Add 'round-ash', a rounding arithmetic shift operator
[bpt/guile.git] / doc / ref / api-data.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007,
4 @c 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @node Simple Data Types
8 @section Simple Generic Data Types
9
10 This chapter describes those of Guile's simple data types which are
11 primarily used for their role as items of generic data. By
12 @dfn{simple} we mean data types that are not primarily used as
13 containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
14 For the documentation of such @dfn{compound} data types, see
15 @ref{Compound Data Types}.
16
17 @c One of the great strengths of Scheme is that there is no straightforward
18 @c distinction between ``data'' and ``functionality''. For example,
19 @c Guile's support for dynamic linking could be described:
20
21 @c @itemize @bullet
22 @c @item
23 @c either in a ``data-centric'' way, as the behaviour and properties of the
24 @c ``dynamically linked object'' data type, and the operations that may be
25 @c applied to instances of this type
26
27 @c @item
28 @c or in a ``functionality-centric'' way, as the set of procedures that
29 @c constitute Guile's support for dynamic linking, in the context of the
30 @c module system.
31 @c @end itemize
32
33 @c The contents of this chapter are, therefore, a matter of judgment. By
34 @c @dfn{generic}, we mean to select those data types whose typical use as
35 @c @emph{data} in a wide variety of programming contexts is more important
36 @c than their use in the implementation of a particular piece of
37 @c @emph{functionality}. The last section of this chapter provides
38 @c references for all the data types that are documented not here but in a
39 @c ``functionality-centric'' way elsewhere in the manual.
40
41 @menu
42 * Booleans:: True/false values.
43 * Numbers:: Numerical data types.
44 * Characters:: Single characters.
45 * Character Sets:: Sets of characters.
46 * Strings:: Sequences of characters.
47 * Bytevectors:: Sequences of bytes.
48 * Symbols:: Symbols.
49 * Keywords:: Self-quoting, customizable display keywords.
50 * Other Types:: "Functionality-centric" data types.
51 @end menu
52
53
54 @node Booleans
55 @subsection Booleans
56 @tpindex Booleans
57
58 The two boolean values are @code{#t} for true and @code{#f} for false.
59
60 Boolean values are returned by predicate procedures, such as the general
61 equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
62 (@pxref{Equality}) and numerical and string comparison operators like
63 @code{string=?} (@pxref{String Comparison}) and @code{<=}
64 (@pxref{Comparison}).
65
66 @lisp
67 (<= 3 8)
68 @result{} #t
69
70 (<= 3 -3)
71 @result{} #f
72
73 (equal? "house" "houses")
74 @result{} #f
75
76 (eq? #f #f)
77 @result{}
78 #t
79 @end lisp
80
81 In test condition contexts like @code{if} and @code{cond}
82 (@pxref{Conditionals}), where a group of subexpressions will be
83 evaluated only if a @var{condition} expression evaluates to ``true'',
84 ``true'' means any value at all except @code{#f}.
85
86 @lisp
87 (if #t "yes" "no")
88 @result{} "yes"
89
90 (if 0 "yes" "no")
91 @result{} "yes"
92
93 (if #f "yes" "no")
94 @result{} "no"
95 @end lisp
96
97 A result of this asymmetry is that typical Scheme source code more often
98 uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
99 represent an @code{if} or @code{cond} false value, whereas @code{#t} is
100 not necessary to represent an @code{if} or @code{cond} true value.
101
102 It is important to note that @code{#f} is @strong{not} equivalent to any
103 other Scheme value. In particular, @code{#f} is not the same as the
104 number 0 (like in C and C++), and not the same as the ``empty list''
105 (like in some Lisp dialects).
106
107 In C, the two Scheme boolean values are available as the two constants
108 @code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
109 Care must be taken with the false value @code{SCM_BOOL_F}: it is not
110 false when used in C conditionals. In order to test for it, use
111 @code{scm_is_false} or @code{scm_is_true}.
112
113 @rnindex not
114 @deffn {Scheme Procedure} not x
115 @deffnx {C Function} scm_not (x)
116 Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
117 @end deffn
118
119 @rnindex boolean?
120 @deffn {Scheme Procedure} boolean? obj
121 @deffnx {C Function} scm_boolean_p (obj)
122 Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
123 return @code{#f}.
124 @end deffn
125
126 @deftypevr {C Macro} SCM SCM_BOOL_T
127 The @code{SCM} representation of the Scheme object @code{#t}.
128 @end deftypevr
129
130 @deftypevr {C Macro} SCM SCM_BOOL_F
131 The @code{SCM} representation of the Scheme object @code{#f}.
132 @end deftypevr
133
134 @deftypefn {C Function} int scm_is_true (SCM obj)
135 Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
136 @end deftypefn
137
138 @deftypefn {C Function} int scm_is_false (SCM obj)
139 Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
140 @end deftypefn
141
142 @deftypefn {C Function} int scm_is_bool (SCM obj)
143 Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
144 return @code{0}.
145 @end deftypefn
146
147 @deftypefn {C Function} SCM scm_from_bool (int val)
148 Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
149 @end deftypefn
150
151 @deftypefn {C Function} int scm_to_bool (SCM val)
152 Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
153 when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
154
155 You should probably use @code{scm_is_true} instead of this function
156 when you just want to test a @code{SCM} value for trueness.
157 @end deftypefn
158
159 @node Numbers
160 @subsection Numerical data types
161 @tpindex Numbers
162
163 Guile supports a rich ``tower'' of numerical types --- integer,
164 rational, real and complex --- and provides an extensive set of
165 mathematical and scientific functions for operating on numerical
166 data. This section of the manual documents those types and functions.
167
168 You may also find it illuminating to read R5RS's presentation of numbers
169 in Scheme, which is particularly clear and accessible: see
170 @ref{Numbers,,,r5rs,R5RS}.
171
172 @menu
173 * Numerical Tower:: Scheme's numerical "tower".
174 * Integers:: Whole numbers.
175 * Reals and Rationals:: Real and rational numbers.
176 * Complex Numbers:: Complex numbers.
177 * Exactness:: Exactness and inexactness.
178 * Number Syntax:: Read syntax for numerical data.
179 * Integer Operations:: Operations on integer values.
180 * Comparison:: Comparison predicates.
181 * Conversion:: Converting numbers to and from strings.
182 * Complex:: Complex number operations.
183 * Arithmetic:: Arithmetic functions.
184 * Scientific:: Scientific functions.
185 * Bitwise Operations:: Logical AND, OR, NOT, and so on.
186 * Random:: Random number generation.
187 @end menu
188
189
190 @node Numerical Tower
191 @subsubsection Scheme's Numerical ``Tower''
192 @rnindex number?
193
194 Scheme's numerical ``tower'' consists of the following categories of
195 numbers:
196
197 @table @dfn
198 @item integers
199 Whole numbers, positive or negative; e.g.@: --5, 0, 18.
200
201 @item rationals
202 The set of numbers that can be expressed as @math{@var{p}/@var{q}}
203 where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
204 pi (an irrational number) doesn't. These include integers
205 (@math{@var{n}/1}).
206
207 @item real numbers
208 The set of numbers that describes all possible positions along a
209 one-dimensional line. This includes rationals as well as irrational
210 numbers.
211
212 @item complex numbers
213 The set of numbers that describes all possible positions in a two
214 dimensional space. This includes real as well as imaginary numbers
215 (@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
216 @var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
217 @minus{}1.)
218 @end table
219
220 It is called a tower because each category ``sits on'' the one that
221 follows it, in the sense that every integer is also a rational, every
222 rational is also real, and every real number is also a complex number
223 (but with zero imaginary part).
224
225 In addition to the classification into integers, rationals, reals and
226 complex numbers, Scheme also distinguishes between whether a number is
227 represented exactly or not. For example, the result of
228 @m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
229 can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
230 Instead, it stores an inexact approximation, using the C type
231 @code{double}.
232
233 Guile can represent exact rationals of any magnitude, inexact
234 rationals that fit into a C @code{double}, and inexact complex numbers
235 with @code{double} real and imaginary parts.
236
237 The @code{number?} predicate may be applied to any Scheme value to
238 discover whether the value is any of the supported numerical types.
239
240 @deffn {Scheme Procedure} number? obj
241 @deffnx {C Function} scm_number_p (obj)
242 Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
243 @end deffn
244
245 For example:
246
247 @lisp
248 (number? 3)
249 @result{} #t
250
251 (number? "hello there!")
252 @result{} #f
253
254 (define pi 3.141592654)
255 (number? pi)
256 @result{} #t
257 @end lisp
258
259 @deftypefn {C Function} int scm_is_number (SCM obj)
260 This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
261 @end deftypefn
262
263 The next few subsections document each of Guile's numerical data types
264 in detail.
265
266 @node Integers
267 @subsubsection Integers
268
269 @tpindex Integer numbers
270
271 @rnindex integer?
272
273 Integers are whole numbers, that is numbers with no fractional part,
274 such as 2, 83, and @minus{}3789.
275
276 Integers in Guile can be arbitrarily big, as shown by the following
277 example.
278
279 @lisp
280 (define (factorial n)
281 (let loop ((n n) (product 1))
282 (if (= n 0)
283 product
284 (loop (- n 1) (* product n)))))
285
286 (factorial 3)
287 @result{} 6
288
289 (factorial 20)
290 @result{} 2432902008176640000
291
292 (- (factorial 45))
293 @result{} -119622220865480194561963161495657715064383733760000000000
294 @end lisp
295
296 Readers whose background is in programming languages where integers are
297 limited by the need to fit into just 4 or 8 bytes of memory may find
298 this surprising, or suspect that Guile's representation of integers is
299 inefficient. In fact, Guile achieves a near optimal balance of
300 convenience and efficiency by using the host computer's native
301 representation of integers where possible, and a more general
302 representation where the required number does not fit in the native
303 form. Conversion between these two representations is automatic and
304 completely invisible to the Scheme level programmer.
305
306 C has a host of different integer types, and Guile offers a host of
307 functions to convert between them and the @code{SCM} representation.
308 For example, a C @code{int} can be handled with @code{scm_to_int} and
309 @code{scm_from_int}. Guile also defines a few C integer types of its
310 own, to help with differences between systems.
311
312 C integer types that are not covered can be handled with the generic
313 @code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
314 signed types, or with @code{scm_to_unsigned_integer} and
315 @code{scm_from_unsigned_integer} for unsigned types.
316
317 Scheme integers can be exact and inexact. For example, a number
318 written as @code{3.0} with an explicit decimal-point is inexact, but
319 it is also an integer. The functions @code{integer?} and
320 @code{scm_is_integer} report true for such a number, but the functions
321 @code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
322 allow exact integers and thus report false. Likewise, the conversion
323 functions like @code{scm_to_signed_integer} only accept exact
324 integers.
325
326 The motivation for this behavior is that the inexactness of a number
327 should not be lost silently. If you want to allow inexact integers,
328 you can explicitly insert a call to @code{inexact->exact} or to its C
329 equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
330 be converted by this call into exact integers; inexact non-integers
331 will become exact fractions.)
332
333 @deffn {Scheme Procedure} integer? x
334 @deffnx {C Function} scm_integer_p (x)
335 Return @code{#t} if @var{x} is an exact or inexact integer number, else
336 @code{#f}.
337
338 @lisp
339 (integer? 487)
340 @result{} #t
341
342 (integer? 3.0)
343 @result{} #t
344
345 (integer? -3.4)
346 @result{} #f
347
348 (integer? +inf.0)
349 @result{} #t
350 @end lisp
351 @end deffn
352
353 @deftypefn {C Function} int scm_is_integer (SCM x)
354 This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
355 @end deftypefn
356
357 @defvr {C Type} scm_t_int8
358 @defvrx {C Type} scm_t_uint8
359 @defvrx {C Type} scm_t_int16
360 @defvrx {C Type} scm_t_uint16
361 @defvrx {C Type} scm_t_int32
362 @defvrx {C Type} scm_t_uint32
363 @defvrx {C Type} scm_t_int64
364 @defvrx {C Type} scm_t_uint64
365 @defvrx {C Type} scm_t_intmax
366 @defvrx {C Type} scm_t_uintmax
367 The C types are equivalent to the corresponding ISO C types but are
368 defined on all platforms, with the exception of @code{scm_t_int64} and
369 @code{scm_t_uint64}, which are only defined when a 64-bit type is
370 available. For example, @code{scm_t_int8} is equivalent to
371 @code{int8_t}.
372
373 You can regard these definitions as a stop-gap measure until all
374 platforms provide these types. If you know that all the platforms
375 that you are interested in already provide these types, it is better
376 to use them directly instead of the types provided by Guile.
377 @end defvr
378
379 @deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
380 @deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
381 Return @code{1} when @var{x} represents an exact integer that is
382 between @var{min} and @var{max}, inclusive.
383
384 These functions can be used to check whether a @code{SCM} value will
385 fit into a given range, such as the range of a given C integer type.
386 If you just want to convert a @code{SCM} value to a given C integer
387 type, use one of the conversion functions directly.
388 @end deftypefn
389
390 @deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
391 @deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
392 When @var{x} represents an exact integer that is between @var{min} and
393 @var{max} inclusive, return that integer. Else signal an error,
394 either a `wrong-type' error when @var{x} is not an exact integer, or
395 an `out-of-range' error when it doesn't fit the given range.
396 @end deftypefn
397
398 @deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
399 @deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
400 Return the @code{SCM} value that represents the integer @var{x}. This
401 function will always succeed and will always return an exact number.
402 @end deftypefn
403
404 @deftypefn {C Function} char scm_to_char (SCM x)
405 @deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
406 @deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
407 @deftypefnx {C Function} short scm_to_short (SCM x)
408 @deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
409 @deftypefnx {C Function} int scm_to_int (SCM x)
410 @deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
411 @deftypefnx {C Function} long scm_to_long (SCM x)
412 @deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
413 @deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
414 @deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
415 @deftypefnx {C Function} size_t scm_to_size_t (SCM x)
416 @deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
417 @deftypefnx {C Function} scm_t_ptrdiff scm_to_ptrdiff_t (SCM x)
418 @deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
419 @deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
420 @deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
421 @deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
422 @deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
423 @deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
424 @deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
425 @deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
426 @deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
427 @deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
428 When @var{x} represents an exact integer that fits into the indicated
429 C type, return that integer. Else signal an error, either a
430 `wrong-type' error when @var{x} is not an exact integer, or an
431 `out-of-range' error when it doesn't fit the given range.
432
433 The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
434 @code{scm_to_int64}, and @code{scm_to_uint64} are only available when
435 the corresponding types are.
436 @end deftypefn
437
438 @deftypefn {C Function} SCM scm_from_char (char x)
439 @deftypefnx {C Function} SCM scm_from_schar (signed char x)
440 @deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
441 @deftypefnx {C Function} SCM scm_from_short (short x)
442 @deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
443 @deftypefnx {C Function} SCM scm_from_int (int x)
444 @deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
445 @deftypefnx {C Function} SCM scm_from_long (long x)
446 @deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
447 @deftypefnx {C Function} SCM scm_from_long_long (long long x)
448 @deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
449 @deftypefnx {C Function} SCM scm_from_size_t (size_t x)
450 @deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
451 @deftypefnx {C Function} SCM scm_from_ptrdiff_t (scm_t_ptrdiff x)
452 @deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
453 @deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
454 @deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
455 @deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
456 @deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
457 @deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
458 @deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
459 @deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
460 @deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
461 @deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
462 Return the @code{SCM} value that represents the integer @var{x}.
463 These functions will always succeed and will always return an exact
464 number.
465 @end deftypefn
466
467 @deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
468 Assign @var{val} to the multiple precision integer @var{rop}.
469 @var{val} must be an exact integer, otherwise an error will be
470 signalled. @var{rop} must have been initialized with @code{mpz_init}
471 before this function is called. When @var{rop} is no longer needed
472 the occupied space must be freed with @code{mpz_clear}.
473 @xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
474 @end deftypefn
475
476 @deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
477 Return the @code{SCM} value that represents @var{val}.
478 @end deftypefn
479
480 @node Reals and Rationals
481 @subsubsection Real and Rational Numbers
482 @tpindex Real numbers
483 @tpindex Rational numbers
484
485 @rnindex real?
486 @rnindex rational?
487
488 Mathematically, the real numbers are the set of numbers that describe
489 all possible points along a continuous, infinite, one-dimensional line.
490 The rational numbers are the set of all numbers that can be written as
491 fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
492 All rational numbers are also real, but there are real numbers that
493 are not rational, for example @m{\sqrt{2}, the square root of 2}, and
494 @m{\pi,pi}.
495
496 Guile can represent both exact and inexact rational numbers, but it
497 cannot represent precise finite irrational numbers. Exact rationals are
498 represented by storing the numerator and denominator as two exact
499 integers. Inexact rationals are stored as floating point numbers using
500 the C type @code{double}.
501
502 Exact rationals are written as a fraction of integers. There must be
503 no whitespace around the slash:
504
505 @lisp
506 1/2
507 -22/7
508 @end lisp
509
510 Even though the actual encoding of inexact rationals is in binary, it
511 may be helpful to think of it as a decimal number with a limited
512 number of significant figures and a decimal point somewhere, since
513 this corresponds to the standard notation for non-whole numbers. For
514 example:
515
516 @lisp
517 0.34
518 -0.00000142857931198
519 -5648394822220000000000.0
520 4.0
521 @end lisp
522
523 The limited precision of Guile's encoding means that any finite ``real''
524 number in Guile can be written in a rational form, by multiplying and
525 then dividing by sufficient powers of 10 (or in fact, 2). For example,
526 @samp{-0.00000142857931198} is the same as @minus{}142857931198 divided
527 by 100000000000000000. In Guile's current incarnation, therefore, the
528 @code{rational?} and @code{real?} predicates are equivalent for finite
529 numbers.
530
531
532 Dividing by an exact zero leads to a error message, as one might expect.
533 However, dividing by an inexact zero does not produce an error.
534 Instead, the result of the division is either plus or minus infinity,
535 depending on the sign of the divided number and the sign of the zero
536 divisor (some platforms support signed zeroes @samp{-0.0} and
537 @samp{+0.0}; @samp{0.0} is the same as @samp{+0.0}).
538
539 Dividing zero by an inexact zero yields a @acronym{NaN} (`not a number')
540 value, although they are actually considered numbers by Scheme.
541 Attempts to compare a @acronym{NaN} value with any number (including
542 itself) using @code{=}, @code{<}, @code{>}, @code{<=} or @code{>=}
543 always returns @code{#f}. Although a @acronym{NaN} value is not
544 @code{=} to itself, it is both @code{eqv?} and @code{equal?} to itself
545 and other @acronym{NaN} values. However, the preferred way to test for
546 them is by using @code{nan?}.
547
548 The real @acronym{NaN} values and infinities are written @samp{+nan.0},
549 @samp{+inf.0} and @samp{-inf.0}. This syntax is also recognized by
550 @code{read} as an extension to the usual Scheme syntax. These special
551 values are considered by Scheme to be inexact real numbers but not
552 rational. Note that non-real complex numbers may also contain
553 infinities or @acronym{NaN} values in their real or imaginary parts. To
554 test a real number to see if it is infinite, a @acronym{NaN} value, or
555 neither, use @code{inf?}, @code{nan?}, or @code{finite?}, respectively.
556 Every real number in Scheme belongs to precisely one of those three
557 classes.
558
559 On platforms that follow @acronym{IEEE} 754 for their floating point
560 arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
561 are implemented using the corresponding @acronym{IEEE} 754 values.
562 They behave in arithmetic operations like @acronym{IEEE} 754 describes
563 it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
564
565 @deffn {Scheme Procedure} real? obj
566 @deffnx {C Function} scm_real_p (obj)
567 Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
568 that the sets of integer and rational values form subsets of the set
569 of real numbers, so the predicate will also be fulfilled if @var{obj}
570 is an integer number or a rational number.
571 @end deffn
572
573 @deffn {Scheme Procedure} rational? x
574 @deffnx {C Function} scm_rational_p (x)
575 Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
576 Note that the set of integer values forms a subset of the set of
577 rational numbers, i.e.@: the predicate will also be fulfilled if
578 @var{x} is an integer number.
579 @end deffn
580
581 @deffn {Scheme Procedure} rationalize x eps
582 @deffnx {C Function} scm_rationalize (x, eps)
583 Returns the @emph{simplest} rational number differing
584 from @var{x} by no more than @var{eps}.
585
586 As required by @acronym{R5RS}, @code{rationalize} only returns an
587 exact result when both its arguments are exact. Thus, you might need
588 to use @code{inexact->exact} on the arguments.
589
590 @lisp
591 (rationalize (inexact->exact 1.2) 1/100)
592 @result{} 6/5
593 @end lisp
594
595 @end deffn
596
597 @deffn {Scheme Procedure} inf? x
598 @deffnx {C Function} scm_inf_p (x)
599 Return @code{#t} if the real number @var{x} is @samp{+inf.0} or
600 @samp{-inf.0}. Otherwise return @code{#f}.
601 @end deffn
602
603 @deffn {Scheme Procedure} nan? x
604 @deffnx {C Function} scm_nan_p (x)
605 Return @code{#t} if the real number @var{x} is @samp{+nan.0}, or
606 @code{#f} otherwise.
607 @end deffn
608
609 @deffn {Scheme Procedure} finite? x
610 @deffnx {C Function} scm_finite_p (x)
611 Return @code{#t} if the real number @var{x} is neither infinite nor a
612 NaN, @code{#f} otherwise.
613 @end deffn
614
615 @deffn {Scheme Procedure} nan
616 @deffnx {C Function} scm_nan ()
617 Return @samp{+nan.0}, a @acronym{NaN} value.
618 @end deffn
619
620 @deffn {Scheme Procedure} inf
621 @deffnx {C Function} scm_inf ()
622 Return @samp{+inf.0}, positive infinity.
623 @end deffn
624
625 @deffn {Scheme Procedure} numerator x
626 @deffnx {C Function} scm_numerator (x)
627 Return the numerator of the rational number @var{x}.
628 @end deffn
629
630 @deffn {Scheme Procedure} denominator x
631 @deffnx {C Function} scm_denominator (x)
632 Return the denominator of the rational number @var{x}.
633 @end deffn
634
635 @deftypefn {C Function} int scm_is_real (SCM val)
636 @deftypefnx {C Function} int scm_is_rational (SCM val)
637 Equivalent to @code{scm_is_true (scm_real_p (val))} and
638 @code{scm_is_true (scm_rational_p (val))}, respectively.
639 @end deftypefn
640
641 @deftypefn {C Function} double scm_to_double (SCM val)
642 Returns the number closest to @var{val} that is representable as a
643 @code{double}. Returns infinity for a @var{val} that is too large in
644 magnitude. The argument @var{val} must be a real number.
645 @end deftypefn
646
647 @deftypefn {C Function} SCM scm_from_double (double val)
648 Return the @code{SCM} value that represents @var{val}. The returned
649 value is inexact according to the predicate @code{inexact?}, but it
650 will be exactly equal to @var{val}.
651 @end deftypefn
652
653 @node Complex Numbers
654 @subsubsection Complex Numbers
655 @tpindex Complex numbers
656
657 @rnindex complex?
658
659 Complex numbers are the set of numbers that describe all possible points
660 in a two-dimensional space. The two coordinates of a particular point
661 in this space are known as the @dfn{real} and @dfn{imaginary} parts of
662 the complex number that describes that point.
663
664 In Guile, complex numbers are written in rectangular form as the sum of
665 their real and imaginary parts, using the symbol @code{i} to indicate
666 the imaginary part.
667
668 @lisp
669 3+4i
670 @result{}
671 3.0+4.0i
672
673 (* 3-8i 2.3+0.3i)
674 @result{}
675 9.3-17.5i
676 @end lisp
677
678 @cindex polar form
679 @noindent
680 Polar form can also be used, with an @samp{@@} between magnitude and
681 angle,
682
683 @lisp
684 1@@3.141592 @result{} -1.0 (approx)
685 -1@@1.57079 @result{} 0.0-1.0i (approx)
686 @end lisp
687
688 Guile represents a complex number as a pair of inexact reals, so the
689 real and imaginary parts of a complex number have the same properties of
690 inexactness and limited precision as single inexact real numbers.
691
692 Note that each part of a complex number may contain any inexact real
693 value, including the special values @samp{+nan.0}, @samp{+inf.0} and
694 @samp{-inf.0}, as well as either of the signed zeroes @samp{0.0} or
695 @samp{-0.0}.
696
697
698 @deffn {Scheme Procedure} complex? z
699 @deffnx {C Function} scm_complex_p (z)
700 Return @code{#t} if @var{z} is a complex number, @code{#f}
701 otherwise. Note that the sets of real, rational and integer
702 values form subsets of the set of complex numbers, i.e.@: the
703 predicate will also be fulfilled if @var{z} is a real,
704 rational or integer number.
705 @end deffn
706
707 @deftypefn {C Function} int scm_is_complex (SCM val)
708 Equivalent to @code{scm_is_true (scm_complex_p (val))}.
709 @end deftypefn
710
711 @node Exactness
712 @subsubsection Exact and Inexact Numbers
713 @tpindex Exact numbers
714 @tpindex Inexact numbers
715
716 @rnindex exact?
717 @rnindex inexact?
718 @rnindex exact->inexact
719 @rnindex inexact->exact
720
721 R5RS requires that, with few exceptions, a calculation involving inexact
722 numbers always produces an inexact result. To meet this requirement,
723 Guile distinguishes between an exact integer value such as @samp{5} and
724 the corresponding inexact integer value which, to the limited precision
725 available, has no fractional part, and is printed as @samp{5.0}. Guile
726 will only convert the latter value to the former when forced to do so by
727 an invocation of the @code{inexact->exact} procedure.
728
729 The only exception to the above requirement is when the values of the
730 inexact numbers do not affect the result. For example @code{(expt n 0)}
731 is @samp{1} for any value of @code{n}, therefore @code{(expt 5.0 0)} is
732 permitted to return an exact @samp{1}.
733
734 @deffn {Scheme Procedure} exact? z
735 @deffnx {C Function} scm_exact_p (z)
736 Return @code{#t} if the number @var{z} is exact, @code{#f}
737 otherwise.
738
739 @lisp
740 (exact? 2)
741 @result{} #t
742
743 (exact? 0.5)
744 @result{} #f
745
746 (exact? (/ 2))
747 @result{} #t
748 @end lisp
749
750 @end deffn
751
752 @deftypefn {C Function} int scm_is_exact (SCM z)
753 Return a @code{1} if the number @var{z} is exact, and @code{0}
754 otherwise. This is equivalent to @code{scm_is_true (scm_exact_p (z))}.
755
756 An alternate approch to testing the exactness of a number is to
757 use @code{scm_is_signed_integer} or @code{scm_is_unsigned_integer}.
758 @end deftypefn
759
760 @deffn {Scheme Procedure} inexact? z
761 @deffnx {C Function} scm_inexact_p (z)
762 Return @code{#t} if the number @var{z} is inexact, @code{#f}
763 else.
764 @end deffn
765
766 @deftypefn {C Function} int scm_is_inexact (SCM z)
767 Return a @code{1} if the number @var{z} is inexact, and @code{0}
768 otherwise. This is equivalent to @code{scm_is_true (scm_inexact_p (z))}.
769 @end deftypefn
770
771 @deffn {Scheme Procedure} inexact->exact z
772 @deffnx {C Function} scm_inexact_to_exact (z)
773 Return an exact number that is numerically closest to @var{z}, when
774 there is one. For inexact rationals, Guile returns the exact rational
775 that is numerically equal to the inexact rational. Inexact complex
776 numbers with a non-zero imaginary part can not be made exact.
777
778 @lisp
779 (inexact->exact 0.5)
780 @result{} 1/2
781 @end lisp
782
783 The following happens because 12/10 is not exactly representable as a
784 @code{double} (on most platforms). However, when reading a decimal
785 number that has been marked exact with the ``#e'' prefix, Guile is
786 able to represent it correctly.
787
788 @lisp
789 (inexact->exact 1.2)
790 @result{} 5404319552844595/4503599627370496
791
792 #e1.2
793 @result{} 6/5
794 @end lisp
795
796 @end deffn
797
798 @c begin (texi-doc-string "guile" "exact->inexact")
799 @deffn {Scheme Procedure} exact->inexact z
800 @deffnx {C Function} scm_exact_to_inexact (z)
801 Convert the number @var{z} to its inexact representation.
802 @end deffn
803
804
805 @node Number Syntax
806 @subsubsection Read Syntax for Numerical Data
807
808 The read syntax for integers is a string of digits, optionally
809 preceded by a minus or plus character, a code indicating the
810 base in which the integer is encoded, and a code indicating whether
811 the number is exact or inexact. The supported base codes are:
812
813 @table @code
814 @item #b
815 @itemx #B
816 the integer is written in binary (base 2)
817
818 @item #o
819 @itemx #O
820 the integer is written in octal (base 8)
821
822 @item #d
823 @itemx #D
824 the integer is written in decimal (base 10)
825
826 @item #x
827 @itemx #X
828 the integer is written in hexadecimal (base 16)
829 @end table
830
831 If the base code is omitted, the integer is assumed to be decimal. The
832 following examples show how these base codes are used.
833
834 @lisp
835 -13
836 @result{} -13
837
838 #d-13
839 @result{} -13
840
841 #x-13
842 @result{} -19
843
844 #b+1101
845 @result{} 13
846
847 #o377
848 @result{} 255
849 @end lisp
850
851 The codes for indicating exactness (which can, incidentally, be applied
852 to all numerical values) are:
853
854 @table @code
855 @item #e
856 @itemx #E
857 the number is exact
858
859 @item #i
860 @itemx #I
861 the number is inexact.
862 @end table
863
864 If the exactness indicator is omitted, the number is exact unless it
865 contains a radix point. Since Guile can not represent exact complex
866 numbers, an error is signalled when asking for them.
867
868 @lisp
869 (exact? 1.2)
870 @result{} #f
871
872 (exact? #e1.2)
873 @result{} #t
874
875 (exact? #e+1i)
876 ERROR: Wrong type argument
877 @end lisp
878
879 Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
880 plus and minus infinity, respectively. The value must be written
881 exactly as shown, that is, they always must have a sign and exactly
882 one zero digit after the decimal point. It also understands
883 @samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
884 The sign is ignored for `not-a-number' and the value is always printed
885 as @samp{+nan.0}.
886
887 @node Integer Operations
888 @subsubsection Operations on Integer Values
889 @rnindex odd?
890 @rnindex even?
891 @rnindex quotient
892 @rnindex remainder
893 @rnindex modulo
894 @rnindex gcd
895 @rnindex lcm
896
897 @deffn {Scheme Procedure} odd? n
898 @deffnx {C Function} scm_odd_p (n)
899 Return @code{#t} if @var{n} is an odd number, @code{#f}
900 otherwise.
901 @end deffn
902
903 @deffn {Scheme Procedure} even? n
904 @deffnx {C Function} scm_even_p (n)
905 Return @code{#t} if @var{n} is an even number, @code{#f}
906 otherwise.
907 @end deffn
908
909 @c begin (texi-doc-string "guile" "quotient")
910 @c begin (texi-doc-string "guile" "remainder")
911 @deffn {Scheme Procedure} quotient n d
912 @deffnx {Scheme Procedure} remainder n d
913 @deffnx {C Function} scm_quotient (n, d)
914 @deffnx {C Function} scm_remainder (n, d)
915 Return the quotient or remainder from @var{n} divided by @var{d}. The
916 quotient is rounded towards zero, and the remainder will have the same
917 sign as @var{n}. In all cases quotient and remainder satisfy
918 @math{@var{n} = @var{q}*@var{d} + @var{r}}.
919
920 @lisp
921 (remainder 13 4) @result{} 1
922 (remainder -13 4) @result{} -1
923 @end lisp
924
925 See also @code{truncate-quotient}, @code{truncate-remainder} and
926 related operations in @ref{Arithmetic}.
927 @end deffn
928
929 @c begin (texi-doc-string "guile" "modulo")
930 @deffn {Scheme Procedure} modulo n d
931 @deffnx {C Function} scm_modulo (n, d)
932 Return the remainder from @var{n} divided by @var{d}, with the same
933 sign as @var{d}.
934
935 @lisp
936 (modulo 13 4) @result{} 1
937 (modulo -13 4) @result{} 3
938 (modulo 13 -4) @result{} -3
939 (modulo -13 -4) @result{} -1
940 @end lisp
941
942 See also @code{floor-quotient}, @code{floor-remainder} and
943 related operations in @ref{Arithmetic}.
944 @end deffn
945
946 @c begin (texi-doc-string "guile" "gcd")
947 @deffn {Scheme Procedure} gcd x@dots{}
948 @deffnx {C Function} scm_gcd (x, y)
949 Return the greatest common divisor of all arguments.
950 If called without arguments, 0 is returned.
951
952 The C function @code{scm_gcd} always takes two arguments, while the
953 Scheme function can take an arbitrary number.
954 @end deffn
955
956 @c begin (texi-doc-string "guile" "lcm")
957 @deffn {Scheme Procedure} lcm x@dots{}
958 @deffnx {C Function} scm_lcm (x, y)
959 Return the least common multiple of the arguments.
960 If called without arguments, 1 is returned.
961
962 The C function @code{scm_lcm} always takes two arguments, while the
963 Scheme function can take an arbitrary number.
964 @end deffn
965
966 @deffn {Scheme Procedure} modulo-expt n k m
967 @deffnx {C Function} scm_modulo_expt (n, k, m)
968 Return @var{n} raised to the integer exponent
969 @var{k}, modulo @var{m}.
970
971 @lisp
972 (modulo-expt 2 3 5)
973 @result{} 3
974 @end lisp
975 @end deffn
976
977 @deftypefn {Scheme Procedure} {} exact-integer-sqrt @var{k}
978 @deftypefnx {C Function} void scm_exact_integer_sqrt (SCM @var{k}, SCM *@var{s}, SCM *@var{r})
979 Return two exact non-negative integers @var{s} and @var{r}
980 such that @math{@var{k} = @var{s}^2 + @var{r}} and
981 @math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.
982 An error is raised if @var{k} is not an exact non-negative integer.
983
984 @lisp
985 (exact-integer-sqrt 10) @result{} 3 and 1
986 @end lisp
987 @end deftypefn
988
989 @node Comparison
990 @subsubsection Comparison Predicates
991 @rnindex zero?
992 @rnindex positive?
993 @rnindex negative?
994
995 The C comparison functions below always takes two arguments, while the
996 Scheme functions can take an arbitrary number. Also keep in mind that
997 the C functions return one of the Scheme boolean values
998 @code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
999 is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
1000 y))} when testing the two Scheme numbers @code{x} and @code{y} for
1001 equality, for example.
1002
1003 @c begin (texi-doc-string "guile" "=")
1004 @deffn {Scheme Procedure} =
1005 @deffnx {C Function} scm_num_eq_p (x, y)
1006 Return @code{#t} if all parameters are numerically equal.
1007 @end deffn
1008
1009 @c begin (texi-doc-string "guile" "<")
1010 @deffn {Scheme Procedure} <
1011 @deffnx {C Function} scm_less_p (x, y)
1012 Return @code{#t} if the list of parameters is monotonically
1013 increasing.
1014 @end deffn
1015
1016 @c begin (texi-doc-string "guile" ">")
1017 @deffn {Scheme Procedure} >
1018 @deffnx {C Function} scm_gr_p (x, y)
1019 Return @code{#t} if the list of parameters is monotonically
1020 decreasing.
1021 @end deffn
1022
1023 @c begin (texi-doc-string "guile" "<=")
1024 @deffn {Scheme Procedure} <=
1025 @deffnx {C Function} scm_leq_p (x, y)
1026 Return @code{#t} if the list of parameters is monotonically
1027 non-decreasing.
1028 @end deffn
1029
1030 @c begin (texi-doc-string "guile" ">=")
1031 @deffn {Scheme Procedure} >=
1032 @deffnx {C Function} scm_geq_p (x, y)
1033 Return @code{#t} if the list of parameters is monotonically
1034 non-increasing.
1035 @end deffn
1036
1037 @c begin (texi-doc-string "guile" "zero?")
1038 @deffn {Scheme Procedure} zero? z
1039 @deffnx {C Function} scm_zero_p (z)
1040 Return @code{#t} if @var{z} is an exact or inexact number equal to
1041 zero.
1042 @end deffn
1043
1044 @c begin (texi-doc-string "guile" "positive?")
1045 @deffn {Scheme Procedure} positive? x
1046 @deffnx {C Function} scm_positive_p (x)
1047 Return @code{#t} if @var{x} is an exact or inexact number greater than
1048 zero.
1049 @end deffn
1050
1051 @c begin (texi-doc-string "guile" "negative?")
1052 @deffn {Scheme Procedure} negative? x
1053 @deffnx {C Function} scm_negative_p (x)
1054 Return @code{#t} if @var{x} is an exact or inexact number less than
1055 zero.
1056 @end deffn
1057
1058
1059 @node Conversion
1060 @subsubsection Converting Numbers To and From Strings
1061 @rnindex number->string
1062 @rnindex string->number
1063
1064 The following procedures read and write numbers according to their
1065 external representation as defined by R5RS (@pxref{Lexical structure,
1066 R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
1067 Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
1068 i18n)} module}, for locale-dependent number parsing.
1069
1070 @deffn {Scheme Procedure} number->string n [radix]
1071 @deffnx {C Function} scm_number_to_string (n, radix)
1072 Return a string holding the external representation of the
1073 number @var{n} in the given @var{radix}. If @var{n} is
1074 inexact, a radix of 10 will be used.
1075 @end deffn
1076
1077 @deffn {Scheme Procedure} string->number string [radix]
1078 @deffnx {C Function} scm_string_to_number (string, radix)
1079 Return a number of the maximally precise representation
1080 expressed by the given @var{string}. @var{radix} must be an
1081 exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1082 is a default radix that may be overridden by an explicit radix
1083 prefix in @var{string} (e.g.@: "#o177"). If @var{radix} is not
1084 supplied, then the default radix is 10. If string is not a
1085 syntactically valid notation for a number, then
1086 @code{string->number} returns @code{#f}.
1087 @end deffn
1088
1089 @deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1090 As per @code{string->number} above, but taking a C string, as pointer
1091 and length. The string characters should be in the current locale
1092 encoding (@code{locale} in the name refers only to that, there's no
1093 locale-dependent parsing).
1094 @end deftypefn
1095
1096
1097 @node Complex
1098 @subsubsection Complex Number Operations
1099 @rnindex make-rectangular
1100 @rnindex make-polar
1101 @rnindex real-part
1102 @rnindex imag-part
1103 @rnindex magnitude
1104 @rnindex angle
1105
1106 @deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1107 @deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1108 Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
1109 @end deffn
1110
1111 @deffn {Scheme Procedure} make-polar mag ang
1112 @deffnx {C Function} scm_make_polar (mag, ang)
1113 @cindex polar form
1114 Return the complex number @var{mag} * e^(i * @var{ang}).
1115 @end deffn
1116
1117 @c begin (texi-doc-string "guile" "real-part")
1118 @deffn {Scheme Procedure} real-part z
1119 @deffnx {C Function} scm_real_part (z)
1120 Return the real part of the number @var{z}.
1121 @end deffn
1122
1123 @c begin (texi-doc-string "guile" "imag-part")
1124 @deffn {Scheme Procedure} imag-part z
1125 @deffnx {C Function} scm_imag_part (z)
1126 Return the imaginary part of the number @var{z}.
1127 @end deffn
1128
1129 @c begin (texi-doc-string "guile" "magnitude")
1130 @deffn {Scheme Procedure} magnitude z
1131 @deffnx {C Function} scm_magnitude (z)
1132 Return the magnitude of the number @var{z}. This is the same as
1133 @code{abs} for real arguments, but also allows complex numbers.
1134 @end deffn
1135
1136 @c begin (texi-doc-string "guile" "angle")
1137 @deffn {Scheme Procedure} angle z
1138 @deffnx {C Function} scm_angle (z)
1139 Return the angle of the complex number @var{z}.
1140 @end deffn
1141
1142 @deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1143 @deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1144 Like @code{scm_make_rectangular} or @code{scm_make_polar},
1145 respectively, but these functions take @code{double}s as their
1146 arguments.
1147 @end deftypefn
1148
1149 @deftypefn {C Function} double scm_c_real_part (z)
1150 @deftypefnx {C Function} double scm_c_imag_part (z)
1151 Returns the real or imaginary part of @var{z} as a @code{double}.
1152 @end deftypefn
1153
1154 @deftypefn {C Function} double scm_c_magnitude (z)
1155 @deftypefnx {C Function} double scm_c_angle (z)
1156 Returns the magnitude or angle of @var{z} as a @code{double}.
1157 @end deftypefn
1158
1159
1160 @node Arithmetic
1161 @subsubsection Arithmetic Functions
1162 @rnindex max
1163 @rnindex min
1164 @rnindex +
1165 @rnindex *
1166 @rnindex -
1167 @rnindex /
1168 @findex 1+
1169 @findex 1-
1170 @rnindex abs
1171 @rnindex floor
1172 @rnindex ceiling
1173 @rnindex truncate
1174 @rnindex round
1175 @rnindex euclidean/
1176 @rnindex euclidean-quotient
1177 @rnindex euclidean-remainder
1178 @rnindex floor/
1179 @rnindex floor-quotient
1180 @rnindex floor-remainder
1181 @rnindex ceiling/
1182 @rnindex ceiling-quotient
1183 @rnindex ceiling-remainder
1184 @rnindex truncate/
1185 @rnindex truncate-quotient
1186 @rnindex truncate-remainder
1187 @rnindex centered/
1188 @rnindex centered-quotient
1189 @rnindex centered-remainder
1190 @rnindex round/
1191 @rnindex round-quotient
1192 @rnindex round-remainder
1193
1194 The C arithmetic functions below always takes two arguments, while the
1195 Scheme functions can take an arbitrary number. When you need to
1196 invoke them with just one argument, for example to compute the
1197 equivalent of @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1198 one: @code{scm_difference (x, SCM_UNDEFINED)}.
1199
1200 @c begin (texi-doc-string "guile" "+")
1201 @deffn {Scheme Procedure} + z1 @dots{}
1202 @deffnx {C Function} scm_sum (z1, z2)
1203 Return the sum of all parameter values. Return 0 if called without any
1204 parameters.
1205 @end deffn
1206
1207 @c begin (texi-doc-string "guile" "-")
1208 @deffn {Scheme Procedure} - z1 z2 @dots{}
1209 @deffnx {C Function} scm_difference (z1, z2)
1210 If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1211 the sum of all but the first argument are subtracted from the first
1212 argument.
1213 @end deffn
1214
1215 @c begin (texi-doc-string "guile" "*")
1216 @deffn {Scheme Procedure} * z1 @dots{}
1217 @deffnx {C Function} scm_product (z1, z2)
1218 Return the product of all arguments. If called without arguments, 1 is
1219 returned.
1220 @end deffn
1221
1222 @c begin (texi-doc-string "guile" "/")
1223 @deffn {Scheme Procedure} / z1 z2 @dots{}
1224 @deffnx {C Function} scm_divide (z1, z2)
1225 Divide the first argument by the product of the remaining arguments. If
1226 called with one argument @var{z1}, 1/@var{z1} is returned.
1227 @end deffn
1228
1229 @deffn {Scheme Procedure} 1+ z
1230 @deffnx {C Function} scm_oneplus (z)
1231 Return @math{@var{z} + 1}.
1232 @end deffn
1233
1234 @deffn {Scheme Procedure} 1- z
1235 @deffnx {C function} scm_oneminus (z)
1236 Return @math{@var{z} - 1}.
1237 @end deffn
1238
1239 @c begin (texi-doc-string "guile" "abs")
1240 @deffn {Scheme Procedure} abs x
1241 @deffnx {C Function} scm_abs (x)
1242 Return the absolute value of @var{x}.
1243
1244 @var{x} must be a number with zero imaginary part. To calculate the
1245 magnitude of a complex number, use @code{magnitude} instead.
1246 @end deffn
1247
1248 @c begin (texi-doc-string "guile" "max")
1249 @deffn {Scheme Procedure} max x1 x2 @dots{}
1250 @deffnx {C Function} scm_max (x1, x2)
1251 Return the maximum of all parameter values.
1252 @end deffn
1253
1254 @c begin (texi-doc-string "guile" "min")
1255 @deffn {Scheme Procedure} min x1 x2 @dots{}
1256 @deffnx {C Function} scm_min (x1, x2)
1257 Return the minimum of all parameter values.
1258 @end deffn
1259
1260 @c begin (texi-doc-string "guile" "truncate")
1261 @deffn {Scheme Procedure} truncate x
1262 @deffnx {C Function} scm_truncate_number (x)
1263 Round the inexact number @var{x} towards zero.
1264 @end deffn
1265
1266 @c begin (texi-doc-string "guile" "round")
1267 @deffn {Scheme Procedure} round x
1268 @deffnx {C Function} scm_round_number (x)
1269 Round the inexact number @var{x} to the nearest integer. When exactly
1270 halfway between two integers, round to the even one.
1271 @end deffn
1272
1273 @c begin (texi-doc-string "guile" "floor")
1274 @deffn {Scheme Procedure} floor x
1275 @deffnx {C Function} scm_floor (x)
1276 Round the number @var{x} towards minus infinity.
1277 @end deffn
1278
1279 @c begin (texi-doc-string "guile" "ceiling")
1280 @deffn {Scheme Procedure} ceiling x
1281 @deffnx {C Function} scm_ceiling (x)
1282 Round the number @var{x} towards infinity.
1283 @end deffn
1284
1285 @deftypefn {C Function} double scm_c_truncate (double x)
1286 @deftypefnx {C Function} double scm_c_round (double x)
1287 Like @code{scm_truncate_number} or @code{scm_round_number},
1288 respectively, but these functions take and return @code{double}
1289 values.
1290 @end deftypefn
1291
1292 @deftypefn {Scheme Procedure} {} euclidean/ @var{x} @var{y}
1293 @deftypefnx {Scheme Procedure} {} euclidean-quotient @var{x} @var{y}
1294 @deftypefnx {Scheme Procedure} {} euclidean-remainder @var{x} @var{y}
1295 @deftypefnx {C Function} void scm_euclidean_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1296 @deftypefnx {C Function} SCM scm_euclidean_quotient (SCM @var{x}, SCM @var{y})
1297 @deftypefnx {C Function} SCM scm_euclidean_remainder (SCM @var{x}, SCM @var{y})
1298 These procedures accept two real numbers @var{x} and @var{y}, where the
1299 divisor @var{y} must be non-zero. @code{euclidean-quotient} returns the
1300 integer @var{q} and @code{euclidean-remainder} returns the real number
1301 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1302 @math{0 <= @var{r} < |@var{y}|}. @code{euclidean/} returns both @var{q} and
1303 @var{r}, and is more efficient than computing each separately. Note
1304 that when @math{@var{y} > 0}, @code{euclidean-quotient} returns
1305 @math{floor(@var{x}/@var{y})}, otherwise it returns
1306 @math{ceiling(@var{x}/@var{y})}.
1307
1308 Note that these operators are equivalent to the R6RS operators
1309 @code{div}, @code{mod}, and @code{div-and-mod}.
1310
1311 @lisp
1312 (euclidean-quotient 123 10) @result{} 12
1313 (euclidean-remainder 123 10) @result{} 3
1314 (euclidean/ 123 10) @result{} 12 and 3
1315 (euclidean/ 123 -10) @result{} -12 and 3
1316 (euclidean/ -123 10) @result{} -13 and 7
1317 (euclidean/ -123 -10) @result{} 13 and 7
1318 (euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8
1319 (euclidean/ 16/3 -10/7) @result{} -3 and 22/21
1320 @end lisp
1321 @end deftypefn
1322
1323 @deftypefn {Scheme Procedure} {} floor/ @var{x} @var{y}
1324 @deftypefnx {Scheme Procedure} {} floor-quotient @var{x} @var{y}
1325 @deftypefnx {Scheme Procedure} {} floor-remainder @var{x} @var{y}
1326 @deftypefnx {C Function} void scm_floor_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1327 @deftypefnx {C Function} SCM scm_floor_quotient (@var{x}, @var{y})
1328 @deftypefnx {C Function} SCM scm_floor_remainder (@var{x}, @var{y})
1329 These procedures accept two real numbers @var{x} and @var{y}, where the
1330 divisor @var{y} must be non-zero. @code{floor-quotient} returns the
1331 integer @var{q} and @code{floor-remainder} returns the real number
1332 @var{r} such that @math{@var{q} = floor(@var{x}/@var{y})} and
1333 @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{floor/} returns
1334 both @var{q} and @var{r}, and is more efficient than computing each
1335 separately. Note that @var{r}, if non-zero, will have the same sign
1336 as @var{y}.
1337
1338 When @var{x} and @var{y} are integers, @code{floor-remainder} is
1339 equivalent to the R5RS integer-only operator @code{modulo}.
1340
1341 @lisp
1342 (floor-quotient 123 10) @result{} 12
1343 (floor-remainder 123 10) @result{} 3
1344 (floor/ 123 10) @result{} 12 and 3
1345 (floor/ 123 -10) @result{} -13 and -7
1346 (floor/ -123 10) @result{} -13 and 7
1347 (floor/ -123 -10) @result{} 12 and -3
1348 (floor/ -123.2 -63.5) @result{} 1.0 and -59.7
1349 (floor/ 16/3 -10/7) @result{} -4 and -8/21
1350 @end lisp
1351 @end deftypefn
1352
1353 @deftypefn {Scheme Procedure} {} ceiling/ @var{x} @var{y}
1354 @deftypefnx {Scheme Procedure} {} ceiling-quotient @var{x} @var{y}
1355 @deftypefnx {Scheme Procedure} {} ceiling-remainder @var{x} @var{y}
1356 @deftypefnx {C Function} void scm_ceiling_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1357 @deftypefnx {C Function} SCM scm_ceiling_quotient (@var{x}, @var{y})
1358 @deftypefnx {C Function} SCM scm_ceiling_remainder (@var{x}, @var{y})
1359 These procedures accept two real numbers @var{x} and @var{y}, where the
1360 divisor @var{y} must be non-zero. @code{ceiling-quotient} returns the
1361 integer @var{q} and @code{ceiling-remainder} returns the real number
1362 @var{r} such that @math{@var{q} = ceiling(@var{x}/@var{y})} and
1363 @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{ceiling/} returns
1364 both @var{q} and @var{r}, and is more efficient than computing each
1365 separately. Note that @var{r}, if non-zero, will have the opposite sign
1366 of @var{y}.
1367
1368 @lisp
1369 (ceiling-quotient 123 10) @result{} 13
1370 (ceiling-remainder 123 10) @result{} -7
1371 (ceiling/ 123 10) @result{} 13 and -7
1372 (ceiling/ 123 -10) @result{} -12 and 3
1373 (ceiling/ -123 10) @result{} -12 and -3
1374 (ceiling/ -123 -10) @result{} 13 and 7
1375 (ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8
1376 (ceiling/ 16/3 -10/7) @result{} -3 and 22/21
1377 @end lisp
1378 @end deftypefn
1379
1380 @deftypefn {Scheme Procedure} {} truncate/ @var{x} @var{y}
1381 @deftypefnx {Scheme Procedure} {} truncate-quotient @var{x} @var{y}
1382 @deftypefnx {Scheme Procedure} {} truncate-remainder @var{x} @var{y}
1383 @deftypefnx {C Function} void scm_truncate_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1384 @deftypefnx {C Function} SCM scm_truncate_quotient (@var{x}, @var{y})
1385 @deftypefnx {C Function} SCM scm_truncate_remainder (@var{x}, @var{y})
1386 These procedures accept two real numbers @var{x} and @var{y}, where the
1387 divisor @var{y} must be non-zero. @code{truncate-quotient} returns the
1388 integer @var{q} and @code{truncate-remainder} returns the real number
1389 @var{r} such that @var{q} is @math{@var{x}/@var{y}} rounded toward zero,
1390 and @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{truncate/} returns
1391 both @var{q} and @var{r}, and is more efficient than computing each
1392 separately. Note that @var{r}, if non-zero, will have the same sign
1393 as @var{x}.
1394
1395 When @var{x} and @var{y} are integers, these operators are
1396 equivalent to the R5RS integer-only operators @code{quotient} and
1397 @code{remainder}.
1398
1399 @lisp
1400 (truncate-quotient 123 10) @result{} 12
1401 (truncate-remainder 123 10) @result{} 3
1402 (truncate/ 123 10) @result{} 12 and 3
1403 (truncate/ 123 -10) @result{} -12 and 3
1404 (truncate/ -123 10) @result{} -12 and -3
1405 (truncate/ -123 -10) @result{} 12 and -3
1406 (truncate/ -123.2 -63.5) @result{} 1.0 and -59.7
1407 (truncate/ 16/3 -10/7) @result{} -3 and 22/21
1408 @end lisp
1409 @end deftypefn
1410
1411 @deftypefn {Scheme Procedure} {} centered/ @var{x} @var{y}
1412 @deftypefnx {Scheme Procedure} {} centered-quotient @var{x} @var{y}
1413 @deftypefnx {Scheme Procedure} {} centered-remainder @var{x} @var{y}
1414 @deftypefnx {C Function} void scm_centered_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1415 @deftypefnx {C Function} SCM scm_centered_quotient (SCM @var{x}, SCM @var{y})
1416 @deftypefnx {C Function} SCM scm_centered_remainder (SCM @var{x}, SCM @var{y})
1417 These procedures accept two real numbers @var{x} and @var{y}, where the
1418 divisor @var{y} must be non-zero. @code{centered-quotient} returns the
1419 integer @var{q} and @code{centered-remainder} returns the real number
1420 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1421 @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}. @code{centered/}
1422 returns both @var{q} and @var{r}, and is more efficient than computing
1423 each separately.
1424
1425 Note that @code{centered-quotient} returns @math{@var{x}/@var{y}}
1426 rounded to the nearest integer. When @math{@var{x}/@var{y}} lies
1427 exactly half-way between two integers, the tie is broken according to
1428 the sign of @var{y}. If @math{@var{y} > 0}, ties are rounded toward
1429 positive infinity, otherwise they are rounded toward negative infinity.
1430 This is a consequence of the requirement that
1431 @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}.
1432
1433 Note that these operators are equivalent to the R6RS operators
1434 @code{div0}, @code{mod0}, and @code{div0-and-mod0}.
1435
1436 @lisp
1437 (centered-quotient 123 10) @result{} 12
1438 (centered-remainder 123 10) @result{} 3
1439 (centered/ 123 10) @result{} 12 and 3
1440 (centered/ 123 -10) @result{} -12 and 3
1441 (centered/ -123 10) @result{} -12 and -3
1442 (centered/ -123 -10) @result{} 12 and -3
1443 (centered/ 125 10) @result{} 13 and -5
1444 (centered/ 127 10) @result{} 13 and -3
1445 (centered/ 135 10) @result{} 14 and -5
1446 (centered/ -123.2 -63.5) @result{} 2.0 and 3.8
1447 (centered/ 16/3 -10/7) @result{} -4 and -8/21
1448 @end lisp
1449 @end deftypefn
1450
1451 @deftypefn {Scheme Procedure} {} round/ @var{x} @var{y}
1452 @deftypefnx {Scheme Procedure} {} round-quotient @var{x} @var{y}
1453 @deftypefnx {Scheme Procedure} {} round-remainder @var{x} @var{y}
1454 @deftypefnx {C Function} void scm_round_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1455 @deftypefnx {C Function} SCM scm_round_quotient (@var{x}, @var{y})
1456 @deftypefnx {C Function} SCM scm_round_remainder (@var{x}, @var{y})
1457 These procedures accept two real numbers @var{x} and @var{y}, where the
1458 divisor @var{y} must be non-zero. @code{round-quotient} returns the
1459 integer @var{q} and @code{round-remainder} returns the real number
1460 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1461 @var{q} is @math{@var{x}/@var{y}} rounded to the nearest integer,
1462 with ties going to the nearest even integer. @code{round/}
1463 returns both @var{q} and @var{r}, and is more efficient than computing
1464 each separately.
1465
1466 Note that @code{round/} and @code{centered/} are almost equivalent, but
1467 their behavior differs when @math{@var{x}/@var{y}} lies exactly half-way
1468 between two integers. In this case, @code{round/} chooses the nearest
1469 even integer, whereas @code{centered/} chooses in such a way to satisfy
1470 the constraint @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}, which
1471 is stronger than the corresponding constraint for @code{round/},
1472 @math{-|@var{y}/2| <= @var{r} <= |@var{y}/2|}. In particular,
1473 when @var{x} and @var{y} are integers, the number of possible remainders
1474 returned by @code{centered/} is @math{|@var{y}|}, whereas the number of
1475 possible remainders returned by @code{round/} is @math{|@var{y}|+1} when
1476 @var{y} is even.
1477
1478 @lisp
1479 (round-quotient 123 10) @result{} 12
1480 (round-remainder 123 10) @result{} 3
1481 (round/ 123 10) @result{} 12 and 3
1482 (round/ 123 -10) @result{} -12 and 3
1483 (round/ -123 10) @result{} -12 and -3
1484 (round/ -123 -10) @result{} 12 and -3
1485 (round/ 125 10) @result{} 12 and 5
1486 (round/ 127 10) @result{} 13 and -3
1487 (round/ 135 10) @result{} 14 and -5
1488 (round/ -123.2 -63.5) @result{} 2.0 and 3.8
1489 (round/ 16/3 -10/7) @result{} -4 and -8/21
1490 @end lisp
1491 @end deftypefn
1492
1493 @node Scientific
1494 @subsubsection Scientific Functions
1495
1496 The following procedures accept any kind of number as arguments,
1497 including complex numbers.
1498
1499 @rnindex sqrt
1500 @c begin (texi-doc-string "guile" "sqrt")
1501 @deffn {Scheme Procedure} sqrt z
1502 Return the square root of @var{z}. Of the two possible roots
1503 (positive and negative), the one with a positive real part is
1504 returned, or if that's zero then a positive imaginary part. Thus,
1505
1506 @example
1507 (sqrt 9.0) @result{} 3.0
1508 (sqrt -9.0) @result{} 0.0+3.0i
1509 (sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1510 (sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1511 @end example
1512 @end deffn
1513
1514 @rnindex expt
1515 @c begin (texi-doc-string "guile" "expt")
1516 @deffn {Scheme Procedure} expt z1 z2
1517 Return @var{z1} raised to the power of @var{z2}.
1518 @end deffn
1519
1520 @rnindex sin
1521 @c begin (texi-doc-string "guile" "sin")
1522 @deffn {Scheme Procedure} sin z
1523 Return the sine of @var{z}.
1524 @end deffn
1525
1526 @rnindex cos
1527 @c begin (texi-doc-string "guile" "cos")
1528 @deffn {Scheme Procedure} cos z
1529 Return the cosine of @var{z}.
1530 @end deffn
1531
1532 @rnindex tan
1533 @c begin (texi-doc-string "guile" "tan")
1534 @deffn {Scheme Procedure} tan z
1535 Return the tangent of @var{z}.
1536 @end deffn
1537
1538 @rnindex asin
1539 @c begin (texi-doc-string "guile" "asin")
1540 @deffn {Scheme Procedure} asin z
1541 Return the arcsine of @var{z}.
1542 @end deffn
1543
1544 @rnindex acos
1545 @c begin (texi-doc-string "guile" "acos")
1546 @deffn {Scheme Procedure} acos z
1547 Return the arccosine of @var{z}.
1548 @end deffn
1549
1550 @rnindex atan
1551 @c begin (texi-doc-string "guile" "atan")
1552 @deffn {Scheme Procedure} atan z
1553 @deffnx {Scheme Procedure} atan y x
1554 Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1555 @end deffn
1556
1557 @rnindex exp
1558 @c begin (texi-doc-string "guile" "exp")
1559 @deffn {Scheme Procedure} exp z
1560 Return e to the power of @var{z}, where e is the base of natural
1561 logarithms (2.71828@dots{}).
1562 @end deffn
1563
1564 @rnindex log
1565 @c begin (texi-doc-string "guile" "log")
1566 @deffn {Scheme Procedure} log z
1567 Return the natural logarithm of @var{z}.
1568 @end deffn
1569
1570 @c begin (texi-doc-string "guile" "log10")
1571 @deffn {Scheme Procedure} log10 z
1572 Return the base 10 logarithm of @var{z}.
1573 @end deffn
1574
1575 @c begin (texi-doc-string "guile" "sinh")
1576 @deffn {Scheme Procedure} sinh z
1577 Return the hyperbolic sine of @var{z}.
1578 @end deffn
1579
1580 @c begin (texi-doc-string "guile" "cosh")
1581 @deffn {Scheme Procedure} cosh z
1582 Return the hyperbolic cosine of @var{z}.
1583 @end deffn
1584
1585 @c begin (texi-doc-string "guile" "tanh")
1586 @deffn {Scheme Procedure} tanh z
1587 Return the hyperbolic tangent of @var{z}.
1588 @end deffn
1589
1590 @c begin (texi-doc-string "guile" "asinh")
1591 @deffn {Scheme Procedure} asinh z
1592 Return the hyperbolic arcsine of @var{z}.
1593 @end deffn
1594
1595 @c begin (texi-doc-string "guile" "acosh")
1596 @deffn {Scheme Procedure} acosh z
1597 Return the hyperbolic arccosine of @var{z}.
1598 @end deffn
1599
1600 @c begin (texi-doc-string "guile" "atanh")
1601 @deffn {Scheme Procedure} atanh z
1602 Return the hyperbolic arctangent of @var{z}.
1603 @end deffn
1604
1605
1606 @node Bitwise Operations
1607 @subsubsection Bitwise Operations
1608
1609 For the following bitwise functions, negative numbers are treated as
1610 infinite precision twos-complements. For instance @math{-6} is bits
1611 @math{@dots{}111010}, with infinitely many ones on the left. It can
1612 be seen that adding 6 (binary 110) to such a bit pattern gives all
1613 zeros.
1614
1615 @deffn {Scheme Procedure} logand n1 n2 @dots{}
1616 @deffnx {C Function} scm_logand (n1, n2)
1617 Return the bitwise @sc{and} of the integer arguments.
1618
1619 @lisp
1620 (logand) @result{} -1
1621 (logand 7) @result{} 7
1622 (logand #b111 #b011 #b001) @result{} 1
1623 @end lisp
1624 @end deffn
1625
1626 @deffn {Scheme Procedure} logior n1 n2 @dots{}
1627 @deffnx {C Function} scm_logior (n1, n2)
1628 Return the bitwise @sc{or} of the integer arguments.
1629
1630 @lisp
1631 (logior) @result{} 0
1632 (logior 7) @result{} 7
1633 (logior #b000 #b001 #b011) @result{} 3
1634 @end lisp
1635 @end deffn
1636
1637 @deffn {Scheme Procedure} logxor n1 n2 @dots{}
1638 @deffnx {C Function} scm_loxor (n1, n2)
1639 Return the bitwise @sc{xor} of the integer arguments. A bit is
1640 set in the result if it is set in an odd number of arguments.
1641
1642 @lisp
1643 (logxor) @result{} 0
1644 (logxor 7) @result{} 7
1645 (logxor #b000 #b001 #b011) @result{} 2
1646 (logxor #b000 #b001 #b011 #b011) @result{} 1
1647 @end lisp
1648 @end deffn
1649
1650 @deffn {Scheme Procedure} lognot n
1651 @deffnx {C Function} scm_lognot (n)
1652 Return the integer which is the ones-complement of the integer
1653 argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1654
1655 @lisp
1656 (number->string (lognot #b10000000) 2)
1657 @result{} "-10000001"
1658 (number->string (lognot #b0) 2)
1659 @result{} "-1"
1660 @end lisp
1661 @end deffn
1662
1663 @deffn {Scheme Procedure} logtest j k
1664 @deffnx {C Function} scm_logtest (j, k)
1665 Test whether @var{j} and @var{k} have any 1 bits in common. This is
1666 equivalent to @code{(not (zero? (logand j k)))}, but without actually
1667 calculating the @code{logand}, just testing for non-zero.
1668
1669 @lisp
1670 (logtest #b0100 #b1011) @result{} #f
1671 (logtest #b0100 #b0111) @result{} #t
1672 @end lisp
1673 @end deffn
1674
1675 @deffn {Scheme Procedure} logbit? index j
1676 @deffnx {C Function} scm_logbit_p (index, j)
1677 Test whether bit number @var{index} in @var{j} is set. @var{index}
1678 starts from 0 for the least significant bit.
1679
1680 @lisp
1681 (logbit? 0 #b1101) @result{} #t
1682 (logbit? 1 #b1101) @result{} #f
1683 (logbit? 2 #b1101) @result{} #t
1684 (logbit? 3 #b1101) @result{} #t
1685 (logbit? 4 #b1101) @result{} #f
1686 @end lisp
1687 @end deffn
1688
1689 @deffn {Scheme Procedure} ash n count
1690 @deffnx {C Function} scm_ash (n, count)
1691 Return @math{floor(@var{n} * 2^@var{count})}.
1692 @var{n} and @var{count} must be exact integers.
1693
1694 With @var{n} viewed as an infinite-precision twos-complement
1695 integer, @code{ash} means a left shift introducing zero bits
1696 when @var{count} is positive, or a right shift dropping bits
1697 when @var{count} is negative. This is an ``arithmetic'' shift.
1698
1699 @lisp
1700 (number->string (ash #b1 3) 2) @result{} "1000"
1701 (number->string (ash #b1010 -1) 2) @result{} "101"
1702
1703 ;; -23 is bits ...11101001, -6 is bits ...111010
1704 (ash -23 -2) @result{} -6
1705 @end lisp
1706 @end deffn
1707
1708 @deffn {Scheme Procedure} round-ash n count
1709 @deffnx {C Function} scm_round_ash (n, count)
1710 Return @math{round(@var{n} * 2^@var{count})}.
1711 @var{n} and @var{count} must be exact integers.
1712
1713 With @var{n} viewed as an infinite-precision twos-complement
1714 integer, @code{round-ash} means a left shift introducing zero
1715 bits when @var{count} is positive, or a right shift rounding
1716 to the nearest integer (with ties going to the nearest even
1717 integer) when @var{count} is negative. This is a rounded
1718 ``arithmetic'' shift.
1719
1720 @lisp
1721 (number->string (round-ash #b1 3) 2) @result{} \"1000\"
1722 (number->string (round-ash #b1010 -1) 2) @result{} \"101\"
1723 (number->string (round-ash #b1010 -2) 2) @result{} \"10\"
1724 (number->string (round-ash #b1011 -2) 2) @result{} \"11\"
1725 (number->string (round-ash #b1101 -2) 2) @result{} \"11\"
1726 (number->string (round-ash #b1110 -2) 2) @result{} \"100\"
1727 @end lisp
1728 @end deffn
1729
1730 @deffn {Scheme Procedure} logcount n
1731 @deffnx {C Function} scm_logcount (n)
1732 Return the number of bits in integer @var{n}. If @var{n} is
1733 positive, the 1-bits in its binary representation are counted.
1734 If negative, the 0-bits in its two's-complement binary
1735 representation are counted. If zero, 0 is returned.
1736
1737 @lisp
1738 (logcount #b10101010)
1739 @result{} 4
1740 (logcount 0)
1741 @result{} 0
1742 (logcount -2)
1743 @result{} 1
1744 @end lisp
1745 @end deffn
1746
1747 @deffn {Scheme Procedure} integer-length n
1748 @deffnx {C Function} scm_integer_length (n)
1749 Return the number of bits necessary to represent @var{n}.
1750
1751 For positive @var{n} this is how many bits to the most significant one
1752 bit. For negative @var{n} it's how many bits to the most significant
1753 zero bit in twos complement form.
1754
1755 @lisp
1756 (integer-length #b10101010) @result{} 8
1757 (integer-length #b1111) @result{} 4
1758 (integer-length 0) @result{} 0
1759 (integer-length -1) @result{} 0
1760 (integer-length -256) @result{} 8
1761 (integer-length -257) @result{} 9
1762 @end lisp
1763 @end deffn
1764
1765 @deffn {Scheme Procedure} integer-expt n k
1766 @deffnx {C Function} scm_integer_expt (n, k)
1767 Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1768 integer, @var{n} can be any number.
1769
1770 Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1771 in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1772 @math{0^0} is 1.
1773
1774 @lisp
1775 (integer-expt 2 5) @result{} 32
1776 (integer-expt -3 3) @result{} -27
1777 (integer-expt 5 -3) @result{} 1/125
1778 (integer-expt 0 0) @result{} 1
1779 @end lisp
1780 @end deffn
1781
1782 @deffn {Scheme Procedure} bit-extract n start end
1783 @deffnx {C Function} scm_bit_extract (n, start, end)
1784 Return the integer composed of the @var{start} (inclusive)
1785 through @var{end} (exclusive) bits of @var{n}. The
1786 @var{start}th bit becomes the 0-th bit in the result.
1787
1788 @lisp
1789 (number->string (bit-extract #b1101101010 0 4) 2)
1790 @result{} "1010"
1791 (number->string (bit-extract #b1101101010 4 9) 2)
1792 @result{} "10110"
1793 @end lisp
1794 @end deffn
1795
1796
1797 @node Random
1798 @subsubsection Random Number Generation
1799
1800 Pseudo-random numbers are generated from a random state object, which
1801 can be created with @code{seed->random-state} or
1802 @code{datum->random-state}. An external representation (i.e.@: one
1803 which can written with @code{write} and read with @code{read}) of a
1804 random state object can be obtained via
1805 @code{random-state->datum}. The @var{state} parameter to the
1806 various functions below is optional, it defaults to the state object
1807 in the @code{*random-state*} variable.
1808
1809 @deffn {Scheme Procedure} copy-random-state [state]
1810 @deffnx {C Function} scm_copy_random_state (state)
1811 Return a copy of the random state @var{state}.
1812 @end deffn
1813
1814 @deffn {Scheme Procedure} random n [state]
1815 @deffnx {C Function} scm_random (n, state)
1816 Return a number in [0, @var{n}).
1817
1818 Accepts a positive integer or real n and returns a
1819 number of the same type between zero (inclusive) and
1820 @var{n} (exclusive). The values returned have a uniform
1821 distribution.
1822 @end deffn
1823
1824 @deffn {Scheme Procedure} random:exp [state]
1825 @deffnx {C Function} scm_random_exp (state)
1826 Return an inexact real in an exponential distribution with mean
1827 1. For an exponential distribution with mean @var{u} use @code{(*
1828 @var{u} (random:exp))}.
1829 @end deffn
1830
1831 @deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1832 @deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1833 Fills @var{vect} with inexact real random numbers the sum of whose
1834 squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1835 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1836 the coordinates are uniformly distributed over the surface of the unit
1837 n-sphere.
1838 @end deffn
1839
1840 @deffn {Scheme Procedure} random:normal [state]
1841 @deffnx {C Function} scm_random_normal (state)
1842 Return an inexact real in a normal distribution. The distribution
1843 used has mean 0 and standard deviation 1. For a normal distribution
1844 with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1845 (* @var{d} (random:normal)))}.
1846 @end deffn
1847
1848 @deffn {Scheme Procedure} random:normal-vector! vect [state]
1849 @deffnx {C Function} scm_random_normal_vector_x (vect, state)
1850 Fills @var{vect} with inexact real random numbers that are
1851 independent and standard normally distributed
1852 (i.e., with mean 0 and variance 1).
1853 @end deffn
1854
1855 @deffn {Scheme Procedure} random:solid-sphere! vect [state]
1856 @deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1857 Fills @var{vect} with inexact real random numbers the sum of whose
1858 squares is less than 1.0. Thinking of @var{vect} as coordinates in
1859 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1860 the coordinates are uniformly distributed within the unit
1861 @var{n}-sphere.
1862 @c FIXME: What does this mean, particularly the n-sphere part?
1863 @end deffn
1864
1865 @deffn {Scheme Procedure} random:uniform [state]
1866 @deffnx {C Function} scm_random_uniform (state)
1867 Return a uniformly distributed inexact real random number in
1868 [0,1).
1869 @end deffn
1870
1871 @deffn {Scheme Procedure} seed->random-state seed
1872 @deffnx {C Function} scm_seed_to_random_state (seed)
1873 Return a new random state using @var{seed}.
1874 @end deffn
1875
1876 @deffn {Scheme Procedure} datum->random-state datum
1877 @deffnx {C Function} scm_datum_to_random_state (datum)
1878 Return a new random state from @var{datum}, which should have been
1879 obtained by @code{random-state->datum}.
1880 @end deffn
1881
1882 @deffn {Scheme Procedure} random-state->datum state
1883 @deffnx {C Function} scm_random_state_to_datum (state)
1884 Return a datum representation of @var{state} that may be written out and
1885 read back with the Scheme reader.
1886 @end deffn
1887
1888 @deffn {Scheme Procedure} random-state-from-platform
1889 @deffnx {C Function} scm_random_state_from_platform ()
1890 Construct a new random state seeded from a platform-specific source of
1891 entropy, appropriate for use in non-security-critical applications.
1892 Currently @file{/dev/urandom} is tried first, or else the seed is based
1893 on the time, date, process ID, an address from a freshly allocated heap
1894 cell, an address from the local stack frame, and a high-resolution timer
1895 if available.
1896 @end deffn
1897
1898 @defvar *random-state*
1899 The global random state used by the above functions when the
1900 @var{state} parameter is not given.
1901 @end defvar
1902
1903 Note that the initial value of @code{*random-state*} is the same every
1904 time Guile starts up. Therefore, if you don't pass a @var{state}
1905 parameter to the above procedures, and you don't set
1906 @code{*random-state*} to @code{(seed->random-state your-seed)}, where
1907 @code{your-seed} is something that @emph{isn't} the same every time,
1908 you'll get the same sequence of ``random'' numbers on every run.
1909
1910 For example, unless the relevant source code has changed, @code{(map
1911 random (cdr (iota 30)))}, if the first use of random numbers since
1912 Guile started up, will always give:
1913
1914 @lisp
1915 (map random (cdr (iota 19)))
1916 @result{}
1917 (0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1918 @end lisp
1919
1920 To seed the random state in a sensible way for non-security-critical
1921 applications, do this during initialization of your program:
1922
1923 @lisp
1924 (set! *random-state* (random-state-from-platform))
1925 @end lisp
1926
1927
1928 @node Characters
1929 @subsection Characters
1930 @tpindex Characters
1931
1932 In Scheme, there is a data type to describe a single character.
1933
1934 Defining what exactly a character @emph{is} can be more complicated
1935 than it seems. Guile follows the advice of R6RS and uses The Unicode
1936 Standard to help define what a character is. So, for Guile, a
1937 character is anything in the Unicode Character Database.
1938
1939 @cindex code point
1940 @cindex Unicode code point
1941
1942 The Unicode Character Database is basically a table of characters
1943 indexed using integers called 'code points'. Valid code points are in
1944 the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1945 @code{#x10FFFF} inclusive, which is about 1.1 million code points.
1946
1947 @cindex designated code point
1948 @cindex code point, designated
1949
1950 Any code point that has been assigned to a character or that has
1951 otherwise been given a meaning by Unicode is called a 'designated code
1952 point'. Most of the designated code points, about 200,000 of them,
1953 indicate characters, accents or other combining marks that modify
1954 other characters, symbols, whitespace, and control characters. Some
1955 are not characters but indicators that suggest how to format or
1956 display neighboring characters.
1957
1958 @cindex reserved code point
1959 @cindex code point, reserved
1960
1961 If a code point is not a designated code point -- if it has not been
1962 assigned to a character by The Unicode Standard -- it is a 'reserved
1963 code point', meaning that they are reserved for future use. Most of
1964 the code points, about 800,000, are 'reserved code points'.
1965
1966 By convention, a Unicode code point is written as
1967 ``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1968 this convenient notation is not valid code. Guile does not interpret
1969 ``U+XXXX'' as a character.
1970
1971 In Scheme, a character literal is written as @code{#\@var{name}} where
1972 @var{name} is the name of the character that you want. Printable
1973 characters have their usual single character name; for example,
1974 @code{#\a} is a lower case @code{a}.
1975
1976 Some of the code points are 'combining characters' that are not meant
1977 to be printed by themselves but are instead meant to modify the
1978 appearance of the previous character. For combining characters, an
1979 alternate form of the character literal is @code{#\} followed by
1980 U+25CC (a small, dotted circle), followed by the combining character.
1981 This allows the combining character to be drawn on the circle, not on
1982 the backslash of @code{#\}.
1983
1984 Many of the non-printing characters, such as whitespace characters and
1985 control characters, also have names.
1986
1987 The most commonly used non-printing characters have long character
1988 names, described in the table below.
1989
1990 @multitable {@code{#\backspace}} {Preferred}
1991 @item Character Name @tab Codepoint
1992 @item @code{#\nul} @tab U+0000
1993 @item @code{#\alarm} @tab u+0007
1994 @item @code{#\backspace} @tab U+0008
1995 @item @code{#\tab} @tab U+0009
1996 @item @code{#\linefeed} @tab U+000A
1997 @item @code{#\newline} @tab U+000A
1998 @item @code{#\vtab} @tab U+000B
1999 @item @code{#\page} @tab U+000C
2000 @item @code{#\return} @tab U+000D
2001 @item @code{#\esc} @tab U+001B
2002 @item @code{#\space} @tab U+0020
2003 @item @code{#\delete} @tab U+007F
2004 @end multitable
2005
2006 There are also short names for all of the ``C0 control characters''
2007 (those with code points below 32). The following table lists the short
2008 name for each character.
2009
2010 @multitable @columnfractions .25 .25 .25 .25
2011 @item 0 = @code{#\nul}
2012 @tab 1 = @code{#\soh}
2013 @tab 2 = @code{#\stx}
2014 @tab 3 = @code{#\etx}
2015 @item 4 = @code{#\eot}
2016 @tab 5 = @code{#\enq}
2017 @tab 6 = @code{#\ack}
2018 @tab 7 = @code{#\bel}
2019 @item 8 = @code{#\bs}
2020 @tab 9 = @code{#\ht}
2021 @tab 10 = @code{#\lf}
2022 @tab 11 = @code{#\vt}
2023 @item 12 = @code{#\ff}
2024 @tab 13 = @code{#\cr}
2025 @tab 14 = @code{#\so}
2026 @tab 15 = @code{#\si}
2027 @item 16 = @code{#\dle}
2028 @tab 17 = @code{#\dc1}
2029 @tab 18 = @code{#\dc2}
2030 @tab 19 = @code{#\dc3}
2031 @item 20 = @code{#\dc4}
2032 @tab 21 = @code{#\nak}
2033 @tab 22 = @code{#\syn}
2034 @tab 23 = @code{#\etb}
2035 @item 24 = @code{#\can}
2036 @tab 25 = @code{#\em}
2037 @tab 26 = @code{#\sub}
2038 @tab 27 = @code{#\esc}
2039 @item 28 = @code{#\fs}
2040 @tab 29 = @code{#\gs}
2041 @tab 30 = @code{#\rs}
2042 @tab 31 = @code{#\us}
2043 @item 32 = @code{#\sp}
2044 @end multitable
2045
2046 The short name for the ``delete'' character (code point U+007F) is
2047 @code{#\del}.
2048
2049 There are also a few alternative names left over for compatibility with
2050 previous versions of Guile.
2051
2052 @multitable {@code{#\backspace}} {Preferred}
2053 @item Alternate @tab Standard
2054 @item @code{#\nl} @tab @code{#\newline}
2055 @item @code{#\np} @tab @code{#\page}
2056 @item @code{#\null} @tab @code{#\nul}
2057 @end multitable
2058
2059 Characters may also be written using their code point values. They can
2060 be written with as an octal number, such as @code{#\10} for
2061 @code{#\bs} or @code{#\177} for @code{#\del}.
2062
2063 If one prefers hex to octal, there is an additional syntax for character
2064 escapes: @code{#\xHHHH} -- the letter 'x' followed by a hexadecimal
2065 number of one to eight digits.
2066
2067 @rnindex char?
2068 @deffn {Scheme Procedure} char? x
2069 @deffnx {C Function} scm_char_p (x)
2070 Return @code{#t} if @var{x} is a character, else @code{#f}.
2071 @end deffn
2072
2073 Fundamentally, the character comparison operations below are
2074 numeric comparisons of the character's code points.
2075
2076 @rnindex char=?
2077 @deffn {Scheme Procedure} char=? x y
2078 Return @code{#t} if code point of @var{x} is equal to the code point
2079 of @var{y}, else @code{#f}.
2080 @end deffn
2081
2082 @rnindex char<?
2083 @deffn {Scheme Procedure} char<? x y
2084 Return @code{#t} if the code point of @var{x} is less than the code
2085 point of @var{y}, else @code{#f}.
2086 @end deffn
2087
2088 @rnindex char<=?
2089 @deffn {Scheme Procedure} char<=? x y
2090 Return @code{#t} if the code point of @var{x} is less than or equal
2091 to the code point of @var{y}, else @code{#f}.
2092 @end deffn
2093
2094 @rnindex char>?
2095 @deffn {Scheme Procedure} char>? x y
2096 Return @code{#t} if the code point of @var{x} is greater than the
2097 code point of @var{y}, else @code{#f}.
2098 @end deffn
2099
2100 @rnindex char>=?
2101 @deffn {Scheme Procedure} char>=? x y
2102 Return @code{#t} if the code point of @var{x} is greater than or
2103 equal to the code point of @var{y}, else @code{#f}.
2104 @end deffn
2105
2106 @cindex case folding
2107
2108 Case-insensitive character comparisons use @emph{Unicode case
2109 folding}. In case folding comparisons, if a character is lowercase
2110 and has an uppercase form that can be expressed as a single character,
2111 it is converted to uppercase before comparison. All other characters
2112 undergo no conversion before the comparison occurs. This includes the
2113 German sharp S (Eszett) which is not uppercased before conversion
2114 because its uppercase form has two characters. Unicode case folding
2115 is language independent: it uses rules that are generally true, but,
2116 it cannot cover all cases for all languages.
2117
2118 @rnindex char-ci=?
2119 @deffn {Scheme Procedure} char-ci=? x y
2120 Return @code{#t} if the case-folded code point of @var{x} is the same
2121 as the case-folded code point of @var{y}, else @code{#f}.
2122 @end deffn
2123
2124 @rnindex char-ci<?
2125 @deffn {Scheme Procedure} char-ci<? x y
2126 Return @code{#t} if the case-folded code point of @var{x} is less
2127 than the case-folded code point of @var{y}, else @code{#f}.
2128 @end deffn
2129
2130 @rnindex char-ci<=?
2131 @deffn {Scheme Procedure} char-ci<=? x y
2132 Return @code{#t} if the case-folded code point of @var{x} is less
2133 than or equal to the case-folded code point of @var{y}, else
2134 @code{#f}.
2135 @end deffn
2136
2137 @rnindex char-ci>?
2138 @deffn {Scheme Procedure} char-ci>? x y
2139 Return @code{#t} if the case-folded code point of @var{x} is greater
2140 than the case-folded code point of @var{y}, else @code{#f}.
2141 @end deffn
2142
2143 @rnindex char-ci>=?
2144 @deffn {Scheme Procedure} char-ci>=? x y
2145 Return @code{#t} if the case-folded code point of @var{x} is greater
2146 than or equal to the case-folded code point of @var{y}, else
2147 @code{#f}.
2148 @end deffn
2149
2150 @rnindex char-alphabetic?
2151 @deffn {Scheme Procedure} char-alphabetic? chr
2152 @deffnx {C Function} scm_char_alphabetic_p (chr)
2153 Return @code{#t} if @var{chr} is alphabetic, else @code{#f}.
2154 @end deffn
2155
2156 @rnindex char-numeric?
2157 @deffn {Scheme Procedure} char-numeric? chr
2158 @deffnx {C Function} scm_char_numeric_p (chr)
2159 Return @code{#t} if @var{chr} is numeric, else @code{#f}.
2160 @end deffn
2161
2162 @rnindex char-whitespace?
2163 @deffn {Scheme Procedure} char-whitespace? chr
2164 @deffnx {C Function} scm_char_whitespace_p (chr)
2165 Return @code{#t} if @var{chr} is whitespace, else @code{#f}.
2166 @end deffn
2167
2168 @rnindex char-upper-case?
2169 @deffn {Scheme Procedure} char-upper-case? chr
2170 @deffnx {C Function} scm_char_upper_case_p (chr)
2171 Return @code{#t} if @var{chr} is uppercase, else @code{#f}.
2172 @end deffn
2173
2174 @rnindex char-lower-case?
2175 @deffn {Scheme Procedure} char-lower-case? chr
2176 @deffnx {C Function} scm_char_lower_case_p (chr)
2177 Return @code{#t} if @var{chr} is lowercase, else @code{#f}.
2178 @end deffn
2179
2180 @deffn {Scheme Procedure} char-is-both? chr
2181 @deffnx {C Function} scm_char_is_both_p (chr)
2182 Return @code{#t} if @var{chr} is either uppercase or lowercase, else
2183 @code{#f}.
2184 @end deffn
2185
2186 @deffn {Scheme Procedure} char-general-category chr
2187 @deffnx {C Function} scm_char_general_category (chr)
2188 Return a symbol giving the two-letter name of the Unicode general
2189 category assigned to @var{chr} or @code{#f} if no named category is
2190 assigned. The following table provides a list of category names along
2191 with their meanings.
2192
2193 @multitable @columnfractions .1 .4 .1 .4
2194 @item Lu
2195 @tab Uppercase letter
2196 @tab Pf
2197 @tab Final quote punctuation
2198 @item Ll
2199 @tab Lowercase letter
2200 @tab Po
2201 @tab Other punctuation
2202 @item Lt
2203 @tab Titlecase letter
2204 @tab Sm
2205 @tab Math symbol
2206 @item Lm
2207 @tab Modifier letter
2208 @tab Sc
2209 @tab Currency symbol
2210 @item Lo
2211 @tab Other letter
2212 @tab Sk
2213 @tab Modifier symbol
2214 @item Mn
2215 @tab Non-spacing mark
2216 @tab So
2217 @tab Other symbol
2218 @item Mc
2219 @tab Combining spacing mark
2220 @tab Zs
2221 @tab Space separator
2222 @item Me
2223 @tab Enclosing mark
2224 @tab Zl
2225 @tab Line separator
2226 @item Nd
2227 @tab Decimal digit number
2228 @tab Zp
2229 @tab Paragraph separator
2230 @item Nl
2231 @tab Letter number
2232 @tab Cc
2233 @tab Control
2234 @item No
2235 @tab Other number
2236 @tab Cf
2237 @tab Format
2238 @item Pc
2239 @tab Connector punctuation
2240 @tab Cs
2241 @tab Surrogate
2242 @item Pd
2243 @tab Dash punctuation
2244 @tab Co
2245 @tab Private use
2246 @item Ps
2247 @tab Open punctuation
2248 @tab Cn
2249 @tab Unassigned
2250 @item Pe
2251 @tab Close punctuation
2252 @tab
2253 @tab
2254 @item Pi
2255 @tab Initial quote punctuation
2256 @tab
2257 @tab
2258 @end multitable
2259 @end deffn
2260
2261 @rnindex char->integer
2262 @deffn {Scheme Procedure} char->integer chr
2263 @deffnx {C Function} scm_char_to_integer (chr)
2264 Return the code point of @var{chr}.
2265 @end deffn
2266
2267 @rnindex integer->char
2268 @deffn {Scheme Procedure} integer->char n
2269 @deffnx {C Function} scm_integer_to_char (n)
2270 Return the character that has code point @var{n}. The integer @var{n}
2271 must be a valid code point. Valid code points are in the ranges 0 to
2272 @code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
2273 @end deffn
2274
2275 @rnindex char-upcase
2276 @deffn {Scheme Procedure} char-upcase chr
2277 @deffnx {C Function} scm_char_upcase (chr)
2278 Return the uppercase character version of @var{chr}.
2279 @end deffn
2280
2281 @rnindex char-downcase
2282 @deffn {Scheme Procedure} char-downcase chr
2283 @deffnx {C Function} scm_char_downcase (chr)
2284 Return the lowercase character version of @var{chr}.
2285 @end deffn
2286
2287 @rnindex char-titlecase
2288 @deffn {Scheme Procedure} char-titlecase chr
2289 @deffnx {C Function} scm_char_titlecase (chr)
2290 Return the titlecase character version of @var{chr} if one exists;
2291 otherwise return the uppercase version.
2292
2293 For most characters these will be the same, but the Unicode Standard
2294 includes certain digraph compatibility characters, such as @code{U+01F3}
2295 ``dz'', for which the uppercase and titlecase characters are different
2296 (@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
2297 respectively).
2298 @end deffn
2299
2300 @tindex scm_t_wchar
2301 @deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
2302 @deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
2303 @deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
2304
2305 These C functions take an integer representation of a Unicode
2306 codepoint and return the codepoint corresponding to its uppercase,
2307 lowercase, and titlecase forms respectively. The type
2308 @code{scm_t_wchar} is a signed, 32-bit integer.
2309 @end deftypefn
2310
2311 @node Character Sets
2312 @subsection Character Sets
2313
2314 The features described in this section correspond directly to SRFI-14.
2315
2316 The data type @dfn{charset} implements sets of characters
2317 (@pxref{Characters}). Because the internal representation of
2318 character sets is not visible to the user, a lot of procedures for
2319 handling them are provided.
2320
2321 Character sets can be created, extended, tested for the membership of a
2322 characters and be compared to other character sets.
2323
2324 @menu
2325 * Character Set Predicates/Comparison::
2326 * Iterating Over Character Sets:: Enumerate charset elements.
2327 * Creating Character Sets:: Making new charsets.
2328 * Querying Character Sets:: Test charsets for membership etc.
2329 * Character-Set Algebra:: Calculating new charsets.
2330 * Standard Character Sets:: Variables containing predefined charsets.
2331 @end menu
2332
2333 @node Character Set Predicates/Comparison
2334 @subsubsection Character Set Predicates/Comparison
2335
2336 Use these procedures for testing whether an object is a character set,
2337 or whether several character sets are equal or subsets of each other.
2338 @code{char-set-hash} can be used for calculating a hash value, maybe for
2339 usage in fast lookup procedures.
2340
2341 @deffn {Scheme Procedure} char-set? obj
2342 @deffnx {C Function} scm_char_set_p (obj)
2343 Return @code{#t} if @var{obj} is a character set, @code{#f}
2344 otherwise.
2345 @end deffn
2346
2347 @deffn {Scheme Procedure} char-set= char_set @dots{}
2348 @deffnx {C Function} scm_char_set_eq (char_sets)
2349 Return @code{#t} if all given character sets are equal.
2350 @end deffn
2351
2352 @deffn {Scheme Procedure} char-set<= char_set @dots{}
2353 @deffnx {C Function} scm_char_set_leq (char_sets)
2354 Return @code{#t} if every character set @var{char_set}i is a subset
2355 of character set @var{char_set}i+1.
2356 @end deffn
2357
2358 @deffn {Scheme Procedure} char-set-hash cs [bound]
2359 @deffnx {C Function} scm_char_set_hash (cs, bound)
2360 Compute a hash value for the character set @var{cs}. If
2361 @var{bound} is given and non-zero, it restricts the
2362 returned value to the range 0 @dots{} @var{bound} - 1.
2363 @end deffn
2364
2365 @c ===================================================================
2366
2367 @node Iterating Over Character Sets
2368 @subsubsection Iterating Over Character Sets
2369
2370 Character set cursors are a means for iterating over the members of a
2371 character sets. After creating a character set cursor with
2372 @code{char-set-cursor}, a cursor can be dereferenced with
2373 @code{char-set-ref}, advanced to the next member with
2374 @code{char-set-cursor-next}. Whether a cursor has passed past the last
2375 element of the set can be checked with @code{end-of-char-set?}.
2376
2377 Additionally, mapping and (un-)folding procedures for character sets are
2378 provided.
2379
2380 @deffn {Scheme Procedure} char-set-cursor cs
2381 @deffnx {C Function} scm_char_set_cursor (cs)
2382 Return a cursor into the character set @var{cs}.
2383 @end deffn
2384
2385 @deffn {Scheme Procedure} char-set-ref cs cursor
2386 @deffnx {C Function} scm_char_set_ref (cs, cursor)
2387 Return the character at the current cursor position
2388 @var{cursor} in the character set @var{cs}. It is an error to
2389 pass a cursor for which @code{end-of-char-set?} returns true.
2390 @end deffn
2391
2392 @deffn {Scheme Procedure} char-set-cursor-next cs cursor
2393 @deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2394 Advance the character set cursor @var{cursor} to the next
2395 character in the character set @var{cs}. It is an error if the
2396 cursor given satisfies @code{end-of-char-set?}.
2397 @end deffn
2398
2399 @deffn {Scheme Procedure} end-of-char-set? cursor
2400 @deffnx {C Function} scm_end_of_char_set_p (cursor)
2401 Return @code{#t} if @var{cursor} has reached the end of a
2402 character set, @code{#f} otherwise.
2403 @end deffn
2404
2405 @deffn {Scheme Procedure} char-set-fold kons knil cs
2406 @deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2407 Fold the procedure @var{kons} over the character set @var{cs},
2408 initializing it with @var{knil}.
2409 @end deffn
2410
2411 @deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2412 @deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2413 This is a fundamental constructor for character sets.
2414 @itemize @bullet
2415 @item @var{g} is used to generate a series of ``seed'' values
2416 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2417 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2418 @item @var{p} tells us when to stop -- when it returns true
2419 when applied to one of the seed values.
2420 @item @var{f} maps each seed value to a character. These
2421 characters are added to the base character set @var{base_cs} to
2422 form the result; @var{base_cs} defaults to the empty set.
2423 @end itemize
2424 @end deffn
2425
2426 @deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2427 @deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2428 This is a fundamental constructor for character sets.
2429 @itemize @bullet
2430 @item @var{g} is used to generate a series of ``seed'' values
2431 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2432 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2433 @item @var{p} tells us when to stop -- when it returns true
2434 when applied to one of the seed values.
2435 @item @var{f} maps each seed value to a character. These
2436 characters are added to the base character set @var{base_cs} to
2437 form the result; @var{base_cs} defaults to the empty set.
2438 @end itemize
2439 @end deffn
2440
2441 @deffn {Scheme Procedure} char-set-for-each proc cs
2442 @deffnx {C Function} scm_char_set_for_each (proc, cs)
2443 Apply @var{proc} to every character in the character set
2444 @var{cs}. The return value is not specified.
2445 @end deffn
2446
2447 @deffn {Scheme Procedure} char-set-map proc cs
2448 @deffnx {C Function} scm_char_set_map (proc, cs)
2449 Map the procedure @var{proc} over every character in @var{cs}.
2450 @var{proc} must be a character -> character procedure.
2451 @end deffn
2452
2453 @c ===================================================================
2454
2455 @node Creating Character Sets
2456 @subsubsection Creating Character Sets
2457
2458 New character sets are produced with these procedures.
2459
2460 @deffn {Scheme Procedure} char-set-copy cs
2461 @deffnx {C Function} scm_char_set_copy (cs)
2462 Return a newly allocated character set containing all
2463 characters in @var{cs}.
2464 @end deffn
2465
2466 @deffn {Scheme Procedure} char-set chr @dots{}
2467 @deffnx {C Function} scm_char_set (chrs)
2468 Return a character set containing all given characters.
2469 @end deffn
2470
2471 @deffn {Scheme Procedure} list->char-set list [base_cs]
2472 @deffnx {C Function} scm_list_to_char_set (list, base_cs)
2473 Convert the character list @var{list} to a character set. If
2474 the character set @var{base_cs} is given, the character in this
2475 set are also included in the result.
2476 @end deffn
2477
2478 @deffn {Scheme Procedure} list->char-set! list base_cs
2479 @deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2480 Convert the character list @var{list} to a character set. The
2481 characters are added to @var{base_cs} and @var{base_cs} is
2482 returned.
2483 @end deffn
2484
2485 @deffn {Scheme Procedure} string->char-set str [base_cs]
2486 @deffnx {C Function} scm_string_to_char_set (str, base_cs)
2487 Convert the string @var{str} to a character set. If the
2488 character set @var{base_cs} is given, the characters in this
2489 set are also included in the result.
2490 @end deffn
2491
2492 @deffn {Scheme Procedure} string->char-set! str base_cs
2493 @deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2494 Convert the string @var{str} to a character set. The
2495 characters from the string are added to @var{base_cs}, and
2496 @var{base_cs} is returned.
2497 @end deffn
2498
2499 @deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2500 @deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2501 Return a character set containing every character from @var{cs}
2502 so that it satisfies @var{pred}. If provided, the characters
2503 from @var{base_cs} are added to the result.
2504 @end deffn
2505
2506 @deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2507 @deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2508 Return a character set containing every character from @var{cs}
2509 so that it satisfies @var{pred}. The characters are added to
2510 @var{base_cs} and @var{base_cs} is returned.
2511 @end deffn
2512
2513 @deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2514 @deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2515 Return a character set containing all characters whose
2516 character codes lie in the half-open range
2517 [@var{lower},@var{upper}).
2518
2519 If @var{error} is a true value, an error is signalled if the
2520 specified range contains characters which are not contained in
2521 the implemented character range. If @var{error} is @code{#f},
2522 these characters are silently left out of the resulting
2523 character set.
2524
2525 The characters in @var{base_cs} are added to the result, if
2526 given.
2527 @end deffn
2528
2529 @deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2530 @deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2531 Return a character set containing all characters whose
2532 character codes lie in the half-open range
2533 [@var{lower},@var{upper}).
2534
2535 If @var{error} is a true value, an error is signalled if the
2536 specified range contains characters which are not contained in
2537 the implemented character range. If @var{error} is @code{#f},
2538 these characters are silently left out of the resulting
2539 character set.
2540
2541 The characters are added to @var{base_cs} and @var{base_cs} is
2542 returned.
2543 @end deffn
2544
2545 @deffn {Scheme Procedure} ->char-set x
2546 @deffnx {C Function} scm_to_char_set (x)
2547 Coerces x into a char-set. @var{x} may be a string, character or
2548 char-set. A string is converted to the set of its constituent
2549 characters; a character is converted to a singleton set; a char-set is
2550 returned as-is.
2551 @end deffn
2552
2553 @c ===================================================================
2554
2555 @node Querying Character Sets
2556 @subsubsection Querying Character Sets
2557
2558 Access the elements and other information of a character set with these
2559 procedures.
2560
2561 @deffn {Scheme Procedure} %char-set-dump cs
2562 Returns an association list containing debugging information
2563 for @var{cs}. The association list has the following entries.
2564 @table @code
2565 @item char-set
2566 The char-set itself
2567 @item len
2568 The number of groups of contiguous code points the char-set
2569 contains
2570 @item ranges
2571 A list of lists where each sublist is a range of code points
2572 and their associated characters
2573 @end table
2574 The return value of this function cannot be relied upon to be
2575 consistent between versions of Guile and should not be used in code.
2576 @end deffn
2577
2578 @deffn {Scheme Procedure} char-set-size cs
2579 @deffnx {C Function} scm_char_set_size (cs)
2580 Return the number of elements in character set @var{cs}.
2581 @end deffn
2582
2583 @deffn {Scheme Procedure} char-set-count pred cs
2584 @deffnx {C Function} scm_char_set_count (pred, cs)
2585 Return the number of the elements int the character set
2586 @var{cs} which satisfy the predicate @var{pred}.
2587 @end deffn
2588
2589 @deffn {Scheme Procedure} char-set->list cs
2590 @deffnx {C Function} scm_char_set_to_list (cs)
2591 Return a list containing the elements of the character set
2592 @var{cs}.
2593 @end deffn
2594
2595 @deffn {Scheme Procedure} char-set->string cs
2596 @deffnx {C Function} scm_char_set_to_string (cs)
2597 Return a string containing the elements of the character set
2598 @var{cs}. The order in which the characters are placed in the
2599 string is not defined.
2600 @end deffn
2601
2602 @deffn {Scheme Procedure} char-set-contains? cs ch
2603 @deffnx {C Function} scm_char_set_contains_p (cs, ch)
2604 Return @code{#t} if the character @var{ch} is contained in the
2605 character set @var{cs}, or @code{#f} otherwise.
2606 @end deffn
2607
2608 @deffn {Scheme Procedure} char-set-every pred cs
2609 @deffnx {C Function} scm_char_set_every (pred, cs)
2610 Return a true value if every character in the character set
2611 @var{cs} satisfies the predicate @var{pred}.
2612 @end deffn
2613
2614 @deffn {Scheme Procedure} char-set-any pred cs
2615 @deffnx {C Function} scm_char_set_any (pred, cs)
2616 Return a true value if any character in the character set
2617 @var{cs} satisfies the predicate @var{pred}.
2618 @end deffn
2619
2620 @c ===================================================================
2621
2622 @node Character-Set Algebra
2623 @subsubsection Character-Set Algebra
2624
2625 Character sets can be manipulated with the common set algebra operation,
2626 such as union, complement, intersection etc. All of these procedures
2627 provide side-effecting variants, which modify their character set
2628 argument(s).
2629
2630 @deffn {Scheme Procedure} char-set-adjoin cs chr @dots{}
2631 @deffnx {C Function} scm_char_set_adjoin (cs, chrs)
2632 Add all character arguments to the first argument, which must
2633 be a character set.
2634 @end deffn
2635
2636 @deffn {Scheme Procedure} char-set-delete cs chr @dots{}
2637 @deffnx {C Function} scm_char_set_delete (cs, chrs)
2638 Delete all character arguments from the first argument, which
2639 must be a character set.
2640 @end deffn
2641
2642 @deffn {Scheme Procedure} char-set-adjoin! cs chr @dots{}
2643 @deffnx {C Function} scm_char_set_adjoin_x (cs, chrs)
2644 Add all character arguments to the first argument, which must
2645 be a character set.
2646 @end deffn
2647
2648 @deffn {Scheme Procedure} char-set-delete! cs chr @dots{}
2649 @deffnx {C Function} scm_char_set_delete_x (cs, chrs)
2650 Delete all character arguments from the first argument, which
2651 must be a character set.
2652 @end deffn
2653
2654 @deffn {Scheme Procedure} char-set-complement cs
2655 @deffnx {C Function} scm_char_set_complement (cs)
2656 Return the complement of the character set @var{cs}.
2657 @end deffn
2658
2659 Note that the complement of a character set is likely to contain many
2660 reserved code points (code points that are not associated with
2661 characters). It may be helpful to modify the output of
2662 @code{char-set-complement} by computing its intersection with the set
2663 of designated code points, @code{char-set:designated}.
2664
2665 @deffn {Scheme Procedure} char-set-union cs @dots{}
2666 @deffnx {C Function} scm_char_set_union (char_sets)
2667 Return the union of all argument character sets.
2668 @end deffn
2669
2670 @deffn {Scheme Procedure} char-set-intersection cs @dots{}
2671 @deffnx {C Function} scm_char_set_intersection (char_sets)
2672 Return the intersection of all argument character sets.
2673 @end deffn
2674
2675 @deffn {Scheme Procedure} char-set-difference cs1 cs @dots{}
2676 @deffnx {C Function} scm_char_set_difference (cs1, char_sets)
2677 Return the difference of all argument character sets.
2678 @end deffn
2679
2680 @deffn {Scheme Procedure} char-set-xor cs @dots{}
2681 @deffnx {C Function} scm_char_set_xor (char_sets)
2682 Return the exclusive-or of all argument character sets.
2683 @end deffn
2684
2685 @deffn {Scheme Procedure} char-set-diff+intersection cs1 cs @dots{}
2686 @deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, char_sets)
2687 Return the difference and the intersection of all argument
2688 character sets.
2689 @end deffn
2690
2691 @deffn {Scheme Procedure} char-set-complement! cs
2692 @deffnx {C Function} scm_char_set_complement_x (cs)
2693 Return the complement of the character set @var{cs}.
2694 @end deffn
2695
2696 @deffn {Scheme Procedure} char-set-union! cs1 cs @dots{}
2697 @deffnx {C Function} scm_char_set_union_x (cs1, char_sets)
2698 Return the union of all argument character sets.
2699 @end deffn
2700
2701 @deffn {Scheme Procedure} char-set-intersection! cs1 cs @dots{}
2702 @deffnx {C Function} scm_char_set_intersection_x (cs1, char_sets)
2703 Return the intersection of all argument character sets.
2704 @end deffn
2705
2706 @deffn {Scheme Procedure} char-set-difference! cs1 cs @dots{}
2707 @deffnx {C Function} scm_char_set_difference_x (cs1, char_sets)
2708 Return the difference of all argument character sets.
2709 @end deffn
2710
2711 @deffn {Scheme Procedure} char-set-xor! cs1 cs @dots{}
2712 @deffnx {C Function} scm_char_set_xor_x (cs1, char_sets)
2713 Return the exclusive-or of all argument character sets.
2714 @end deffn
2715
2716 @deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 cs @dots{}
2717 @deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, char_sets)
2718 Return the difference and the intersection of all argument
2719 character sets.
2720 @end deffn
2721
2722 @c ===================================================================
2723
2724 @node Standard Character Sets
2725 @subsubsection Standard Character Sets
2726
2727 In order to make the use of the character set data type and procedures
2728 useful, several predefined character set variables exist.
2729
2730 @cindex codeset
2731 @cindex charset
2732 @cindex locale
2733
2734 These character sets are locale independent and are not recomputed
2735 upon a @code{setlocale} call. They contain characters from the whole
2736 range of Unicode code points. For instance, @code{char-set:letter}
2737 contains about 100,000 characters.
2738
2739 @defvr {Scheme Variable} char-set:lower-case
2740 @defvrx {C Variable} scm_char_set_lower_case
2741 All lower-case characters.
2742 @end defvr
2743
2744 @defvr {Scheme Variable} char-set:upper-case
2745 @defvrx {C Variable} scm_char_set_upper_case
2746 All upper-case characters.
2747 @end defvr
2748
2749 @defvr {Scheme Variable} char-set:title-case
2750 @defvrx {C Variable} scm_char_set_title_case
2751 All single characters that function as if they were an upper-case
2752 letter followed by a lower-case letter.
2753 @end defvr
2754
2755 @defvr {Scheme Variable} char-set:letter
2756 @defvrx {C Variable} scm_char_set_letter
2757 All letters. This includes @code{char-set:lower-case},
2758 @code{char-set:upper-case}, @code{char-set:title-case}, and many
2759 letters that have no case at all. For example, Chinese and Japanese
2760 characters typically have no concept of case.
2761 @end defvr
2762
2763 @defvr {Scheme Variable} char-set:digit
2764 @defvrx {C Variable} scm_char_set_digit
2765 All digits.
2766 @end defvr
2767
2768 @defvr {Scheme Variable} char-set:letter+digit
2769 @defvrx {C Variable} scm_char_set_letter_and_digit
2770 The union of @code{char-set:letter} and @code{char-set:digit}.
2771 @end defvr
2772
2773 @defvr {Scheme Variable} char-set:graphic
2774 @defvrx {C Variable} scm_char_set_graphic
2775 All characters which would put ink on the paper.
2776 @end defvr
2777
2778 @defvr {Scheme Variable} char-set:printing
2779 @defvrx {C Variable} scm_char_set_printing
2780 The union of @code{char-set:graphic} and @code{char-set:whitespace}.
2781 @end defvr
2782
2783 @defvr {Scheme Variable} char-set:whitespace
2784 @defvrx {C Variable} scm_char_set_whitespace
2785 All whitespace characters.
2786 @end defvr
2787
2788 @defvr {Scheme Variable} char-set:blank
2789 @defvrx {C Variable} scm_char_set_blank
2790 All horizontal whitespace characters, which notably includes
2791 @code{#\space} and @code{#\tab}.
2792 @end defvr
2793
2794 @defvr {Scheme Variable} char-set:iso-control
2795 @defvrx {C Variable} scm_char_set_iso_control
2796 The ISO control characters are the C0 control characters (U+0000 to
2797 U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2798 U+009F).
2799 @end defvr
2800
2801 @defvr {Scheme Variable} char-set:punctuation
2802 @defvrx {C Variable} scm_char_set_punctuation
2803 All punctuation characters, such as the characters
2804 @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
2805 @end defvr
2806
2807 @defvr {Scheme Variable} char-set:symbol
2808 @defvrx {C Variable} scm_char_set_symbol
2809 All symbol characters, such as the characters @code{$+<=>^`|~}.
2810 @end defvr
2811
2812 @defvr {Scheme Variable} char-set:hex-digit
2813 @defvrx {C Variable} scm_char_set_hex_digit
2814 The hexadecimal digits @code{0123456789abcdefABCDEF}.
2815 @end defvr
2816
2817 @defvr {Scheme Variable} char-set:ascii
2818 @defvrx {C Variable} scm_char_set_ascii
2819 All ASCII characters.
2820 @end defvr
2821
2822 @defvr {Scheme Variable} char-set:empty
2823 @defvrx {C Variable} scm_char_set_empty
2824 The empty character set.
2825 @end defvr
2826
2827 @defvr {Scheme Variable} char-set:designated
2828 @defvrx {C Variable} scm_char_set_designated
2829 This character set contains all designated code points. This includes
2830 all the code points to which Unicode has assigned a character or other
2831 meaning.
2832 @end defvr
2833
2834 @defvr {Scheme Variable} char-set:full
2835 @defvrx {C Variable} scm_char_set_full
2836 This character set contains all possible code points. This includes
2837 both designated and reserved code points.
2838 @end defvr
2839
2840 @node Strings
2841 @subsection Strings
2842 @tpindex Strings
2843
2844 Strings are fixed-length sequences of characters. They can be created
2845 by calling constructor procedures, but they can also literally get
2846 entered at the @acronym{REPL} or in Scheme source files.
2847
2848 @c Guile provides a rich set of string processing procedures, because text
2849 @c handling is very important when Guile is used as a scripting language.
2850
2851 Strings always carry the information about how many characters they are
2852 composed of with them, so there is no special end-of-string character,
2853 like in C. That means that Scheme strings can contain any character,
2854 even the @samp{#\nul} character @samp{\0}.
2855
2856 To use strings efficiently, you need to know a bit about how Guile
2857 implements them. In Guile, a string consists of two parts, a head and
2858 the actual memory where the characters are stored. When a string (or
2859 a substring of it) is copied, only a new head gets created, the memory
2860 is usually not copied. The two heads start out pointing to the same
2861 memory.
2862
2863 When one of these two strings is modified, as with @code{string-set!},
2864 their common memory does get copied so that each string has its own
2865 memory and modifying one does not accidentally modify the other as well.
2866 Thus, Guile's strings are `copy on write'; the actual copying of their
2867 memory is delayed until one string is written to.
2868
2869 This implementation makes functions like @code{substring} very
2870 efficient in the common case that no modifications are done to the
2871 involved strings.
2872
2873 If you do know that your strings are getting modified right away, you
2874 can use @code{substring/copy} instead of @code{substring}. This
2875 function performs the copy immediately at the time of creation. This
2876 is more efficient, especially in a multi-threaded program. Also,
2877 @code{substring/copy} can avoid the problem that a short substring
2878 holds on to the memory of a very large original string that could
2879 otherwise be recycled.
2880
2881 If you want to avoid the copy altogether, so that modifications of one
2882 string show up in the other, you can use @code{substring/shared}. The
2883 strings created by this procedure are called @dfn{mutation sharing
2884 substrings} since the substring and the original string share
2885 modifications to each other.
2886
2887 If you want to prevent modifications, use @code{substring/read-only}.
2888
2889 Guile provides all procedures of SRFI-13 and a few more.
2890
2891 @menu
2892 * String Syntax:: Read syntax for strings.
2893 * String Predicates:: Testing strings for certain properties.
2894 * String Constructors:: Creating new string objects.
2895 * List/String Conversion:: Converting from/to lists of characters.
2896 * String Selection:: Select portions from strings.
2897 * String Modification:: Modify parts or whole strings.
2898 * String Comparison:: Lexicographic ordering predicates.
2899 * String Searching:: Searching in strings.
2900 * Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2901 * Reversing and Appending Strings:: Appending strings to form a new string.
2902 * Mapping Folding and Unfolding:: Iterating over strings.
2903 * Miscellaneous String Operations:: Replicating, insertion, parsing, ...
2904 * Representing Strings as Bytes:: Encoding and decoding strings.
2905 * Conversion to/from C::
2906 * String Internals:: The storage strategy for strings.
2907 @end menu
2908
2909 @node String Syntax
2910 @subsubsection String Read Syntax
2911
2912 @c In the following @code is used to get a good font in TeX etc, but
2913 @c is omitted for Info format, so as not to risk any confusion over
2914 @c whether surrounding ` ' quotes are part of the escape or are
2915 @c special in a string (they're not).
2916
2917 The read syntax for strings is an arbitrarily long sequence of
2918 characters enclosed in double quotes (@nicode{"}).
2919
2920 Backslash is an escape character and can be used to insert the following
2921 special characters. @nicode{\"} and @nicode{\\} are R5RS standard, the
2922 next seven are R6RS standard --- notice they follow C syntax --- and the
2923 remaining four are Guile extensions.
2924
2925 @table @asis
2926 @item @nicode{\\}
2927 Backslash character.
2928
2929 @item @nicode{\"}
2930 Double quote character (an unescaped @nicode{"} is otherwise the end
2931 of the string).
2932
2933 @item @nicode{\a}
2934 Bell character (ASCII 7).
2935
2936 @item @nicode{\f}
2937 Formfeed character (ASCII 12).
2938
2939 @item @nicode{\n}
2940 Newline character (ASCII 10).
2941
2942 @item @nicode{\r}
2943 Carriage return character (ASCII 13).
2944
2945 @item @nicode{\t}
2946 Tab character (ASCII 9).
2947
2948 @item @nicode{\v}
2949 Vertical tab character (ASCII 11).
2950
2951 @item @nicode{\b}
2952 Backspace character (ASCII 8).
2953
2954 @item @nicode{\0}
2955 NUL character (ASCII 0).
2956
2957 @item @nicode{\} followed by newline (ASCII 10)
2958 Nothing. This way if @nicode{\} is the last character in a line, the
2959 string will continue with the first character from the next line,
2960 without a line break.
2961
2962 If the @code{hungry-eol-escapes} reader option is enabled, which is not
2963 the case by default, leading whitespace on the next line is discarded.
2964
2965 @lisp
2966 "foo\
2967 bar"
2968 @result{} "foo bar"
2969 (read-enable 'hungry-eol-escapes)
2970 "foo\
2971 bar"
2972 @result{} "foobar"
2973 @end lisp
2974 @item @nicode{\xHH}
2975 Character code given by two hexadecimal digits. For example
2976 @nicode{\x7f} for an ASCII DEL (127).
2977
2978 @item @nicode{\uHHHH}
2979 Character code given by four hexadecimal digits. For example
2980 @nicode{\u0100} for a capital A with macron (U+0100).
2981
2982 @item @nicode{\UHHHHHH}
2983 Character code given by six hexadecimal digits. For example
2984 @nicode{\U010402}.
2985 @end table
2986
2987 @noindent
2988 The following are examples of string literals:
2989
2990 @lisp
2991 "foo"
2992 "bar plonk"
2993 "Hello World"
2994 "\"Hi\", he said."
2995 @end lisp
2996
2997 The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
2998 chosen to not break compatibility with code written for previous versions of
2999 Guile. The R6RS specification suggests a different, incompatible syntax for hex
3000 escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
3001 digits terminated with a semicolon. If this escape format is desired instead,
3002 it can be enabled with the reader option @code{r6rs-hex-escapes}.
3003
3004 @lisp
3005 (read-enable 'r6rs-hex-escapes)
3006 @end lisp
3007
3008 For more on reader options, @xref{Scheme Read}.
3009
3010 @node String Predicates
3011 @subsubsection String Predicates
3012
3013 The following procedures can be used to check whether a given string
3014 fulfills some specified property.
3015
3016 @rnindex string?
3017 @deffn {Scheme Procedure} string? obj
3018 @deffnx {C Function} scm_string_p (obj)
3019 Return @code{#t} if @var{obj} is a string, else @code{#f}.
3020 @end deffn
3021
3022 @deftypefn {C Function} int scm_is_string (SCM obj)
3023 Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
3024 @end deftypefn
3025
3026 @deffn {Scheme Procedure} string-null? str
3027 @deffnx {C Function} scm_string_null_p (str)
3028 Return @code{#t} if @var{str}'s length is zero, and
3029 @code{#f} otherwise.
3030 @lisp
3031 (string-null? "") @result{} #t
3032 y @result{} "foo"
3033 (string-null? y) @result{} #f
3034 @end lisp
3035 @end deffn
3036
3037 @deffn {Scheme Procedure} string-any char_pred s [start [end]]
3038 @deffnx {C Function} scm_string_any (char_pred, s, start, end)
3039 Check if @var{char_pred} is true for any character in string @var{s}.
3040
3041 @var{char_pred} can be a character to check for any equal to that, or
3042 a character set (@pxref{Character Sets}) to check for any in that set,
3043 or a predicate procedure to call.
3044
3045 For a procedure, calls @code{(@var{char_pred} c)} are made
3046 successively on the characters from @var{start} to @var{end}. If
3047 @var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
3048 stops and that return value is the return from @code{string-any}. The
3049 call on the last character (ie.@: at @math{@var{end}-1}), if that
3050 point is reached, is a tail call.
3051
3052 If there are no characters in @var{s} (ie.@: @var{start} equals
3053 @var{end}) then the return is @code{#f}.
3054 @end deffn
3055
3056 @deffn {Scheme Procedure} string-every char_pred s [start [end]]
3057 @deffnx {C Function} scm_string_every (char_pred, s, start, end)
3058 Check if @var{char_pred} is true for every character in string
3059 @var{s}.
3060
3061 @var{char_pred} can be a character to check for every character equal
3062 to that, or a character set (@pxref{Character Sets}) to check for
3063 every character being in that set, or a predicate procedure to call.
3064
3065 For a procedure, calls @code{(@var{char_pred} c)} are made
3066 successively on the characters from @var{start} to @var{end}. If
3067 @var{char_pred} returns @code{#f}, @code{string-every} stops and
3068 returns @code{#f}. The call on the last character (ie.@: at
3069 @math{@var{end}-1}), if that point is reached, is a tail call and the
3070 return from that call is the return from @code{string-every}.
3071
3072 If there are no characters in @var{s} (ie.@: @var{start} equals
3073 @var{end}) then the return is @code{#t}.
3074 @end deffn
3075
3076 @node String Constructors
3077 @subsubsection String Constructors
3078
3079 The string constructor procedures create new string objects, possibly
3080 initializing them with some specified character data. See also
3081 @xref{String Selection}, for ways to create strings from existing
3082 strings.
3083
3084 @c FIXME::martin: list->string belongs into `List/String Conversion'
3085
3086 @deffn {Scheme Procedure} string char@dots{}
3087 @rnindex string
3088 Return a newly allocated string made from the given character
3089 arguments.
3090
3091 @example
3092 (string #\x #\y #\z) @result{} "xyz"
3093 (string) @result{} ""
3094 @end example
3095 @end deffn
3096
3097 @deffn {Scheme Procedure} list->string lst
3098 @deffnx {C Function} scm_string (lst)
3099 @rnindex list->string
3100 Return a newly allocated string made from a list of characters.
3101
3102 @example
3103 (list->string '(#\a #\b #\c)) @result{} "abc"
3104 @end example
3105 @end deffn
3106
3107 @deffn {Scheme Procedure} reverse-list->string lst
3108 @deffnx {C Function} scm_reverse_list_to_string (lst)
3109 Return a newly allocated string made from a list of characters, in
3110 reverse order.
3111
3112 @example
3113 (reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
3114 @end example
3115 @end deffn
3116
3117 @rnindex make-string
3118 @deffn {Scheme Procedure} make-string k [chr]
3119 @deffnx {C Function} scm_make_string (k, chr)
3120 Return a newly allocated string of
3121 length @var{k}. If @var{chr} is given, then all elements of
3122 the string are initialized to @var{chr}, otherwise the contents
3123 of the string are unspecified.
3124 @end deffn
3125
3126 @deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
3127 Like @code{scm_make_string}, but expects the length as a
3128 @code{size_t}.
3129 @end deftypefn
3130
3131 @deffn {Scheme Procedure} string-tabulate proc len
3132 @deffnx {C Function} scm_string_tabulate (proc, len)
3133 @var{proc} is an integer->char procedure. Construct a string
3134 of size @var{len} by applying @var{proc} to each index to
3135 produce the corresponding string element. The order in which
3136 @var{proc} is applied to the indices is not specified.
3137 @end deffn
3138
3139 @deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
3140 @deffnx {C Function} scm_string_join (ls, delimiter, grammar)
3141 Append the string in the string list @var{ls}, using the string
3142 @var{delimiter} as a delimiter between the elements of @var{ls}.
3143 @var{grammar} is a symbol which specifies how the delimiter is
3144 placed between the strings, and defaults to the symbol
3145 @code{infix}.
3146
3147 @table @code
3148 @item infix
3149 Insert the separator between list elements. An empty string
3150 will produce an empty list.
3151 @item string-infix
3152 Like @code{infix}, but will raise an error if given the empty
3153 list.
3154 @item suffix
3155 Insert the separator after every list element.
3156 @item prefix
3157 Insert the separator before each list element.
3158 @end table
3159 @end deffn
3160
3161 @node List/String Conversion
3162 @subsubsection List/String conversion
3163
3164 When processing strings, it is often convenient to first convert them
3165 into a list representation by using the procedure @code{string->list},
3166 work with the resulting list, and then convert it back into a string.
3167 These procedures are useful for similar tasks.
3168
3169 @rnindex string->list
3170 @deffn {Scheme Procedure} string->list str [start [end]]
3171 @deffnx {C Function} scm_substring_to_list (str, start, end)
3172 @deffnx {C Function} scm_string_to_list (str)
3173 Convert the string @var{str} into a list of characters.
3174 @end deffn
3175
3176 @deffn {Scheme Procedure} string-split str char_pred
3177 @deffnx {C Function} scm_string_split (str, char_pred)
3178 Split the string @var{str} into a list of substrings delimited
3179 by appearances of characters that
3180
3181 @itemize @bullet
3182 @item
3183 equal @var{char_pred}, if it is a character,
3184
3185 @item
3186 satisfy the predicate @var{char_pred}, if it is a procedure,
3187
3188 @item
3189 are in the set @var{char_pred}, if it is a character set.
3190 @end itemize
3191
3192 Note that an empty substring between separator characters will result in
3193 an empty string in the result list.
3194
3195 @lisp
3196 (string-split "root:x:0:0:root:/root:/bin/bash" #\:)
3197 @result{}
3198 ("root" "x" "0" "0" "root" "/root" "/bin/bash")
3199
3200 (string-split "::" #\:)
3201 @result{}
3202 ("" "" "")
3203
3204 (string-split "" #\:)
3205 @result{}
3206 ("")
3207 @end lisp
3208 @end deffn
3209
3210
3211 @node String Selection
3212 @subsubsection String Selection
3213
3214 Portions of strings can be extracted by these procedures.
3215 @code{string-ref} delivers individual characters whereas
3216 @code{substring} can be used to extract substrings from longer strings.
3217
3218 @rnindex string-length
3219 @deffn {Scheme Procedure} string-length string
3220 @deffnx {C Function} scm_string_length (string)
3221 Return the number of characters in @var{string}.
3222 @end deffn
3223
3224 @deftypefn {C Function} size_t scm_c_string_length (SCM str)
3225 Return the number of characters in @var{str} as a @code{size_t}.
3226 @end deftypefn
3227
3228 @rnindex string-ref
3229 @deffn {Scheme Procedure} string-ref str k
3230 @deffnx {C Function} scm_string_ref (str, k)
3231 Return character @var{k} of @var{str} using zero-origin
3232 indexing. @var{k} must be a valid index of @var{str}.
3233 @end deffn
3234
3235 @deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
3236 Return character @var{k} of @var{str} using zero-origin
3237 indexing. @var{k} must be a valid index of @var{str}.
3238 @end deftypefn
3239
3240 @rnindex string-copy
3241 @deffn {Scheme Procedure} string-copy str [start [end]]
3242 @deffnx {C Function} scm_substring_copy (str, start, end)
3243 @deffnx {C Function} scm_string_copy (str)
3244 Return a copy of the given string @var{str}.
3245
3246 The returned string shares storage with @var{str} initially, but it is
3247 copied as soon as one of the two strings is modified.
3248 @end deffn
3249
3250 @rnindex substring
3251 @deffn {Scheme Procedure} substring str start [end]
3252 @deffnx {C Function} scm_substring (str, start, end)
3253 Return a new string formed from the characters
3254 of @var{str} beginning with index @var{start} (inclusive) and
3255 ending with index @var{end} (exclusive).
3256 @var{str} must be a string, @var{start} and @var{end} must be
3257 exact integers satisfying:
3258
3259 0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
3260
3261 The returned string shares storage with @var{str} initially, but it is
3262 copied as soon as one of the two strings is modified.
3263 @end deffn
3264
3265 @deffn {Scheme Procedure} substring/shared str start [end]
3266 @deffnx {C Function} scm_substring_shared (str, start, end)
3267 Like @code{substring}, but the strings continue to share their storage
3268 even if they are modified. Thus, modifications to @var{str} show up
3269 in the new string, and vice versa.
3270 @end deffn
3271
3272 @deffn {Scheme Procedure} substring/copy str start [end]
3273 @deffnx {C Function} scm_substring_copy (str, start, end)
3274 Like @code{substring}, but the storage for the new string is copied
3275 immediately.
3276 @end deffn
3277
3278 @deffn {Scheme Procedure} substring/read-only str start [end]
3279 @deffnx {C Function} scm_substring_read_only (str, start, end)
3280 Like @code{substring}, but the resulting string can not be modified.
3281 @end deffn
3282
3283 @deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
3284 @deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
3285 @deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
3286 @deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
3287 Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
3288 @end deftypefn
3289
3290 @deffn {Scheme Procedure} string-take s n
3291 @deffnx {C Function} scm_string_take (s, n)
3292 Return the @var{n} first characters of @var{s}.
3293 @end deffn
3294
3295 @deffn {Scheme Procedure} string-drop s n
3296 @deffnx {C Function} scm_string_drop (s, n)
3297 Return all but the first @var{n} characters of @var{s}.
3298 @end deffn
3299
3300 @deffn {Scheme Procedure} string-take-right s n
3301 @deffnx {C Function} scm_string_take_right (s, n)
3302 Return the @var{n} last characters of @var{s}.
3303 @end deffn
3304
3305 @deffn {Scheme Procedure} string-drop-right s n
3306 @deffnx {C Function} scm_string_drop_right (s, n)
3307 Return all but the last @var{n} characters of @var{s}.
3308 @end deffn
3309
3310 @deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
3311 @deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
3312 @deffnx {C Function} scm_string_pad (s, len, chr, start, end)
3313 @deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
3314 Take characters @var{start} to @var{end} from the string @var{s} and
3315 either pad with @var{chr} or truncate them to give @var{len}
3316 characters.
3317
3318 @code{string-pad} pads or truncates on the left, so for example
3319
3320 @example
3321 (string-pad "x" 3) @result{} " x"
3322 (string-pad "abcde" 3) @result{} "cde"
3323 @end example
3324
3325 @code{string-pad-right} pads or truncates on the right, so for example
3326
3327 @example
3328 (string-pad-right "x" 3) @result{} "x "
3329 (string-pad-right "abcde" 3) @result{} "abc"
3330 @end example
3331 @end deffn
3332
3333 @deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
3334 @deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
3335 @deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
3336 @deffnx {C Function} scm_string_trim (s, char_pred, start, end)
3337 @deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
3338 @deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
3339 Trim occurrences of @var{char_pred} from the ends of @var{s}.
3340
3341 @code{string-trim} trims @var{char_pred} characters from the left
3342 (start) of the string, @code{string-trim-right} trims them from the
3343 right (end) of the string, @code{string-trim-both} trims from both
3344 ends.
3345
3346 @var{char_pred} can be a character, a character set, or a predicate
3347 procedure to call on each character. If @var{char_pred} is not given
3348 the default is whitespace as per @code{char-set:whitespace}
3349 (@pxref{Standard Character Sets}).
3350
3351 @example
3352 (string-trim " x ") @result{} "x "
3353 (string-trim-right "banana" #\a) @result{} "banan"
3354 (string-trim-both ".,xy:;" char-set:punctuation)
3355 @result{} "xy"
3356 (string-trim-both "xyzzy" (lambda (c)
3357 (or (eqv? c #\x)
3358 (eqv? c #\y))))
3359 @result{} "zz"
3360 @end example
3361 @end deffn
3362
3363 @node String Modification
3364 @subsubsection String Modification
3365
3366 These procedures are for modifying strings in-place. This means that the
3367 result of the operation is not a new string; instead, the original string's
3368 memory representation is modified.
3369
3370 @rnindex string-set!
3371 @deffn {Scheme Procedure} string-set! str k chr
3372 @deffnx {C Function} scm_string_set_x (str, k, chr)
3373 Store @var{chr} in element @var{k} of @var{str} and return
3374 an unspecified value. @var{k} must be a valid index of
3375 @var{str}.
3376 @end deffn
3377
3378 @deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3379 Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3380 @end deftypefn
3381
3382 @rnindex string-fill!
3383 @deffn {Scheme Procedure} string-fill! str chr [start [end]]
3384 @deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
3385 @deffnx {C Function} scm_string_fill_x (str, chr)
3386 Stores @var{chr} in every element of the given @var{str} and
3387 returns an unspecified value.
3388 @end deffn
3389
3390 @deffn {Scheme Procedure} substring-fill! str start end fill
3391 @deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3392 Change every character in @var{str} between @var{start} and
3393 @var{end} to @var{fill}.
3394
3395 @lisp
3396 (define y (string-copy "abcdefg"))
3397 (substring-fill! y 1 3 #\r)
3398 y
3399 @result{} "arrdefg"
3400 @end lisp
3401 @end deffn
3402
3403 @deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3404 @deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3405 Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3406 into @var{str2} beginning at position @var{start2}.
3407 @var{str1} and @var{str2} can be the same string.
3408 @end deffn
3409
3410 @deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3411 @deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3412 Copy the sequence of characters from index range [@var{start},
3413 @var{end}) in string @var{s} to string @var{target}, beginning
3414 at index @var{tstart}. The characters are copied left-to-right
3415 or right-to-left as needed -- the copy is guaranteed to work,
3416 even if @var{target} and @var{s} are the same string. It is an
3417 error if the copy operation runs off the end of the target
3418 string.
3419 @end deffn
3420
3421
3422 @node String Comparison
3423 @subsubsection String Comparison
3424
3425 The procedures in this section are similar to the character ordering
3426 predicates (@pxref{Characters}), but are defined on character sequences.
3427
3428 The first set is specified in R5RS and has names that end in @code{?}.
3429 The second set is specified in SRFI-13 and the names have not ending
3430 @code{?}.
3431
3432 The predicates ending in @code{-ci} ignore the character case
3433 when comparing strings. For now, case-insensitive comparison is done
3434 using the R5RS rules, where every lower-case character that has a
3435 single character upper-case form is converted to uppercase before
3436 comparison. See @xref{Text Collation, the @code{(ice-9
3437 i18n)} module}, for locale-dependent string comparison.
3438
3439 @rnindex string=?
3440 @deffn {Scheme Procedure} string=? s1 s2 s3 @dots{}
3441 Lexicographic equality predicate; return @code{#t} if all strings are
3442 the same length and contain the same characters in the same positions,
3443 otherwise return @code{#f}.
3444
3445 The procedure @code{string-ci=?} treats upper and lower case
3446 letters as though they were the same character, but
3447 @code{string=?} treats upper and lower case as distinct
3448 characters.
3449 @end deffn
3450
3451 @rnindex string<?
3452 @deffn {Scheme Procedure} string<? s1 s2 s3 @dots{}
3453 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3454 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3455 lexicographically less than @var{str_i+1}.
3456 @end deffn
3457
3458 @rnindex string<=?
3459 @deffn {Scheme Procedure} string<=? s1 s2 s3 @dots{}
3460 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3461 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3462 lexicographically less than or equal to @var{str_i+1}.
3463 @end deffn
3464
3465 @rnindex string>?
3466 @deffn {Scheme Procedure} string>? s1 s2 s3 @dots{}
3467 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3468 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3469 lexicographically greater than @var{str_i+1}.
3470 @end deffn
3471
3472 @rnindex string>=?
3473 @deffn {Scheme Procedure} string>=? s1 s2 s3 @dots{}
3474 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3475 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3476 lexicographically greater than or equal to @var{str_i+1}.
3477 @end deffn
3478
3479 @rnindex string-ci=?
3480 @deffn {Scheme Procedure} string-ci=? s1 s2 s3 @dots{}
3481 Case-insensitive string equality predicate; return @code{#t} if
3482 all strings are the same length and their component
3483 characters match (ignoring case) at each position; otherwise
3484 return @code{#f}.
3485 @end deffn
3486
3487 @rnindex string-ci<?
3488 @deffn {Scheme Procedure} string-ci<? s1 s2 s3 @dots{}
3489 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3490 for every pair of consecutive string arguments @var{str_i} and
3491 @var{str_i+1}, @var{str_i} is lexicographically less than @var{str_i+1}
3492 regardless of case.
3493 @end deffn
3494
3495 @rnindex string<=?
3496 @deffn {Scheme Procedure} string-ci<=? s1 s2 s3 @dots{}
3497 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3498 for every pair of consecutive string arguments @var{str_i} and
3499 @var{str_i+1}, @var{str_i} is lexicographically less than or equal to
3500 @var{str_i+1} regardless of case.
3501 @end deffn
3502
3503 @rnindex string-ci>?
3504 @deffn {Scheme Procedure} string-ci>? s1 s2 s3 @dots{}
3505 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3506 for every pair of consecutive string arguments @var{str_i} and
3507 @var{str_i+1}, @var{str_i} is lexicographically greater than
3508 @var{str_i+1} regardless of case.
3509 @end deffn
3510
3511 @rnindex string-ci>=?
3512 @deffn {Scheme Procedure} string-ci>=? s1 s2 s3 @dots{}
3513 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3514 for every pair of consecutive string arguments @var{str_i} and
3515 @var{str_i+1}, @var{str_i} is lexicographically greater than or equal to
3516 @var{str_i+1} regardless of case.
3517 @end deffn
3518
3519 @deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3520 @deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3521 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3522 mismatch index, depending upon whether @var{s1} is less than,
3523 equal to, or greater than @var{s2}. The mismatch index is the
3524 largest index @var{i} such that for every 0 <= @var{j} <
3525 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3526 @var{i} is the first position that does not match.
3527 @end deffn
3528
3529 @deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3530 @deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3531 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3532 mismatch index, depending upon whether @var{s1} is less than,
3533 equal to, or greater than @var{s2}. The mismatch index is the
3534 largest index @var{i} such that for every 0 <= @var{j} <
3535 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3536 @var{i} is the first position where the lowercased letters
3537 do not match.
3538
3539 @end deffn
3540
3541 @deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3542 @deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3543 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3544 value otherwise.
3545 @end deffn
3546
3547 @deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3548 @deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3549 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3550 value otherwise.
3551 @end deffn
3552
3553 @deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3554 @deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3555 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3556 true value otherwise.
3557 @end deffn
3558
3559 @deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3560 @deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3561 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3562 true value otherwise.
3563 @end deffn
3564
3565 @deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3566 @deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3567 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3568 value otherwise.
3569 @end deffn
3570
3571 @deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3572 @deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3573 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3574 otherwise.
3575 @end deffn
3576
3577 @deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3578 @deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3579 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3580 value otherwise. The character comparison is done
3581 case-insensitively.
3582 @end deffn
3583
3584 @deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3585 @deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3586 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3587 value otherwise. The character comparison is done
3588 case-insensitively.
3589 @end deffn
3590
3591 @deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3592 @deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3593 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3594 true value otherwise. The character comparison is done
3595 case-insensitively.
3596 @end deffn
3597
3598 @deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3599 @deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3600 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3601 true value otherwise. The character comparison is done
3602 case-insensitively.
3603 @end deffn
3604
3605 @deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3606 @deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3607 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3608 value otherwise. The character comparison is done
3609 case-insensitively.
3610 @end deffn
3611
3612 @deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3613 @deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3614 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3615 otherwise. The character comparison is done
3616 case-insensitively.
3617 @end deffn
3618
3619 @deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3620 @deffnx {C Function} scm_substring_hash (s, bound, start, end)
3621 Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3622 @end deffn
3623
3624 @deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3625 @deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3626 Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3627 @end deffn
3628
3629 Because the same visual appearance of an abstract Unicode character can
3630 be obtained via multiple sequences of Unicode characters, even the
3631 case-insensitive string comparison functions described above may return
3632 @code{#f} when presented with strings containing different
3633 representations of the same character. For example, the Unicode
3634 character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
3635 represented with a single character (U+1E69) or by the character ``LATIN
3636 SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
3637 DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
3638
3639 For this reason, it is often desirable to ensure that the strings
3640 to be compared are using a mutually consistent representation for every
3641 character. The Unicode standard defines two methods of normalizing the
3642 contents of strings: Decomposition, which breaks composite characters
3643 into a set of constituent characters with an ordering defined by the
3644 Unicode Standard; and composition, which performs the converse.
3645
3646 There are two decomposition operations. ``Canonical decomposition''
3647 produces character sequences that share the same visual appearance as
3648 the original characters, while ``compatibility decomposition'' produces
3649 ones whose visual appearances may differ from the originals but which
3650 represent the same abstract character.
3651
3652 These operations are encapsulated in the following set of normalization
3653 forms:
3654
3655 @table @dfn
3656 @item NFD
3657 Characters are decomposed to their canonical forms.
3658
3659 @item NFKD
3660 Characters are decomposed to their compatibility forms.
3661
3662 @item NFC
3663 Characters are decomposed to their canonical forms, then composed.
3664
3665 @item NFKC
3666 Characters are decomposed to their compatibility forms, then composed.
3667
3668 @end table
3669
3670 The functions below put their arguments into one of the forms described
3671 above.
3672
3673 @deffn {Scheme Procedure} string-normalize-nfd s
3674 @deffnx {C Function} scm_string_normalize_nfd (s)
3675 Return the @code{NFD} normalized form of @var{s}.
3676 @end deffn
3677
3678 @deffn {Scheme Procedure} string-normalize-nfkd s
3679 @deffnx {C Function} scm_string_normalize_nfkd (s)
3680 Return the @code{NFKD} normalized form of @var{s}.
3681 @end deffn
3682
3683 @deffn {Scheme Procedure} string-normalize-nfc s
3684 @deffnx {C Function} scm_string_normalize_nfc (s)
3685 Return the @code{NFC} normalized form of @var{s}.
3686 @end deffn
3687
3688 @deffn {Scheme Procedure} string-normalize-nfkc s
3689 @deffnx {C Function} scm_string_normalize_nfkc (s)
3690 Return the @code{NFKC} normalized form of @var{s}.
3691 @end deffn
3692
3693 @node String Searching
3694 @subsubsection String Searching
3695
3696 @deffn {Scheme Procedure} string-index s char_pred [start [end]]
3697 @deffnx {C Function} scm_string_index (s, char_pred, start, end)
3698 Search through the string @var{s} from left to right, returning
3699 the index of the first occurrence of a character which
3700
3701 @itemize @bullet
3702 @item
3703 equals @var{char_pred}, if it is character,
3704
3705 @item
3706 satisfies the predicate @var{char_pred}, if it is a procedure,
3707
3708 @item
3709 is in the set @var{char_pred}, if it is a character set.
3710 @end itemize
3711
3712 Return @code{#f} if no match is found.
3713 @end deffn
3714
3715 @deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3716 @deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3717 Search through the string @var{s} from right to left, returning
3718 the index of the last occurrence of a character which
3719
3720 @itemize @bullet
3721 @item
3722 equals @var{char_pred}, if it is character,
3723
3724 @item
3725 satisfies the predicate @var{char_pred}, if it is a procedure,
3726
3727 @item
3728 is in the set if @var{char_pred} is a character set.
3729 @end itemize
3730
3731 Return @code{#f} if no match is found.
3732 @end deffn
3733
3734 @deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3735 @deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3736 Return the length of the longest common prefix of the two
3737 strings.
3738 @end deffn
3739
3740 @deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3741 @deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3742 Return the length of the longest common prefix of the two
3743 strings, ignoring character case.
3744 @end deffn
3745
3746 @deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3747 @deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3748 Return the length of the longest common suffix of the two
3749 strings.
3750 @end deffn
3751
3752 @deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3753 @deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3754 Return the length of the longest common suffix of the two
3755 strings, ignoring character case.
3756 @end deffn
3757
3758 @deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3759 @deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3760 Is @var{s1} a prefix of @var{s2}?
3761 @end deffn
3762
3763 @deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3764 @deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3765 Is @var{s1} a prefix of @var{s2}, ignoring character case?
3766 @end deffn
3767
3768 @deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3769 @deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3770 Is @var{s1} a suffix of @var{s2}?
3771 @end deffn
3772
3773 @deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3774 @deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3775 Is @var{s1} a suffix of @var{s2}, ignoring character case?
3776 @end deffn
3777
3778 @deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3779 @deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3780 Search through the string @var{s} from right to left, returning
3781 the index of the last occurrence of a character which
3782
3783 @itemize @bullet
3784 @item
3785 equals @var{char_pred}, if it is character,
3786
3787 @item
3788 satisfies the predicate @var{char_pred}, if it is a procedure,
3789
3790 @item
3791 is in the set if @var{char_pred} is a character set.
3792 @end itemize
3793
3794 Return @code{#f} if no match is found.
3795 @end deffn
3796
3797 @deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3798 @deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3799 Search through the string @var{s} from left to right, returning
3800 the index of the first occurrence of a character which
3801
3802 @itemize @bullet
3803 @item
3804 does not equal @var{char_pred}, if it is character,
3805
3806 @item
3807 does not satisfy the predicate @var{char_pred}, if it is a
3808 procedure,
3809
3810 @item
3811 is not in the set if @var{char_pred} is a character set.
3812 @end itemize
3813 @end deffn
3814
3815 @deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3816 @deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3817 Search through the string @var{s} from right to left, returning
3818 the index of the last occurrence of a character which
3819
3820 @itemize @bullet
3821 @item
3822 does not equal @var{char_pred}, if it is character,
3823
3824 @item
3825 does not satisfy the predicate @var{char_pred}, if it is a
3826 procedure,
3827
3828 @item
3829 is not in the set if @var{char_pred} is a character set.
3830 @end itemize
3831 @end deffn
3832
3833 @deffn {Scheme Procedure} string-count s char_pred [start [end]]
3834 @deffnx {C Function} scm_string_count (s, char_pred, start, end)
3835 Return the count of the number of characters in the string
3836 @var{s} which
3837
3838 @itemize @bullet
3839 @item
3840 equals @var{char_pred}, if it is character,
3841
3842 @item
3843 satisfies the predicate @var{char_pred}, if it is a procedure.
3844
3845 @item
3846 is in the set @var{char_pred}, if it is a character set.
3847 @end itemize
3848 @end deffn
3849
3850 @deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3851 @deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3852 Does string @var{s1} contain string @var{s2}? Return the index
3853 in @var{s1} where @var{s2} occurs as a substring, or false.
3854 The optional start/end indices restrict the operation to the
3855 indicated substrings.
3856 @end deffn
3857
3858 @deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3859 @deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3860 Does string @var{s1} contain string @var{s2}? Return the index
3861 in @var{s1} where @var{s2} occurs as a substring, or false.
3862 The optional start/end indices restrict the operation to the
3863 indicated substrings. Character comparison is done
3864 case-insensitively.
3865 @end deffn
3866
3867 @node Alphabetic Case Mapping
3868 @subsubsection Alphabetic Case Mapping
3869
3870 These are procedures for mapping strings to their upper- or lower-case
3871 equivalents, respectively, or for capitalizing strings.
3872
3873 They use the basic case mapping rules for Unicode characters. No
3874 special language or context rules are considered. The resulting strings
3875 are guaranteed to be the same length as the input strings.
3876
3877 @xref{Character Case Mapping, the @code{(ice-9
3878 i18n)} module}, for locale-dependent case conversions.
3879
3880 @deffn {Scheme Procedure} string-upcase str [start [end]]
3881 @deffnx {C Function} scm_substring_upcase (str, start, end)
3882 @deffnx {C Function} scm_string_upcase (str)
3883 Upcase every character in @code{str}.
3884 @end deffn
3885
3886 @deffn {Scheme Procedure} string-upcase! str [start [end]]
3887 @deffnx {C Function} scm_substring_upcase_x (str, start, end)
3888 @deffnx {C Function} scm_string_upcase_x (str)
3889 Destructively upcase every character in @code{str}.
3890
3891 @lisp
3892 (string-upcase! y)
3893 @result{} "ARRDEFG"
3894 y
3895 @result{} "ARRDEFG"
3896 @end lisp
3897 @end deffn
3898
3899 @deffn {Scheme Procedure} string-downcase str [start [end]]
3900 @deffnx {C Function} scm_substring_downcase (str, start, end)
3901 @deffnx {C Function} scm_string_downcase (str)
3902 Downcase every character in @var{str}.
3903 @end deffn
3904
3905 @deffn {Scheme Procedure} string-downcase! str [start [end]]
3906 @deffnx {C Function} scm_substring_downcase_x (str, start, end)
3907 @deffnx {C Function} scm_string_downcase_x (str)
3908 Destructively downcase every character in @var{str}.
3909
3910 @lisp
3911 y
3912 @result{} "ARRDEFG"
3913 (string-downcase! y)
3914 @result{} "arrdefg"
3915 y
3916 @result{} "arrdefg"
3917 @end lisp
3918 @end deffn
3919
3920 @deffn {Scheme Procedure} string-capitalize str
3921 @deffnx {C Function} scm_string_capitalize (str)
3922 Return a freshly allocated string with the characters in
3923 @var{str}, where the first character of every word is
3924 capitalized.
3925 @end deffn
3926
3927 @deffn {Scheme Procedure} string-capitalize! str
3928 @deffnx {C Function} scm_string_capitalize_x (str)
3929 Upcase the first character of every word in @var{str}
3930 destructively and return @var{str}.
3931
3932 @lisp
3933 y @result{} "hello world"
3934 (string-capitalize! y) @result{} "Hello World"
3935 y @result{} "Hello World"
3936 @end lisp
3937 @end deffn
3938
3939 @deffn {Scheme Procedure} string-titlecase str [start [end]]
3940 @deffnx {C Function} scm_string_titlecase (str, start, end)
3941 Titlecase every first character in a word in @var{str}.
3942 @end deffn
3943
3944 @deffn {Scheme Procedure} string-titlecase! str [start [end]]
3945 @deffnx {C Function} scm_string_titlecase_x (str, start, end)
3946 Destructively titlecase every first character in a word in
3947 @var{str}.
3948 @end deffn
3949
3950 @node Reversing and Appending Strings
3951 @subsubsection Reversing and Appending Strings
3952
3953 @deffn {Scheme Procedure} string-reverse str [start [end]]
3954 @deffnx {C Function} scm_string_reverse (str, start, end)
3955 Reverse the string @var{str}. The optional arguments
3956 @var{start} and @var{end} delimit the region of @var{str} to
3957 operate on.
3958 @end deffn
3959
3960 @deffn {Scheme Procedure} string-reverse! str [start [end]]
3961 @deffnx {C Function} scm_string_reverse_x (str, start, end)
3962 Reverse the string @var{str} in-place. The optional arguments
3963 @var{start} and @var{end} delimit the region of @var{str} to
3964 operate on. The return value is unspecified.
3965 @end deffn
3966
3967 @rnindex string-append
3968 @deffn {Scheme Procedure} string-append arg @dots{}
3969 @deffnx {C Function} scm_string_append (args)
3970 Return a newly allocated string whose characters form the
3971 concatenation of the given strings, @var{arg} @enddots{}.
3972
3973 @example
3974 (let ((h "hello "))
3975 (string-append h "world"))
3976 @result{} "hello world"
3977 @end example
3978 @end deffn
3979
3980 @deffn {Scheme Procedure} string-append/shared arg @dots{}
3981 @deffnx {C Function} scm_string_append_shared (args)
3982 Like @code{string-append}, but the result may share memory
3983 with the argument strings.
3984 @end deffn
3985
3986 @deffn {Scheme Procedure} string-concatenate ls
3987 @deffnx {C Function} scm_string_concatenate (ls)
3988 Append the elements (which must be strings) of @var{ls} together into a
3989 single string. Guaranteed to return a freshly allocated string.
3990 @end deffn
3991
3992 @deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3993 @deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3994 Without optional arguments, this procedure is equivalent to
3995
3996 @lisp
3997 (string-concatenate (reverse ls))
3998 @end lisp
3999
4000 If the optional argument @var{final_string} is specified, it is
4001 consed onto the beginning to @var{ls} before performing the
4002 list-reverse and string-concatenate operations. If @var{end}
4003 is given, only the characters of @var{final_string} up to index
4004 @var{end} are used.
4005
4006 Guaranteed to return a freshly allocated string.
4007 @end deffn
4008
4009 @deffn {Scheme Procedure} string-concatenate/shared ls
4010 @deffnx {C Function} scm_string_concatenate_shared (ls)
4011 Like @code{string-concatenate}, but the result may share memory
4012 with the strings in the list @var{ls}.
4013 @end deffn
4014
4015 @deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
4016 @deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
4017 Like @code{string-concatenate-reverse}, but the result may
4018 share memory with the strings in the @var{ls} arguments.
4019 @end deffn
4020
4021 @node Mapping Folding and Unfolding
4022 @subsubsection Mapping, Folding, and Unfolding
4023
4024 @deffn {Scheme Procedure} string-map proc s [start [end]]
4025 @deffnx {C Function} scm_string_map (proc, s, start, end)
4026 @var{proc} is a char->char procedure, it is mapped over
4027 @var{s}. The order in which the procedure is applied to the
4028 string elements is not specified.
4029 @end deffn
4030
4031 @deffn {Scheme Procedure} string-map! proc s [start [end]]
4032 @deffnx {C Function} scm_string_map_x (proc, s, start, end)
4033 @var{proc} is a char->char procedure, it is mapped over
4034 @var{s}. The order in which the procedure is applied to the
4035 string elements is not specified. The string @var{s} is
4036 modified in-place, the return value is not specified.
4037 @end deffn
4038
4039 @deffn {Scheme Procedure} string-for-each proc s [start [end]]
4040 @deffnx {C Function} scm_string_for_each (proc, s, start, end)
4041 @var{proc} is mapped over @var{s} in left-to-right order. The
4042 return value is not specified.
4043 @end deffn
4044
4045 @deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
4046 @deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
4047 Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
4048 right.
4049
4050 For example, to change characters to alternately upper and lower case,
4051
4052 @example
4053 (define str (string-copy "studly"))
4054 (string-for-each-index
4055 (lambda (i)
4056 (string-set! str i
4057 ((if (even? i) char-upcase char-downcase)
4058 (string-ref str i))))
4059 str)
4060 str @result{} "StUdLy"
4061 @end example
4062 @end deffn
4063
4064 @deffn {Scheme Procedure} string-fold kons knil s [start [end]]
4065 @deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
4066 Fold @var{kons} over the characters of @var{s}, with @var{knil}
4067 as the terminating element, from left to right. @var{kons}
4068 must expect two arguments: The actual character and the last
4069 result of @var{kons}' application.
4070 @end deffn
4071
4072 @deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
4073 @deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
4074 Fold @var{kons} over the characters of @var{s}, with @var{knil}
4075 as the terminating element, from right to left. @var{kons}
4076 must expect two arguments: The actual character and the last
4077 result of @var{kons}' application.
4078 @end deffn
4079
4080 @deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
4081 @deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
4082 @itemize @bullet
4083 @item @var{g} is used to generate a series of @emph{seed}
4084 values from the initial @var{seed}: @var{seed}, (@var{g}
4085 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4086 @dots{}
4087 @item @var{p} tells us when to stop -- when it returns true
4088 when applied to one of these seed values.
4089 @item @var{f} maps each seed value to the corresponding
4090 character in the result string. These chars are assembled
4091 into the string in a left-to-right order.
4092 @item @var{base} is the optional initial/leftmost portion
4093 of the constructed string; it default to the empty
4094 string.
4095 @item @var{make_final} is applied to the terminal seed
4096 value (on which @var{p} returns true) to produce
4097 the final/rightmost portion of the constructed string.
4098 The default is nothing extra.
4099 @end itemize
4100 @end deffn
4101
4102 @deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
4103 @deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
4104 @itemize @bullet
4105 @item @var{g} is used to generate a series of @emph{seed}
4106 values from the initial @var{seed}: @var{seed}, (@var{g}
4107 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4108 @dots{}
4109 @item @var{p} tells us when to stop -- when it returns true
4110 when applied to one of these seed values.
4111 @item @var{f} maps each seed value to the corresponding
4112 character in the result string. These chars are assembled
4113 into the string in a right-to-left order.
4114 @item @var{base} is the optional initial/rightmost portion
4115 of the constructed string; it default to the empty
4116 string.
4117 @item @var{make_final} is applied to the terminal seed
4118 value (on which @var{p} returns true) to produce
4119 the final/leftmost portion of the constructed string.
4120 It defaults to @code{(lambda (x) )}.
4121 @end itemize
4122 @end deffn
4123
4124 @node Miscellaneous String Operations
4125 @subsubsection Miscellaneous String Operations
4126
4127 @deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
4128 @deffnx {C Function} scm_xsubstring (s, from, to, start, end)
4129 This is the @emph{extended substring} procedure that implements
4130 replicated copying of a substring of some string.
4131
4132 @var{s} is a string, @var{start} and @var{end} are optional
4133 arguments that demarcate a substring of @var{s}, defaulting to
4134 0 and the length of @var{s}. Replicate this substring up and
4135 down index space, in both the positive and negative directions.
4136 @code{xsubstring} returns the substring of this string
4137 beginning at index @var{from}, and ending at @var{to}, which
4138 defaults to @var{from} + (@var{end} - @var{start}).
4139 @end deffn
4140
4141 @deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
4142 @deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
4143 Exactly the same as @code{xsubstring}, but the extracted text
4144 is written into the string @var{target} starting at index
4145 @var{tstart}. The operation is not defined if @code{(eq?
4146 @var{target} @var{s})} or these arguments share storage -- you
4147 cannot copy a string on top of itself.
4148 @end deffn
4149
4150 @deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
4151 @deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
4152 Return the string @var{s1}, but with the characters
4153 @var{start1} @dots{} @var{end1} replaced by the characters
4154 @var{start2} @dots{} @var{end2} from @var{s2}.
4155 @end deffn
4156
4157 @deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
4158 @deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
4159 Split the string @var{s} into a list of substrings, where each
4160 substring is a maximal non-empty contiguous sequence of
4161 characters from the character set @var{token_set}, which
4162 defaults to @code{char-set:graphic}.
4163 If @var{start} or @var{end} indices are provided, they restrict
4164 @code{string-tokenize} to operating on the indicated substring
4165 of @var{s}.
4166 @end deffn
4167
4168 @deffn {Scheme Procedure} string-filter char_pred s [start [end]]
4169 @deffnx {C Function} scm_string_filter (char_pred, s, start, end)
4170 Filter the string @var{s}, retaining only those characters which
4171 satisfy @var{char_pred}.
4172
4173 If @var{char_pred} is a procedure, it is applied to each character as
4174 a predicate, if it is a character, it is tested for equality and if it
4175 is a character set, it is tested for membership.
4176 @end deffn
4177
4178 @deffn {Scheme Procedure} string-delete char_pred s [start [end]]
4179 @deffnx {C Function} scm_string_delete (char_pred, s, start, end)
4180 Delete characters satisfying @var{char_pred} from @var{s}.
4181
4182 If @var{char_pred} is a procedure, it is applied to each character as
4183 a predicate, if it is a character, it is tested for equality and if it
4184 is a character set, it is tested for membership.
4185 @end deffn
4186
4187 @node Representing Strings as Bytes
4188 @subsubsection Representing Strings as Bytes
4189
4190 Out in the cold world outside of Guile, not all strings are treated in
4191 the same way. Out there there are only bytes, and there are many ways
4192 of representing a strings (sequences of characters) as binary data
4193 (sequences of bytes).
4194
4195 As a user, usually you don't have to think about this very much. When
4196 you type on your keyboard, your system encodes your keystrokes as bytes
4197 according to the locale that you have configured on your computer.
4198 Guile uses the locale to decode those bytes back into characters --
4199 hopefully the same characters that you typed in.
4200
4201 All is not so clear when dealing with a system with multiple users, such
4202 as a web server. Your web server might get a request from one user for
4203 data encoded in the ISO-8859-1 character set, and then another request
4204 from a different user for UTF-8 data.
4205
4206 @cindex iconv
4207 @cindex character encoding
4208 Guile provides an @dfn{iconv} module for converting between strings and
4209 sequences of bytes. @xref{Bytevectors}, for more on how Guile
4210 represents raw byte sequences. This module gets its name from the
4211 common @sc{unix} command of the same name.
4212
4213 Note that often it is sufficient to just read and write strings from
4214 ports instead of using these functions. To do this, specify the port
4215 encoding using @code{set-port-encoding!}. @xref{Ports}, for more on
4216 ports and character encodings.
4217
4218 Unlike the rest of the procedures in this section, you have to load the
4219 @code{iconv} module before having access to these procedures:
4220
4221 @example
4222 (use-modules (ice-9 iconv))
4223 @end example
4224
4225 @deffn string->bytevector string encoding [conversion-strategy]
4226 Encode @var{string} as a sequence of bytes.
4227
4228 The string will be encoded in the character set specified by the
4229 @var{encoding} string. If the string has characters that cannot be
4230 represented in the encoding, by default this procedure raises an
4231 @code{encoding-error}. Pass a @var{conversion-strategy} argument to
4232 specify other behaviors.
4233
4234 The return value is a bytevector. @xref{Bytevectors}, for more on
4235 bytevectors. @xref{Ports}, for more on character encodings and
4236 conversion strategies.
4237 @end deffn
4238
4239 @deffn bytevector->string bytevector encoding [conversion-strategy]
4240 Decode @var{bytevector} into a string.
4241
4242 The bytes will be decoded from the character set by the @var{encoding}
4243 string. If the bytes do not form a valid encoding, by default this
4244 procedure raises an @code{decoding-error}. As with
4245 @code{string->bytevector}, pass the optional @var{conversion-strategy}
4246 argument to modify this behavior. @xref{Ports}, for more on character
4247 encodings and conversion strategies.
4248 @end deffn
4249
4250 @deffn call-with-output-encoded-string encoding proc [conversion-strategy]
4251 Like @code{call-with-output-string}, but instead of returning a string,
4252 returns a encoding of the string according to @var{encoding}, as a
4253 bytevector. This procedure can be more efficient than collecting a
4254 string and then converting it via @code{string->bytevector}.
4255 @end deffn
4256
4257 @node Conversion to/from C
4258 @subsubsection Conversion to/from C
4259
4260 When creating a Scheme string from a C string or when converting a
4261 Scheme string to a C string, the concept of character encoding becomes
4262 important.
4263
4264 In C, a string is just a sequence of bytes, and the character encoding
4265 describes the relation between these bytes and the actual characters
4266 that make up the string. For Scheme strings, character encoding is not
4267 an issue (most of the time), since in Scheme you usually treat strings
4268 as character sequences, not byte sequences.
4269
4270 Converting to C and converting from C each have their own challenges.
4271
4272 When converting from C to Scheme, it is important that the sequence of
4273 bytes in the C string be valid with respect to its encoding. ASCII
4274 strings, for example, can't have any bytes greater than 127. An ASCII
4275 byte greater than 127 is considered @emph{ill-formed} and cannot be
4276 converted into a Scheme character.
4277
4278 Problems can occur in the reverse operation as well. Not all character
4279 encodings can hold all possible Scheme characters. Some encodings, like
4280 ASCII for example, can only describe a small subset of all possible
4281 characters. So, when converting to C, one must first decide what to do
4282 with Scheme characters that can't be represented in the C string.
4283
4284 Converting a Scheme string to a C string will often allocate fresh
4285 memory to hold the result. You must take care that this memory is
4286 properly freed eventually. In many cases, this can be achieved by
4287 using @code{scm_dynwind_free} inside an appropriate dynwind context,
4288 @xref{Dynamic Wind}.
4289
4290 @deftypefn {C Function} SCM scm_from_locale_string (const char *str)
4291 @deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
4292 Creates a new Scheme string that has the same contents as @var{str} when
4293 interpreted in the character encoding of the current locale.
4294
4295 For @code{scm_from_locale_string}, @var{str} must be null-terminated.
4296
4297 For @code{scm_from_locale_stringn}, @var{len} specifies the length of
4298 @var{str} in bytes, and @var{str} does not need to be null-terminated.
4299 If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
4300 null-terminated and the real length will be found with @code{strlen}.
4301
4302 If the C string is ill-formed, an error will be raised.
4303
4304 Note that these functions should @emph{not} be used to convert C string
4305 constants, because there is no guarantee that the current locale will
4306 match that of the source code. To convert C string constants, use
4307 @code{scm_from_latin1_string}, @code{scm_from_utf8_string} or
4308 @code{scm_from_utf32_string}.
4309 @end deftypefn
4310
4311 @deftypefn {C Function} SCM scm_take_locale_string (char *str)
4312 @deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
4313 Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
4314 respectively, but also frees @var{str} with @code{free} eventually.
4315 Thus, you can use this function when you would free @var{str} anyway
4316 immediately after creating the Scheme string. In certain cases, Guile
4317 can then use @var{str} directly as its internal representation.
4318 @end deftypefn
4319
4320 @deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
4321 @deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
4322 Returns a C string with the same contents as @var{str} in the character
4323 encoding of the current locale. The C string must be freed with
4324 @code{free} eventually, maybe by using @code{scm_dynwind_free},
4325 @xref{Dynamic Wind}.
4326
4327 For @code{scm_to_locale_string}, the returned string is
4328 null-terminated and an error is signalled when @var{str} contains
4329 @code{#\nul} characters.
4330
4331 For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
4332 @var{str} might contain @code{#\nul} characters and the length of the
4333 returned string in bytes is stored in @code{*@var{lenp}}. The
4334 returned string will not be null-terminated in this case. If
4335 @var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
4336 @code{scm_to_locale_string}.
4337
4338 If a character in @var{str} cannot be represented in the character
4339 encoding of the current locale, the default port conversion strategy is
4340 used. @xref{Ports}, for more on conversion strategies.
4341
4342 If the conversion strategy is @code{error}, an error will be raised. If
4343 it is @code{substitute}, a replacement character, such as a question
4344 mark, will be inserted in its place. If it is @code{escape}, a hex
4345 escape will be inserted in its place.
4346 @end deftypefn
4347
4348 @deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
4349 Puts @var{str} as a C string in the current locale encoding into the
4350 memory pointed to by @var{buf}. The buffer at @var{buf} has room for
4351 @var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
4352 more than that. No terminating @code{'\0'} will be stored.
4353
4354 The return value of @code{scm_to_locale_stringbuf} is the number of
4355 bytes that are needed for all of @var{str}, regardless of whether
4356 @var{buf} was large enough to hold them. Thus, when the return value
4357 is larger than @var{max_len}, only @var{max_len} bytes have been
4358 stored and you probably need to try again with a larger buffer.
4359 @end deftypefn
4360
4361 For most situations, string conversion should occur using the current
4362 locale, such as with the functions above. But there may be cases where
4363 one wants to convert strings from a character encoding other than the
4364 locale's character encoding. For these cases, the lower-level functions
4365 @code{scm_to_stringn} and @code{scm_from_stringn} are provided. These
4366 functions should seldom be necessary if one is properly using locales.
4367
4368 @deftp {C Type} scm_t_string_failed_conversion_handler
4369 This is an enumerated type that can take one of three values:
4370 @code{SCM_FAILED_CONVERSION_ERROR},
4371 @code{SCM_FAILED_CONVERSION_QUESTION_MARK}, and
4372 @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}. They are used to indicate
4373 a strategy for handling characters that cannot be converted to or from a
4374 given character encoding. @code{SCM_FAILED_CONVERSION_ERROR} indicates
4375 that a conversion should throw an error if some characters cannot be
4376 converted. @code{SCM_FAILED_CONVERSION_QUESTION_MARK} indicates that a
4377 conversion should replace unconvertable characters with the question
4378 mark character. And, @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}
4379 requests that a conversion should replace an unconvertable character
4380 with an escape sequence.
4381
4382 While all three strategies apply when converting Scheme strings to C,
4383 only @code{SCM_FAILED_CONVERSION_ERROR} and
4384 @code{SCM_FAILED_CONVERSION_QUESTION_MARK} can be used when converting C
4385 strings to Scheme.
4386 @end deftp
4387
4388 @deftypefn {C Function} char *scm_to_stringn (SCM str, size_t *lenp, const char *encoding, scm_t_string_failed_conversion_handler handler)
4389 This function returns a newly allocated C string from the Guile string
4390 @var{str}. The length of the returned string in bytes will be returned in
4391 @var{lenp}. The character encoding of the C string is passed as the ASCII,
4392 null-terminated C string @var{encoding}. The @var{handler} parameter
4393 gives a strategy for dealing with characters that cannot be converted
4394 into @var{encoding}.
4395
4396 If @var{lenp} is @code{NULL}, this function will return a null-terminated C
4397 string. It will throw an error if the string contains a null
4398 character.
4399
4400 The Scheme interface to this function is @code{string->bytevector}, from the
4401 @code{ice-9 iconv} module. @xref{Representing Strings as Bytes}.
4402 @end deftypefn
4403
4404 @deftypefn {C Function} SCM scm_from_stringn (const char *str, size_t len, const char *encoding, scm_t_string_failed_conversion_handler handler)
4405 This function returns a scheme string from the C string @var{str}. The
4406 length in bytes of the C string is input as @var{len}. The encoding of the C
4407 string is passed as the ASCII, null-terminated C string @code{encoding}.
4408 The @var{handler} parameters suggests a strategy for dealing with
4409 unconvertable characters.
4410
4411 The Scheme interface to this function is @code{bytevector->string}.
4412 @xref{Representing Strings as Bytes}.
4413 @end deftypefn
4414
4415 The following conversion functions are provided as a convenience for the
4416 most commonly used encodings.
4417
4418 @deftypefn {C Function} SCM scm_from_latin1_string (const char *str)
4419 @deftypefnx {C Function} SCM scm_from_utf8_string (const char *str)
4420 @deftypefnx {C Function} SCM scm_from_utf32_string (const scm_t_wchar *str)
4421 Return a scheme string from the null-terminated C string @var{str},
4422 which is ISO-8859-1-, UTF-8-, or UTF-32-encoded. These functions should
4423 be used to convert hard-coded C string constants into Scheme strings.
4424 @end deftypefn
4425
4426 @deftypefn {C Function} SCM scm_from_latin1_stringn (const char *str, size_t len)
4427 @deftypefnx {C Function} SCM scm_from_utf8_stringn (const char *str, size_t len)
4428 @deftypefnx {C Function} SCM scm_from_utf32_stringn (const scm_t_wchar *str, size_t len)
4429 Return a scheme string from C string @var{str}, which is ISO-8859-1-,
4430 UTF-8-, or UTF-32-encoded, of length @var{len}. @var{len} is the number
4431 of bytes pointed to by @var{str} for @code{scm_from_latin1_stringn} and
4432 @code{scm_from_utf8_stringn}; it is the number of elements (code points)
4433 in @var{str} in the case of @code{scm_from_utf32_stringn}.
4434 @end deftypefn
4435
4436 @deftypefn {C function} char *scm_to_latin1_stringn (SCM str, size_t *lenp)
4437 @deftypefnx {C function} char *scm_to_utf8_stringn (SCM str, size_t *lenp)
4438 @deftypefnx {C function} scm_t_wchar *scm_to_utf32_stringn (SCM str, size_t *lenp)
4439 Return a newly allocated, ISO-8859-1-, UTF-8-, or UTF-32-encoded C string
4440 from Scheme string @var{str}. An error is thrown when @var{str}
4441 cannot be converted to the specified encoding. If @var{lenp} is
4442 @code{NULL}, the returned C string will be null terminated, and an error
4443 will be thrown if the C string would otherwise contain null
4444 characters. If @var{lenp} is not @code{NULL}, the string is not null terminated,
4445 and the length of the returned string is returned in @var{lenp}. The length
4446 returned is the number of bytes for @code{scm_to_latin1_stringn} and
4447 @code{scm_to_utf8_stringn}; it is the number of elements (code points)
4448 for @code{scm_to_utf32_stringn}.
4449 @end deftypefn
4450
4451 @node String Internals
4452 @subsubsection String Internals
4453
4454 Guile stores each string in memory as a contiguous array of Unicode code
4455 points along with an associated set of attributes. If all of the code
4456 points of a string have an integer range between 0 and 255 inclusive,
4457 the code point array is stored as one byte per code point: it is stored
4458 as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
4459 string has an integer value greater that 255, the code point array is
4460 stored as four bytes per code point: it is stored as a UTF-32 string.
4461
4462 Conversion between the one-byte-per-code-point and
4463 four-bytes-per-code-point representations happens automatically as
4464 necessary.
4465
4466 No API is provided to set the internal representation of strings;
4467 however, there are pair of procedures available to query it. These are
4468 debugging procedures. Using them in production code is discouraged,
4469 since the details of Guile's internal representation of strings may
4470 change from release to release.
4471
4472 @deffn {Scheme Procedure} string-bytes-per-char str
4473 @deffnx {C Function} scm_string_bytes_per_char (str)
4474 Return the number of bytes used to encode a Unicode code point in string
4475 @var{str}. The result is one or four.
4476 @end deffn
4477
4478 @deffn {Scheme Procedure} %string-dump str
4479 @deffnx {C Function} scm_sys_string_dump (str)
4480 Returns an association list containing debugging information for
4481 @var{str}. The association list has the following entries.
4482 @table @code
4483
4484 @item string
4485 The string itself.
4486
4487 @item start
4488 The start index of the string into its stringbuf
4489
4490 @item length
4491 The length of the string
4492
4493 @item shared
4494 If this string is a substring, it returns its
4495 parent string. Otherwise, it returns @code{#f}
4496
4497 @item read-only
4498 @code{#t} if the string is read-only
4499
4500 @item stringbuf-chars
4501 A new string containing this string's stringbuf's characters
4502
4503 @item stringbuf-length
4504 The number of characters in this stringbuf
4505
4506 @item stringbuf-shared
4507 @code{#t} if this stringbuf is shared
4508
4509 @item stringbuf-wide
4510 @code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
4511 or @code{#f} if they are stored in an 8-bit buffer
4512 @end table
4513 @end deffn
4514
4515
4516 @node Bytevectors
4517 @subsection Bytevectors
4518
4519 @cindex bytevector
4520 @cindex R6RS
4521
4522 A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevectors)}
4523 module provides the programming interface specified by the
4524 @uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
4525 Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
4526 interpret their contents in a number of ways: bytevector contents can be
4527 accessed as signed or unsigned integer of various sizes and endianness,
4528 as IEEE-754 floating point numbers, or as strings. It is a useful tool
4529 to encode and decode binary data.
4530
4531 The R6RS (Section 4.3.4) specifies an external representation for
4532 bytevectors, whereby the octets (integers in the range 0--255) contained
4533 in the bytevector are represented as a list prefixed by @code{#vu8}:
4534
4535 @lisp
4536 #vu8(1 53 204)
4537 @end lisp
4538
4539 denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
4540 string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
4541 they do not need to be quoted:
4542
4543 @lisp
4544 #vu8(1 53 204)
4545 @result{} #vu8(1 53 204)
4546 @end lisp
4547
4548 Bytevectors can be used with the binary input/output primitives of the
4549 R6RS (@pxref{R6RS I/O Ports}).
4550
4551 @menu
4552 * Bytevector Endianness:: Dealing with byte order.
4553 * Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
4554 * Bytevectors as Integers:: Interpreting bytes as integers.
4555 * Bytevectors and Integer Lists:: Converting to/from an integer list.
4556 * Bytevectors as Floats:: Interpreting bytes as real numbers.
4557 * Bytevectors as Strings:: Interpreting bytes as Unicode strings.
4558 * Bytevectors as Arrays:: Guile extension to the bytevector API.
4559 * Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
4560 @end menu
4561
4562 @node Bytevector Endianness
4563 @subsubsection Endianness
4564
4565 @cindex endianness
4566 @cindex byte order
4567 @cindex word order
4568
4569 Some of the following procedures take an @var{endianness} parameter.
4570 The @dfn{endianness} is defined as the order of bytes in multi-byte
4571 numbers: numbers encoded in @dfn{big endian} have their most
4572 significant bytes written first, whereas numbers encoded in
4573 @dfn{little endian} have their least significant bytes
4574 first@footnote{Big-endian and little-endian are the most common
4575 ``endiannesses'', but others do exist. For instance, the GNU MP
4576 library allows @dfn{word order} to be specified independently of
4577 @dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
4578 Multiple Precision Arithmetic Library Manual}).}.
4579
4580 Little-endian is the native endianness of the IA32 architecture and
4581 its derivatives, while big-endian is native to SPARC and PowerPC,
4582 among others. The @code{native-endianness} procedure returns the
4583 native endianness of the machine it runs on.
4584
4585 @deffn {Scheme Procedure} native-endianness
4586 @deffnx {C Function} scm_native_endianness ()
4587 Return a value denoting the native endianness of the host machine.
4588 @end deffn
4589
4590 @deffn {Scheme Macro} endianness symbol
4591 Return an object denoting the endianness specified by @var{symbol}. If
4592 @var{symbol} is neither @code{big} nor @code{little} then an error is
4593 raised at expand-time.
4594 @end deffn
4595
4596 @defvr {C Variable} scm_endianness_big
4597 @defvrx {C Variable} scm_endianness_little
4598 The objects denoting big- and little-endianness, respectively.
4599 @end defvr
4600
4601
4602 @node Bytevector Manipulation
4603 @subsubsection Manipulating Bytevectors
4604
4605 Bytevectors can be created, copied, and analyzed with the following
4606 procedures and C functions.
4607
4608 @deffn {Scheme Procedure} make-bytevector len [fill]
4609 @deffnx {C Function} scm_make_bytevector (len, fill)
4610 @deffnx {C Function} scm_c_make_bytevector (size_t len)
4611 Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
4612 is given, fill it with @var{fill}; @var{fill} must be in the range
4613 [-128,255].
4614 @end deffn
4615
4616 @deffn {Scheme Procedure} bytevector? obj
4617 @deffnx {C Function} scm_bytevector_p (obj)
4618 Return true if @var{obj} is a bytevector.
4619 @end deffn
4620
4621 @deftypefn {C Function} int scm_is_bytevector (SCM obj)
4622 Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
4623 @end deftypefn
4624
4625 @deffn {Scheme Procedure} bytevector-length bv
4626 @deffnx {C Function} scm_bytevector_length (bv)
4627 Return the length in bytes of bytevector @var{bv}.
4628 @end deffn
4629
4630 @deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
4631 Likewise, return the length in bytes of bytevector @var{bv}.
4632 @end deftypefn
4633
4634 @deffn {Scheme Procedure} bytevector=? bv1 bv2
4635 @deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
4636 Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
4637 length and contents.
4638 @end deffn
4639
4640 @deffn {Scheme Procedure} bytevector-fill! bv fill
4641 @deffnx {C Function} scm_bytevector_fill_x (bv, fill)
4642 Fill bytevector @var{bv} with @var{fill}, a byte.
4643 @end deffn
4644
4645 @deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
4646 @deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
4647 Copy @var{len} bytes from @var{source} into @var{target}, starting
4648 reading from @var{source-start} (a positive index within @var{source})
4649 and start writing at @var{target-start}. It is permitted for the
4650 @var{source} and @var{target} regions to overlap.
4651 @end deffn
4652
4653 @deffn {Scheme Procedure} bytevector-copy bv
4654 @deffnx {C Function} scm_bytevector_copy (bv)
4655 Return a newly allocated copy of @var{bv}.
4656 @end deffn
4657
4658 @deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
4659 Return the byte at @var{index} in bytevector @var{bv}.
4660 @end deftypefn
4661
4662 @deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
4663 Set the byte at @var{index} in @var{bv} to @var{value}.
4664 @end deftypefn
4665
4666 Low-level C macros are available. They do not perform any
4667 type-checking; as such they should be used with care.
4668
4669 @deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
4670 Return the length in bytes of bytevector @var{bv}.
4671 @end deftypefn
4672
4673 @deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
4674 Return a pointer to the contents of bytevector @var{bv}.
4675 @end deftypefn
4676
4677
4678 @node Bytevectors as Integers
4679 @subsubsection Interpreting Bytevector Contents as Integers
4680
4681 The contents of a bytevector can be interpreted as a sequence of
4682 integers of any given size, sign, and endianness.
4683
4684 @lisp
4685 (let ((bv (make-bytevector 4)))
4686 (bytevector-u8-set! bv 0 #x12)
4687 (bytevector-u8-set! bv 1 #x34)
4688 (bytevector-u8-set! bv 2 #x56)
4689 (bytevector-u8-set! bv 3 #x78)
4690
4691 (map (lambda (number)
4692 (number->string number 16))
4693 (list (bytevector-u8-ref bv 0)
4694 (bytevector-u16-ref bv 0 (endianness big))
4695 (bytevector-u32-ref bv 0 (endianness little)))))
4696
4697 @result{} ("12" "1234" "78563412")
4698 @end lisp
4699
4700 The most generic procedures to interpret bytevector contents as integers
4701 are described below.
4702
4703 @deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
4704 @deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4705 Return the @var{size}-byte long unsigned integer at index @var{index} in
4706 @var{bv}, decoded according to @var{endianness}.
4707 @end deffn
4708
4709 @deffn {Scheme Procedure} bytevector-sint-ref bv index endianness size
4710 @deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4711 Return the @var{size}-byte long signed integer at index @var{index} in
4712 @var{bv}, decoded according to @var{endianness}.
4713 @end deffn
4714
4715 @deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
4716 @deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4717 Set the @var{size}-byte long unsigned integer at @var{index} to
4718 @var{value}, encoded according to @var{endianness}.
4719 @end deffn
4720
4721 @deffn {Scheme Procedure} bytevector-sint-set! bv index value endianness size
4722 @deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4723 Set the @var{size}-byte long signed integer at @var{index} to
4724 @var{value}, encoded according to @var{endianness}.
4725 @end deffn
4726
4727 The following procedures are similar to the ones above, but specialized
4728 to a given integer size:
4729
4730 @deffn {Scheme Procedure} bytevector-u8-ref bv index
4731 @deffnx {Scheme Procedure} bytevector-s8-ref bv index
4732 @deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4733 @deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4734 @deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4735 @deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4736 @deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4737 @deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4738 @deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4739 @deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4740 @deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4741 @deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4742 @deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4743 @deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4744 @deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4745 @deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4746 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4747 16, 32 or 64) from @var{bv} at @var{index}, decoded according to
4748 @var{endianness}.
4749 @end deffn
4750
4751 @deffn {Scheme Procedure} bytevector-u8-set! bv index value
4752 @deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4753 @deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4754 @deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4755 @deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4756 @deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4757 @deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4758 @deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4759 @deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4760 @deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4761 @deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4762 @deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4763 @deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4764 @deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4765 @deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4766 @deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4767 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4768 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4769 @var{endianness}.
4770 @end deffn
4771
4772 Finally, a variant specialized for the host's endianness is available
4773 for each of these functions (with the exception of the @code{u8}
4774 accessors, for obvious reasons):
4775
4776 @deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4777 @deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4778 @deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4779 @deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4780 @deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4781 @deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4782 @deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4783 @deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4784 @deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4785 @deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4786 @deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4787 @deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4788 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4789 16, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4790 host's native endianness.
4791 @end deffn
4792
4793 @deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4794 @deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4795 @deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4796 @deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4797 @deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4798 @deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4799 @deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4800 @deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4801 @deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4802 @deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4803 @deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4804 @deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4805 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4806 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4807 host's native endianness.
4808 @end deffn
4809
4810
4811 @node Bytevectors and Integer Lists
4812 @subsubsection Converting Bytevectors to/from Integer Lists
4813
4814 Bytevector contents can readily be converted to/from lists of signed or
4815 unsigned integers:
4816
4817 @lisp
4818 (bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4819 (endianness little) 2)
4820 @result{} (-1 -1)
4821 @end lisp
4822
4823 @deffn {Scheme Procedure} bytevector->u8-list bv
4824 @deffnx {C Function} scm_bytevector_to_u8_list (bv)
4825 Return a newly allocated list of unsigned 8-bit integers from the
4826 contents of @var{bv}.
4827 @end deffn
4828
4829 @deffn {Scheme Procedure} u8-list->bytevector lst
4830 @deffnx {C Function} scm_u8_list_to_bytevector (lst)
4831 Return a newly allocated bytevector consisting of the unsigned 8-bit
4832 integers listed in @var{lst}.
4833 @end deffn
4834
4835 @deffn {Scheme Procedure} bytevector->uint-list bv endianness size
4836 @deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4837 Return a list of unsigned integers of @var{size} bytes representing the
4838 contents of @var{bv}, decoded according to @var{endianness}.
4839 @end deffn
4840
4841 @deffn {Scheme Procedure} bytevector->sint-list bv endianness size
4842 @deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4843 Return a list of signed integers of @var{size} bytes representing the
4844 contents of @var{bv}, decoded according to @var{endianness}.
4845 @end deffn
4846
4847 @deffn {Scheme Procedure} uint-list->bytevector lst endianness size
4848 @deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4849 Return a new bytevector containing the unsigned integers listed in
4850 @var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4851 @end deffn
4852
4853 @deffn {Scheme Procedure} sint-list->bytevector lst endianness size
4854 @deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4855 Return a new bytevector containing the signed integers listed in
4856 @var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4857 @end deffn
4858
4859 @node Bytevectors as Floats
4860 @subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4861
4862 @cindex IEEE-754 floating point numbers
4863
4864 Bytevector contents can also be accessed as IEEE-754 single- or
4865 double-precision floating point numbers (respectively 32 and 64-bit
4866 long) using the procedures described here.
4867
4868 @deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4869 @deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4870 @deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4871 @deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4872 Return the IEEE-754 single-precision floating point number from @var{bv}
4873 at @var{index} according to @var{endianness}.
4874 @end deffn
4875
4876 @deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4877 @deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4878 @deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4879 @deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4880 Store real number @var{value} in @var{bv} at @var{index} according to
4881 @var{endianness}.
4882 @end deffn
4883
4884 Specialized procedures are also available:
4885
4886 @deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4887 @deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4888 @deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4889 @deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4890 Return the IEEE-754 single-precision floating point number from @var{bv}
4891 at @var{index} according to the host's native endianness.
4892 @end deffn
4893
4894 @deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4895 @deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4896 @deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4897 @deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4898 Store real number @var{value} in @var{bv} at @var{index} according to
4899 the host's native endianness.
4900 @end deffn
4901
4902
4903 @node Bytevectors as Strings
4904 @subsubsection Interpreting Bytevector Contents as Unicode Strings
4905
4906 @cindex Unicode string encoding
4907
4908 Bytevector contents can also be interpreted as Unicode strings encoded
4909 in one of the most commonly available encoding formats.
4910 @xref{Representing Strings as Bytes}, for a more generic interface.
4911
4912 @lisp
4913 (utf8->string (u8-list->bytevector '(99 97 102 101)))
4914 @result{} "cafe"
4915
4916 (string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4917 @result{} #vu8(99 97 102 195 169)
4918 @end lisp
4919
4920 @deffn {Scheme Procedure} string->utf8 str
4921 @deffnx {Scheme Procedure} string->utf16 str [endianness]
4922 @deffnx {Scheme Procedure} string->utf32 str [endianness]
4923 @deffnx {C Function} scm_string_to_utf8 (str)
4924 @deffnx {C Function} scm_string_to_utf16 (str, endianness)
4925 @deffnx {C Function} scm_string_to_utf32 (str, endianness)
4926 Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
4927 UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
4928 @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4929 it defaults to big endian.
4930 @end deffn
4931
4932 @deffn {Scheme Procedure} utf8->string utf
4933 @deffnx {Scheme Procedure} utf16->string utf [endianness]
4934 @deffnx {Scheme Procedure} utf32->string utf [endianness]
4935 @deffnx {C Function} scm_utf8_to_string (utf)
4936 @deffnx {C Function} scm_utf16_to_string (utf, endianness)
4937 @deffnx {C Function} scm_utf32_to_string (utf, endianness)
4938 Return a newly allocated string that contains from the UTF-8-, UTF-16-,
4939 or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
4940 @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4941 it defaults to big endian.
4942 @end deffn
4943
4944 @node Bytevectors as Arrays
4945 @subsubsection Accessing Bytevectors with the Array API
4946
4947 As an extension to the R6RS, Guile allows bytevectors to be manipulated
4948 with the @dfn{array} procedures (@pxref{Arrays}). When using these
4949 APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4950
4951 @example
4952 (define bv #vu8(0 1 2 3))
4953
4954 (array? bv)
4955 @result{} #t
4956
4957 (array-rank bv)
4958 @result{} 1
4959
4960 (array-ref bv 2)
4961 @result{} 2
4962
4963 ;; Note the different argument order on array-set!.
4964 (array-set! bv 77 2)
4965 (array-ref bv 2)
4966 @result{} 77
4967
4968 (array-type bv)
4969 @result{} vu8
4970 @end example
4971
4972
4973 @node Bytevectors as Uniform Vectors
4974 @subsubsection Accessing Bytevectors with the SRFI-4 API
4975
4976 Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
4977 Bytevectors}, for more information.
4978
4979
4980 @node Symbols
4981 @subsection Symbols
4982 @tpindex Symbols
4983
4984 Symbols in Scheme are widely used in three ways: as items of discrete
4985 data, as lookup keys for alists and hash tables, and to denote variable
4986 references.
4987
4988 A @dfn{symbol} is similar to a string in that it is defined by a
4989 sequence of characters. The sequence of characters is known as the
4990 symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4991 name doesn't include any characters that could be confused with other
4992 elements of Scheme syntax --- a symbol is written in a Scheme program by
4993 writing the sequence of characters that make up the name, @emph{without}
4994 any quotation marks or other special syntax. For example, the symbol
4995 whose name is ``multiply-by-2'' is written, simply:
4996
4997 @lisp
4998 multiply-by-2
4999 @end lisp
5000
5001 Notice how this differs from a @emph{string} with contents
5002 ``multiply-by-2'', which is written with double quotation marks, like
5003 this:
5004
5005 @lisp
5006 "multiply-by-2"
5007 @end lisp
5008
5009 Looking beyond how they are written, symbols are different from strings
5010 in two important respects.
5011
5012 The first important difference is uniqueness. If the same-looking
5013 string is read twice from two different places in a program, the result
5014 is two @emph{different} string objects whose contents just happen to be
5015 the same. If, on the other hand, the same-looking symbol is read twice
5016 from two different places in a program, the result is the @emph{same}
5017 symbol object both times.
5018
5019 Given two read symbols, you can use @code{eq?} to test whether they are
5020 the same (that is, have the same name). @code{eq?} is the most
5021 efficient comparison operator in Scheme, and comparing two symbols like
5022 this is as fast as comparing, for example, two numbers. Given two
5023 strings, on the other hand, you must use @code{equal?} or
5024 @code{string=?}, which are much slower comparison operators, to
5025 determine whether the strings have the same contents.
5026
5027 @lisp
5028 (define sym1 (quote hello))
5029 (define sym2 (quote hello))
5030 (eq? sym1 sym2) @result{} #t
5031
5032 (define str1 "hello")
5033 (define str2 "hello")
5034 (eq? str1 str2) @result{} #f
5035 (equal? str1 str2) @result{} #t
5036 @end lisp
5037
5038 The second important difference is that symbols, unlike strings, are not
5039 self-evaluating. This is why we need the @code{(quote @dots{})}s in the
5040 example above: @code{(quote hello)} evaluates to the symbol named
5041 "hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
5042 symbol named "hello" and evaluated as a variable reference @dots{} about
5043 which more below (@pxref{Symbol Variables}).
5044
5045 @menu
5046 * Symbol Data:: Symbols as discrete data.
5047 * Symbol Keys:: Symbols as lookup keys.
5048 * Symbol Variables:: Symbols as denoting variables.
5049 * Symbol Primitives:: Operations related to symbols.
5050 * Symbol Props:: Function slots and property lists.
5051 * Symbol Read Syntax:: Extended read syntax for symbols.
5052 * Symbol Uninterned:: Uninterned symbols.
5053 @end menu
5054
5055
5056 @node Symbol Data
5057 @subsubsection Symbols as Discrete Data
5058
5059 Numbers and symbols are similar to the extent that they both lend
5060 themselves to @code{eq?} comparison. But symbols are more descriptive
5061 than numbers, because a symbol's name can be used directly to describe
5062 the concept for which that symbol stands.
5063
5064 For example, imagine that you need to represent some colours in a
5065 computer program. Using numbers, you would have to choose arbitrarily
5066 some mapping between numbers and colours, and then take care to use that
5067 mapping consistently:
5068
5069 @lisp
5070 ;; 1=red, 2=green, 3=purple
5071
5072 (if (eq? (colour-of car) 1)
5073 ...)
5074 @end lisp
5075
5076 @noindent
5077 You can make the mapping more explicit and the code more readable by
5078 defining constants:
5079
5080 @lisp
5081 (define red 1)
5082 (define green 2)
5083 (define purple 3)
5084
5085 (if (eq? (colour-of car) red)
5086 ...)
5087 @end lisp
5088
5089 @noindent
5090 But the simplest and clearest approach is not to use numbers at all, but
5091 symbols whose names specify the colours that they refer to:
5092
5093 @lisp
5094 (if (eq? (colour-of car) 'red)
5095 ...)
5096 @end lisp
5097
5098 The descriptive advantages of symbols over numbers increase as the set
5099 of concepts that you want to describe grows. Suppose that a car object
5100 can have other properties as well, such as whether it has or uses:
5101
5102 @itemize @bullet
5103 @item
5104 automatic or manual transmission
5105 @item
5106 leaded or unleaded fuel
5107 @item
5108 power steering (or not).
5109 @end itemize
5110
5111 @noindent
5112 Then a car's combined property set could be naturally represented and
5113 manipulated as a list of symbols:
5114
5115 @lisp
5116 (properties-of car1)
5117 @result{}
5118 (red manual unleaded power-steering)
5119
5120 (if (memq 'power-steering (properties-of car1))
5121 (display "Unfit people can drive this car.\n")
5122 (display "You'll need strong arms to drive this car!\n"))
5123 @print{}
5124 Unfit people can drive this car.
5125 @end lisp
5126
5127 Remember, the fundamental property of symbols that we are relying on
5128 here is that an occurrence of @code{'red} in one part of a program is an
5129 @emph{indistinguishable} symbol from an occurrence of @code{'red} in
5130 another part of a program; this means that symbols can usefully be
5131 compared using @code{eq?}. At the same time, symbols have naturally
5132 descriptive names. This combination of efficiency and descriptive power
5133 makes them ideal for use as discrete data.
5134
5135
5136 @node Symbol Keys
5137 @subsubsection Symbols as Lookup Keys
5138
5139 Given their efficiency and descriptive power, it is natural to use
5140 symbols as the keys in an association list or hash table.
5141
5142 To illustrate this, consider a more structured representation of the car
5143 properties example from the preceding subsection. Rather than
5144 mixing all the properties up together in a flat list, we could use an
5145 association list like this:
5146
5147 @lisp
5148 (define car1-properties '((colour . red)
5149 (transmission . manual)
5150 (fuel . unleaded)
5151 (steering . power-assisted)))
5152 @end lisp
5153
5154 Notice how this structure is more explicit and extensible than the flat
5155 list. For example it makes clear that @code{manual} refers to the
5156 transmission rather than, say, the windows or the locking of the car.
5157 It also allows further properties to use the same symbols among their
5158 possible values without becoming ambiguous:
5159
5160 @lisp
5161 (define car1-properties '((colour . red)
5162 (transmission . manual)
5163 (fuel . unleaded)
5164 (steering . power-assisted)
5165 (seat-colour . red)
5166 (locking . manual)))
5167 @end lisp
5168
5169 With a representation like this, it is easy to use the efficient
5170 @code{assq-XXX} family of procedures (@pxref{Association Lists}) to
5171 extract or change individual pieces of information:
5172
5173 @lisp
5174 (assq-ref car1-properties 'fuel) @result{} unleaded
5175 (assq-ref car1-properties 'transmission) @result{} manual
5176
5177 (assq-set! car1-properties 'seat-colour 'black)
5178 @result{}
5179 ((colour . red)
5180 (transmission . manual)
5181 (fuel . unleaded)
5182 (steering . power-assisted)
5183 (seat-colour . black)
5184 (locking . manual)))
5185 @end lisp
5186
5187 Hash tables also have keys, and exactly the same arguments apply to the
5188 use of symbols in hash tables as in association lists. The hash value
5189 that Guile uses to decide where to add a symbol-keyed entry to a hash
5190 table can be obtained by calling the @code{symbol-hash} procedure:
5191
5192 @deffn {Scheme Procedure} symbol-hash symbol
5193 @deffnx {C Function} scm_symbol_hash (symbol)
5194 Return a hash value for @var{symbol}.
5195 @end deffn
5196
5197 See @ref{Hash Tables} for information about hash tables in general, and
5198 for why you might choose to use a hash table rather than an association
5199 list.
5200
5201
5202 @node Symbol Variables
5203 @subsubsection Symbols as Denoting Variables
5204
5205 When an unquoted symbol in a Scheme program is evaluated, it is
5206 interpreted as a variable reference, and the result of the evaluation is
5207 the appropriate variable's value.
5208
5209 For example, when the expression @code{(string-length "abcd")} is read
5210 and evaluated, the sequence of characters @code{string-length} is read
5211 as the symbol whose name is "string-length". This symbol is associated
5212 with a variable whose value is the procedure that implements string
5213 length calculation. Therefore evaluation of the @code{string-length}
5214 symbol results in that procedure.
5215
5216 The details of the connection between an unquoted symbol and the
5217 variable to which it refers are explained elsewhere. See @ref{Binding
5218 Constructs}, for how associations between symbols and variables are
5219 created, and @ref{Modules}, for how those associations are affected by
5220 Guile's module system.
5221
5222
5223 @node Symbol Primitives
5224 @subsubsection Operations Related to Symbols
5225
5226 Given any Scheme value, you can determine whether it is a symbol using
5227 the @code{symbol?} primitive:
5228
5229 @rnindex symbol?
5230 @deffn {Scheme Procedure} symbol? obj
5231 @deffnx {C Function} scm_symbol_p (obj)
5232 Return @code{#t} if @var{obj} is a symbol, otherwise return
5233 @code{#f}.
5234 @end deffn
5235
5236 @deftypefn {C Function} int scm_is_symbol (SCM val)
5237 Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5238 @end deftypefn
5239
5240 Once you know that you have a symbol, you can obtain its name as a
5241 string by calling @code{symbol->string}. Note that Guile differs by
5242 default from R5RS on the details of @code{symbol->string} as regards
5243 case-sensitivity:
5244
5245 @rnindex symbol->string
5246 @deffn {Scheme Procedure} symbol->string s
5247 @deffnx {C Function} scm_symbol_to_string (s)
5248 Return the name of symbol @var{s} as a string. By default, Guile reads
5249 symbols case-sensitively, so the string returned will have the same case
5250 variation as the sequence of characters that caused @var{s} to be
5251 created.
5252
5253 If Guile is set to read symbols case-insensitively (as specified by
5254 R5RS), and @var{s} comes into being as part of a literal expression
5255 (@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5256 by a call to the @code{read} or @code{string-ci->symbol} procedures,
5257 Guile converts any alphabetic characters in the symbol's name to
5258 lower case before creating the symbol object, so the string returned
5259 here will be in lower case.
5260
5261 If @var{s} was created by @code{string->symbol}, the case of characters
5262 in the string returned will be the same as that in the string that was
5263 passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5264 setting at the time @var{s} was created.
5265
5266 It is an error to apply mutation procedures like @code{string-set!} to
5267 strings returned by this procedure.
5268 @end deffn
5269
5270 Most symbols are created by writing them literally in code. However it
5271 is also possible to create symbols programmatically using the following
5272 procedures:
5273
5274 @deffn {Scheme Procedure} symbol char@dots{}
5275 @rnindex symbol
5276 Return a newly allocated symbol made from the given character arguments.
5277
5278 @example
5279 (symbol #\x #\y #\z) @result{} xyz
5280 @end example
5281 @end deffn
5282
5283 @deffn {Scheme Procedure} list->symbol lst
5284 @rnindex list->symbol
5285 Return a newly allocated symbol made from a list of characters.
5286
5287 @example
5288 (list->symbol '(#\a #\b #\c)) @result{} abc
5289 @end example
5290 @end deffn
5291
5292 @rnindex symbol-append
5293 @deffn {Scheme Procedure} symbol-append arg @dots{}
5294 Return a newly allocated symbol whose characters form the
5295 concatenation of the given symbols, @var{arg} @enddots{}.
5296
5297 @example
5298 (let ((h 'hello))
5299 (symbol-append h 'world))
5300 @result{} helloworld
5301 @end example
5302 @end deffn
5303
5304 @rnindex string->symbol
5305 @deffn {Scheme Procedure} string->symbol string
5306 @deffnx {C Function} scm_string_to_symbol (string)
5307 Return the symbol whose name is @var{string}. This procedure can create
5308 symbols with names containing special characters or letters in the
5309 non-standard case, but it is usually a bad idea to create such symbols
5310 because in some implementations of Scheme they cannot be read as
5311 themselves.
5312 @end deffn
5313
5314 @deffn {Scheme Procedure} string-ci->symbol str
5315 @deffnx {C Function} scm_string_ci_to_symbol (str)
5316 Return the symbol whose name is @var{str}. If Guile is currently
5317 reading symbols case-insensitively, @var{str} is converted to lowercase
5318 before the returned symbol is looked up or created.
5319 @end deffn
5320
5321 The following examples illustrate Guile's detailed behaviour as regards
5322 the case-sensitivity of symbols:
5323
5324 @lisp
5325 (read-enable 'case-insensitive) ; R5RS compliant behaviour
5326
5327 (symbol->string 'flying-fish) @result{} "flying-fish"
5328 (symbol->string 'Martin) @result{} "martin"
5329 (symbol->string
5330 (string->symbol "Malvina")) @result{} "Malvina"
5331
5332 (eq? 'mISSISSIppi 'mississippi) @result{} #t
5333 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5334 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5335 (eq? 'LolliPop
5336 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5337 (string=? "K. Harper, M.D."
5338 (symbol->string
5339 (string->symbol "K. Harper, M.D."))) @result{} #t
5340
5341 (read-disable 'case-insensitive) ; Guile default behaviour
5342
5343 (symbol->string 'flying-fish) @result{} "flying-fish"
5344 (symbol->string 'Martin) @result{} "Martin"
5345 (symbol->string
5346 (string->symbol "Malvina")) @result{} "Malvina"
5347
5348 (eq? 'mISSISSIppi 'mississippi) @result{} #f
5349 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5350 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5351 (eq? 'LolliPop
5352 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5353 (string=? "K. Harper, M.D."
5354 (symbol->string
5355 (string->symbol "K. Harper, M.D."))) @result{} #t
5356 @end lisp
5357
5358 From C, there are lower level functions that construct a Scheme symbol
5359 from a C string in the current locale encoding.
5360
5361 When you want to do more from C, you should convert between symbols
5362 and strings using @code{scm_symbol_to_string} and
5363 @code{scm_string_to_symbol} and work with the strings.
5364
5365 @deftypefn {C Function} scm_from_latin1_symbol (const char *name)
5366 @deftypefnx {C Function} scm_from_utf8_symbol (const char *name)
5367 Construct and return a Scheme symbol whose name is specified by the
5368 null-terminated C string @var{name}. These are appropriate when
5369 the C string is hard-coded in the source code.
5370 @end deftypefn
5371
5372 @deftypefn {C Function} scm_from_locale_symbol (const char *name)
5373 @deftypefnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
5374 Construct and return a Scheme symbol whose name is specified by
5375 @var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5376 terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
5377 specified explicitly by @var{len}.
5378
5379 Note that these functions should @emph{not} be used when @var{name} is a
5380 C string constant, because there is no guarantee that the current locale
5381 will match that of the source code. In such cases, use
5382 @code{scm_from_latin1_symbol} or @code{scm_from_utf8_symbol}.
5383 @end deftypefn
5384
5385 @deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5386 @deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5387 Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5388 respectively, but also frees @var{str} with @code{free} eventually.
5389 Thus, you can use this function when you would free @var{str} anyway
5390 immediately after creating the Scheme string. In certain cases, Guile
5391 can then use @var{str} directly as its internal representation.
5392 @end deftypefn
5393
5394 The size of a symbol can also be obtained from C:
5395
5396 @deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5397 Return the number of characters in @var{sym}.
5398 @end deftypefn
5399
5400 Finally, some applications, especially those that generate new Scheme
5401 code dynamically, need to generate symbols for use in the generated
5402 code. The @code{gensym} primitive meets this need:
5403
5404 @deffn {Scheme Procedure} gensym [prefix]
5405 @deffnx {C Function} scm_gensym (prefix)
5406 Create a new symbol with a name constructed from a prefix and a counter
5407 value. The string @var{prefix} can be specified as an optional
5408 argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5409 at each call. There is no provision for resetting the counter.
5410 @end deffn
5411
5412 The symbols generated by @code{gensym} are @emph{likely} to be unique,
5413 since their names begin with a space and it is only otherwise possible
5414 to generate such symbols if a programmer goes out of their way to do
5415 so. Uniqueness can be guaranteed by instead using uninterned symbols
5416 (@pxref{Symbol Uninterned}), though they can't be usefully written out
5417 and read back in.
5418
5419
5420 @node Symbol Props
5421 @subsubsection Function Slots and Property Lists
5422
5423 In traditional Lisp dialects, symbols are often understood as having
5424 three kinds of value at once:
5425
5426 @itemize @bullet
5427 @item
5428 a @dfn{variable} value, which is used when the symbol appears in
5429 code in a variable reference context
5430
5431 @item
5432 a @dfn{function} value, which is used when the symbol appears in
5433 code in a function name position (i.e.@: as the first element in an
5434 unquoted list)
5435
5436 @item
5437 a @dfn{property list} value, which is used when the symbol is given as
5438 the first argument to Lisp's @code{put} or @code{get} functions.
5439 @end itemize
5440
5441 Although Scheme (as one of its simplifications with respect to Lisp)
5442 does away with the distinction between variable and function namespaces,
5443 Guile currently retains some elements of the traditional structure in
5444 case they turn out to be useful when implementing translators for other
5445 languages, in particular Emacs Lisp.
5446
5447 Specifically, Guile symbols have two extra slots, one for a symbol's
5448 property list, and one for its ``function value.'' The following procedures
5449 are provided to access these slots.
5450
5451 @deffn {Scheme Procedure} symbol-fref symbol
5452 @deffnx {C Function} scm_symbol_fref (symbol)
5453 Return the contents of @var{symbol}'s @dfn{function slot}.
5454 @end deffn
5455
5456 @deffn {Scheme Procedure} symbol-fset! symbol value
5457 @deffnx {C Function} scm_symbol_fset_x (symbol, value)
5458 Set the contents of @var{symbol}'s function slot to @var{value}.
5459 @end deffn
5460
5461 @deffn {Scheme Procedure} symbol-pref symbol
5462 @deffnx {C Function} scm_symbol_pref (symbol)
5463 Return the @dfn{property list} currently associated with @var{symbol}.
5464 @end deffn
5465
5466 @deffn {Scheme Procedure} symbol-pset! symbol value
5467 @deffnx {C Function} scm_symbol_pset_x (symbol, value)
5468 Set @var{symbol}'s property list to @var{value}.
5469 @end deffn
5470
5471 @deffn {Scheme Procedure} symbol-property sym prop
5472 From @var{sym}'s property list, return the value for property
5473 @var{prop}. The assumption is that @var{sym}'s property list is an
5474 association list whose keys are distinguished from each other using
5475 @code{equal?}; @var{prop} should be one of the keys in that list. If
5476 the property list has no entry for @var{prop}, @code{symbol-property}
5477 returns @code{#f}.
5478 @end deffn
5479
5480 @deffn {Scheme Procedure} set-symbol-property! sym prop val
5481 In @var{sym}'s property list, set the value for property @var{prop} to
5482 @var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5483 none already exists. For the structure of the property list, see
5484 @code{symbol-property}.
5485 @end deffn
5486
5487 @deffn {Scheme Procedure} symbol-property-remove! sym prop
5488 From @var{sym}'s property list, remove the entry for property
5489 @var{prop}, if there is one. For the structure of the property list,
5490 see @code{symbol-property}.
5491 @end deffn
5492
5493 Support for these extra slots may be removed in a future release, and it
5494 is probably better to avoid using them. For a more modern and Schemely
5495 approach to properties, see @ref{Object Properties}.
5496
5497
5498 @node Symbol Read Syntax
5499 @subsubsection Extended Read Syntax for Symbols
5500
5501 The read syntax for a symbol is a sequence of letters, digits, and
5502 @dfn{extended alphabetic characters}, beginning with a character that
5503 cannot begin a number. In addition, the special cases of @code{+},
5504 @code{-}, and @code{...} are read as symbols even though numbers can
5505 begin with @code{+}, @code{-} or @code{.}.
5506
5507 Extended alphabetic characters may be used within identifiers as if
5508 they were letters. The set of extended alphabetic characters is:
5509
5510 @example
5511 ! $ % & * + - . / : < = > ? @@ ^ _ ~
5512 @end example
5513
5514 In addition to the standard read syntax defined above (which is taken
5515 from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5516 Scheme})), Guile provides an extended symbol read syntax that allows the
5517 inclusion of unusual characters such as space characters, newlines and
5518 parentheses. If (for whatever reason) you need to write a symbol
5519 containing characters not mentioned above, you can do so as follows.
5520
5521 @itemize @bullet
5522 @item
5523 Begin the symbol with the characters @code{#@{},
5524
5525 @item
5526 write the characters of the symbol and
5527
5528 @item
5529 finish the symbol with the characters @code{@}#}.
5530 @end itemize
5531
5532 Here are a few examples of this form of read syntax. The first symbol
5533 needs to use extended syntax because it contains a space character, the
5534 second because it contains a line break, and the last because it looks
5535 like a number.
5536
5537 @lisp
5538 #@{foo bar@}#
5539
5540 #@{what
5541 ever@}#
5542
5543 #@{4242@}#
5544 @end lisp
5545
5546 Although Guile provides this extended read syntax for symbols,
5547 widespread usage of it is discouraged because it is not portable and not
5548 very readable.
5549
5550
5551 @node Symbol Uninterned
5552 @subsubsection Uninterned Symbols
5553
5554 What makes symbols useful is that they are automatically kept unique.
5555 There are no two symbols that are distinct objects but have the same
5556 name. But of course, there is no rule without exception. In addition
5557 to the normal symbols that have been discussed up to now, you can also
5558 create special @dfn{uninterned} symbols that behave slightly
5559 differently.
5560
5561 To understand what is different about them and why they might be useful,
5562 we look at how normal symbols are actually kept unique.
5563
5564 Whenever Guile wants to find the symbol with a specific name, for
5565 example during @code{read} or when executing @code{string->symbol}, it
5566 first looks into a table of all existing symbols to find out whether a
5567 symbol with the given name already exists. When this is the case, Guile
5568 just returns that symbol. When not, a new symbol with the name is
5569 created and entered into the table so that it can be found later.
5570
5571 Sometimes you might want to create a symbol that is guaranteed `fresh',
5572 i.e.@: a symbol that did not exist previously. You might also want to
5573 somehow guarantee that no one else will ever unintentionally stumble
5574 across your symbol in the future. These properties of a symbol are
5575 often needed when generating code during macro expansion. When
5576 introducing new temporary variables, you want to guarantee that they
5577 don't conflict with variables in other people's code.
5578
5579 The simplest way to arrange for this is to create a new symbol but
5580 not enter it into the global table of all symbols. That way, no one
5581 will ever get access to your symbol by chance. Symbols that are not in
5582 the table are called @dfn{uninterned}. Of course, symbols that
5583 @emph{are} in the table are called @dfn{interned}.
5584
5585 You create new uninterned symbols with the function @code{make-symbol}.
5586 You can test whether a symbol is interned or not with
5587 @code{symbol-interned?}.
5588
5589 Uninterned symbols break the rule that the name of a symbol uniquely
5590 identifies the symbol object. Because of this, they can not be written
5591 out and read back in like interned symbols. Currently, Guile has no
5592 support for reading uninterned symbols. Note that the function
5593 @code{gensym} does not return uninterned symbols for this reason.
5594
5595 @deffn {Scheme Procedure} make-symbol name
5596 @deffnx {C Function} scm_make_symbol (name)
5597 Return a new uninterned symbol with the name @var{name}. The returned
5598 symbol is guaranteed to be unique and future calls to
5599 @code{string->symbol} will not return it.
5600 @end deffn
5601
5602 @deffn {Scheme Procedure} symbol-interned? symbol
5603 @deffnx {C Function} scm_symbol_interned_p (symbol)
5604 Return @code{#t} if @var{symbol} is interned, otherwise return
5605 @code{#f}.
5606 @end deffn
5607
5608 For example:
5609
5610 @lisp
5611 (define foo-1 (string->symbol "foo"))
5612 (define foo-2 (string->symbol "foo"))
5613 (define foo-3 (make-symbol "foo"))
5614 (define foo-4 (make-symbol "foo"))
5615
5616 (eq? foo-1 foo-2)
5617 @result{} #t
5618 ; Two interned symbols with the same name are the same object,
5619
5620 (eq? foo-1 foo-3)
5621 @result{} #f
5622 ; but a call to make-symbol with the same name returns a
5623 ; distinct object.
5624
5625 (eq? foo-3 foo-4)
5626 @result{} #f
5627 ; A call to make-symbol always returns a new object, even for
5628 ; the same name.
5629
5630 foo-3
5631 @result{} #<uninterned-symbol foo 8085290>
5632 ; Uninterned symbols print differently from interned symbols,
5633
5634 (symbol? foo-3)
5635 @result{} #t
5636 ; but they are still symbols,
5637
5638 (symbol-interned? foo-3)
5639 @result{} #f
5640 ; just not interned.
5641 @end lisp
5642
5643
5644 @node Keywords
5645 @subsection Keywords
5646 @tpindex Keywords
5647
5648 Keywords are self-evaluating objects with a convenient read syntax that
5649 makes them easy to type.
5650
5651 Guile's keyword support conforms to R5RS, and adds a (switchable) read
5652 syntax extension to permit keywords to begin with @code{:} as well as
5653 @code{#:}, or to end with @code{:}.
5654
5655 @menu
5656 * Why Use Keywords?:: Motivation for keyword usage.
5657 * Coding With Keywords:: How to use keywords.
5658 * Keyword Read Syntax:: Read syntax for keywords.
5659 * Keyword Procedures:: Procedures for dealing with keywords.
5660 @end menu
5661
5662 @node Why Use Keywords?
5663 @subsubsection Why Use Keywords?
5664
5665 Keywords are useful in contexts where a program or procedure wants to be
5666 able to accept a large number of optional arguments without making its
5667 interface unmanageable.
5668
5669 To illustrate this, consider a hypothetical @code{make-window}
5670 procedure, which creates a new window on the screen for drawing into
5671 using some graphical toolkit. There are many parameters that the caller
5672 might like to specify, but which could also be sensibly defaulted, for
5673 example:
5674
5675 @itemize @bullet
5676 @item
5677 color depth -- Default: the color depth for the screen
5678
5679 @item
5680 background color -- Default: white
5681
5682 @item
5683 width -- Default: 600
5684
5685 @item
5686 height -- Default: 400
5687 @end itemize
5688
5689 If @code{make-window} did not use keywords, the caller would have to
5690 pass in a value for each possible argument, remembering the correct
5691 argument order and using a special value to indicate the default value
5692 for that argument:
5693
5694 @lisp
5695 (make-window 'default ;; Color depth
5696 'default ;; Background color
5697 800 ;; Width
5698 100 ;; Height
5699 @dots{}) ;; More make-window arguments
5700 @end lisp
5701
5702 With keywords, on the other hand, defaulted arguments are omitted, and
5703 non-default arguments are clearly tagged by the appropriate keyword. As
5704 a result, the invocation becomes much clearer:
5705
5706 @lisp
5707 (make-window #:width 800 #:height 100)
5708 @end lisp
5709
5710 On the other hand, for a simpler procedure with few arguments, the use
5711 of keywords would be a hindrance rather than a help. The primitive
5712 procedure @code{cons}, for example, would not be improved if it had to
5713 be invoked as
5714
5715 @lisp
5716 (cons #:car x #:cdr y)
5717 @end lisp
5718
5719 So the decision whether to use keywords or not is purely pragmatic: use
5720 them if they will clarify the procedure invocation at point of call.
5721
5722 @node Coding With Keywords
5723 @subsubsection Coding With Keywords
5724
5725 If a procedure wants to support keywords, it should take a rest argument
5726 and then use whatever means is convenient to extract keywords and their
5727 corresponding arguments from the contents of that rest argument.
5728
5729 The following example illustrates the principle: the code for
5730 @code{make-window} uses a helper procedure called
5731 @code{get-keyword-value} to extract individual keyword arguments from
5732 the rest argument.
5733
5734 @lisp
5735 (define (get-keyword-value args keyword default)
5736 (let ((kv (memq keyword args)))
5737 (if (and kv (>= (length kv) 2))
5738 (cadr kv)
5739 default)))
5740
5741 (define (make-window . args)
5742 (let ((depth (get-keyword-value args #:depth screen-depth))
5743 (bg (get-keyword-value args #:bg "white"))
5744 (width (get-keyword-value args #:width 800))
5745 (height (get-keyword-value args #:height 100))
5746 @dots{})
5747 @dots{}))
5748 @end lisp
5749
5750 But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5751 optargs)} module provides a set of powerful macros that you can use to
5752 implement keyword-supporting procedures like this:
5753
5754 @lisp
5755 (use-modules (ice-9 optargs))
5756
5757 (define (make-window . args)
5758 (let-keywords args #f ((depth screen-depth)
5759 (bg "white")
5760 (width 800)
5761 (height 100))
5762 ...))
5763 @end lisp
5764
5765 @noindent
5766 Or, even more economically, like this:
5767
5768 @lisp
5769 (use-modules (ice-9 optargs))
5770
5771 (define* (make-window #:key (depth screen-depth)
5772 (bg "white")
5773 (width 800)
5774 (height 100))
5775 ...)
5776 @end lisp
5777
5778 For further details on @code{let-keywords}, @code{define*} and other
5779 facilities provided by the @code{(ice-9 optargs)} module, see
5780 @ref{Optional Arguments}.
5781
5782
5783 @node Keyword Read Syntax
5784 @subsubsection Keyword Read Syntax
5785
5786 Guile, by default, only recognizes a keyword syntax that is compatible
5787 with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5788 same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5789 external representation of the keyword named @code{NAME}. Keyword
5790 objects print using this syntax as well, so values containing keyword
5791 objects can be read back into Guile. When used in an expression,
5792 keywords are self-quoting objects.
5793
5794 If the @code{keyword} read option is set to @code{'prefix}, Guile also
5795 recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5796 of the form @code{:NAME} are read as symbols, as required by R5RS.
5797
5798 @cindex SRFI-88 keyword syntax
5799
5800 If the @code{keyword} read option is set to @code{'postfix}, Guile
5801 recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5802 Otherwise, tokens of this form are read as symbols.
5803
5804 To enable and disable the alternative non-R5RS keyword syntax, you use
5805 the @code{read-set!} procedure documented @ref{Scheme Read}. Note that
5806 the @code{prefix} and @code{postfix} syntax are mutually exclusive.
5807
5808 @lisp
5809 (read-set! keywords 'prefix)
5810
5811 #:type
5812 @result{}
5813 #:type
5814
5815 :type
5816 @result{}
5817 #:type
5818
5819 (read-set! keywords 'postfix)
5820
5821 type:
5822 @result{}
5823 #:type
5824
5825 :type
5826 @result{}
5827 :type
5828
5829 (read-set! keywords #f)
5830
5831 #:type
5832 @result{}
5833 #:type
5834
5835 :type
5836 @print{}
5837 ERROR: In expression :type:
5838 ERROR: Unbound variable: :type
5839 ABORT: (unbound-variable)
5840 @end lisp
5841
5842 @node Keyword Procedures
5843 @subsubsection Keyword Procedures
5844
5845 @deffn {Scheme Procedure} keyword? obj
5846 @deffnx {C Function} scm_keyword_p (obj)
5847 Return @code{#t} if the argument @var{obj} is a keyword, else
5848 @code{#f}.
5849 @end deffn
5850
5851 @deffn {Scheme Procedure} keyword->symbol keyword
5852 @deffnx {C Function} scm_keyword_to_symbol (keyword)
5853 Return the symbol with the same name as @var{keyword}.
5854 @end deffn
5855
5856 @deffn {Scheme Procedure} symbol->keyword symbol
5857 @deffnx {C Function} scm_symbol_to_keyword (symbol)
5858 Return the keyword with the same name as @var{symbol}.
5859 @end deffn
5860
5861 @deftypefn {C Function} int scm_is_keyword (SCM obj)
5862 Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
5863 @end deftypefn
5864
5865 @deftypefn {C Function} SCM scm_from_locale_keyword (const char *name)
5866 @deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *name, size_t len)
5867 Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5868 (@var{name}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5869 (@var{name}, @var{len}))}, respectively.
5870
5871 Note that these functions should @emph{not} be used when @var{name} is a
5872 C string constant, because there is no guarantee that the current locale
5873 will match that of the source code. In such cases, use
5874 @code{scm_from_latin1_keyword} or @code{scm_from_utf8_keyword}.
5875 @end deftypefn
5876
5877 @deftypefn {C Function} SCM scm_from_latin1_keyword (const char *name)
5878 @deftypefnx {C Function} SCM scm_from_utf8_keyword (const char *name)
5879 Equivalent to @code{scm_symbol_to_keyword (scm_from_latin1_symbol
5880 (@var{name}))} and @code{scm_symbol_to_keyword (scm_from_utf8_symbol
5881 (@var{name}))}, respectively.
5882 @end deftypefn
5883
5884 @node Other Types
5885 @subsection ``Functionality-Centric'' Data Types
5886
5887 Procedures and macros are documented in their own sections: see
5888 @ref{Procedures} and @ref{Macros}.
5889
5890 Variable objects are documented as part of the description of Guile's
5891 module system: see @ref{Variables}.
5892
5893 Asyncs, dynamic roots and fluids are described in the section on
5894 scheduling: see @ref{Scheduling}.
5895
5896 Hooks are documented in the section on general utility functions: see
5897 @ref{Hooks}.
5898
5899 Ports are described in the section on I/O: see @ref{Input and Output}.
5900
5901 Regular expressions are described in their own section: see @ref{Regular
5902 Expressions}.
5903
5904 @c Local Variables:
5905 @c TeX-master: "guile.texi"
5906 @c End: