deprecate turn-on-debugging, it is obsolete
[bpt/guile.git] / module / ice-9 / boot-9.scm
1 ;;; -*- mode: scheme; coding: utf-8; -*-
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 3 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;; Before compiling, make sure any symbols are resolved in the (guile)
37 ;; module, the primary location of those symbols, rather than in
38 ;; (guile-user), the default module that we compile in.
39
40 (eval-when (compile)
41 (set-current-module (resolve-module '(guile))))
42
43 \f
44
45 ;;; {Error handling}
46 ;;;
47
48 ;; Define delimited continuation operators, and implement catch and throw in
49 ;; terms of them.
50
51 (define make-prompt-tag
52 (lambda* (#:optional (stem "prompt"))
53 (gensym stem)))
54
55 (define default-prompt-tag
56 ;; not sure if we should expose this to the user as a fluid
57 (let ((%default-prompt-tag (make-prompt-tag)))
58 (lambda ()
59 %default-prompt-tag)))
60
61 (define (call-with-prompt tag thunk handler)
62 (@prompt tag (thunk) handler))
63 (define (abort-to-prompt tag . args)
64 (@abort tag args))
65
66
67 ;; Define catch and with-throw-handler, using some common helper routines and a
68 ;; shared fluid. Hide the helpers in a lexical contour.
69
70 (define with-throw-handler #f)
71 (let ()
72 ;; Ideally we'd like to be able to give these default values for all threads,
73 ;; even threads not created by Guile; but alack, that does not currently seem
74 ;; possible. So wrap the getters in thunks.
75 (define %running-exception-handlers (make-fluid))
76 (define %exception-handler (make-fluid))
77
78 (define (running-exception-handlers)
79 (or (fluid-ref %running-exception-handlers)
80 (begin
81 (fluid-set! %running-exception-handlers '())
82 '())))
83 (define (exception-handler)
84 (or (fluid-ref %exception-handler)
85 (begin
86 (fluid-set! %exception-handler default-exception-handler)
87 default-exception-handler)))
88
89 (define (default-exception-handler k . args)
90 (cond
91 ((eq? k 'quit)
92 (primitive-exit (cond
93 ((not (pair? args)) 0)
94 ((integer? (car args)) (car args))
95 ((not (car args)) 1)
96 (else 0))))
97 (else
98 (format (current-error-port) "guile: uncaught throw to ~a: ~a\n" k args)
99 (primitive-exit 1))))
100
101 (define (default-throw-handler prompt-tag catch-k)
102 (let ((prev (exception-handler)))
103 (lambda (thrown-k . args)
104 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
105 (apply abort-to-prompt prompt-tag thrown-k args)
106 (apply prev thrown-k args)))))
107
108 (define (custom-throw-handler prompt-tag catch-k pre)
109 (let ((prev (exception-handler)))
110 (lambda (thrown-k . args)
111 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
112 (let ((running (running-exception-handlers)))
113 (with-fluids ((%running-exception-handlers (cons pre running)))
114 (if (not (memq pre running))
115 (apply pre thrown-k args))
116 ;; fall through
117 (if prompt-tag
118 (apply abort-to-prompt prompt-tag thrown-k args)
119 (apply prev thrown-k args))))
120 (apply prev thrown-k args)))))
121
122 (set! catch
123 (lambda* (k thunk handler #:optional pre-unwind-handler)
124 "Invoke @var{thunk} in the dynamic context of @var{handler} for
125 exceptions matching @var{key}. If thunk throws to the symbol
126 @var{key}, then @var{handler} is invoked this way:
127 @lisp
128 (handler key args ...)
129 @end lisp
130
131 @var{key} is a symbol or @code{#t}.
132
133 @var{thunk} takes no arguments. If @var{thunk} returns
134 normally, that is the return value of @code{catch}.
135
136 Handler is invoked outside the scope of its own @code{catch}.
137 If @var{handler} again throws to the same key, a new handler
138 from further up the call chain is invoked.
139
140 If the key is @code{#t}, then a throw to @emph{any} symbol will
141 match this call to @code{catch}.
142
143 If a @var{pre-unwind-handler} is given and @var{thunk} throws
144 an exception that matches @var{key}, Guile calls the
145 @var{pre-unwind-handler} before unwinding the dynamic state and
146 invoking the main @var{handler}. @var{pre-unwind-handler} should
147 be a procedure with the same signature as @var{handler}, that
148 is @code{(lambda (key . args))}. It is typically used to save
149 the stack at the point where the exception occurred, but can also
150 query other parts of the dynamic state at that point, such as
151 fluid values.
152
153 A @var{pre-unwind-handler} can exit either normally or non-locally.
154 If it exits normally, Guile unwinds the stack and dynamic context
155 and then calls the normal (third argument) handler. If it exits
156 non-locally, that exit determines the continuation."
157 (if (not (or (symbol? k) (eqv? k #t)))
158 (scm-error "catch" 'wrong-type-arg
159 "Wrong type argument in position ~a: ~a"
160 (list 1 k) (list k)))
161 (let ((tag (make-prompt-tag "catch")))
162 (call-with-prompt
163 tag
164 (lambda ()
165 (with-fluids
166 ((%exception-handler
167 (if pre-unwind-handler
168 (custom-throw-handler tag k pre-unwind-handler)
169 (default-throw-handler tag k))))
170 (thunk)))
171 (lambda (cont k . args)
172 (apply handler k args))))))
173
174 (set! with-throw-handler
175 (lambda (k thunk pre-unwind-handler)
176 "Add @var{handler} to the dynamic context as a throw handler
177 for key @var{key}, then invoke @var{thunk}."
178 (if (not (or (symbol? k) (eqv? k #t)))
179 (scm-error "with-throw-handler" 'wrong-type-arg
180 "Wrong type argument in position ~a: ~a"
181 (list 1 k) (list k)))
182 (with-fluids ((%exception-handler
183 (custom-throw-handler #f k pre-unwind-handler)))
184 (thunk))))
185
186 (set! throw
187 (lambda (key . args)
188 "Invoke the catch form matching @var{key}, passing @var{args} to the
189 @var{handler}.
190
191 @var{key} is a symbol. It will match catches of the same symbol or of @code{#t}.
192
193 If there is no handler at all, Guile prints an error and then exits."
194 (if (not (symbol? key))
195 ((exception-handler) 'wrong-type-arg "throw"
196 "Wrong type argument in position ~a: ~a" (list 1 key) (list key))
197 (apply (exception-handler) key args)))))
198
199
200 \f
201
202 ;;; {R4RS compliance}
203 ;;;
204
205 (primitive-load-path "ice-9/r4rs")
206
207 \f
208
209 ;;; {Simple Debugging Tools}
210 ;;;
211
212 ;; peek takes any number of arguments, writes them to the
213 ;; current ouput port, and returns the last argument.
214 ;; It is handy to wrap around an expression to look at
215 ;; a value each time is evaluated, e.g.:
216 ;;
217 ;; (+ 10 (troublesome-fn))
218 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
219 ;;
220
221 (define (peek . stuff)
222 (newline)
223 (display ";;; ")
224 (write stuff)
225 (newline)
226 (car (last-pair stuff)))
227
228 (define pk peek)
229
230
231 (define (warn . stuff)
232 (with-output-to-port (current-error-port)
233 (lambda ()
234 (newline)
235 (display ";;; WARNING ")
236 (display stuff)
237 (newline)
238 (car (last-pair stuff)))))
239
240 \f
241
242 ;;; {Features}
243 ;;;
244
245 (define (provide sym)
246 (if (not (memq sym *features*))
247 (set! *features* (cons sym *features*))))
248
249 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
250 ;; provided? also checks to see if the module is available. We should do that
251 ;; too, but don't.
252
253 (define (provided? feature)
254 (and (memq feature *features*) #t))
255
256 \f
257
258 ;;; {Structs}
259 ;;;
260
261 (define (make-struct/no-tail vtable . args)
262 (apply make-struct vtable 0 args))
263
264 \f
265
266 ;;; {and-map and or-map}
267 ;;;
268 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
269 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
270 ;;;
271
272 ;; and-map f l
273 ;;
274 ;; Apply f to successive elements of l until exhaustion or f returns #f.
275 ;; If returning early, return #f. Otherwise, return the last value returned
276 ;; by f. If f has never been called because l is empty, return #t.
277 ;;
278 (define (and-map f lst)
279 (let loop ((result #t)
280 (l lst))
281 (and result
282 (or (and (null? l)
283 result)
284 (loop (f (car l)) (cdr l))))))
285
286 ;; or-map f l
287 ;;
288 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
289 ;; If returning early, return the return value of f.
290 ;;
291 (define (or-map f lst)
292 (let loop ((result #f)
293 (l lst))
294 (or result
295 (and (not (null? l))
296 (loop (f (car l)) (cdr l))))))
297
298 \f
299
300 ;; let format alias simple-format until the more complete version is loaded
301
302 (define format simple-format)
303
304 ;; this is scheme wrapping the C code so the final pred call is a tail call,
305 ;; per SRFI-13 spec
306 (define string-any
307 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
308 (if (and (procedure? char_pred)
309 (> end start)
310 (<= end (string-length s))) ;; let c-code handle range error
311 (or (string-any-c-code char_pred s start (1- end))
312 (char_pred (string-ref s (1- end))))
313 (string-any-c-code char_pred s start end))))
314
315 ;; this is scheme wrapping the C code so the final pred call is a tail call,
316 ;; per SRFI-13 spec
317 (define string-every
318 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
319 (if (and (procedure? char_pred)
320 (> end start)
321 (<= end (string-length s))) ;; let c-code handle range error
322 (and (string-every-c-code char_pred s start (1- end))
323 (char_pred (string-ref s (1- end))))
324 (string-every-c-code char_pred s start end))))
325
326 ;; A variant of string-fill! that we keep for compatability
327 ;;
328 (define (substring-fill! str start end fill)
329 (string-fill! str fill start end))
330
331 \f
332
333 ;; Define a minimal stub of the module API for psyntax, before modules
334 ;; have booted.
335 (define (module-name x)
336 '(guile))
337 (define (module-define! module sym val)
338 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
339 (if v
340 (variable-set! v val)
341 (hashq-set! (%get-pre-modules-obarray) sym
342 (make-variable val)))))
343 (define (module-ref module sym)
344 (let ((v (module-variable module sym)))
345 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
346 (define (resolve-module . args)
347 #f)
348
349 ;; API provided by psyntax
350 (define syntax-violation #f)
351 (define datum->syntax #f)
352 (define syntax->datum #f)
353 (define syntax-source #f)
354 (define identifier? #f)
355 (define generate-temporaries #f)
356 (define bound-identifier=? #f)
357 (define free-identifier=? #f)
358
359 ;; $sc-dispatch is an implementation detail of psyntax. It is used by
360 ;; expanded macros, to dispatch an input against a set of patterns.
361 (define $sc-dispatch #f)
362
363 ;; Load it up!
364 (primitive-load-path "ice-9/psyntax-pp")
365 ;; The binding for `macroexpand' has now been overridden, making psyntax the
366 ;; expander now.
367
368 (define-syntax and
369 (syntax-rules ()
370 ((_) #t)
371 ((_ x) x)
372 ((_ x y ...) (if x (and y ...) #f))))
373
374 (define-syntax or
375 (syntax-rules ()
376 ((_) #f)
377 ((_ x) x)
378 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
379
380 ;; The "maybe-more" bits are something of a hack, so that we can support
381 ;; SRFI-61. Rewrites into a standalone syntax-case macro would be
382 ;; appreciated.
383 (define-syntax cond
384 (syntax-rules (=> else)
385 ((_ "maybe-more" test consequent)
386 (if test consequent))
387
388 ((_ "maybe-more" test consequent clause ...)
389 (if test consequent (cond clause ...)))
390
391 ((_ (else else1 else2 ...))
392 (begin else1 else2 ...))
393
394 ((_ (test => receiver) more-clause ...)
395 (let ((t test))
396 (cond "maybe-more" t (receiver t) more-clause ...)))
397
398 ((_ (generator guard => receiver) more-clause ...)
399 (call-with-values (lambda () generator)
400 (lambda t
401 (cond "maybe-more"
402 (apply guard t) (apply receiver t) more-clause ...))))
403
404 ((_ (test => receiver ...) more-clause ...)
405 (syntax-violation 'cond "wrong number of receiver expressions"
406 '(test => receiver ...)))
407 ((_ (generator guard => receiver ...) more-clause ...)
408 (syntax-violation 'cond "wrong number of receiver expressions"
409 '(generator guard => receiver ...)))
410
411 ((_ (test) more-clause ...)
412 (let ((t test))
413 (cond "maybe-more" t t more-clause ...)))
414
415 ((_ (test body1 body2 ...) more-clause ...)
416 (cond "maybe-more"
417 test (begin body1 body2 ...) more-clause ...))))
418
419 (define-syntax case
420 (syntax-rules (else)
421 ((case (key ...)
422 clauses ...)
423 (let ((atom-key (key ...)))
424 (case atom-key clauses ...)))
425 ((case key
426 (else result1 result2 ...))
427 (begin result1 result2 ...))
428 ((case key
429 ((atoms ...) result1 result2 ...))
430 (if (memv key '(atoms ...))
431 (begin result1 result2 ...)))
432 ((case key
433 ((atoms ...) result1 result2 ...)
434 clause clauses ...)
435 (if (memv key '(atoms ...))
436 (begin result1 result2 ...)
437 (case key clause clauses ...)))))
438
439 (define-syntax do
440 (syntax-rules ()
441 ((do ((var init step ...) ...)
442 (test expr ...)
443 command ...)
444 (letrec
445 ((loop
446 (lambda (var ...)
447 (if test
448 (begin
449 (if #f #f)
450 expr ...)
451 (begin
452 command
453 ...
454 (loop (do "step" var step ...)
455 ...))))))
456 (loop init ...)))
457 ((do "step" x)
458 x)
459 ((do "step" x y)
460 y)))
461
462 (define-syntax delay
463 (syntax-rules ()
464 ((_ exp) (make-promise (lambda () exp)))))
465
466 (include-from-path "ice-9/quasisyntax")
467
468 (define-syntax current-source-location
469 (lambda (x)
470 (syntax-case x ()
471 ((_)
472 (with-syntax ((s (datum->syntax x (syntax-source x))))
473 #''s)))))
474
475
476 \f
477
478 ;;; {Defmacros}
479 ;;;
480
481 (define-syntax define-macro
482 (lambda (x)
483 "Define a defmacro."
484 (syntax-case x ()
485 ((_ (macro . args) doc body1 body ...)
486 (string? (syntax->datum #'doc))
487 #'(define-macro macro doc (lambda args body1 body ...)))
488 ((_ (macro . args) body ...)
489 #'(define-macro macro #f (lambda args body ...)))
490 ((_ macro doc transformer)
491 (or (string? (syntax->datum #'doc))
492 (not (syntax->datum #'doc)))
493 #'(define-syntax macro
494 (lambda (y)
495 doc
496 #((macro-type . defmacro)
497 (defmacro-args args))
498 (syntax-case y ()
499 ((_ . args)
500 (let ((v (syntax->datum #'args)))
501 (datum->syntax y (apply transformer v)))))))))))
502
503 (define-syntax defmacro
504 (lambda (x)
505 "Define a defmacro, with the old lispy defun syntax."
506 (syntax-case x ()
507 ((_ macro args doc body1 body ...)
508 (string? (syntax->datum #'doc))
509 #'(define-macro macro doc (lambda args body1 body ...)))
510 ((_ macro args body ...)
511 #'(define-macro macro #f (lambda args body ...))))))
512
513 (provide 'defmacro)
514
515 \f
516
517 ;;; {Deprecation}
518 ;;;
519
520 (define-syntax begin-deprecated
521 (lambda (x)
522 (syntax-case x ()
523 ((_ form form* ...)
524 (if (include-deprecated-features)
525 #'(begin form form* ...)
526 #'(begin))))))
527
528 \f
529
530 ;;; {Trivial Functions}
531 ;;;
532
533 (define (identity x) x)
534 (define (and=> value procedure) (and value (procedure value)))
535 (define call/cc call-with-current-continuation)
536
537 (define-syntax false-if-exception
538 (syntax-rules ()
539 ((_ expr)
540 (catch #t
541 (lambda () expr)
542 (lambda (k . args) #f)))))
543
544 \f
545
546 ;;; {General Properties}
547 ;;;
548
549 ;; Properties are a lispy way to associate random info with random objects.
550 ;; Traditionally properties are implemented as an alist or a plist actually
551 ;; pertaining to the object in question.
552 ;;
553 ;; These "object properties" have the advantage that they can be associated with
554 ;; any object, even if the object has no plist. Object properties are good when
555 ;; you are extending pre-existing objects in unexpected ways. They also present
556 ;; a pleasing, uniform procedure-with-setter interface. But if you have a data
557 ;; type that always has properties, it's often still best to store those
558 ;; properties within the object itself.
559
560 (define (make-object-property)
561 (let ((prop (primitive-make-property #f)))
562 (make-procedure-with-setter
563 (lambda (obj) (primitive-property-ref prop obj))
564 (lambda (obj val) (primitive-property-set! prop obj val)))))
565
566 \f
567
568 ;;; {Symbol Properties}
569 ;;;
570
571 ;;; Symbol properties are something you see in old Lisp code. In most current
572 ;;; Guile code, symbols are not used as a data structure -- they are used as
573 ;;; keys into other data structures.
574
575 (define (symbol-property sym prop)
576 (let ((pair (assoc prop (symbol-pref sym))))
577 (and pair (cdr pair))))
578
579 (define (set-symbol-property! sym prop val)
580 (let ((pair (assoc prop (symbol-pref sym))))
581 (if pair
582 (set-cdr! pair val)
583 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
584
585 (define (symbol-property-remove! sym prop)
586 (let ((pair (assoc prop (symbol-pref sym))))
587 (if pair
588 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
589
590 \f
591
592 ;;; {Arrays}
593 ;;;
594
595 (define (array-shape a)
596 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
597 (array-dimensions a)))
598
599 \f
600
601 ;;; {Keywords}
602 ;;;
603
604 ;;; It's much better if you can use lambda* / define*, of course.
605
606 (define (kw-arg-ref args kw)
607 (let ((rem (member kw args)))
608 (and rem (pair? (cdr rem)) (cadr rem))))
609
610 \f
611
612 ;;; {Structs}
613 ;;;
614
615 (define (struct-layout s)
616 (struct-ref (struct-vtable s) vtable-index-layout))
617
618 \f
619
620 ;;; {Records}
621 ;;;
622
623 ;; Printing records: by default, records are printed as
624 ;;
625 ;; #<type-name field1: val1 field2: val2 ...>
626 ;;
627 ;; You can change that by giving a custom printing function to
628 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
629 ;; will be called like
630 ;;
631 ;; (<printer> object port)
632 ;;
633 ;; It should print OBJECT to PORT.
634
635 (define (inherit-print-state old-port new-port)
636 (if (get-print-state old-port)
637 (port-with-print-state new-port (get-print-state old-port))
638 new-port))
639
640 ;; 0: type-name, 1: fields, 2: constructor
641 (define record-type-vtable
642 ;; FIXME: This should just call make-vtable, not make-vtable-vtable; but for
643 ;; that we need to expose the bare vtable-vtable to Scheme.
644 (make-vtable-vtable "prprpw" 0
645 (lambda (s p)
646 (cond ((eq? s record-type-vtable)
647 (display "#<record-type-vtable>" p))
648 (else
649 (display "#<record-type " p)
650 (display (record-type-name s) p)
651 (display ">" p))))))
652
653 (define (record-type? obj)
654 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
655
656 (define* (make-record-type type-name fields #:optional printer)
657 ;; Pre-generate constructors for nfields < 20.
658 (define-syntax make-constructor
659 (lambda (x)
660 (define *max-static-argument-count* 20)
661 (define (make-formals n)
662 (let lp ((i 0))
663 (if (< i n)
664 (cons (datum->syntax
665 x
666 (string->symbol
667 (string (integer->char (+ (char->integer #\a) i)))))
668 (lp (1+ i)))
669 '())))
670 (syntax-case x ()
671 ((_ rtd exp) (not (identifier? #'exp))
672 #'(let ((n exp))
673 (make-constructor rtd n)))
674 ((_ rtd nfields)
675 #`(case nfields
676 #,@(let lp ((n 0))
677 (if (< n *max-static-argument-count*)
678 (cons (with-syntax (((formal ...) (make-formals n))
679 (n n))
680 #'((n)
681 (lambda (formal ...)
682 (make-struct rtd 0 formal ...))))
683 (lp (1+ n)))
684 '()))
685 (else
686 (lambda args
687 (if (= (length args) nfields)
688 (apply make-struct rtd 0 args)
689 (scm-error 'wrong-number-of-args
690 (format #f "make-~a" type-name)
691 "Wrong number of arguments" '() #f)))))))))
692
693 (define (default-record-printer s p)
694 (display "#<" p)
695 (display (record-type-name (record-type-descriptor s)) p)
696 (let loop ((fields (record-type-fields (record-type-descriptor s)))
697 (off 0))
698 (cond
699 ((not (null? fields))
700 (display " " p)
701 (display (car fields) p)
702 (display ": " p)
703 (display (struct-ref s off) p)
704 (loop (cdr fields) (+ 1 off)))))
705 (display ">" p))
706
707 (let ((rtd (make-struct record-type-vtable 0
708 (make-struct-layout
709 (apply string-append
710 (map (lambda (f) "pw") fields)))
711 (or printer default-record-printer)
712 type-name
713 (copy-tree fields))))
714 (struct-set! rtd (+ vtable-offset-user 2)
715 (make-constructor rtd (length fields)))
716 ;; Temporary solution: Associate a name to the record type descriptor
717 ;; so that the object system can create a wrapper class for it.
718 (set-struct-vtable-name! rtd (if (symbol? type-name)
719 type-name
720 (string->symbol type-name)))
721 rtd))
722
723 (define (record-type-name obj)
724 (if (record-type? obj)
725 (struct-ref obj vtable-offset-user)
726 (error 'not-a-record-type obj)))
727
728 (define (record-type-fields obj)
729 (if (record-type? obj)
730 (struct-ref obj (+ 1 vtable-offset-user))
731 (error 'not-a-record-type obj)))
732
733 (define* (record-constructor rtd #:optional field-names)
734 (if (not field-names)
735 (struct-ref rtd (+ 2 vtable-offset-user))
736 (primitive-eval
737 `(lambda ,field-names
738 (make-struct ',rtd 0 ,@(map (lambda (f)
739 (if (memq f field-names)
740 f
741 #f))
742 (record-type-fields rtd)))))))
743
744 (define (record-predicate rtd)
745 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
746
747 (define (%record-type-error rtd obj) ;; private helper
748 (or (eq? rtd (record-type-descriptor obj))
749 (scm-error 'wrong-type-arg "%record-type-check"
750 "Wrong type record (want `~S'): ~S"
751 (list (record-type-name rtd) obj)
752 #f)))
753
754 (define (record-accessor rtd field-name)
755 (let ((pos (list-index (record-type-fields rtd) field-name)))
756 (if (not pos)
757 (error 'no-such-field field-name))
758 (lambda (obj)
759 (if (eq? (struct-vtable obj) rtd)
760 (struct-ref obj pos)
761 (%record-type-error rtd obj)))))
762
763 (define (record-modifier rtd field-name)
764 (let ((pos (list-index (record-type-fields rtd) field-name)))
765 (if (not pos)
766 (error 'no-such-field field-name))
767 (lambda (obj val)
768 (if (eq? (struct-vtable obj) rtd)
769 (struct-set! obj pos val)
770 (%record-type-error rtd obj)))))
771
772 (define (record? obj)
773 (and (struct? obj) (record-type? (struct-vtable obj))))
774
775 (define (record-type-descriptor obj)
776 (if (struct? obj)
777 (struct-vtable obj)
778 (error 'not-a-record obj)))
779
780 (provide 'record)
781
782 \f
783
784 ;;; {Booleans}
785 ;;;
786
787 (define (->bool x) (not (not x)))
788
789 \f
790
791 ;;; {Symbols}
792 ;;;
793
794 (define (symbol-append . args)
795 (string->symbol (apply string-append (map symbol->string args))))
796
797 (define (list->symbol . args)
798 (string->symbol (apply list->string args)))
799
800 (define (symbol . args)
801 (string->symbol (apply string args)))
802
803 \f
804
805 ;;; {Lists}
806 ;;;
807
808 (define (list-index l k)
809 (let loop ((n 0)
810 (l l))
811 (and (not (null? l))
812 (if (eq? (car l) k)
813 n
814 (loop (+ n 1) (cdr l))))))
815
816 \f
817
818 (if (provided? 'posix)
819 (primitive-load-path "ice-9/posix"))
820
821 (if (provided? 'socket)
822 (primitive-load-path "ice-9/networking"))
823
824 ;; For reference, Emacs file-exists-p uses stat in this same way.
825 (define file-exists?
826 (if (provided? 'posix)
827 (lambda (str)
828 (->bool (stat str #f)))
829 (lambda (str)
830 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
831 (lambda args #f))))
832 (if port (begin (close-port port) #t)
833 #f)))))
834
835 (define file-is-directory?
836 (if (provided? 'posix)
837 (lambda (str)
838 (eq? (stat:type (stat str)) 'directory))
839 (lambda (str)
840 (let ((port (catch 'system-error
841 (lambda () (open-file (string-append str "/.")
842 OPEN_READ))
843 (lambda args #f))))
844 (if port (begin (close-port port) #t)
845 #f)))))
846
847 (define (system-error-errno args)
848 (if (eq? (car args) 'system-error)
849 (car (list-ref args 4))
850 #f))
851
852 \f
853
854 ;;; {Error Handling}
855 ;;;
856
857 (define error
858 (case-lambda
859 (()
860 (scm-error 'misc-error #f "?" #f #f))
861 ((message . args)
862 (let ((msg (string-join (cons "~A" (make-list (length args) "~S")))))
863 (scm-error 'misc-error #f msg (cons message args) #f)))))
864
865 \f
866
867 ;;; {Time Structures}
868 ;;;
869
870 (define (tm:sec obj) (vector-ref obj 0))
871 (define (tm:min obj) (vector-ref obj 1))
872 (define (tm:hour obj) (vector-ref obj 2))
873 (define (tm:mday obj) (vector-ref obj 3))
874 (define (tm:mon obj) (vector-ref obj 4))
875 (define (tm:year obj) (vector-ref obj 5))
876 (define (tm:wday obj) (vector-ref obj 6))
877 (define (tm:yday obj) (vector-ref obj 7))
878 (define (tm:isdst obj) (vector-ref obj 8))
879 (define (tm:gmtoff obj) (vector-ref obj 9))
880 (define (tm:zone obj) (vector-ref obj 10))
881
882 (define (set-tm:sec obj val) (vector-set! obj 0 val))
883 (define (set-tm:min obj val) (vector-set! obj 1 val))
884 (define (set-tm:hour obj val) (vector-set! obj 2 val))
885 (define (set-tm:mday obj val) (vector-set! obj 3 val))
886 (define (set-tm:mon obj val) (vector-set! obj 4 val))
887 (define (set-tm:year obj val) (vector-set! obj 5 val))
888 (define (set-tm:wday obj val) (vector-set! obj 6 val))
889 (define (set-tm:yday obj val) (vector-set! obj 7 val))
890 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
891 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
892 (define (set-tm:zone obj val) (vector-set! obj 10 val))
893
894 (define (tms:clock obj) (vector-ref obj 0))
895 (define (tms:utime obj) (vector-ref obj 1))
896 (define (tms:stime obj) (vector-ref obj 2))
897 (define (tms:cutime obj) (vector-ref obj 3))
898 (define (tms:cstime obj) (vector-ref obj 4))
899
900 \f
901
902 ;;; {File Descriptors and Ports}
903 ;;;
904
905 (define file-position ftell)
906 (define* (file-set-position port offset #:optional (whence SEEK_SET))
907 (seek port offset whence))
908
909 (define (move->fdes fd/port fd)
910 (cond ((integer? fd/port)
911 (dup->fdes fd/port fd)
912 (close fd/port)
913 fd)
914 (else
915 (primitive-move->fdes fd/port fd)
916 (set-port-revealed! fd/port 1)
917 fd/port)))
918
919 (define (release-port-handle port)
920 (let ((revealed (port-revealed port)))
921 (if (> revealed 0)
922 (set-port-revealed! port (- revealed 1)))))
923
924 (define dup->port
925 (case-lambda
926 ((port/fd mode)
927 (fdopen (dup->fdes port/fd) mode))
928 ((port/fd mode new-fd)
929 (let ((port (fdopen (dup->fdes port/fd new-fd) mode)))
930 (set-port-revealed! port 1)
931 port))))
932
933 (define dup->inport
934 (case-lambda
935 ((port/fd)
936 (dup->port port/fd "r"))
937 ((port/fd new-fd)
938 (dup->port port/fd "r" new-fd))))
939
940 (define dup->outport
941 (case-lambda
942 ((port/fd)
943 (dup->port port/fd "w"))
944 ((port/fd new-fd)
945 (dup->port port/fd "w" new-fd))))
946
947 (define dup
948 (case-lambda
949 ((port/fd)
950 (if (integer? port/fd)
951 (dup->fdes port/fd)
952 (dup->port port/fd (port-mode port/fd))))
953 ((port/fd new-fd)
954 (if (integer? port/fd)
955 (dup->fdes port/fd new-fd)
956 (dup->port port/fd (port-mode port/fd) new-fd)))))
957
958 (define (duplicate-port port modes)
959 (dup->port port modes))
960
961 (define (fdes->inport fdes)
962 (let loop ((rest-ports (fdes->ports fdes)))
963 (cond ((null? rest-ports)
964 (let ((result (fdopen fdes "r")))
965 (set-port-revealed! result 1)
966 result))
967 ((input-port? (car rest-ports))
968 (set-port-revealed! (car rest-ports)
969 (+ (port-revealed (car rest-ports)) 1))
970 (car rest-ports))
971 (else
972 (loop (cdr rest-ports))))))
973
974 (define (fdes->outport fdes)
975 (let loop ((rest-ports (fdes->ports fdes)))
976 (cond ((null? rest-ports)
977 (let ((result (fdopen fdes "w")))
978 (set-port-revealed! result 1)
979 result))
980 ((output-port? (car rest-ports))
981 (set-port-revealed! (car rest-ports)
982 (+ (port-revealed (car rest-ports)) 1))
983 (car rest-ports))
984 (else
985 (loop (cdr rest-ports))))))
986
987 (define (port->fdes port)
988 (set-port-revealed! port (+ (port-revealed port) 1))
989 (fileno port))
990
991 (define (setenv name value)
992 (if value
993 (putenv (string-append name "=" value))
994 (putenv name)))
995
996 (define (unsetenv name)
997 "Remove the entry for NAME from the environment."
998 (putenv name))
999
1000 \f
1001
1002 ;;; {Load Paths}
1003 ;;;
1004
1005 (define (in-vicinity vicinity file)
1006 (let ((tail (let ((len (string-length vicinity)))
1007 (if (zero? len)
1008 #f
1009 (string-ref vicinity (- len 1))))))
1010 (string-append vicinity
1011 (if (or (not tail)
1012 (eq? tail #\/))
1013 ""
1014 "/")
1015 file)))
1016
1017 \f
1018
1019 ;;; {Help for scm_shell}
1020 ;;;
1021 ;;; The argument-processing code used by Guile-based shells generates
1022 ;;; Scheme code based on the argument list. This page contains help
1023 ;;; functions for the code it generates.
1024 ;;;
1025
1026 (define (command-line) (program-arguments))
1027
1028 ;; This is mostly for the internal use of the code generated by
1029 ;; scm_compile_shell_switches.
1030
1031 (define (load-user-init)
1032 (let* ((home (or (getenv "HOME")
1033 (false-if-exception (passwd:dir (getpwuid (getuid))))
1034 "/")) ;; fallback for cygwin etc.
1035 (init-file (in-vicinity home ".guile")))
1036 (if (file-exists? init-file)
1037 (primitive-load init-file))))
1038
1039 \f
1040
1041 ;;; {The interpreter stack}
1042 ;;;
1043
1044 ;; %stacks defined in stacks.c
1045 (define (%start-stack tag thunk)
1046 (let ((prompt-tag (make-prompt-tag "start-stack")))
1047 (call-with-prompt
1048 prompt-tag
1049 (lambda ()
1050 (with-fluids ((%stacks (acons tag prompt-tag
1051 (or (fluid-ref %stacks) '()))))
1052 (thunk)))
1053 (lambda (k . args)
1054 (%start-stack tag (lambda () (apply k args)))))))
1055 (define-syntax start-stack
1056 (syntax-rules ()
1057 ((_ tag exp)
1058 (%start-stack tag (lambda () exp)))))
1059
1060 \f
1061
1062 ;;; {Loading by paths}
1063 ;;;
1064
1065 ;;; Load a Scheme source file named NAME, searching for it in the
1066 ;;; directories listed in %load-path, and applying each of the file
1067 ;;; name extensions listed in %load-extensions.
1068 (define (load-from-path name)
1069 (start-stack 'load-stack
1070 (primitive-load-path name)))
1071
1072 (define %load-verbosely #f)
1073 (define (assert-load-verbosity v) (set! %load-verbosely v))
1074
1075 (define (%load-announce file)
1076 (if %load-verbosely
1077 (with-output-to-port (current-error-port)
1078 (lambda ()
1079 (display ";;; ")
1080 (display "loading ")
1081 (display file)
1082 (newline)
1083 (force-output)))))
1084
1085 (set! %load-hook %load-announce)
1086
1087 (define* (load name #:optional reader)
1088 ;; Returns the .go file corresponding to `name'. Does not search load
1089 ;; paths, only the fallback path. If the .go file is missing or out of
1090 ;; date, and autocompilation is enabled, will try autocompilation, just
1091 ;; as primitive-load-path does internally. primitive-load is
1092 ;; unaffected. Returns #f if autocompilation failed or was disabled.
1093 ;;
1094 ;; NB: Unless we need to compile the file, this function should not cause
1095 ;; (system base compile) to be loaded up. For that reason compiled-file-name
1096 ;; partially duplicates functionality from (system base compile).
1097 (define (compiled-file-name canon-path)
1098 (and %compile-fallback-path
1099 (string-append
1100 %compile-fallback-path
1101 ;; no need for '/' separator here, canon-path is absolute
1102 canon-path
1103 (cond ((or (null? %load-compiled-extensions)
1104 (string-null? (car %load-compiled-extensions)))
1105 (warn "invalid %load-compiled-extensions"
1106 %load-compiled-extensions)
1107 ".go")
1108 (else (car %load-compiled-extensions))))))
1109 (define (fresh-compiled-file-name go-path)
1110 (catch #t
1111 (lambda ()
1112 (let* ((scmstat (stat name))
1113 (gostat (stat go-path #f)))
1114 (if (and gostat
1115 (or (> (stat:mtime gostat) (stat:mtime scmstat))
1116 (and (= (stat:mtime gostat) (stat:mtime scmstat))
1117 (>= (stat:mtimensec gostat)
1118 (stat:mtimensec scmstat)))))
1119 go-path
1120 (begin
1121 (if gostat
1122 (format (current-error-port)
1123 ";;; note: source file ~a\n;;; newer than compiled ~a\n"
1124 name go-path))
1125 (cond
1126 (%load-should-autocompile
1127 (%warn-autocompilation-enabled)
1128 (format (current-error-port) ";;; compiling ~a\n" name)
1129 ;; This use of @ is (ironically?) boot-safe, as modules have
1130 ;; not been booted yet, so the resolve-module call in psyntax
1131 ;; doesn't try to load a module, and compile-file will be
1132 ;; treated as a function, not a macro.
1133 (let ((cfn ((@ (system base compile) compile-file) name
1134 #:env (current-module))))
1135 (format (current-error-port) ";;; compiled ~a\n" cfn)
1136 cfn))
1137 (else #f))))))
1138 (lambda (k . args)
1139 (format (current-error-port)
1140 ";;; WARNING: compilation of ~a failed:\n;;; key ~a, throw_args ~s\n"
1141 name k args)
1142 #f)))
1143 (with-fluids ((current-reader reader))
1144 (let ((cfn (and=> (and=> (false-if-exception (canonicalize-path name))
1145 compiled-file-name)
1146 fresh-compiled-file-name)))
1147 (if cfn
1148 (load-compiled cfn)
1149 (start-stack 'load-stack
1150 (primitive-load name))))))
1151
1152 \f
1153
1154 ;;; {Reader Extensions}
1155 ;;;
1156 ;;; Reader code for various "#c" forms.
1157 ;;;
1158
1159 (define read-eval? (make-fluid))
1160 (fluid-set! read-eval? #f)
1161 (read-hash-extend #\.
1162 (lambda (c port)
1163 (if (fluid-ref read-eval?)
1164 (eval (read port) (interaction-environment))
1165 (error
1166 "#. read expansion found and read-eval? is #f."))))
1167
1168 \f
1169
1170 ;;; {Low Level Modules}
1171 ;;;
1172 ;;; These are the low level data structures for modules.
1173 ;;;
1174 ;;; Every module object is of the type 'module-type', which is a record
1175 ;;; consisting of the following members:
1176 ;;;
1177 ;;; - eval-closure: the function that defines for its module the strategy that
1178 ;;; shall be followed when looking up symbols in the module.
1179 ;;;
1180 ;;; An eval-closure is a function taking two arguments: the symbol to be
1181 ;;; looked up and a boolean value telling whether a binding for the symbol
1182 ;;; should be created if it does not exist yet. If the symbol lookup
1183 ;;; succeeded (either because an existing binding was found or because a new
1184 ;;; binding was created), a variable object representing the binding is
1185 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1186 ;;; closure does not take the module to be searched as an argument: During
1187 ;;; construction of the eval-closure, the eval-closure has to store the
1188 ;;; module it belongs to in its environment. This means, that any
1189 ;;; eval-closure can belong to only one module.
1190 ;;;
1191 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1192 ;;; special cases of eval-closures are to be distinguished: During startup
1193 ;;; the module system is not yet activated. In this phase, no modules are
1194 ;;; defined and all bindings are automatically stored by the system in the
1195 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1196 ;;; functions which require an eval-closure as their argument need to be
1197 ;;; passed the value #f.
1198 ;;;
1199 ;;; The other two special cases of eval-closures are the
1200 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1201 ;;; behave equally for the case that no new binding is to be created. The
1202 ;;; difference between the two comes in, when the boolean argument to the
1203 ;;; eval-closure indicates that a new binding shall be created if it is not
1204 ;;; found.
1205 ;;;
1206 ;;; Given that no new binding shall be created, both standard eval-closures
1207 ;;; define the following standard strategy of searching bindings in the
1208 ;;; module: First, the module's obarray is searched for the symbol. Second,
1209 ;;; if no binding for the symbol was found in the module's obarray, the
1210 ;;; module's binder procedure is exececuted. If this procedure did not
1211 ;;; return a binding for the symbol, the modules referenced in the module's
1212 ;;; uses list are recursively searched for a binding of the symbol. If the
1213 ;;; binding can not be found in these modules also, the symbol lookup has
1214 ;;; failed.
1215 ;;;
1216 ;;; If a new binding shall be created, the standard-interface-eval-closure
1217 ;;; immediately returns indicating failure. That is, it does not even try
1218 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1219 ;;; first search the obarray, and if no binding was found there, would
1220 ;;; create a new binding in the obarray, therefore not calling the binder
1221 ;;; procedure or searching the modules in the uses list.
1222 ;;;
1223 ;;; The explanation of the following members obarray, binder and uses
1224 ;;; assumes that the symbol lookup follows the strategy that is defined in
1225 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1226 ;;;
1227 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1228 ;;; hash table, the definitions are found that are local to the module (that
1229 ;;; is, not imported from other modules). When looking up bindings in the
1230 ;;; module, this hash table is searched first.
1231 ;;;
1232 ;;; - binder: either #f or a function taking a module and a symbol argument.
1233 ;;; If it is a function it is called after the obarray has been
1234 ;;; unsuccessfully searched for a binding. It then can provide bindings
1235 ;;; that would otherwise not be found locally in the module.
1236 ;;;
1237 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1238 ;;; These modules are the third place queried for bindings after the obarray
1239 ;;; has been unsuccessfully searched and the binder function did not deliver
1240 ;;; a result either.
1241 ;;;
1242 ;;; - transformer: either #f or a function taking a scheme expression as
1243 ;;; delivered by read. If it is a function, it will be called to perform
1244 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1245 ;;; expression. The output of the transformer function will then be passed
1246 ;;; to Guile's internal memoizer. This means that the output must be valid
1247 ;;; scheme code. The only exception is, that the output may make use of the
1248 ;;; syntax extensions provided to identify the modules that a binding
1249 ;;; belongs to.
1250 ;;;
1251 ;;; - name: the name of the module. This is used for all kinds of printing
1252 ;;; outputs. In certain places the module name also serves as a way of
1253 ;;; identification. When adding a module to the uses list of another
1254 ;;; module, it is made sure that the new uses list will not contain two
1255 ;;; modules of the same name.
1256 ;;;
1257 ;;; - kind: classification of the kind of module. The value is (currently?)
1258 ;;; only used for printing. It has no influence on how a module is treated.
1259 ;;; Currently the following values are used when setting the module kind:
1260 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1261 ;;; is set, it defaults to 'module.
1262 ;;;
1263 ;;; - duplicates-handlers: a list of procedures that get called to make a
1264 ;;; choice between two duplicate bindings when name clashes occur. See the
1265 ;;; `duplicate-handlers' global variable below.
1266 ;;;
1267 ;;; - observers: a list of procedures that get called when the module is
1268 ;;; modified.
1269 ;;;
1270 ;;; - weak-observers: a weak-key hash table of procedures that get called
1271 ;;; when the module is modified. See `module-observe-weak' for details.
1272 ;;;
1273 ;;; In addition, the module may (must?) contain a binding for
1274 ;;; `%module-public-interface'. This variable should be bound to a module
1275 ;;; representing the exported interface of a module. See the
1276 ;;; `module-public-interface' and `module-export!' procedures.
1277 ;;;
1278 ;;; !!! warning: The interface to lazy binder procedures is going
1279 ;;; to be changed in an incompatible way to permit all the basic
1280 ;;; module ops to be virtualized.
1281 ;;;
1282 ;;; (make-module size use-list lazy-binding-proc) => module
1283 ;;; module-{obarray,uses,binder}[|-set!]
1284 ;;; (module? obj) => [#t|#f]
1285 ;;; (module-locally-bound? module symbol) => [#t|#f]
1286 ;;; (module-bound? module symbol) => [#t|#f]
1287 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1288 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1289 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1290 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1291 ;;; (module-symbol-binding module symbol opt-value)
1292 ;;; => [ <obj> | opt-value | an error occurs ]
1293 ;;; (module-make-local-var! module symbol) => #<variable...>
1294 ;;; (module-add! module symbol var) => unspecified
1295 ;;; (module-remove! module symbol) => unspecified
1296 ;;; (module-for-each proc module) => unspecified
1297 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1298 ;;; (set-current-module module) => unspecified
1299 ;;; (current-module) => #<module...>
1300 ;;;
1301 ;;;
1302
1303 \f
1304
1305 ;;; {Printing Modules}
1306 ;;;
1307
1308 ;; This is how modules are printed. You can re-define it.
1309 (define (%print-module mod port)
1310 (display "#<" port)
1311 (display (or (module-kind mod) "module") port)
1312 (display " " port)
1313 (display (module-name mod) port)
1314 (display " " port)
1315 (display (number->string (object-address mod) 16) port)
1316 (display ">" port))
1317
1318 (letrec-syntax
1319 ;; Locally extend the syntax to allow record accessors to be defined at
1320 ;; compile-time. Cache the rtd locally to the constructor, the getters and
1321 ;; the setters, in order to allow for redefinition of the record type; not
1322 ;; relevant in the case of modules, but perhaps if we make this public, it
1323 ;; could matter.
1324
1325 ((define-record-type
1326 (lambda (x)
1327 (define (make-id scope . fragments)
1328 (datum->syntax #'scope
1329 (apply symbol-append
1330 (map (lambda (x)
1331 (if (symbol? x) x (syntax->datum x)))
1332 fragments))))
1333
1334 (define (getter rtd type-name field slot)
1335 #`(define #,(make-id rtd type-name '- field)
1336 (let ((rtd #,rtd))
1337 (lambda (#,type-name)
1338 (if (eq? (struct-vtable #,type-name) rtd)
1339 (struct-ref #,type-name #,slot)
1340 (%record-type-error rtd #,type-name))))))
1341
1342 (define (setter rtd type-name field slot)
1343 #`(define #,(make-id rtd 'set- type-name '- field '!)
1344 (let ((rtd #,rtd))
1345 (lambda (#,type-name val)
1346 (if (eq? (struct-vtable #,type-name) rtd)
1347 (struct-set! #,type-name #,slot val)
1348 (%record-type-error rtd #,type-name))))))
1349
1350 (define (accessors rtd type-name fields n exp)
1351 (syntax-case fields ()
1352 (() exp)
1353 (((field #:no-accessors) field* ...) (identifier? #'field)
1354 (accessors rtd type-name #'(field* ...) (1+ n)
1355 exp))
1356 (((field #:no-setter) field* ...) (identifier? #'field)
1357 (accessors rtd type-name #'(field* ...) (1+ n)
1358 #`(begin #,exp
1359 #,(getter rtd type-name #'field n))))
1360 (((field #:no-getter) field* ...) (identifier? #'field)
1361 (accessors rtd type-name #'(field* ...) (1+ n)
1362 #`(begin #,exp
1363 #,(setter rtd type-name #'field n))))
1364 ((field field* ...) (identifier? #'field)
1365 (accessors rtd type-name #'(field* ...) (1+ n)
1366 #`(begin #,exp
1367 #,(getter rtd type-name #'field n)
1368 #,(setter rtd type-name #'field n))))))
1369
1370 (define (predicate rtd type-name fields exp)
1371 (accessors
1372 rtd type-name fields 0
1373 #`(begin
1374 #,exp
1375 (define (#,(make-id rtd type-name '?) obj)
1376 (and (struct? obj) (eq? (struct-vtable obj) #,rtd))))))
1377
1378 (define (field-list fields)
1379 (syntax-case fields ()
1380 (() '())
1381 (((f . opts) . rest) (identifier? #'f)
1382 (cons #'f (field-list #'rest)))
1383 ((f . rest) (identifier? #'f)
1384 (cons #'f (field-list #'rest)))))
1385
1386 (define (constructor rtd type-name fields exp)
1387 (let ((ctor (make-id rtd type-name '-constructor))
1388 (args (field-list fields)))
1389 (predicate rtd type-name fields
1390 #`(begin #,exp
1391 (define #,ctor
1392 (let ((rtd #,rtd))
1393 (lambda #,args
1394 (make-struct rtd 0 #,@args))))
1395 (struct-set! #,rtd (+ vtable-offset-user 2)
1396 #,ctor)))))
1397
1398 (define (type type-name printer fields)
1399 (define (make-layout)
1400 (let lp ((fields fields) (slots '()))
1401 (syntax-case fields ()
1402 (() (datum->syntax #'here
1403 (make-struct-layout
1404 (apply string-append slots))))
1405 ((_ . rest) (lp #'rest (cons "pw" slots))))))
1406
1407 (let ((rtd (make-id type-name type-name '-type)))
1408 (constructor rtd type-name fields
1409 #`(begin
1410 (define #,rtd
1411 (make-struct record-type-vtable 0
1412 '#,(make-layout)
1413 #,printer
1414 '#,type-name
1415 '#,(field-list fields)))
1416 (set-struct-vtable-name! #,rtd '#,type-name)))))
1417
1418 (syntax-case x ()
1419 ((_ type-name printer (field ...))
1420 (type #'type-name #'printer #'(field ...)))))))
1421
1422 ;; module-type
1423 ;;
1424 ;; A module is characterized by an obarray in which local symbols
1425 ;; are interned, a list of modules, "uses", from which non-local
1426 ;; bindings can be inherited, and an optional lazy-binder which
1427 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1428 ;; bindings that would otherwise not be found locally in the module.
1429 ;;
1430 ;; NOTE: If you change the set of fields or their order, you also need to
1431 ;; change the constants in libguile/modules.h.
1432 ;;
1433 ;; NOTE: The getter `module-eval-closure' is used in libguile/modules.c.
1434 ;; NOTE: The getter `module-transfomer' is defined libguile/modules.c.
1435 ;; NOTE: The getter `module-name' is defined later, due to boot reasons.
1436 ;; NOTE: The getter `module-public-interface' is used in libguile/modules.c.
1437 ;;
1438 (define-record-type module
1439 (lambda (obj port) (%print-module obj port))
1440 (obarray
1441 uses
1442 binder
1443 eval-closure
1444 (transformer #:no-getter)
1445 (name #:no-getter)
1446 kind
1447 duplicates-handlers
1448 (import-obarray #:no-setter)
1449 observers
1450 (weak-observers #:no-setter)
1451 version
1452 submodules
1453 submodule-binder
1454 public-interface
1455 filename)))
1456
1457
1458 ;; make-module &opt size uses binder
1459 ;;
1460 ;; Create a new module, perhaps with a particular size of obarray,
1461 ;; initial uses list, or binding procedure.
1462 ;;
1463 (define* (make-module #:optional (size 31) (uses '()) (binder #f))
1464 (define %default-import-size
1465 ;; Typical number of imported bindings actually used by a module.
1466 600)
1467
1468 (if (not (integer? size))
1469 (error "Illegal size to make-module." size))
1470 (if (not (and (list? uses)
1471 (and-map module? uses)))
1472 (error "Incorrect use list." uses))
1473 (if (and binder (not (procedure? binder)))
1474 (error
1475 "Lazy-binder expected to be a procedure or #f." binder))
1476
1477 (let ((module (module-constructor (make-hash-table size)
1478 uses binder #f macroexpand
1479 #f #f #f
1480 (make-hash-table %default-import-size)
1481 '()
1482 (make-weak-key-hash-table 31) #f
1483 (make-hash-table 7) #f #f #f)))
1484
1485 ;; We can't pass this as an argument to module-constructor,
1486 ;; because we need it to close over a pointer to the module
1487 ;; itself.
1488 (set-module-eval-closure! module (standard-eval-closure module))
1489
1490 module))
1491
1492
1493 \f
1494
1495 ;;; {Observer protocol}
1496 ;;;
1497
1498 (define (module-observe module proc)
1499 (set-module-observers! module (cons proc (module-observers module)))
1500 (cons module proc))
1501
1502 (define* (module-observe-weak module observer-id #:optional (proc observer-id))
1503 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1504 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1505 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1506 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1507 ;; for instance).
1508
1509 ;; The two-argument version is kept for backward compatibility: when called
1510 ;; with two arguments, the observer gets unregistered when closure PROC
1511 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1512 (hashq-set! (module-weak-observers module) observer-id proc))
1513
1514 (define (module-unobserve token)
1515 (let ((module (car token))
1516 (id (cdr token)))
1517 (if (integer? id)
1518 (hash-remove! (module-weak-observers module) id)
1519 (set-module-observers! module (delq1! id (module-observers module)))))
1520 *unspecified*)
1521
1522 (define module-defer-observers #f)
1523 (define module-defer-observers-mutex (make-mutex 'recursive))
1524 (define module-defer-observers-table (make-hash-table))
1525
1526 (define (module-modified m)
1527 (if module-defer-observers
1528 (hash-set! module-defer-observers-table m #t)
1529 (module-call-observers m)))
1530
1531 ;;; This function can be used to delay calls to observers so that they
1532 ;;; can be called once only in the face of massive updating of modules.
1533 ;;;
1534 (define (call-with-deferred-observers thunk)
1535 (dynamic-wind
1536 (lambda ()
1537 (lock-mutex module-defer-observers-mutex)
1538 (set! module-defer-observers #t))
1539 thunk
1540 (lambda ()
1541 (set! module-defer-observers #f)
1542 (hash-for-each (lambda (m dummy)
1543 (module-call-observers m))
1544 module-defer-observers-table)
1545 (hash-clear! module-defer-observers-table)
1546 (unlock-mutex module-defer-observers-mutex))))
1547
1548 (define (module-call-observers m)
1549 (for-each (lambda (proc) (proc m)) (module-observers m))
1550
1551 ;; We assume that weak observers don't (un)register themselves as they are
1552 ;; called since this would preclude proper iteration over the hash table
1553 ;; elements.
1554 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1555
1556 \f
1557
1558 ;;; {Module Searching in General}
1559 ;;;
1560 ;;; We sometimes want to look for properties of a symbol
1561 ;;; just within the obarray of one module. If the property
1562 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1563 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1564 ;;;
1565 ;;;
1566 ;;; Other times, we want to test for a symbol property in the obarray
1567 ;;; of M and, if it is not found there, try each of the modules in the
1568 ;;; uses list of M. This is the normal way of testing for some
1569 ;;; property, so we state these properties without qualification as
1570 ;;; in: ``The symbol 'fnord is interned in module M because it is
1571 ;;; interned locally in module M2 which is a member of the uses list
1572 ;;; of M.''
1573 ;;;
1574
1575 ;; module-search fn m
1576 ;;
1577 ;; return the first non-#f result of FN applied to M and then to
1578 ;; the modules in the uses of m, and so on recursively. If all applications
1579 ;; return #f, then so does this function.
1580 ;;
1581 (define (module-search fn m v)
1582 (define (loop pos)
1583 (and (pair? pos)
1584 (or (module-search fn (car pos) v)
1585 (loop (cdr pos)))))
1586 (or (fn m v)
1587 (loop (module-uses m))))
1588
1589
1590 ;;; {Is a symbol bound in a module?}
1591 ;;;
1592 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1593 ;;; of S in M has been set to some well-defined value.
1594 ;;;
1595
1596 ;; module-locally-bound? module symbol
1597 ;;
1598 ;; Is a symbol bound (interned and defined) locally in a given module?
1599 ;;
1600 (define (module-locally-bound? m v)
1601 (let ((var (module-local-variable m v)))
1602 (and var
1603 (variable-bound? var))))
1604
1605 ;; module-bound? module symbol
1606 ;;
1607 ;; Is a symbol bound (interned and defined) anywhere in a given module
1608 ;; or its uses?
1609 ;;
1610 (define (module-bound? m v)
1611 (let ((var (module-variable m v)))
1612 (and var
1613 (variable-bound? var))))
1614
1615 ;;; {Is a symbol interned in a module?}
1616 ;;;
1617 ;;; Symbol S in Module M is interned if S occurs in
1618 ;;; of S in M has been set to some well-defined value.
1619 ;;;
1620 ;;; It is possible to intern a symbol in a module without providing
1621 ;;; an initial binding for the corresponding variable. This is done
1622 ;;; with:
1623 ;;; (module-add! module symbol (make-undefined-variable))
1624 ;;;
1625 ;;; In that case, the symbol is interned in the module, but not
1626 ;;; bound there. The unbound symbol shadows any binding for that
1627 ;;; symbol that might otherwise be inherited from a member of the uses list.
1628 ;;;
1629
1630 (define (module-obarray-get-handle ob key)
1631 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1632
1633 (define (module-obarray-ref ob key)
1634 ((if (symbol? key) hashq-ref hash-ref) ob key))
1635
1636 (define (module-obarray-set! ob key val)
1637 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1638
1639 (define (module-obarray-remove! ob key)
1640 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1641
1642 ;; module-symbol-locally-interned? module symbol
1643 ;;
1644 ;; is a symbol interned (not neccessarily defined) locally in a given module
1645 ;; or its uses? Interned symbols shadow inherited bindings even if
1646 ;; they are not themselves bound to a defined value.
1647 ;;
1648 (define (module-symbol-locally-interned? m v)
1649 (not (not (module-obarray-get-handle (module-obarray m) v))))
1650
1651 ;; module-symbol-interned? module symbol
1652 ;;
1653 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1654 ;; or its uses? Interned symbols shadow inherited bindings even if
1655 ;; they are not themselves bound to a defined value.
1656 ;;
1657 (define (module-symbol-interned? m v)
1658 (module-search module-symbol-locally-interned? m v))
1659
1660
1661 ;;; {Mapping modules x symbols --> variables}
1662 ;;;
1663
1664 ;; module-local-variable module symbol
1665 ;; return the local variable associated with a MODULE and SYMBOL.
1666 ;;
1667 ;;; This function is very important. It is the only function that can
1668 ;;; return a variable from a module other than the mutators that store
1669 ;;; new variables in modules. Therefore, this function is the location
1670 ;;; of the "lazy binder" hack.
1671 ;;;
1672 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1673 ;;; to a variable, return that variable object.
1674 ;;;
1675 ;;; If the symbols is not found at first, but the module has a lazy binder,
1676 ;;; then try the binder.
1677 ;;;
1678 ;;; If the symbol is not found at all, return #f.
1679 ;;;
1680 ;;; (This is now written in C, see `modules.c'.)
1681 ;;;
1682
1683 ;;; {Mapping modules x symbols --> bindings}
1684 ;;;
1685 ;;; These are similar to the mapping to variables, except that the
1686 ;;; variable is dereferenced.
1687 ;;;
1688
1689 ;; module-symbol-binding module symbol opt-value
1690 ;;
1691 ;; return the binding of a variable specified by name within
1692 ;; a given module, signalling an error if the variable is unbound.
1693 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1694 ;; return OPT-VALUE.
1695 ;;
1696 (define (module-symbol-local-binding m v . opt-val)
1697 (let ((var (module-local-variable m v)))
1698 (if (and var (variable-bound? var))
1699 (variable-ref var)
1700 (if (not (null? opt-val))
1701 (car opt-val)
1702 (error "Locally unbound variable." v)))))
1703
1704 ;; module-symbol-binding module symbol opt-value
1705 ;;
1706 ;; return the binding of a variable specified by name within
1707 ;; a given module, signalling an error if the variable is unbound.
1708 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1709 ;; return OPT-VALUE.
1710 ;;
1711 (define (module-symbol-binding m v . opt-val)
1712 (let ((var (module-variable m v)))
1713 (if (and var (variable-bound? var))
1714 (variable-ref var)
1715 (if (not (null? opt-val))
1716 (car opt-val)
1717 (error "Unbound variable." v)))))
1718
1719
1720 \f
1721
1722 ;;; {Adding Variables to Modules}
1723 ;;;
1724
1725 ;; module-make-local-var! module symbol
1726 ;;
1727 ;; ensure a variable for V in the local namespace of M.
1728 ;; If no variable was already there, then create a new and uninitialzied
1729 ;; variable.
1730 ;;
1731 ;; This function is used in modules.c.
1732 ;;
1733 (define (module-make-local-var! m v)
1734 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1735 (and (variable? b)
1736 (begin
1737 ;; Mark as modified since this function is called when
1738 ;; the standard eval closure defines a binding
1739 (module-modified m)
1740 b)))
1741
1742 ;; Create a new local variable.
1743 (let ((local-var (make-undefined-variable)))
1744 (module-add! m v local-var)
1745 local-var)))
1746
1747 ;; module-ensure-local-variable! module symbol
1748 ;;
1749 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1750 ;; there is no binding for SYMBOL, create a new uninitialized
1751 ;; variable. Return the local variable.
1752 ;;
1753 (define (module-ensure-local-variable! module symbol)
1754 (or (module-local-variable module symbol)
1755 (let ((var (make-undefined-variable)))
1756 (module-add! module symbol var)
1757 var)))
1758
1759 ;; module-add! module symbol var
1760 ;;
1761 ;; ensure a particular variable for V in the local namespace of M.
1762 ;;
1763 (define (module-add! m v var)
1764 (if (not (variable? var))
1765 (error "Bad variable to module-add!" var))
1766 (module-obarray-set! (module-obarray m) v var)
1767 (module-modified m))
1768
1769 ;; module-remove!
1770 ;;
1771 ;; make sure that a symbol is undefined in the local namespace of M.
1772 ;;
1773 (define (module-remove! m v)
1774 (module-obarray-remove! (module-obarray m) v)
1775 (module-modified m))
1776
1777 (define (module-clear! m)
1778 (hash-clear! (module-obarray m))
1779 (module-modified m))
1780
1781 ;; MODULE-FOR-EACH -- exported
1782 ;;
1783 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1784 ;;
1785 (define (module-for-each proc module)
1786 (hash-for-each proc (module-obarray module)))
1787
1788 (define (module-map proc module)
1789 (hash-map->list proc (module-obarray module)))
1790
1791 ;; Submodules
1792 ;;
1793 ;; Modules exist in a separate namespace from values, because you generally do
1794 ;; not want the name of a submodule, which you might not even use, to collide
1795 ;; with local variables that happen to be named the same as the submodule.
1796 ;;
1797 (define (module-ref-submodule module name)
1798 (or (hashq-ref (module-submodules module) name)
1799 (and (module-submodule-binder module)
1800 ((module-submodule-binder module) module name))))
1801
1802 (define (module-define-submodule! module name submodule)
1803 (hashq-set! (module-submodules module) name submodule))
1804
1805 ;; It used to be, however, that module names were also present in the
1806 ;; value namespace. When we enable deprecated code, we preserve this
1807 ;; legacy behavior.
1808 ;;
1809 ;; These shims are defined here instead of in deprecated.scm because we
1810 ;; need their definitions before loading other modules.
1811 ;;
1812 (begin-deprecated
1813 (define (module-ref-submodule module name)
1814 (or (hashq-ref (module-submodules module) name)
1815 (and (module-submodule-binder module)
1816 ((module-submodule-binder module) module name))
1817 (let ((var (module-local-variable module name)))
1818 (and var (variable-bound? var) (module? (variable-ref var))
1819 (begin
1820 (warn "module" module "not in submodules table")
1821 (variable-ref var))))))
1822
1823 (define (module-define-submodule! module name submodule)
1824 (let ((var (module-local-variable module name)))
1825 (if (and var
1826 (or (not (variable-bound? var))
1827 (not (module? (variable-ref var)))))
1828 (warn "defining module" module ": not overriding local definition" var)
1829 (module-define! module name submodule)))
1830 (hashq-set! (module-submodules module) name submodule)))
1831
1832 \f
1833
1834 ;;; {Module-based Loading}
1835 ;;;
1836
1837 (define (save-module-excursion thunk)
1838 (let ((inner-module (current-module))
1839 (outer-module #f))
1840 (dynamic-wind (lambda ()
1841 (set! outer-module (current-module))
1842 (set-current-module inner-module)
1843 (set! inner-module #f))
1844 thunk
1845 (lambda ()
1846 (set! inner-module (current-module))
1847 (set-current-module outer-module)
1848 (set! outer-module #f)))))
1849
1850 (define basic-load load)
1851
1852 (define* (load-module filename #:optional reader)
1853 (save-module-excursion
1854 (lambda ()
1855 (let ((oldname (and (current-load-port)
1856 (port-filename (current-load-port)))))
1857 (basic-load (if (and oldname
1858 (> (string-length filename) 0)
1859 (not (char=? (string-ref filename 0) #\/))
1860 (not (string=? (dirname oldname) ".")))
1861 (string-append (dirname oldname) "/" filename)
1862 filename)
1863 reader)))))
1864
1865
1866 \f
1867
1868 ;;; {MODULE-REF -- exported}
1869 ;;;
1870
1871 ;; Returns the value of a variable called NAME in MODULE or any of its
1872 ;; used modules. If there is no such variable, then if the optional third
1873 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1874 ;;
1875 (define (module-ref module name . rest)
1876 (let ((variable (module-variable module name)))
1877 (if (and variable (variable-bound? variable))
1878 (variable-ref variable)
1879 (if (null? rest)
1880 (error "No variable named" name 'in module)
1881 (car rest) ; default value
1882 ))))
1883
1884 ;; MODULE-SET! -- exported
1885 ;;
1886 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1887 ;; to VALUE; if there is no such variable, an error is signaled.
1888 ;;
1889 (define (module-set! module name value)
1890 (let ((variable (module-variable module name)))
1891 (if variable
1892 (variable-set! variable value)
1893 (error "No variable named" name 'in module))))
1894
1895 ;; MODULE-DEFINE! -- exported
1896 ;;
1897 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1898 ;; variable, it is added first.
1899 ;;
1900 (define (module-define! module name value)
1901 (let ((variable (module-local-variable module name)))
1902 (if variable
1903 (begin
1904 (variable-set! variable value)
1905 (module-modified module))
1906 (let ((variable (make-variable value)))
1907 (module-add! module name variable)))))
1908
1909 ;; MODULE-DEFINED? -- exported
1910 ;;
1911 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1912 ;; uses)
1913 ;;
1914 (define (module-defined? module name)
1915 (let ((variable (module-variable module name)))
1916 (and variable (variable-bound? variable))))
1917
1918 ;; MODULE-USE! module interface
1919 ;;
1920 ;; Add INTERFACE to the list of interfaces used by MODULE.
1921 ;;
1922 (define (module-use! module interface)
1923 (if (not (or (eq? module interface)
1924 (memq interface (module-uses module))))
1925 (begin
1926 ;; Newly used modules must be appended rather than consed, so that
1927 ;; `module-variable' traverses the use list starting from the first
1928 ;; used module.
1929 (set-module-uses! module
1930 (append (filter (lambda (m)
1931 (not
1932 (equal? (module-name m)
1933 (module-name interface))))
1934 (module-uses module))
1935 (list interface)))
1936 (hash-clear! (module-import-obarray module))
1937 (module-modified module))))
1938
1939 ;; MODULE-USE-INTERFACES! module interfaces
1940 ;;
1941 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1942 ;;
1943 (define (module-use-interfaces! module interfaces)
1944 (set-module-uses! module
1945 (append (module-uses module) interfaces))
1946 (hash-clear! (module-import-obarray module))
1947 (module-modified module))
1948
1949 \f
1950
1951 ;;; {Recursive Namespaces}
1952 ;;;
1953 ;;; A hierarchical namespace emerges if we consider some module to be
1954 ;;; root, and submodules of that module to be nested namespaces.
1955 ;;;
1956 ;;; The routines here manage variable names in hierarchical namespace.
1957 ;;; Each variable name is a list of elements, looked up in successively nested
1958 ;;; modules.
1959 ;;;
1960 ;;; (nested-ref some-root-module '(foo bar baz))
1961 ;;; => <value of a variable named baz in the submodule bar of
1962 ;;; the submodule foo of some-root-module>
1963 ;;;
1964 ;;;
1965 ;;; There are:
1966 ;;;
1967 ;;; ;; a-root is a module
1968 ;;; ;; name is a list of symbols
1969 ;;;
1970 ;;; nested-ref a-root name
1971 ;;; nested-set! a-root name val
1972 ;;; nested-define! a-root name val
1973 ;;; nested-remove! a-root name
1974 ;;;
1975 ;;; These functions manipulate values in namespaces. For referencing the
1976 ;;; namespaces themselves, use the following:
1977 ;;;
1978 ;;; nested-ref-module a-root name
1979 ;;; nested-define-module! a-root name mod
1980 ;;;
1981 ;;; (current-module) is a natural choice for a root so for convenience there are
1982 ;;; also:
1983 ;;;
1984 ;;; local-ref name == nested-ref (current-module) name
1985 ;;; local-set! name val == nested-set! (current-module) name val
1986 ;;; local-define name val == nested-define! (current-module) name val
1987 ;;; local-remove name == nested-remove! (current-module) name
1988 ;;; local-ref-module name == nested-ref-module (current-module) name
1989 ;;; local-define-module! name m == nested-define-module! (current-module) name m
1990 ;;;
1991
1992
1993 (define (nested-ref root names)
1994 (if (null? names)
1995 root
1996 (let loop ((cur root)
1997 (head (car names))
1998 (tail (cdr names)))
1999 (if (null? tail)
2000 (module-ref cur head #f)
2001 (let ((cur (module-ref-submodule cur head)))
2002 (and cur
2003 (loop cur (car tail) (cdr tail))))))))
2004
2005 (define (nested-set! root names val)
2006 (let loop ((cur root)
2007 (head (car names))
2008 (tail (cdr names)))
2009 (if (null? tail)
2010 (module-set! cur head val)
2011 (let ((cur (module-ref-submodule cur head)))
2012 (if (not cur)
2013 (error "failed to resolve module" names)
2014 (loop cur (car tail) (cdr tail)))))))
2015
2016 (define (nested-define! root names val)
2017 (let loop ((cur root)
2018 (head (car names))
2019 (tail (cdr names)))
2020 (if (null? tail)
2021 (module-define! cur head val)
2022 (let ((cur (module-ref-submodule cur head)))
2023 (if (not cur)
2024 (error "failed to resolve module" names)
2025 (loop cur (car tail) (cdr tail)))))))
2026
2027 (define (nested-remove! root names)
2028 (let loop ((cur root)
2029 (head (car names))
2030 (tail (cdr names)))
2031 (if (null? tail)
2032 (module-remove! cur head)
2033 (let ((cur (module-ref-submodule cur head)))
2034 (if (not cur)
2035 (error "failed to resolve module" names)
2036 (loop cur (car tail) (cdr tail)))))))
2037
2038
2039 (define (nested-ref-module root names)
2040 (let loop ((cur root)
2041 (names names))
2042 (if (null? names)
2043 cur
2044 (let ((cur (module-ref-submodule cur (car names))))
2045 (and cur
2046 (loop cur (cdr names)))))))
2047
2048 (define (nested-define-module! root names module)
2049 (if (null? names)
2050 (error "can't redefine root module" root module)
2051 (let loop ((cur root)
2052 (head (car names))
2053 (tail (cdr names)))
2054 (if (null? tail)
2055 (module-define-submodule! cur head module)
2056 (let ((cur (or (module-ref-submodule cur head)
2057 (let ((m (make-module 31)))
2058 (set-module-kind! m 'directory)
2059 (set-module-name! m (append (module-name cur)
2060 (list head)))
2061 (module-define-submodule! cur head m)
2062 m))))
2063 (loop cur (car tail) (cdr tail)))))))
2064
2065
2066 (define (local-ref names)
2067 (nested-ref (current-module) names))
2068
2069 (define (local-set! names val)
2070 (nested-set! (current-module) names val))
2071
2072 (define (local-define names val)
2073 (nested-define! (current-module) names val))
2074
2075 (define (local-remove names)
2076 (nested-remove! (current-module) names))
2077
2078 (define (local-ref-module names)
2079 (nested-ref-module (current-module) names))
2080
2081 (define (local-define-module names mod)
2082 (nested-define-module! (current-module) names mod))
2083
2084
2085
2086 \f
2087
2088 ;;; {The (guile) module}
2089 ;;;
2090 ;;; The standard module, which has the core Guile bindings. Also called the
2091 ;;; "root module", as it is imported by many other modules, but it is not
2092 ;;; necessarily the root of anything; and indeed, the module named '() might be
2093 ;;; better thought of as a root.
2094 ;;;
2095
2096 (define (set-system-module! m s)
2097 (set-procedure-property! (module-eval-closure m) 'system-module s))
2098
2099 ;; The root module uses the pre-modules-obarray as its obarray. This
2100 ;; special obarray accumulates all bindings that have been established
2101 ;; before the module system is fully booted.
2102 ;;
2103 ;; (The obarray continues to be used by code that has been closed over
2104 ;; before the module system has been booted.)
2105 ;;
2106 (define the-root-module
2107 (let ((m (make-module 0)))
2108 (set-module-obarray! m (%get-pre-modules-obarray))
2109 (set-module-name! m '(guile))
2110 (set-system-module! m #t)
2111 m))
2112
2113 ;; The root interface is a module that uses the same obarray as the
2114 ;; root module. It does not allow new definitions, tho.
2115 ;;
2116 (define the-scm-module
2117 (let ((m (make-module 0)))
2118 (set-module-obarray! m (%get-pre-modules-obarray))
2119 (set-module-eval-closure! m (standard-interface-eval-closure m))
2120 (set-module-name! m '(guile))
2121 (set-module-kind! m 'interface)
2122 (set-system-module! m #t)
2123 m))
2124
2125 (set-module-public-interface! the-root-module the-scm-module)
2126
2127 \f
2128
2129 ;; Now that we have a root module, even though modules aren't fully booted,
2130 ;; expand the definition of resolve-module.
2131 ;;
2132 (define (resolve-module name . args)
2133 (if (equal? name '(guile))
2134 the-root-module
2135 (error "unexpected module to resolve during module boot" name)))
2136
2137 ;; Cheat. These bindings are needed by modules.c, but we don't want
2138 ;; to move their real definition here because that would be unnatural.
2139 ;;
2140 (define process-define-module #f)
2141 (define process-use-modules #f)
2142 (define module-export! #f)
2143 (define default-duplicate-binding-procedures #f)
2144
2145 ;; This boots the module system. All bindings needed by modules.c
2146 ;; must have been defined by now.
2147 ;;
2148 (set-current-module the-root-module)
2149
2150
2151 \f
2152
2153 ;; Now that modules are booted, give module-name its final definition.
2154 ;;
2155 (define module-name
2156 (let ((accessor (record-accessor module-type 'name)))
2157 (lambda (mod)
2158 (or (accessor mod)
2159 (let ((name (list (gensym))))
2160 ;; Name MOD and bind it in the module root so that it's visible to
2161 ;; `resolve-module'. This is important as `psyntax' stores module
2162 ;; names and relies on being able to `resolve-module' them.
2163 (set-module-name! mod name)
2164 (nested-define-module! (resolve-module '() #f) name mod)
2165 (accessor mod))))))
2166
2167 (define (make-modules-in module name)
2168 (or (nested-ref-module module name)
2169 (let ((m (make-module 31)))
2170 (set-module-kind! m 'directory)
2171 (set-module-name! m (append (module-name module) name))
2172 (nested-define-module! module name m)
2173 m)))
2174
2175 (define (beautify-user-module! module)
2176 (let ((interface (module-public-interface module)))
2177 (if (or (not interface)
2178 (eq? interface module))
2179 (let ((interface (make-module 31)))
2180 (set-module-name! interface (module-name module))
2181 (set-module-version! interface (module-version module))
2182 (set-module-kind! interface 'interface)
2183 (set-module-public-interface! module interface))))
2184 (if (and (not (memq the-scm-module (module-uses module)))
2185 (not (eq? module the-root-module)))
2186 ;; Import the default set of bindings (from the SCM module) in MODULE.
2187 (module-use! module the-scm-module)))
2188
2189 (define (version-matches? version-ref target)
2190 (define (sub-versions-match? v-refs t)
2191 (define (sub-version-matches? v-ref t)
2192 (let ((matches? (lambda (v) (sub-version-matches? v t))))
2193 (cond
2194 ((number? v-ref) (eqv? v-ref t))
2195 ((list? v-ref)
2196 (case (car v-ref)
2197 ((>=) (>= t (cadr v-ref)))
2198 ((<=) (<= t (cadr v-ref)))
2199 ((and) (and-map matches? (cdr v-ref)))
2200 ((or) (or-map matches? (cdr v-ref)))
2201 ((not) (not (matches? (cadr v-ref))))
2202 (else (error "Invalid sub-version reference" v-ref))))
2203 (else (error "Invalid sub-version reference" v-ref)))))
2204 (or (null? v-refs)
2205 (and (not (null? t))
2206 (sub-version-matches? (car v-refs) (car t))
2207 (sub-versions-match? (cdr v-refs) (cdr t)))))
2208
2209 (let ((matches? (lambda (v) (version-matches? v target))))
2210 (or (null? version-ref)
2211 (case (car version-ref)
2212 ((and) (and-map matches? (cdr version-ref)))
2213 ((or) (or-map matches? (cdr version-ref)))
2214 ((not) (not (matches? (cadr version-ref))))
2215 (else (sub-versions-match? version-ref target))))))
2216
2217 (define (make-fresh-user-module)
2218 (let ((m (make-module)))
2219 (beautify-user-module! m)
2220 m))
2221
2222 ;; NOTE: This binding is used in libguile/modules.c.
2223 ;;
2224 (define resolve-module
2225 (let ((root (make-module)))
2226 (set-module-name! root '())
2227 ;; Define the-root-module as '(guile).
2228 (module-define-submodule! root 'guile the-root-module)
2229
2230 (lambda* (name #:optional (autoload #t) (version #f) #:key (ensure #t))
2231 (let ((already (nested-ref-module root name)))
2232 (cond
2233 ((and already
2234 (or (not autoload) (module-public-interface already)))
2235 ;; A hit, a palpable hit.
2236 (if (and version
2237 (not (version-matches? version (module-version already))))
2238 (error "incompatible module version already loaded" name))
2239 already)
2240 (autoload
2241 ;; Try to autoload the module, and recurse.
2242 (try-load-module name version)
2243 (resolve-module name #f #:ensure ensure))
2244 (else
2245 ;; No module found (or if one was, it had no public interface), and
2246 ;; we're not autoloading. Make an empty module if #:ensure is true.
2247 (or already
2248 (and ensure
2249 (make-modules-in root name)))))))))
2250
2251
2252 (define (try-load-module name version)
2253 (try-module-autoload name version))
2254
2255 (define (purify-module! module)
2256 "Removes bindings in MODULE which are inherited from the (guile) module."
2257 (let ((use-list (module-uses module)))
2258 (if (and (pair? use-list)
2259 (eq? (car (last-pair use-list)) the-scm-module))
2260 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2261
2262 ;; Return a module that is an interface to the module designated by
2263 ;; NAME.
2264 ;;
2265 ;; `resolve-interface' takes four keyword arguments:
2266 ;;
2267 ;; #:select SELECTION
2268 ;;
2269 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
2270 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2271 ;; is the name in the used module and SEEN is the name in the using
2272 ;; module. Note that SEEN is also passed through RENAMER, below. The
2273 ;; default is to select all bindings. If you specify no selection but
2274 ;; a renamer, only the bindings that already exist in the used module
2275 ;; are made available in the interface. Bindings that are added later
2276 ;; are not picked up.
2277 ;;
2278 ;; #:hide BINDINGS
2279 ;;
2280 ;; BINDINGS is a list of bindings which should not be imported.
2281 ;;
2282 ;; #:prefix PREFIX
2283 ;;
2284 ;; PREFIX is a symbol that will be appended to each exported name.
2285 ;; The default is to not perform any renaming.
2286 ;;
2287 ;; #:renamer RENAMER
2288 ;;
2289 ;; RENAMER is a procedure that takes a symbol and returns its new
2290 ;; name. The default is not perform any renaming.
2291 ;;
2292 ;; Signal "no code for module" error if module name is not resolvable
2293 ;; or its public interface is not available. Signal "no binding"
2294 ;; error if selected binding does not exist in the used module.
2295 ;;
2296 (define* (resolve-interface name #:key
2297 (select #f)
2298 (hide '())
2299 (prefix #f)
2300 (renamer (if prefix
2301 (symbol-prefix-proc prefix)
2302 identity))
2303 version)
2304 (let* ((module (resolve-module name #t version #:ensure #f))
2305 (public-i (and module (module-public-interface module))))
2306 (and (or (not module) (not public-i))
2307 (error "no code for module" name))
2308 (if (and (not select) (null? hide) (eq? renamer identity))
2309 public-i
2310 (let ((selection (or select (module-map (lambda (sym var) sym)
2311 public-i)))
2312 (custom-i (make-module 31)))
2313 (set-module-kind! custom-i 'custom-interface)
2314 (set-module-name! custom-i name)
2315 ;; XXX - should use a lazy binder so that changes to the
2316 ;; used module are picked up automatically.
2317 (for-each (lambda (bspec)
2318 (let* ((direct? (symbol? bspec))
2319 (orig (if direct? bspec (car bspec)))
2320 (seen (if direct? bspec (cdr bspec)))
2321 (var (or (module-local-variable public-i orig)
2322 (module-local-variable module orig)
2323 (error
2324 ;; fixme: format manually for now
2325 (simple-format
2326 #f "no binding `~A' in module ~A"
2327 orig name)))))
2328 (if (memq orig hide)
2329 (set! hide (delq! orig hide))
2330 (module-add! custom-i
2331 (renamer seen)
2332 var))))
2333 selection)
2334 ;; Check that we are not hiding bindings which don't exist
2335 (for-each (lambda (binding)
2336 (if (not (module-local-variable public-i binding))
2337 (error
2338 (simple-format
2339 #f "no binding `~A' to hide in module ~A"
2340 binding name))))
2341 hide)
2342 custom-i))))
2343
2344 (define (symbol-prefix-proc prefix)
2345 (lambda (symbol)
2346 (symbol-append prefix symbol)))
2347
2348 ;; This function is called from "modules.c". If you change it, be
2349 ;; sure to update "modules.c" as well.
2350
2351 (define (process-define-module args)
2352 (let* ((module-id (car args))
2353 (module (resolve-module module-id #f))
2354 (kws (cdr args))
2355 (unrecognized (lambda (arg)
2356 (error "unrecognized define-module argument" arg))))
2357 (beautify-user-module! module)
2358 (let loop ((kws kws)
2359 (reversed-interfaces '())
2360 (exports '())
2361 (re-exports '())
2362 (replacements '())
2363 (autoloads '()))
2364
2365 (if (null? kws)
2366 (call-with-deferred-observers
2367 (lambda ()
2368 (module-use-interfaces! module (reverse reversed-interfaces))
2369 (module-export! module exports)
2370 (module-replace! module replacements)
2371 (module-re-export! module re-exports)
2372 (if (not (null? autoloads))
2373 (apply module-autoload! module autoloads))))
2374 (case (car kws)
2375 ((#:use-module #:use-syntax)
2376 (or (pair? (cdr kws))
2377 (unrecognized kws))
2378 (cond
2379 ((equal? (caadr kws) '(ice-9 syncase))
2380 (issue-deprecation-warning
2381 "(ice-9 syncase) is deprecated. Support for syntax-case is now in Guile core.")
2382 (loop (cddr kws)
2383 reversed-interfaces
2384 exports
2385 re-exports
2386 replacements
2387 autoloads))
2388 (else
2389 (let* ((interface-args (cadr kws))
2390 (interface (apply resolve-interface interface-args)))
2391 (and (eq? (car kws) #:use-syntax)
2392 (or (symbol? (caar interface-args))
2393 (error "invalid module name for use-syntax"
2394 (car interface-args)))
2395 (set-module-transformer!
2396 module
2397 (module-ref interface
2398 (car (last-pair (car interface-args)))
2399 #f)))
2400 (loop (cddr kws)
2401 (cons interface reversed-interfaces)
2402 exports
2403 re-exports
2404 replacements
2405 autoloads)))))
2406 ((#:autoload)
2407 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2408 (unrecognized kws))
2409 (loop (cdddr kws)
2410 reversed-interfaces
2411 exports
2412 re-exports
2413 replacements
2414 (let ((name (cadr kws))
2415 (bindings (caddr kws)))
2416 (cons* name bindings autoloads))))
2417 ((#:no-backtrace)
2418 (set-system-module! module #t)
2419 (loop (cdr kws) reversed-interfaces exports re-exports
2420 replacements autoloads))
2421 ((#:pure)
2422 (purify-module! module)
2423 (loop (cdr kws) reversed-interfaces exports re-exports
2424 replacements autoloads))
2425 ((#:version)
2426 (or (pair? (cdr kws))
2427 (unrecognized kws))
2428 (let ((version (cadr kws)))
2429 (set-module-version! module version)
2430 (set-module-version! (module-public-interface module) version))
2431 (loop (cddr kws) reversed-interfaces exports re-exports
2432 replacements autoloads))
2433 ((#:duplicates)
2434 (if (not (pair? (cdr kws)))
2435 (unrecognized kws))
2436 (set-module-duplicates-handlers!
2437 module
2438 (lookup-duplicates-handlers (cadr kws)))
2439 (loop (cddr kws) reversed-interfaces exports re-exports
2440 replacements autoloads))
2441 ((#:export #:export-syntax)
2442 (or (pair? (cdr kws))
2443 (unrecognized kws))
2444 (loop (cddr kws)
2445 reversed-interfaces
2446 (append (cadr kws) exports)
2447 re-exports
2448 replacements
2449 autoloads))
2450 ((#:re-export #:re-export-syntax)
2451 (or (pair? (cdr kws))
2452 (unrecognized kws))
2453 (loop (cddr kws)
2454 reversed-interfaces
2455 exports
2456 (append (cadr kws) re-exports)
2457 replacements
2458 autoloads))
2459 ((#:replace #:replace-syntax)
2460 (or (pair? (cdr kws))
2461 (unrecognized kws))
2462 (loop (cddr kws)
2463 reversed-interfaces
2464 exports
2465 re-exports
2466 (append (cadr kws) replacements)
2467 autoloads))
2468 ((#:filename)
2469 (or (pair? (cdr kws))
2470 (unrecognized kws))
2471 (set-module-filename! module (cadr kws))
2472 (loop (cddr kws)
2473 reversed-interfaces
2474 exports
2475 re-exports
2476 replacements
2477 autoloads))
2478 (else
2479 (unrecognized kws)))))
2480 (run-hook module-defined-hook module)
2481 module))
2482
2483 ;; `module-defined-hook' is a hook that is run whenever a new module
2484 ;; is defined. Its members are called with one argument, the new
2485 ;; module.
2486 (define module-defined-hook (make-hook 1))
2487
2488 \f
2489
2490 ;;; {Autoload}
2491 ;;;
2492
2493 (define (make-autoload-interface module name bindings)
2494 (let ((b (lambda (a sym definep)
2495 (and (memq sym bindings)
2496 (let ((i (module-public-interface (resolve-module name))))
2497 (if (not i)
2498 (error "missing interface for module" name))
2499 (let ((autoload (memq a (module-uses module))))
2500 ;; Replace autoload-interface with actual interface if
2501 ;; that has not happened yet.
2502 (if (pair? autoload)
2503 (set-car! autoload i)))
2504 (module-local-variable i sym))))))
2505 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2506 (make-hash-table 0) '() (make-weak-value-hash-table 31) #f
2507 (make-hash-table 0) #f #f #f)))
2508
2509 (define (module-autoload! module . args)
2510 "Have @var{module} automatically load the module named @var{name} when one
2511 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2512 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2513 module '(ice-9 q) '(make-q q-length))}."
2514 (let loop ((args args))
2515 (cond ((null? args)
2516 #t)
2517 ((null? (cdr args))
2518 (error "invalid name+binding autoload list" args))
2519 (else
2520 (let ((name (car args))
2521 (bindings (cadr args)))
2522 (module-use! module (make-autoload-interface module
2523 name bindings))
2524 (loop (cddr args)))))))
2525
2526
2527 \f
2528
2529 ;;; {Autoloading modules}
2530 ;;;
2531
2532 (define autoloads-in-progress '())
2533
2534 ;; This function is called from "modules.c". If you change it, be
2535 ;; sure to update "modules.c" as well.
2536
2537 (define* (try-module-autoload module-name #:optional version)
2538 (let* ((reverse-name (reverse module-name))
2539 (name (symbol->string (car reverse-name)))
2540 (dir-hint-module-name (reverse (cdr reverse-name)))
2541 (dir-hint (apply string-append
2542 (map (lambda (elt)
2543 (string-append (symbol->string elt) "/"))
2544 dir-hint-module-name))))
2545 (resolve-module dir-hint-module-name #f)
2546 (and (not (autoload-done-or-in-progress? dir-hint name))
2547 (let ((didit #f))
2548 (dynamic-wind
2549 (lambda () (autoload-in-progress! dir-hint name))
2550 (lambda ()
2551 (with-fluids ((current-reader #f))
2552 (save-module-excursion
2553 (lambda ()
2554 ;; The initial environment when loading a module is a fresh
2555 ;; user module.
2556 (set-current-module (make-fresh-user-module))
2557 ;; Here we could allow some other search strategy (other than
2558 ;; primitive-load-path), for example using versions encoded
2559 ;; into the file system -- but then we would have to figure
2560 ;; out how to locate the compiled file, do autocompilation,
2561 ;; etc. Punt for now, and don't use versions when locating
2562 ;; the file.
2563 (primitive-load-path (in-vicinity dir-hint name) #f)
2564 (set! didit #t)))))
2565 (lambda () (set-autoloaded! dir-hint name didit)))
2566 didit))))
2567
2568 \f
2569
2570 ;;; {Dynamic linking of modules}
2571 ;;;
2572
2573 (define autoloads-done '((guile . guile)))
2574
2575 (define (autoload-done-or-in-progress? p m)
2576 (let ((n (cons p m)))
2577 (->bool (or (member n autoloads-done)
2578 (member n autoloads-in-progress)))))
2579
2580 (define (autoload-done! p m)
2581 (let ((n (cons p m)))
2582 (set! autoloads-in-progress
2583 (delete! n autoloads-in-progress))
2584 (or (member n autoloads-done)
2585 (set! autoloads-done (cons n autoloads-done)))))
2586
2587 (define (autoload-in-progress! p m)
2588 (let ((n (cons p m)))
2589 (set! autoloads-done
2590 (delete! n autoloads-done))
2591 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2592
2593 (define (set-autoloaded! p m done?)
2594 (if done?
2595 (autoload-done! p m)
2596 (let ((n (cons p m)))
2597 (set! autoloads-done (delete! n autoloads-done))
2598 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2599
2600 \f
2601
2602 ;;; {Run-time options}
2603 ;;;
2604
2605 (define-syntax define-option-interface
2606 (syntax-rules ()
2607 ((_ (interface (options enable disable) (option-set!)))
2608 (begin
2609 (define options
2610 (case-lambda
2611 (() (interface))
2612 ((arg)
2613 (if (list? arg)
2614 (begin (interface arg) (interface))
2615 (for-each
2616 (lambda (option)
2617 (apply (lambda (name value documentation)
2618 (display name)
2619 (if (< (string-length (symbol->string name)) 8)
2620 (display #\tab))
2621 (display #\tab)
2622 (display value)
2623 (display #\tab)
2624 (display documentation)
2625 (newline))
2626 option))
2627 (interface #t))))))
2628 (define (enable . flags)
2629 (interface (append flags (interface)))
2630 (interface))
2631 (define (disable . flags)
2632 (let ((options (interface)))
2633 (for-each (lambda (flag) (set! options (delq! flag options)))
2634 flags)
2635 (interface options)
2636 (interface)))
2637 (define-syntax option-set!
2638 (syntax-rules ()
2639 ((_ opt val)
2640 (options (append (options) (list 'opt val))))))))))
2641
2642 (define-option-interface
2643 (debug-options-interface
2644 (debug-options debug-enable debug-disable)
2645 (debug-set!)))
2646
2647 (define-option-interface
2648 (read-options-interface
2649 (read-options read-enable read-disable)
2650 (read-set!)))
2651
2652 (define-option-interface
2653 (print-options-interface
2654 (print-options print-enable print-disable)
2655 (print-set!)))
2656
2657 \f
2658
2659 ;;; {The Unspecified Value}
2660 ;;;
2661 ;;; Currently Guile represents unspecified values via one particular value,
2662 ;;; which may be obtained by evaluating (if #f #f). It would be nice in the
2663 ;;; future if we could replace this with a return of 0 values, though.
2664 ;;;
2665
2666 (define-syntax *unspecified*
2667 (identifier-syntax (if #f #f)))
2668
2669 (define (unspecified? v) (eq? v *unspecified*))
2670
2671
2672 \f
2673
2674 ;;; {Running Repls}
2675 ;;;
2676
2677 (define *repl-stack* (make-fluid))
2678
2679 ;; Programs can call `batch-mode?' to see if they are running as part of a
2680 ;; script or if they are running interactively. REPL implementations ensure that
2681 ;; `batch-mode?' returns #f during their extent.
2682 ;;
2683 (define (batch-mode?)
2684 (null? (or (fluid-ref *repl-stack*) '())))
2685
2686 ;; Programs can re-enter batch mode, for example after a fork, by calling
2687 ;; `ensure-batch-mode!'. It's not a great interface, though; it would be better
2688 ;; to abort to the outermost prompt, and call a thunk there.
2689 ;;
2690 (define (ensure-batch-mode!)
2691 (set! batch-mode? (lambda () #t)))
2692
2693 (define (quit . args)
2694 (apply throw 'quit args))
2695
2696 (define exit quit)
2697
2698 (define (gc-run-time)
2699 (cdr (assq 'gc-time-taken (gc-stats))))
2700
2701 (define abort-hook (make-hook))
2702 (define before-error-hook (make-hook))
2703 (define after-error-hook (make-hook))
2704 (define before-backtrace-hook (make-hook))
2705 (define after-backtrace-hook (make-hook))
2706
2707 (define before-read-hook (make-hook))
2708 (define after-read-hook (make-hook))
2709 (define before-eval-hook (make-hook 1))
2710 (define after-eval-hook (make-hook 1))
2711 (define before-print-hook (make-hook 1))
2712 (define after-print-hook (make-hook 1))
2713
2714 ;;; This hook is run at the very end of an interactive session.
2715 ;;;
2716 (define exit-hook (make-hook))
2717
2718 ;;; The default repl-reader function. We may override this if we've
2719 ;;; the readline library.
2720 (define repl-reader
2721 (lambda* (prompt #:optional (reader (fluid-ref current-reader)))
2722 (if (not (char-ready?))
2723 (display (if (string? prompt) prompt (prompt))))
2724 (force-output)
2725 (run-hook before-read-hook)
2726 ((or reader read) (current-input-port))))
2727
2728
2729 \f
2730
2731 ;;; {IOTA functions: generating lists of numbers}
2732 ;;;
2733
2734 (define (iota n)
2735 (let loop ((count (1- n)) (result '()))
2736 (if (< count 0) result
2737 (loop (1- count) (cons count result)))))
2738
2739 \f
2740
2741 ;;; {While}
2742 ;;;
2743 ;;; with `continue' and `break'.
2744 ;;;
2745
2746 ;; The inliner will remove the prompts at compile-time if it finds that
2747 ;; `continue' or `break' are not used.
2748 ;;
2749 (define-syntax while
2750 (lambda (x)
2751 (syntax-case x ()
2752 ((while cond body ...)
2753 #`(let ((break-tag (make-prompt-tag "break"))
2754 (continue-tag (make-prompt-tag "continue")))
2755 (call-with-prompt
2756 break-tag
2757 (lambda ()
2758 (define-syntax #,(datum->syntax #'while 'break)
2759 (lambda (x)
2760 (syntax-case x ()
2761 ((_)
2762 #'(abort-to-prompt break-tag))
2763 ((_ . args)
2764 (syntax-violation 'break "too many arguments" x))
2765 (_
2766 #'(lambda ()
2767 (abort-to-prompt break-tag))))))
2768 (let lp ()
2769 (call-with-prompt
2770 continue-tag
2771 (lambda ()
2772 (define-syntax #,(datum->syntax #'while 'continue)
2773 (lambda (x)
2774 (syntax-case x ()
2775 ((_)
2776 #'(abort-to-prompt continue-tag))
2777 ((_ . args)
2778 (syntax-violation 'continue "too many arguments" x))
2779 (_
2780 #'(lambda args
2781 (apply abort-to-prompt continue-tag args))))))
2782 (do () ((not cond)) body ...))
2783 (lambda (k) (lp)))))
2784 (lambda (k)
2785 #t)))))))
2786
2787
2788 \f
2789
2790 ;;; {Module System Macros}
2791 ;;;
2792
2793 ;; Return a list of expressions that evaluate to the appropriate
2794 ;; arguments for resolve-interface according to SPEC.
2795
2796 (eval-when (compile)
2797 (if (memq 'prefix (read-options))
2798 (error "boot-9 must be compiled with #:kw, not :kw")))
2799
2800 (define (keyword-like-symbol->keyword sym)
2801 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2802
2803 ;; FIXME: we really need to clean up the guts of the module system.
2804 ;; We can compile to something better than process-define-module.
2805 ;;
2806 (define-syntax define-module
2807 (lambda (x)
2808 (define (keyword-like? stx)
2809 (let ((dat (syntax->datum stx)))
2810 (and (symbol? dat)
2811 (eqv? (string-ref (symbol->string dat) 0) #\:))))
2812 (define (->keyword sym)
2813 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2814
2815 (define (quotify-iface args)
2816 (let loop ((in args) (out '()))
2817 (syntax-case in ()
2818 (() (reverse! out))
2819 ;; The user wanted #:foo, but wrote :foo. Fix it.
2820 ((sym . in) (keyword-like? #'sym)
2821 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
2822 ((kw . in) (not (keyword? (syntax->datum #'kw)))
2823 (syntax-violation 'define-module "expected keyword arg" x #'kw))
2824 ((#:renamer renamer . in)
2825 (loop #'in (cons* #'renamer #:renamer out)))
2826 ((kw val . in)
2827 (loop #'in (cons* #''val #'kw out))))))
2828
2829 (define (quotify args)
2830 ;; Just quote everything except #:use-module and #:use-syntax. We
2831 ;; need to know about all arguments regardless since we want to turn
2832 ;; symbols that look like keywords into real keywords, and the
2833 ;; keyword args in a define-module form are not regular
2834 ;; (i.e. no-backtrace doesn't take a value).
2835 (let loop ((in args) (out '()))
2836 (syntax-case in ()
2837 (() (reverse! out))
2838 ;; The user wanted #:foo, but wrote :foo. Fix it.
2839 ((sym . in) (keyword-like? #'sym)
2840 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
2841 ((kw . in) (not (keyword? (syntax->datum #'kw)))
2842 (syntax-violation 'define-module "expected keyword arg" x #'kw))
2843 ((#:no-backtrace . in)
2844 (loop #'in (cons #:no-backtrace out)))
2845 ((#:pure . in)
2846 (loop #'in (cons #:pure out)))
2847 ((kw)
2848 (syntax-violation 'define-module "keyword arg without value" x #'kw))
2849 ((use-module (name name* ...) . in)
2850 (and (memq (syntax->datum #'use-module) '(#:use-module #:use-syntax))
2851 (and-map symbol? (syntax->datum #'(name name* ...))))
2852 (loop #'in
2853 (cons* #''((name name* ...))
2854 #'use-module
2855 out)))
2856 ((use-module ((name name* ...) arg ...) . in)
2857 (and (memq (syntax->datum #'use-module) '(#:use-module #:use-syntax))
2858 (and-map symbol? (syntax->datum #'(name name* ...))))
2859 (loop #'in
2860 (cons* #`(list '(name name* ...) #,@(quotify-iface #'(arg ...)))
2861 #'use-module
2862 out)))
2863 ((#:autoload name bindings . in)
2864 (loop #'in (cons* #''bindings #''name #:autoload out)))
2865 ((kw val . in)
2866 (loop #'in (cons* #''val #'kw out))))))
2867
2868 (syntax-case x ()
2869 ((_ (name name* ...) arg ...)
2870 (with-syntax (((quoted-arg ...) (quotify #'(arg ...))))
2871 #'(eval-when (eval load compile expand)
2872 (let ((m (process-define-module
2873 (list '(name name* ...)
2874 #:filename (assq-ref
2875 (or (current-source-location) '())
2876 'filename)
2877 quoted-arg ...))))
2878 (set-current-module m)
2879 m)))))))
2880
2881 ;; The guts of the use-modules macro. Add the interfaces of the named
2882 ;; modules to the use-list of the current module, in order.
2883
2884 ;; This function is called by "modules.c". If you change it, be sure
2885 ;; to change scm_c_use_module as well.
2886
2887 (define (process-use-modules module-interface-args)
2888 (let ((interfaces (map (lambda (mif-args)
2889 (or (apply resolve-interface mif-args)
2890 (error "no such module" mif-args)))
2891 module-interface-args)))
2892 (call-with-deferred-observers
2893 (lambda ()
2894 (module-use-interfaces! (current-module) interfaces)))))
2895
2896 (define-syntax use-modules
2897 (lambda (x)
2898 (define (keyword-like? stx)
2899 (let ((dat (syntax->datum stx)))
2900 (and (symbol? dat)
2901 (eqv? (string-ref (symbol->string dat) 0) #\:))))
2902 (define (->keyword sym)
2903 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2904
2905 (define (quotify-iface args)
2906 (let loop ((in args) (out '()))
2907 (syntax-case in ()
2908 (() (reverse! out))
2909 ;; The user wanted #:foo, but wrote :foo. Fix it.
2910 ((sym . in) (keyword-like? #'sym)
2911 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
2912 ((kw . in) (not (keyword? (syntax->datum #'kw)))
2913 (syntax-violation 'define-module "expected keyword arg" x #'kw))
2914 ((#:renamer renamer . in)
2915 (loop #'in (cons* #'renamer #:renamer out)))
2916 ((kw val . in)
2917 (loop #'in (cons* #''val #'kw out))))))
2918
2919 (define (quotify specs)
2920 (let lp ((in specs) (out '()))
2921 (syntax-case in ()
2922 (() (reverse out))
2923 (((name name* ...) . in)
2924 (and-map symbol? (syntax->datum #'(name name* ...)))
2925 (lp #'in (cons #''((name name* ...)) out)))
2926 ((((name name* ...) arg ...) . in)
2927 (and-map symbol? (syntax->datum #'(name name* ...)))
2928 (with-syntax (((quoted-arg ...) (quotify-iface #'(arg ...))))
2929 (lp #'in (cons #`(list '(name name* ...) quoted-arg ...)
2930 out)))))))
2931
2932 (syntax-case x ()
2933 ((_ spec ...)
2934 (with-syntax (((quoted-args ...) (quotify #'(spec ...))))
2935 #'(eval-when (eval load compile expand)
2936 (process-use-modules (list quoted-args ...))
2937 *unspecified*))))))
2938
2939 (define-syntax use-syntax
2940 (syntax-rules ()
2941 ((_ spec ...)
2942 (begin
2943 (eval-when (eval load compile expand)
2944 (issue-deprecation-warning
2945 "`use-syntax' is deprecated. Please contact guile-devel for more info."))
2946 (use-modules spec ...)))))
2947
2948 (include-from-path "ice-9/r6rs-libraries")
2949
2950 (define-syntax define-private
2951 (syntax-rules ()
2952 ((_ foo bar)
2953 (define foo bar))))
2954
2955 (define-syntax define-public
2956 (syntax-rules ()
2957 ((_ (name . args) . body)
2958 (define-public name (lambda args . body)))
2959 ((_ name val)
2960 (begin
2961 (define name val)
2962 (export name)))))
2963
2964 (define-syntax defmacro-public
2965 (syntax-rules ()
2966 ((_ name args . body)
2967 (begin
2968 (defmacro name args . body)
2969 (export-syntax name)))))
2970
2971 ;; And now for the most important macro.
2972 (define-syntax λ
2973 (syntax-rules ()
2974 ((_ formals body ...)
2975 (lambda formals body ...))))
2976
2977 \f
2978 ;; Export a local variable
2979
2980 ;; This function is called from "modules.c". If you change it, be
2981 ;; sure to update "modules.c" as well.
2982
2983 (define (module-export! m names)
2984 (let ((public-i (module-public-interface m)))
2985 (for-each (lambda (name)
2986 (let* ((internal-name (if (pair? name) (car name) name))
2987 (external-name (if (pair? name) (cdr name) name))
2988 (var (module-ensure-local-variable! m internal-name)))
2989 (module-add! public-i external-name var)))
2990 names)))
2991
2992 (define (module-replace! m names)
2993 (let ((public-i (module-public-interface m)))
2994 (for-each (lambda (name)
2995 (let* ((internal-name (if (pair? name) (car name) name))
2996 (external-name (if (pair? name) (cdr name) name))
2997 (var (module-ensure-local-variable! m internal-name)))
2998 (set-object-property! var 'replace #t)
2999 (module-add! public-i external-name var)))
3000 names)))
3001
3002 ;; Export all local variables from a module
3003 ;;
3004 (define (module-export-all! mod)
3005 (define (fresh-interface!)
3006 (let ((iface (make-module)))
3007 (set-module-name! iface (module-name mod))
3008 (set-module-version! iface (module-version mod))
3009 (set-module-kind! iface 'interface)
3010 (set-module-public-interface! mod iface)
3011 iface))
3012 (let ((iface (or (module-public-interface mod)
3013 (fresh-interface!))))
3014 (set-module-obarray! iface (module-obarray mod))))
3015
3016 ;; Re-export a imported variable
3017 ;;
3018 (define (module-re-export! m names)
3019 (let ((public-i (module-public-interface m)))
3020 (for-each (lambda (name)
3021 (let* ((internal-name (if (pair? name) (car name) name))
3022 (external-name (if (pair? name) (cdr name) name))
3023 (var (module-variable m internal-name)))
3024 (cond ((not var)
3025 (error "Undefined variable:" internal-name))
3026 ((eq? var (module-local-variable m internal-name))
3027 (error "re-exporting local variable:" internal-name))
3028 (else
3029 (module-add! public-i external-name var)))))
3030 names)))
3031
3032 (define-syntax export
3033 (syntax-rules ()
3034 ((_ name ...)
3035 (eval-when (eval load compile expand)
3036 (call-with-deferred-observers
3037 (lambda ()
3038 (module-export! (current-module) '(name ...))))))))
3039
3040 (define-syntax re-export
3041 (syntax-rules ()
3042 ((_ name ...)
3043 (eval-when (eval load compile expand)
3044 (call-with-deferred-observers
3045 (lambda ()
3046 (module-re-export! (current-module) '(name ...))))))))
3047
3048 (define-syntax export!
3049 (syntax-rules ()
3050 ((_ name ...)
3051 (eval-when (eval load compile expand)
3052 (call-with-deferred-observers
3053 (lambda ()
3054 (module-replace! (current-module) '(name ...))))))))
3055
3056 (define-syntax export-syntax
3057 (syntax-rules ()
3058 ((_ name ...)
3059 (export name ...))))
3060
3061 (define-syntax re-export-syntax
3062 (syntax-rules ()
3063 ((_ name ...)
3064 (re-export name ...))))
3065
3066 (define load load-module)
3067
3068 \f
3069
3070 ;;; {Parameters}
3071 ;;;
3072
3073 (define* (make-mutable-parameter init #:optional (converter identity))
3074 (let ((fluid (make-fluid)))
3075 (fluid-set! fluid (converter init))
3076 (case-lambda
3077 (() (fluid-ref fluid))
3078 ((val) (fluid-set! fluid (converter val))))))
3079
3080
3081 \f
3082
3083 ;;; {Handling of duplicate imported bindings}
3084 ;;;
3085
3086 ;; Duplicate handlers take the following arguments:
3087 ;;
3088 ;; module importing module
3089 ;; name conflicting name
3090 ;; int1 old interface where name occurs
3091 ;; val1 value of binding in old interface
3092 ;; int2 new interface where name occurs
3093 ;; val2 value of binding in new interface
3094 ;; var previous resolution or #f
3095 ;; val value of previous resolution
3096 ;;
3097 ;; A duplicate handler can take three alternative actions:
3098 ;;
3099 ;; 1. return #f => leave responsibility to next handler
3100 ;; 2. exit with an error
3101 ;; 3. return a variable resolving the conflict
3102 ;;
3103
3104 (define duplicate-handlers
3105 (let ((m (make-module 7)))
3106
3107 (define (check module name int1 val1 int2 val2 var val)
3108 (scm-error 'misc-error
3109 #f
3110 "~A: `~A' imported from both ~A and ~A"
3111 (list (module-name module)
3112 name
3113 (module-name int1)
3114 (module-name int2))
3115 #f))
3116
3117 (define (warn module name int1 val1 int2 val2 var val)
3118 (format (current-error-port)
3119 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3120 (module-name module)
3121 name
3122 (module-name int1)
3123 (module-name int2))
3124 #f)
3125
3126 (define (replace module name int1 val1 int2 val2 var val)
3127 (let ((old (or (and var (object-property var 'replace) var)
3128 (module-variable int1 name)))
3129 (new (module-variable int2 name)))
3130 (if (object-property old 'replace)
3131 (and (or (eq? old new)
3132 (not (object-property new 'replace)))
3133 old)
3134 (and (object-property new 'replace)
3135 new))))
3136
3137 (define (warn-override-core module name int1 val1 int2 val2 var val)
3138 (and (eq? int1 the-scm-module)
3139 (begin
3140 (format (current-error-port)
3141 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3142 (module-name module)
3143 (module-name int2)
3144 name)
3145 (module-local-variable int2 name))))
3146
3147 (define (first module name int1 val1 int2 val2 var val)
3148 (or var (module-local-variable int1 name)))
3149
3150 (define (last module name int1 val1 int2 val2 var val)
3151 (module-local-variable int2 name))
3152
3153 (define (noop module name int1 val1 int2 val2 var val)
3154 #f)
3155
3156 (set-module-name! m 'duplicate-handlers)
3157 (set-module-kind! m 'interface)
3158 (module-define! m 'check check)
3159 (module-define! m 'warn warn)
3160 (module-define! m 'replace replace)
3161 (module-define! m 'warn-override-core warn-override-core)
3162 (module-define! m 'first first)
3163 (module-define! m 'last last)
3164 (module-define! m 'merge-generics noop)
3165 (module-define! m 'merge-accessors noop)
3166 m))
3167
3168 (define (lookup-duplicates-handlers handler-names)
3169 (and handler-names
3170 (map (lambda (handler-name)
3171 (or (module-symbol-local-binding
3172 duplicate-handlers handler-name #f)
3173 (error "invalid duplicate handler name:"
3174 handler-name)))
3175 (if (list? handler-names)
3176 handler-names
3177 (list handler-names)))))
3178
3179 (define default-duplicate-binding-procedures
3180 (make-mutable-parameter #f))
3181
3182 (define default-duplicate-binding-handler
3183 (make-mutable-parameter '(replace warn-override-core warn last)
3184 (lambda (handler-names)
3185 (default-duplicate-binding-procedures
3186 (lookup-duplicates-handlers handler-names))
3187 handler-names)))
3188
3189 \f
3190
3191 ;;; {`cond-expand' for SRFI-0 support.}
3192 ;;;
3193 ;;; This syntactic form expands into different commands or
3194 ;;; definitions, depending on the features provided by the Scheme
3195 ;;; implementation.
3196 ;;;
3197 ;;; Syntax:
3198 ;;;
3199 ;;; <cond-expand>
3200 ;;; --> (cond-expand <cond-expand-clause>+)
3201 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3202 ;;; <cond-expand-clause>
3203 ;;; --> (<feature-requirement> <command-or-definition>*)
3204 ;;; <feature-requirement>
3205 ;;; --> <feature-identifier>
3206 ;;; | (and <feature-requirement>*)
3207 ;;; | (or <feature-requirement>*)
3208 ;;; | (not <feature-requirement>)
3209 ;;; <feature-identifier>
3210 ;;; --> <a symbol which is the name or alias of a SRFI>
3211 ;;;
3212 ;;; Additionally, this implementation provides the
3213 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3214 ;;; determine the implementation type and the supported standard.
3215 ;;;
3216 ;;; Currently, the following feature identifiers are supported:
3217 ;;;
3218 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3219 ;;;
3220 ;;; Remember to update the features list when adding more SRFIs.
3221 ;;;
3222
3223 (define %cond-expand-features
3224 ;; Adjust the above comment when changing this.
3225 '(guile
3226 guile-2
3227 r5rs
3228 srfi-0 ;; cond-expand itself
3229 srfi-4 ;; homogenous numeric vectors
3230 srfi-6 ;; open-input-string etc, in the guile core
3231 srfi-13 ;; string library
3232 srfi-14 ;; character sets
3233 srfi-55 ;; require-extension
3234 srfi-61 ;; general cond clause
3235 ))
3236
3237 ;; This table maps module public interfaces to the list of features.
3238 ;;
3239 (define %cond-expand-table (make-hash-table 31))
3240
3241 ;; Add one or more features to the `cond-expand' feature list of the
3242 ;; module `module'.
3243 ;;
3244 (define (cond-expand-provide module features)
3245 (let ((mod (module-public-interface module)))
3246 (and mod
3247 (hashq-set! %cond-expand-table mod
3248 (append (hashq-ref %cond-expand-table mod '())
3249 features)))))
3250
3251 (define-syntax cond-expand
3252 (lambda (x)
3253 (define (module-has-feature? mod sym)
3254 (or-map (lambda (mod)
3255 (memq sym (hashq-ref %cond-expand-table mod '())))
3256 (module-uses mod)))
3257
3258 (define (condition-matches? condition)
3259 (syntax-case condition (and or not)
3260 ((and c ...)
3261 (and-map condition-matches? #'(c ...)))
3262 ((or c ...)
3263 (or-map condition-matches? #'(c ...)))
3264 ((not c)
3265 (if (condition-matches? #'c) #f #t))
3266 (c
3267 (identifier? #'c)
3268 (let ((sym (syntax->datum #'c)))
3269 (if (memq sym %cond-expand-features)
3270 #t
3271 (module-has-feature? (current-module) sym))))))
3272
3273 (define (match clauses alternate)
3274 (syntax-case clauses ()
3275 (((condition form ...) . rest)
3276 (if (condition-matches? #'condition)
3277 #'(begin form ...)
3278 (match #'rest alternate)))
3279 (() (alternate))))
3280
3281 (syntax-case x (else)
3282 ((_ clause ... (else form ...))
3283 (match #'(clause ...)
3284 (lambda ()
3285 #'(begin form ...))))
3286 ((_ clause ...)
3287 (match #'(clause ...)
3288 (lambda ()
3289 (syntax-violation 'cond-expand "unfulfilled cond-expand" x)))))))
3290
3291 ;; This procedure gets called from the startup code with a list of
3292 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3293 ;;
3294 (define (use-srfis srfis)
3295 (process-use-modules
3296 (map (lambda (num)
3297 (list (list 'srfi (string->symbol
3298 (string-append "srfi-" (number->string num))))))
3299 srfis)))
3300
3301 \f
3302
3303 ;;; srfi-55: require-extension
3304 ;;;
3305
3306 (define-syntax require-extension
3307 (lambda (x)
3308 (syntax-case x (srfi)
3309 ((_ (srfi n ...))
3310 (and-map integer? (syntax->datum #'(n ...)))
3311 (with-syntax
3312 (((srfi-n ...)
3313 (map (lambda (n)
3314 (datum->syntax x (symbol-append 'srfi- n)))
3315 (map string->symbol
3316 (map number->string (syntax->datum #'(n ...)))))))
3317 #'(use-modules (srfi srfi-n) ...)))
3318 ((_ (type arg ...))
3319 (identifier? #'type)
3320 (syntax-violation 'require-extension "Not a recognized extension type"
3321 x)))))
3322
3323 \f
3324
3325 (define using-readline?
3326 (let ((using-readline? (make-fluid)))
3327 (make-procedure-with-setter
3328 (lambda () (fluid-ref using-readline?))
3329 (lambda (v) (fluid-set! using-readline? v)))))
3330
3331 \f
3332
3333 ;;; {Deprecated stuff}
3334 ;;;
3335
3336 (begin-deprecated
3337 (module-use! the-scm-module (resolve-interface '(ice-9 deprecated))))
3338
3339 \f
3340
3341 ;;; Place the user in the guile-user module.
3342 ;;;
3343
3344 ;; FIXME:
3345 (module-use! the-scm-module (resolve-interface '(srfi srfi-4)))
3346
3347 (define-module (guile-user)
3348 #:autoload (system base compile) (compile))
3349
3350 ;; Remain in the `(guile)' module at compilation-time so that the
3351 ;; `-Wunused-toplevel' warning works as expected.
3352 (eval-when (compile) (set-current-module the-root-module))
3353
3354 ;;; boot-9.scm ends here