:duplicates)
2088 (if (not (pair? (cdr kws)))
2089 (unrecognized kws))
2090 (set-module-duplicates-handlers!
2091 module
2092 (lookup-duplicates-handlers (cadr kws)))
2093 (loop (cddr kws) reversed-interfaces exports re-exports replacements))
2094 ((#:export #:export-syntax)
2095 (or (pair? (cdr kws))
2096 (unrecognized kws))
2097 (loop (cddr kws)
2098 reversed-interfaces
2099 (append (cadr kws) exports)
2100 re-exports
2101 replacements))
2102 ((#:re-export #:re-export-syntax)
2103 (or (pair? (cdr kws))
2104 (unrecognized kws))
2105 (loop (cddr kws)
2106 reversed-interfaces
2107 exports
2108 (append (cadr kws) re-exports)
2109 replacements))
2110 ((#:replace #:replace-syntax)
2111 (or (pair? (cdr kws))
2112 (unrecognized kws))
2113 (loop (cddr kws)
2114 reversed-interfaces
2115 exports
2116 re-exports
2117 (append (cadr kws) replacements)))
2118 (else
2119 (unrecognized kws)))))
2120 (run-hook module-defined-hook module)
2121 module))
2122
2123 ;; `module-defined-hook' is a hook that is run whenever a new module
2124 ;; is defined. Its members are called with one argument, the new
2125 ;; module.
2126 (define module-defined-hook (make-hook 1))
2127
2128 \f
2129
2130 ;;; {Autoload}
2131 ;;;
2132
2133 (define (make-autoload-interface module name bindings)
2134 (let ((b (lambda (a sym definep)
2135 (and (memq sym bindings)
2136 (let ((i (module-public-interface (resolve-module name))))
2137 (if (not i)
2138 (error "missing interface for module" name))
2139 ;; Replace autoload-interface with interface
2140 (set-car! (memq a (module-uses module)) i)
2141 (module-local-variable i sym))))))
2142 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f #f
2143 '() (make-weak-value-hash-table 31) 0)))
2144
2145 ;;; {Compiled module}
2146
2147 (define load-compiled #f)
2148
2149 \f
2150
2151 ;;; {Autoloading modules}
2152 ;;;
2153
2154 (define autoloads-in-progress '())
2155
2156 ;; This function is called from "modules.c". If you change it, be
2157 ;; sure to update "modules.c" as well.
2158
2159 (define (try-module-autoload module-name)
2160 (let* ((reverse-name (reverse module-name))
2161 (name (symbol->string (car reverse-name)))
2162 (dir-hint-module-name (reverse (cdr reverse-name)))
2163 (dir-hint (apply string-append
2164 (map (lambda (elt)
2165 (string-append (symbol->string elt) "/"))
2166 dir-hint-module-name))))
2167 (resolve-module dir-hint-module-name #f)
2168 (and (not (autoload-done-or-in-progress? dir-hint name))
2169 (let ((didit #f))
2170 (define (load-file proc file)
2171 (save-module-excursion (lambda () (proc file)))
2172 (set! didit #t))
2173 (dynamic-wind
2174 (lambda () (autoload-in-progress! dir-hint name))
2175 (lambda ()
2176 (let ((file (in-vicinity dir-hint name)))
2177 (cond ((and load-compiled
2178 (%search-load-path (string-append file ".go")))
2179 => (lambda (full)
2180 (load-file load-compiled full)))
2181 ((%search-load-path file)
2182 => (lambda (full)
2183 (load-file primitive-load full))))))
2184 (lambda () (set-autoloaded! dir-hint name didit)))
2185 didit))))
2186
2187 \f
2188
2189 ;;; {Dynamic linking of modules}
2190 ;;;
2191
2192 (define autoloads-done '((guile . guile)))
2193
2194 (define (autoload-done-or-in-progress? p m)
2195 (let ((n (cons p m)))
2196 (->bool (or (member n autoloads-done)
2197 (member n autoloads-in-progress)))))
2198
2199 (define (autoload-done! p m)
2200 (let ((n (cons p m)))
2201 (set! autoloads-in-progress
2202 (delete! n autoloads-in-progress))
2203 (or (member n autoloads-done)
2204 (set! autoloads-done (cons n autoloads-done)))))
2205
2206 (define (autoload-in-progress! p m)
2207 (let ((n (cons p m)))
2208 (set! autoloads-done
2209 (delete! n autoloads-done))
2210 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2211
2212 (define (set-autoloaded! p m done?)
2213 (if done?
2214 (autoload-done! p m)
2215 (let ((n (cons p m)))
2216 (set! autoloads-done (delete! n autoloads-done))
2217 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2218
2219 \f
2220
2221 ;;; {Run-time options}
2222 ;;;
2223
2224 (define define-option-interface
2225 (let* ((option-name car)
2226 (option-value cadr)
2227 (option-documentation caddr)
2228
2229 (print-option (lambda (option)
2230 (display (option-name option))
2231 (if (< (string-length
2232 (symbol->string (option-name option)))
2233 8)
2234 (display #\tab))
2235 (display #\tab)
2236 (display (option-value option))
2237 (display #\tab)
2238 (display (option-documentation option))
2239 (newline)))
2240
2241 ;; Below follow the macros defining the run-time option interfaces.
2242
2243 (make-options (lambda (interface)
2244 `(lambda args
2245 (cond ((null? args) (,interface))
2246 ((list? (car args))
2247 (,interface (car args)) (,interface))
2248 (else (for-each ,print-option
2249 (,interface #t)))))))
2250
2251 (make-enable (lambda (interface)
2252 `(lambda flags
2253 (,interface (append flags (,interface)))
2254 (,interface))))
2255
2256 (make-disable (lambda (interface)
2257 `(lambda flags
2258 (let ((options (,interface)))
2259 (for-each (lambda (flag)
2260 (set! options (delq! flag options)))
2261 flags)
2262 (,interface options)
2263 (,interface))))))
2264 (procedure->memoizing-macro
2265 (lambda (exp env)
2266 (let* ((option-group (cadr exp))
2267 (interface (car option-group))
2268 (options/enable/disable (cadr option-group)))
2269 `(begin
2270 (define ,(car options/enable/disable)
2271 ,(make-options interface))
2272 (define ,(cadr options/enable/disable)
2273 ,(make-enable interface))
2274 (define ,(caddr options/enable/disable)
2275 ,(make-disable interface))
2276 (defmacro ,(caaddr option-group) (opt val)
2277 `(,,(car options/enable/disable)
2278 (append (,,(car options/enable/disable))
2279 (list ',opt ,val))))))))))
2280
2281 (define-option-interface
2282 (eval-options-interface
2283 (eval-options eval-enable eval-disable)
2284 (eval-set!)))
2285
2286 (define-option-interface
2287 (debug-options-interface
2288 (debug-options debug-enable debug-disable)
2289 (debug-set!)))
2290
2291 (define-option-interface
2292 (evaluator-traps-interface
2293 (traps trap-enable trap-disable)
2294 (trap-set!)))
2295
2296 (define-option-interface
2297 (read-options-interface
2298 (read-options read-enable read-disable)
2299 (read-set!)))
2300
2301 (define-option-interface
2302 (print-options-interface
2303 (print-options print-enable print-disable)
2304 (print-set!)))
2305
2306 \f
2307
2308 ;;; {Running Repls}
2309 ;;;
2310
2311 (define (repl read evaler print)
2312 (let loop ((source (read (current-input-port))))
2313 (print (evaler source))
2314 (loop (read (current-input-port)))))
2315
2316 ;; A provisional repl that acts like the SCM repl:
2317 ;;
2318 (define scm-repl-silent #f)
2319 (define (assert-repl-silence v) (set! scm-repl-silent v))
2320
2321 (define *unspecified* (if #f #f))
2322 (define (unspecified? v) (eq? v *unspecified*))
2323
2324 (define scm-repl-print-unspecified #f)
2325 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2326
2327 (define scm-repl-verbose #f)
2328 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2329
2330 (define scm-repl-prompt "guile> ")
2331
2332 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2333
2334 (define (default-lazy-handler key . args)
2335 (save-stack lazy-handler-dispatch)
2336 (apply throw key args))
2337
2338 (define (lazy-handler-dispatch key . args)
2339 (apply default-lazy-handler key args))
2340
2341 (define abort-hook (make-hook))
2342
2343 ;; these definitions are used if running a script.
2344 ;; otherwise redefined in error-catching-loop.
2345 (define (set-batch-mode?! arg) #t)
2346 (define (batch-mode?) #t)
2347
2348 (define (error-catching-loop thunk)
2349 (let ((status #f)
2350 (interactive #t))
2351 (define (loop first)
2352 (let ((next
2353 (catch #t
2354
2355 (lambda ()
2356 (lazy-catch #t
2357 (lambda ()
2358 (call-with-unblocked-asyncs
2359 (lambda ()
2360 (with-traps
2361 (lambda ()
2362 (first)
2363
2364 ;; This line is needed because mark
2365 ;; doesn't do closures quite right.
2366 ;; Unreferenced locals should be
2367 ;; collected.
2368 ;;
2369 (set! first #f)
2370 (let loop ((v (thunk)))
2371 (loop (thunk)))
2372 #f)))))
2373
2374 ;; Note that having just
2375 ;; `lazy-handler-dispatch' here is
2376 ;; connected with the mechanism that
2377 ;; produces a nice backtrace upon
2378 ;; error. If, for example, this is
2379 ;; replaced with (lambda args (apply
2380 ;; lazy-handler-dispatch args)), the
2381 ;; stack cutting (in save-stack)
2382 ;; goes wrong and ends up saving no
2383 ;; stack at all, so there is no
2384 ;; backtrace.
2385 lazy-handler-dispatch))
2386
2387 (lambda (key . args)
2388 (case key
2389 ((quit)
2390 (set! status args)
2391 #f)
2392
2393 ((switch-repl)
2394 (apply throw 'switch-repl args))
2395
2396 ((abort)
2397 ;; This is one of the closures that require
2398 ;; (set! first #f) above
2399 ;;
2400 (lambda ()
2401 (run-hook abort-hook)
2402 (force-output (current-output-port))
2403 (display "ABORT: " (current-error-port))
2404 (write args (current-error-port))
2405 (newline (current-error-port))
2406 (if interactive
2407 (begin
2408 (if (and
2409 (not has-shown-debugger-hint?)
2410 (not (memq 'backtrace
2411 (debug-options-interface)))
2412 (stack? (fluid-ref the-last-stack)))
2413 (begin
2414 (newline (current-error-port))
2415 (display
2416 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2417 (current-error-port))
2418 (set! has-shown-debugger-hint? #t)))
2419 (force-output (current-error-port)))
2420 (begin
2421 (primitive-exit 1)))
2422 (set! stack-saved? #f)))
2423
2424 (else
2425 ;; This is the other cons-leak closure...
2426 (lambda ()
2427 (cond ((= (length args) 4)
2428 (apply handle-system-error key args))
2429 (else
2430 (apply bad-throw key args))))))))))
2431 (if next (loop next) status)))
2432 (set! set-batch-mode?! (lambda (arg)
2433 (cond (arg
2434 (set! interactive #f)
2435 (restore-signals))
2436 (#t
2437 (error "sorry, not implemented")))))
2438 (set! batch-mode? (lambda () (not interactive)))
2439 (call-with-blocked-asyncs
2440 (lambda () (loop (lambda () #t))))))
2441
2442 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2443 (define before-signal-stack (make-fluid))
2444 (define stack-saved? #f)
2445
2446 (define (save-stack . narrowing)
2447 (or stack-saved?
2448 (cond ((not (memq 'debug (debug-options-interface)))
2449 (fluid-set! the-last-stack #f)
2450 (set! stack-saved? #t))
2451 (else
2452 (fluid-set!
2453 the-last-stack
2454 (case (stack-id #t)
2455 ((repl-stack)
2456 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2457 ((load-stack)
2458 (apply make-stack #t save-stack 0 #t 0 narrowing))
2459 ((tk-stack)
2460 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2461 ((#t)
2462 (apply make-stack #t save-stack 0 1 narrowing))
2463 (else
2464 (let ((id (stack-id #t)))
2465 (and (procedure? id)
2466 (apply make-stack #t save-stack id #t 0 narrowing))))))
2467 (set! stack-saved? #t)))))
2468
2469 (define before-error-hook (make-hook))
2470 (define after-error-hook (make-hook))
2471 (define before-backtrace-hook (make-hook))
2472 (define after-backtrace-hook (make-hook))
2473
2474 (define has-shown-debugger-hint? #f)
2475
2476 (define (handle-system-error key . args)
2477 (let ((cep (current-error-port)))
2478 (cond ((not (stack? (fluid-ref the-last-stack))))
2479 ((memq 'backtrace (debug-options-interface))
2480 (let ((highlights (if (or (eq? key 'wrong-type-arg)
2481 (eq? key 'out-of-range))
2482 (list-ref args 3)
2483 '())))
2484 (run-hook before-backtrace-hook)
2485 (newline cep)
2486 (display "Backtrace:\n")
2487 (display-backtrace (fluid-ref the-last-stack) cep
2488 #f #f highlights)
2489 (newline cep)
2490 (run-hook after-backtrace-hook))))
2491 (run-hook before-error-hook)
2492 (apply display-error (fluid-ref the-last-stack) cep args)
2493 (run-hook after-error-hook)
2494 (force-output cep)
2495 (throw 'abort key)))
2496
2497 (define (quit . args)
2498 (apply throw 'quit args))
2499
2500 (define exit quit)
2501
2502 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2503
2504 ;; Replaced by C code:
2505 ;;(define (backtrace)
2506 ;; (if (fluid-ref the-last-stack)
2507 ;; (begin
2508 ;; (newline)
2509 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2510 ;; (newline)
2511 ;; (if (and (not has-shown-backtrace-hint?)
2512 ;; (not (memq 'backtrace (debug-options-interface))))
2513 ;; (begin
2514 ;; (display
2515 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2516 ;;automatically if an error occurs in the future.\n")
2517 ;; (set! has-shown-backtrace-hint? #t))))
2518 ;; (display "No backtrace available.\n")))
2519
2520 (define (error-catching-repl r e p)
2521 (error-catching-loop
2522 (lambda ()
2523 (call-with-values (lambda () (e (r)))
2524 (lambda the-values (for-each p the-values))))))
2525
2526 (define (gc-run-time)
2527 (cdr (assq 'gc-time-taken (gc-stats))))
2528
2529 (define before-read-hook (make-hook))
2530 (define after-read-hook (make-hook))
2531 (define before-eval-hook (make-hook 1))
2532 (define after-eval-hook (make-hook 1))
2533 (define before-print-hook (make-hook 1))
2534 (define after-print-hook (make-hook 1))
2535
2536 ;;; The default repl-reader function. We may override this if we've
2537 ;;; the readline library.
2538 (define repl-reader
2539 (lambda (prompt)
2540 (display prompt)
2541 (force-output)
2542 (run-hook before-read-hook)
2543 (read (current-input-port))))
2544
2545 (define (scm-style-repl)
2546
2547 (letrec (
2548 (start-gc-rt #f)
2549 (start-rt #f)
2550 (repl-report-start-timing (lambda ()
2551 (set! start-gc-rt (gc-run-time))
2552 (set! start-rt (get-internal-run-time))))
2553 (repl-report (lambda ()
2554 (display ";;; ")
2555 (display (inexact->exact
2556 (* 1000 (/ (- (get-internal-run-time) start-rt)
2557 internal-time-units-per-second))))
2558 (display " msec (")
2559 (display (inexact->exact
2560 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2561 internal-time-units-per-second))))
2562 (display " msec in gc)\n")))
2563
2564 (consume-trailing-whitespace
2565 (lambda ()
2566 (let ((ch (peek-char)))
2567 (cond
2568 ((eof-object? ch))
2569 ((or (char=? ch #\space) (char=? ch #\tab))
2570 (read-char)
2571 (consume-trailing-whitespace))
2572 ((char=? ch #\newline)
2573 (read-char))))))
2574 (-read (lambda ()
2575 (let ((val
2576 (let ((prompt (cond ((string? scm-repl-prompt)
2577 scm-repl-prompt)
2578 ((thunk? scm-repl-prompt)
2579 (scm-repl-prompt))
2580 (scm-repl-prompt "> ")
2581 (else ""))))
2582 (repl-reader prompt))))
2583
2584 ;; As described in R4RS, the READ procedure updates the
2585 ;; port to point to the first character past the end of
2586 ;; the external representation of the object. This
2587 ;; means that it doesn't consume the newline typically
2588 ;; found after an expression. This means that, when
2589 ;; debugging Guile with GDB, GDB gets the newline, which
2590 ;; it often interprets as a "continue" command, making
2591 ;; breakpoints kind of useless. So, consume any
2592 ;; trailing newline here, as well as any whitespace
2593 ;; before it.
2594 ;; But not if EOF, for control-D.
2595 (if (not (eof-object? val))
2596 (consume-trailing-whitespace))
2597 (run-hook after-read-hook)
2598 (if (eof-object? val)
2599 (begin
2600 (repl-report-start-timing)
2601 (if scm-repl-verbose
2602 (begin
2603 (newline)
2604 (display ";;; EOF -- quitting")
2605 (newline)))
2606 (quit 0)))
2607 val)))
2608
2609 (-eval (lambda (sourc)
2610 (repl-report-start-timing)
2611 (run-hook before-eval-hook sourc)
2612 (let ((val (start-stack 'repl-stack
2613 ;; If you change this procedure
2614 ;; (primitive-eval), please also
2615 ;; modify the repl-stack case in
2616 ;; save-stack so that stack cutting
2617 ;; continues to work.
2618 (primitive-eval sourc))))
2619 (run-hook after-eval-hook sourc)
2620 val)))
2621
2622
2623 (-print (let ((maybe-print (lambda (result)
2624 (if (or scm-repl-print-unspecified
2625 (not (unspecified? result)))
2626 (begin
2627 (write result)
2628 (newline))))))
2629 (lambda (result)
2630 (if (not scm-repl-silent)
2631 (begin
2632 (run-hook before-print-hook result)
2633 (maybe-print result)
2634 (run-hook after-print-hook result)
2635 (if scm-repl-verbose
2636 (repl-report))
2637 (force-output))))))
2638
2639 (-quit (lambda (args)
2640 (if scm-repl-verbose
2641 (begin
2642 (display ";;; QUIT executed, repl exitting")
2643 (newline)
2644 (repl-report)))
2645 args))
2646
2647 (-abort (lambda ()
2648 (if scm-repl-verbose
2649 (begin
2650 (display ";;; ABORT executed.")
2651 (newline)
2652 (repl-report)))
2653 (repl -read -eval -print))))
2654
2655 (let ((status (error-catching-repl -read
2656 -eval
2657 -print)))
2658 (-quit status))))
2659
2660
2661 \f
2662
2663 ;;; {IOTA functions: generating lists of numbers}
2664 ;;;
2665
2666 (define (iota n)
2667 (let loop ((count (1- n)) (result '()))
2668 (if (< count 0) result
2669 (loop (1- count) (cons count result)))))
2670
2671 \f
2672
2673 ;;; {collect}
2674 ;;;
2675 ;;; Similar to `begin' but returns a list of the results of all constituent
2676 ;;; forms instead of the result of the last form.
2677 ;;; (The definition relies on the current left-to-right
2678 ;;; order of evaluation of operands in applications.)
2679 ;;;
2680
2681 (defmacro collect forms
2682 (cons 'list forms))
2683
2684 \f
2685
2686 ;;; {with-fluids}
2687 ;;;
2688
2689 ;; with-fluids is a convenience wrapper for the builtin procedure
2690 ;; `with-fluids*'. The syntax is just like `let':
2691 ;;
2692 ;; (with-fluids ((fluid val)
2693 ;; ...)
2694 ;; body)
2695
2696 (defmacro with-fluids (bindings . body)
2697 (let ((fluids (map car bindings))
2698 (values (map cadr bindings)))
2699 (if (and (= (length fluids) 1) (= (length values) 1))
2700 `(with-fluid* ,(car fluids) ,(car values) (lambda () ,@body))
2701 `(with-fluids* (list ,@fluids) (list ,@values)
2702 (lambda () ,@body)))))
2703
2704 \f
2705
2706 ;;; {Macros}
2707 ;;;
2708
2709 ;; actually....hobbit might be able to hack these with a little
2710 ;; coaxing
2711 ;;
2712
2713 (define (primitive-macro? m)
2714 (and (macro? m)
2715 (not (macro-transformer m))))
2716
2717 (defmacro define-macro (first . rest)
2718 (let ((name (if (symbol? first) first (car first)))
2719 (transformer
2720 (if (symbol? first)
2721 (car rest)
2722 `(lambda ,(cdr first) ,@rest))))
2723 `(eval-case
2724 ((load-toplevel)
2725 (define ,name (defmacro:transformer ,transformer)))
2726 (else
2727 (error "define-macro can only be used at the top level")))))
2728
2729
2730 (defmacro define-syntax-macro (first . rest)
2731 (let ((name (if (symbol? first) first (car first)))
2732 (transformer
2733 (if (symbol? first)
2734 (car rest)
2735 `(lambda ,(cdr first) ,@rest))))
2736 `(eval-case
2737 ((load-toplevel)
2738 (define ,name (defmacro:syntax-transformer ,transformer)))
2739 (else
2740 (error "define-syntax-macro can only be used at the top level")))))
2741
2742 \f
2743
2744 ;;; {While}
2745 ;;;
2746 ;;; with `continue' and `break'.
2747 ;;;
2748
2749 ;; The inner `do' loop avoids re-establishing a catch every iteration,
2750 ;; that's only necessary if continue is actually used. A new key is
2751 ;; generated every time, so break and continue apply to their originating
2752 ;; `while' even when recursing. `while-helper' is an easy way to keep the
2753 ;; `key' binding away from the cond and body code.
2754 ;;
2755 ;; FIXME: This is supposed to have an `unquote' on the `do' the same used
2756 ;; for lambda and not, so as to protect against any user rebinding of that
2757 ;; symbol, but unfortunately an unquote breaks with ice-9 syncase, eg.
2758 ;;
2759 ;; (use-modules (ice-9 syncase))
2760 ;; (while #f)
2761 ;; => ERROR: invalid syntax ()
2762 ;;
2763 ;; This is probably a bug in syncase.
2764 ;;
2765 (define-macro (while cond . body)
2766 (define (while-helper proc)
2767 (do ((key (make-symbol "while-key")))
2768 ((catch key
2769 (lambda ()
2770 (proc (lambda () (throw key #t))
2771 (lambda () (throw key #f))))
2772 (lambda (key arg) arg)))))
2773 `(,while-helper (,lambda (break continue)
2774 (do ()
2775 ((,not ,cond))
2776 ,@body)
2777 #t)))
2778
2779
2780 \f
2781
2782 ;;; {Module System Macros}
2783 ;;;
2784
2785 ;; Return a list of expressions that evaluate to the appropriate
2786 ;; arguments for resolve-interface according to SPEC.
2787
2788 (define (compile-interface-spec spec)
2789 (define (make-keyarg sym key quote?)
2790 (cond ((or (memq sym spec)
2791 (memq key spec))
2792 => (lambda (rest)
2793 (if quote?
2794 (list key (list 'quote (cadr rest)))
2795 (list key (cadr rest)))))
2796 (else
2797 '())))
2798 (define (map-apply func list)
2799 (map (lambda (args) (apply func args)) list))
2800 (define keys
2801 ;; sym key quote?
2802 '((:select #:select #t)
2803 (:hide #:hide #t)
2804 (:prefix #:prefix #t)
2805 (:renamer #:renamer #f)))
2806 (if (not (pair? (car spec)))
2807 `(',spec)
2808 `(',(car spec)
2809 ,@(apply append (map-apply make-keyarg keys)))))
2810
2811 (define (keyword-like-symbol->keyword sym)
2812 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2813
2814 (define (compile-define-module-args args)
2815 ;; Just quote everything except #:use-module and #:use-syntax. We
2816 ;; need to know about all arguments regardless since we want to turn
2817 ;; symbols that look like keywords into real keywords, and the
2818 ;; keyword args in a define-module form are not regular
2819 ;; (i.e. no-backtrace doesn't take a value).
2820 (let loop ((compiled-args `((quote ,(car args))))
2821 (args (cdr args)))
2822 (cond ((null? args)
2823 (reverse! compiled-args))
2824 ;; symbol in keyword position
2825 ((symbol? (car args))
2826 (loop compiled-args
2827 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2828 ((memq (car args) '(#:no-backtrace #:pure))
2829 (loop (cons (car args) compiled-args)
2830 (cdr args)))
2831 ((null? (cdr args))
2832 (error "keyword without value:" (car args)))
2833 ((memq (car args) '(#:use-module #:use-syntax))
2834 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2835 (car args)
2836 compiled-args)
2837 (cddr args)))
2838 ((eq? (car args) #:autoload)
2839 (loop (cons* `(quote ,(caddr args))
2840 `(quote ,(cadr args))
2841 (car args)
2842 compiled-args)
2843 (cdddr args)))
2844 (else
2845 (loop (cons* `(quote ,(cadr args))
2846 (car args)
2847 compiled-args)
2848 (cddr args))))))
2849
2850 (defmacro define-module args
2851 `(eval-case
2852 ((load-toplevel)
2853 (let ((m (process-define-module
2854 (list ,@(compile-define-module-args args)))))
2855 (set-current-module m)
2856 m))
2857 (else
2858 (error "define-module can only be used at the top level"))))
2859
2860 ;; The guts of the use-modules macro. Add the interfaces of the named
2861 ;; modules to the use-list of the current module, in order.
2862
2863 ;; This function is called by "modules.c". If you change it, be sure
2864 ;; to change scm_c_use_module as well.
2865
2866 (define (process-use-modules module-interface-args)
2867 (let ((interfaces (map (lambda (mif-args)
2868 (or (apply resolve-interface mif-args)
2869 (error "no such module" mif-args)))
2870 module-interface-args)))
2871 (call-with-deferred-observers
2872 (lambda ()
2873 (module-use-interfaces! (current-module) interfaces)))))
2874
2875 (defmacro use-modules modules
2876 `(eval-case
2877 ((load-toplevel)
2878 (process-use-modules
2879 (list ,@(map (lambda (m)
2880 `(list ,@(compile-interface-spec m)))
2881 modules)))
2882 *unspecified*)
2883 (else
2884 (error "use-modules can only be used at the top level"))))
2885
2886 (defmacro use-syntax (spec)
2887 `(eval-case
2888 ((load-toplevel)
2889 ,@(if (pair? spec)
2890 `((process-use-modules (list
2891 (list ,@(compile-interface-spec spec))))
2892 (set-module-transformer! (current-module)
2893 ,(car (last-pair spec))))
2894 `((set-module-transformer! (current-module) ,spec)))
2895 *unspecified*)
2896 (else
2897 (error "use-syntax can only be used at the top level"))))
2898
2899 ;; Dirk:FIXME:: This incorrect (according to R5RS) syntax needs to be changed
2900 ;; as soon as guile supports hygienic macros.
2901 (define define-private define)
2902
2903 (defmacro define-public args
2904 (define (syntax)
2905 (error "bad syntax" (list 'define-public args)))
2906 (define (defined-name n)
2907 (cond
2908 ((symbol? n) n)
2909 ((pair? n) (defined-name (car n)))
2910 (else (syntax))))
2911 (cond
2912 ((null? args)
2913 (syntax))
2914 (#t
2915 (let ((name (defined-name (car args))))
2916 `(begin
2917 (define-private ,@args)
2918 (eval-case ((load-toplevel) (export ,name))))))))
2919
2920 (defmacro defmacro-public args
2921 (define (syntax)
2922 (error "bad syntax" (list 'defmacro-public args)))
2923 (define (defined-name n)
2924 (cond
2925 ((symbol? n) n)
2926 (else (syntax))))
2927 (cond
2928 ((null? args)
2929 (syntax))
2930 (#t
2931 (let ((name (defined-name (car args))))
2932 `(begin
2933 (eval-case ((load-toplevel) (export-syntax ,name)))
2934 (defmacro ,@args))))))
2935
2936 ;; Export a local variable
2937
2938 ;; This function is called from "modules.c". If you change it, be
2939 ;; sure to update "modules.c" as well.
2940
2941 (define (module-export! m names)
2942 (let ((public-i (module-public-interface m)))
2943 (for-each (lambda (name)
2944 (let ((var (module-ensure-local-variable! m name)))
2945 (module-add! public-i name var)))
2946 names)))
2947
2948 (define (module-replace! m names)
2949 (let ((public-i (module-public-interface m)))
2950 (for-each (lambda (name)
2951 (let ((var (module-ensure-local-variable! m name)))
2952 (set-object-property! var 'replace #t)
2953 (module-add! public-i name var)))
2954 names)))
2955
2956 ;; Re-export a imported variable
2957 ;;
2958 (define (module-re-export! m names)
2959 (let ((public-i (module-public-interface m)))
2960 (for-each (lambda (name)
2961 (let ((var (module-variable m name)))
2962 (cond ((not var)
2963 (error "Undefined variable:" name))
2964 ((eq? var (module-local-variable m name))
2965 (error "re-exporting local variable:" name))
2966 (else
2967 (module-add! public-i name var)))))
2968 names)))
2969
2970 (defmacro export names
2971 `(eval-case
2972 ((load-toplevel)
2973 (call-with-deferred-observers
2974 (lambda ()
2975 (module-export! (current-module) ',names))))
2976 (else
2977 (error "export can only be used at the top level"))))
2978
2979 (defmacro re-export names
2980 `(eval-case
2981 ((load-toplevel)
2982 (call-with-deferred-observers
2983 (lambda ()
2984 (module-re-export! (current-module) ',names))))
2985 (else
2986 (error "re-export can only be used at the top level"))))
2987
2988 (defmacro export-syntax names
2989 `(export ,@names))
2990
2991 (defmacro re-export-syntax names
2992 `(re-export ,@names))
2993
2994 (define load load-module)
2995
2996 ;; The following macro allows one to write, for example,
2997 ;;
2998 ;; (@ (ice-9 pretty-print) pretty-print)
2999 ;;
3000 ;; to refer directly to the pretty-print variable in module (ice-9
3001 ;; pretty-print). It works by looking up the variable and inserting
3002 ;; it directly into the code. This is understood by the evaluator.
3003 ;; Indeed, all references to global variables are memoized into such
3004 ;; variable objects.
3005
3006 (define-macro (@ mod-name var-name)
3007 (let ((var (module-variable (resolve-interface mod-name) var-name)))
3008 (if (not var)
3009 (error "no such public variable" (list '@ mod-name var-name)))
3010 var))
3011
3012 ;; The '@@' macro is like '@' but it can also access bindings that
3013 ;; have not been explicitely exported.
3014
3015 (define-macro (@@ mod-name var-name)
3016 (let ((var (module-variable (resolve-module mod-name) var-name)))
3017 (if (not var)
3018 (error "no such variable" (list '@@ mod-name var-name)))
3019 var))
3020
3021 \f
3022
3023 ;;; {Parameters}
3024 ;;;
3025
3026 (define make-mutable-parameter
3027 (let ((make (lambda (fluid converter)
3028 (lambda args
3029 (if (null? args)
3030 (fluid-ref fluid)
3031 (fluid-set! fluid (converter (car args))))))))
3032 (lambda (init . converter)
3033 (let ((fluid (make-fluid))
3034 (converter (if (null? converter)
3035 identity
3036 (car converter))))
3037 (fluid-set! fluid (converter init))
3038 (make fluid converter)))))
3039
3040 \f
3041
3042 ;;; {Handling of duplicate imported bindings}
3043 ;;;
3044
3045 ;; Duplicate handlers take the following arguments:
3046 ;;
3047 ;; module importing module
3048 ;; name conflicting name
3049 ;; int1 old interface where name occurs
3050 ;; val1 value of binding in old interface
3051 ;; int2 new interface where name occurs
3052 ;; val2 value of binding in new interface
3053 ;; var previous resolution or #f
3054 ;; val value of previous resolution
3055 ;;
3056 ;; A duplicate handler can take three alternative actions:
3057 ;;
3058 ;; 1. return #f => leave responsibility to next handler
3059 ;; 2. exit with an error
3060 ;; 3. return a variable resolving the conflict
3061 ;;
3062
3063 (define duplicate-handlers
3064 (let ((m (make-module 7)))
3065
3066 (define (check module name int1 val1 int2 val2 var val)
3067 (scm-error 'misc-error
3068 #f
3069 "~A: `~A' imported from both ~A and ~A"
3070 (list (module-name module)
3071 name
3072 (module-name int1)
3073 (module-name int2))
3074 #f))
3075
3076 (define (warn module name int1 val1 int2 val2 var val)
3077 (format #t
3078 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3079 (module-name module)
3080 name
3081 (module-name int1)
3082 (module-name int2))
3083 #f)
3084
3085 (define (replace module name int1 val1 int2 val2 var val)
3086 (let ((old (or (and var (object-property var 'replace) var)
3087 (module-variable int1 name)))
3088 (new (module-variable int2 name)))
3089 (if (object-property old 'replace)
3090 (and (or (eq? old new)
3091 (not (object-property new 'replace)))
3092 old)
3093 (and (object-property new 'replace)
3094 new))))
3095
3096 (define (warn-override-core module name int1 val1 int2 val2 var val)
3097 (and (eq? int1 the-scm-module)
3098 (begin
3099 (format #t
3100 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3101 (module-name module)
3102 (module-name int2)
3103 name)
3104 (module-local-variable int2 name))))
3105
3106 (define (first module name int1 val1 int2 val2 var val)
3107 (or var (module-local-variable int1 name)))
3108
3109 (define (last module name int1 val1 int2 val2 var val)
3110 (module-local-variable int2 name))
3111
3112 (define (noop module name int1 val1 int2 val2 var val)
3113 #f)
3114
3115 (set-module-name! m 'duplicate-handlers)
3116 (set-module-kind! m 'interface)
3117 (module-define! m 'check check)
3118 (module-define! m 'warn warn)
3119 (module-define! m 'replace replace)
3120 (module-define! m 'warn-override-core warn-override-core)
3121 (module-define! m 'first first)
3122 (module-define! m 'last last)
3123 (module-define! m 'merge-generics noop)
3124 (module-define! m 'merge-accessors noop)
3125 m))
3126
3127 (define (lookup-duplicates-handlers handler-names)
3128 (and handler-names
3129 (map (lambda (handler-name)
3130 (or (module-symbol-local-binding
3131 duplicate-handlers handler-name #f)
3132 (error "invalid duplicate handler name:"
3133 handler-name)))
3134 (if (list? handler-names)
3135 handler-names
3136 (list handler-names)))))
3137
3138 (define default-duplicate-binding-procedures
3139 (make-mutable-parameter #f))
3140
3141 (define default-duplicate-binding-handler
3142 (make-mutable-parameter '(replace warn-override-core warn last)
3143 (lambda (handler-names)
3144 (default-duplicate-binding-procedures
3145 (lookup-duplicates-handlers handler-names))
3146 handler-names)))
3147
3148 (define (make-duplicates-interface)
3149 (let ((m (make-module)))
3150 (set-module-kind! m 'custom-interface)
3151 (set-module-name! m 'duplicates)
3152 m))
3153
3154 (define (process-duplicates module interface)
3155 (let* ((duplicates-handlers (or (module-duplicates-handlers module)
3156 (default-duplicate-binding-procedures)))
3157 (duplicates-interface (module-duplicates-interface module)))
3158 (module-for-each
3159 (lambda (name var)
3160 (cond ((module-import-interface module name)
3161 =>
3162 (lambda (prev-interface)
3163 (let ((var1 (module-local-variable prev-interface name))
3164 (var2 (module-local-variable interface name)))
3165 (if (not (eq? var1 var2))
3166 (begin
3167 (if (not duplicates-interface)
3168 (begin
3169 (set! duplicates-interface
3170 (make-duplicates-interface))
3171 (set-module-duplicates-interface!
3172 module
3173 duplicates-interface)))
3174 (let* ((var (module-local-variable duplicates-interface
3175 name))
3176 (val (and var
3177 (variable-bound? var)
3178 (variable-ref var))))
3179 (let loop ((duplicates-handlers duplicates-handlers))
3180 (cond ((null? duplicates-handlers))
3181 (((car duplicates-handlers)
3182 module
3183 name
3184 prev-interface
3185 (and (variable-bound? var1)
3186 (variable-ref var1))
3187 interface
3188 (and (variable-bound? var2)
3189 (variable-ref var2))
3190 var
3191 val)
3192 =>
3193 (lambda (var)
3194 (module-add! duplicates-interface name var)))
3195 (else
3196 (loop (cdr duplicates-handlers)))))))))))))
3197 interface)))
3198
3199 \f
3200
3201 ;;; {`cond-expand' for SRFI-0 support.}
3202 ;;;
3203 ;;; This syntactic form expands into different commands or
3204 ;;; definitions, depending on the features provided by the Scheme
3205 ;;; implementation.
3206 ;;;
3207 ;;; Syntax:
3208 ;;;
3209 ;;; <cond-expand>
3210 ;;; --> (cond-expand <cond-expand-clause>+)
3211 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3212 ;;; <cond-expand-clause>
3213 ;;; --> (<feature-requirement> <command-or-definition>*)
3214 ;;; <feature-requirement>
3215 ;;; --> <feature-identifier>
3216 ;;; | (and <feature-requirement>*)
3217 ;;; | (or <feature-requirement>*)
3218 ;;; | (not <feature-requirement>)
3219 ;;; <feature-identifier>
3220 ;;; --> <a symbol which is the name or alias of a SRFI>
3221 ;;;
3222 ;;; Additionally, this implementation provides the
3223 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3224 ;;; determine the implementation type and the supported standard.
3225 ;;;
3226 ;;; Currently, the following feature identifiers are supported:
3227 ;;;
3228 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3229 ;;;
3230 ;;; Remember to update the features list when adding more SRFIs.
3231 ;;;
3232
3233 (define %cond-expand-features
3234 ;; Adjust the above comment when changing this.
3235 '(guile
3236 r5rs
3237 srfi-0 ;; cond-expand itself
3238 srfi-4 ;; homogenous numeric vectors
3239 srfi-6 ;; open-input-string etc, in the guile core
3240 srfi-13 ;; string library
3241 srfi-14 ;; character sets
3242 srfi-55 ;; require-extension
3243 srfi-61 ;; general cond clause
3244 ))
3245
3246 ;; This table maps module public interfaces to the list of features.
3247 ;;
3248 (define %cond-expand-table (make-hash-table 31))
3249
3250 ;; Add one or more features to the `cond-expand' feature list of the
3251 ;; module `module'.
3252 ;;
3253 (define (cond-expand-provide module features)
3254 (let ((mod (module-public-interface module)))
3255 (and mod
3256 (hashq-set! %cond-expand-table mod
3257 (append (hashq-ref %cond-expand-table mod '())
3258 features)))))
3259
3260 (define cond-expand
3261 (procedure->memoizing-macro
3262 (lambda (exp env)
3263 (let ((clauses (cdr exp))
3264 (syntax-error (lambda (cl)
3265 (error "invalid clause in `cond-expand'" cl))))
3266 (letrec
3267 ((test-clause
3268 (lambda (clause)
3269 (cond
3270 ((symbol? clause)
3271 (or (memq clause %cond-expand-features)
3272 (let lp ((uses (module-uses (env-module env))))
3273 (if (pair? uses)
3274 (or (memq clause
3275 (hashq-ref %cond-expand-table
3276 (car uses) '()))
3277 (lp (cdr uses)))
3278 #f))))
3279 ((pair? clause)
3280 (cond
3281 ((eq? 'and (car clause))
3282 (let lp ((l (cdr clause)))
3283 (cond ((null? l)
3284 #t)
3285 ((pair? l)
3286 (and (test-clause (car l)) (lp (cdr l))))
3287 (else
3288 (syntax-error clause)))))
3289 ((eq? 'or (car clause))
3290 (let lp ((l (cdr clause)))
3291 (cond ((null? l)
3292 #f)
3293 ((pair? l)
3294 (or (test-clause (car l)) (lp (cdr l))))
3295 (else
3296 (syntax-error clause)))))
3297 ((eq? 'not (car clause))
3298 (cond ((not (pair? (cdr clause)))
3299 (syntax-error clause))
3300 ((pair? (cddr clause))
3301 ((syntax-error clause))))
3302 (not (test-clause (cadr clause))))
3303 (else
3304 (syntax-error clause))))
3305 (else
3306 (syntax-error clause))))))
3307 (let lp ((c clauses))
3308 (cond
3309 ((null? c)
3310 (error "Unfulfilled `cond-expand'"))
3311 ((not (pair? c))
3312 (syntax-error c))
3313 ((not (pair? (car c)))
3314 (syntax-error (car c)))
3315 ((test-clause (caar c))
3316 `(begin ,@(cdar c)))
3317 ((eq? (caar c) 'else)
3318 (if (pair? (cdr c))
3319 (syntax-error c))
3320 `(begin ,@(cdar c)))
3321 (else
3322 (lp (cdr c))))))))))
3323
3324 ;; This procedure gets called from the startup code with a list of
3325 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3326 ;;
3327 (define (use-srfis srfis)
3328 (let lp ((s srfis))
3329 (if (pair? s)
3330 (let* ((srfi (string->symbol
3331 (string-append "srfi-" (number->string (car s)))))
3332 (mod-i (resolve-interface (list 'srfi srfi))))
3333 (module-use! (current-module) mod-i)
3334 (lp (cdr s))))))
3335
3336 \f
3337
3338 ;;; srfi-55: require-extension
3339 ;;;
3340
3341 (define-macro (require-extension extension-spec)
3342 ;; This macro only handles the srfi extension, which, at present, is
3343 ;; the only one defined by the standard.
3344 (if (not (pair? extension-spec))
3345 (scm-error 'wrong-type-arg "require-extension"
3346 "Not an extension: ~S" (list extension-spec) #f))
3347 (let ((extension (car extension-spec))
3348 (extension-args (cdr extension-spec)))
3349 (case extension
3350 ((srfi)
3351 (let ((use-list '()))
3352 (for-each
3353 (lambda (i)
3354 (if (not (integer? i))
3355 (scm-error 'wrong-type-arg "require-extension"
3356 "Invalid srfi name: ~S" (list i) #f))
3357 (let ((srfi-sym (string->symbol
3358 (string-append "srfi-" (number->string i)))))
3359 (if (not (memq srfi-sym %cond-expand-features))
3360 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3361 use-list)))))
3362 extension-args)
3363 (if (pair? use-list)
3364 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3365 `(begin ,@(reverse! use-list)))))
3366 (else
3367 (scm-error
3368 'wrong-type-arg "require-extension"
3369 "Not a recognized extension type: ~S" (list extension) #f)))))
3370
3371 \f
3372
3373 ;;; {Load emacs interface support if emacs option is given.}
3374 ;;;
3375
3376 (define (named-module-use! user usee)
3377 (module-use! (resolve-module user) (resolve-interface usee)))
3378
3379 (define (load-emacs-interface)
3380 (and (provided? 'debug-extensions)
3381 (debug-enable 'backtrace))
3382 (named-module-use! '(guile-user) '(ice-9 emacs)))
3383
3384 \f
3385
3386 (define using-readline?
3387 (let ((using-readline? (make-fluid)))
3388 (make-procedure-with-setter
3389 (lambda () (fluid-ref using-readline?))
3390 (lambda (v) (fluid-set! using-readline? v)))))
3391
3392 (define (top-repl)
3393 (let ((guile-user-module (resolve-module '(guile-user))))
3394
3395 ;; Load emacs interface support if emacs option is given.
3396 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3397 (module-ref guile-user-module 'use-emacs-interface))
3398 (load-emacs-interface))
3399
3400 ;; Use some convenient modules (in reverse order)
3401
3402 (if (provided? 'regex)
3403 (module-use! guile-user-module (resolve-interface '(ice-9 regex))))
3404 (if (provided? 'threads)
3405 (module-use! guile-user-module (resolve-interface '(ice-9 threads))))
3406 ;; load debugger on demand
3407 (module-use! guile-user-module
3408 (make-autoload-interface guile-user-module
3409 '(ice-9 debugger) '(debug)))
3410 (module-use! guile-user-module (resolve-interface '(ice-9 session)))
3411 (module-use! guile-user-module (resolve-interface '(ice-9 debug)))
3412 ;; so that builtin bindings will be checked first
3413 (module-use! guile-user-module (resolve-interface '(ice-9 r5rs)))
3414 (module-use! guile-user-module (resolve-interface '(guile)))
3415
3416 (set-current-module guile-user-module)
3417
3418 (let ((old-handlers #f)
3419 (signals (if (provided? 'posix)
3420 `((,SIGINT . "User interrupt")
3421 (,SIGFPE . "Arithmetic error")
3422 (,SIGBUS . "Bad memory access (bus error)")
3423 (,SIGSEGV
3424 . "Bad memory access (Segmentation violation)"))
3425 '())))
3426
3427 (dynamic-wind
3428
3429 ;; call at entry
3430 (lambda ()
3431 (let ((make-handler (lambda (msg)
3432 (lambda (sig)
3433 ;; Make a backup copy of the stack
3434 (fluid-set! before-signal-stack
3435 (fluid-ref the-last-stack))
3436 (save-stack 2)
3437 (scm-error 'signal
3438 #f
3439 msg
3440 #f
3441 (list sig))))))
3442 (set! old-handlers
3443 (map (lambda (sig-msg)
3444 (sigaction (car sig-msg)
3445 (make-handler (cdr sig-msg))))
3446 signals))))
3447
3448 ;; the protected thunk.
3449 (lambda ()
3450 (let ((status (scm-style-repl)))
3451 (run-hook exit-hook)
3452 status))
3453
3454 ;; call at exit.
3455 (lambda ()
3456 (map (lambda (sig-msg old-handler)
3457 (if (not (car old-handler))
3458 ;; restore original C handler.
3459 (sigaction (car sig-msg) #f)
3460 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3461 (sigaction (car sig-msg)
3462 (car old-handler)
3463 (cdr old-handler))))
3464 signals old-handlers))))))
3465
3466 ;;; This hook is run at the very end of an interactive session.
3467 ;;;
3468 (define exit-hook (make-hook))
3469
3470 \f
3471
3472 ;;; {Deprecated stuff}
3473 ;;;
3474
3475 (begin-deprecated
3476 (define (feature? sym)
3477 (issue-deprecation-warning
3478 "`feature?' is deprecated. Use `provided?' instead.")
3479 (provided? sym)))
3480
3481 (begin-deprecated
3482 (primitive-load-path "ice-9/deprecated.scm"))
3483
3484 \f
3485
3486 ;;; Place the user in the guile-user module.
3487 ;;;
3488
3489 (define-module (guile-user))
3490
3491 ;;; boot-9.scm ends here