hack the port-column of current-output-port after printing a prompt
[bpt/guile.git] / module / ice-9 / boot-9.scm
1 ;;; -*- mode: scheme; coding: utf-8; -*-
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 3 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;; Before compiling, make sure any symbols are resolved in the (guile)
37 ;; module, the primary location of those symbols, rather than in
38 ;; (guile-user), the default module that we compile in.
39
40 (eval-when (compile)
41 (set-current-module (resolve-module '(guile))))
42
43 \f
44
45 ;;; {Error handling}
46 ;;;
47
48 ;; Define delimited continuation operators, and implement catch and throw in
49 ;; terms of them.
50
51 (define make-prompt-tag
52 (lambda* (#:optional (stem "prompt"))
53 (gensym stem)))
54
55 (define default-prompt-tag
56 ;; not sure if we should expose this to the user as a fluid
57 (let ((%default-prompt-tag (make-prompt-tag)))
58 (lambda ()
59 %default-prompt-tag)))
60
61 (define (call-with-prompt tag thunk handler)
62 (@prompt tag (thunk) handler))
63 (define (abort-to-prompt tag . args)
64 (@abort tag args))
65
66
67 ;; Define catch and with-throw-handler, using some common helper routines and a
68 ;; shared fluid. Hide the helpers in a lexical contour.
69
70 (define with-throw-handler #f)
71 (let ()
72 ;; Ideally we'd like to be able to give these default values for all threads,
73 ;; even threads not created by Guile; but alack, that does not currently seem
74 ;; possible. So wrap the getters in thunks.
75 (define %running-exception-handlers (make-fluid))
76 (define %exception-handler (make-fluid))
77
78 (define (running-exception-handlers)
79 (or (fluid-ref %running-exception-handlers)
80 (begin
81 (fluid-set! %running-exception-handlers '())
82 '())))
83 (define (exception-handler)
84 (or (fluid-ref %exception-handler)
85 (begin
86 (fluid-set! %exception-handler default-exception-handler)
87 default-exception-handler)))
88
89 (define (default-exception-handler k . args)
90 (cond
91 ((eq? k 'quit)
92 (primitive-exit (cond
93 ((not (pair? args)) 0)
94 ((integer? (car args)) (car args))
95 ((not (car args)) 1)
96 (else 0))))
97 (else
98 (format (current-error-port) "guile: uncaught throw to ~a: ~a\n" k args)
99 (primitive-exit 1))))
100
101 (define (default-throw-handler prompt-tag catch-k)
102 (let ((prev (exception-handler)))
103 (lambda (thrown-k . args)
104 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
105 (apply abort-to-prompt prompt-tag thrown-k args)
106 (apply prev thrown-k args)))))
107
108 (define (custom-throw-handler prompt-tag catch-k pre)
109 (let ((prev (exception-handler)))
110 (lambda (thrown-k . args)
111 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
112 (let ((running (running-exception-handlers)))
113 (with-fluids ((%running-exception-handlers (cons pre running)))
114 (if (not (memq pre running))
115 (apply pre thrown-k args))
116 ;; fall through
117 (if prompt-tag
118 (apply abort-to-prompt prompt-tag thrown-k args)
119 (apply prev thrown-k args))))
120 (apply prev thrown-k args)))))
121
122 (set! catch
123 (lambda* (k thunk handler #:optional pre-unwind-handler)
124 "Invoke @var{thunk} in the dynamic context of @var{handler} for
125 exceptions matching @var{key}. If thunk throws to the symbol
126 @var{key}, then @var{handler} is invoked this way:
127 @lisp
128 (handler key args ...)
129 @end lisp
130
131 @var{key} is a symbol or @code{#t}.
132
133 @var{thunk} takes no arguments. If @var{thunk} returns
134 normally, that is the return value of @code{catch}.
135
136 Handler is invoked outside the scope of its own @code{catch}.
137 If @var{handler} again throws to the same key, a new handler
138 from further up the call chain is invoked.
139
140 If the key is @code{#t}, then a throw to @emph{any} symbol will
141 match this call to @code{catch}.
142
143 If a @var{pre-unwind-handler} is given and @var{thunk} throws
144 an exception that matches @var{key}, Guile calls the
145 @var{pre-unwind-handler} before unwinding the dynamic state and
146 invoking the main @var{handler}. @var{pre-unwind-handler} should
147 be a procedure with the same signature as @var{handler}, that
148 is @code{(lambda (key . args))}. It is typically used to save
149 the stack at the point where the exception occurred, but can also
150 query other parts of the dynamic state at that point, such as
151 fluid values.
152
153 A @var{pre-unwind-handler} can exit either normally or non-locally.
154 If it exits normally, Guile unwinds the stack and dynamic context
155 and then calls the normal (third argument) handler. If it exits
156 non-locally, that exit determines the continuation."
157 (if (not (or (symbol? k) (eqv? k #t)))
158 (scm-error "catch" 'wrong-type-arg
159 "Wrong type argument in position ~a: ~a"
160 (list 1 k) (list k)))
161 (let ((tag (make-prompt-tag "catch")))
162 (call-with-prompt
163 tag
164 (lambda ()
165 (with-fluids
166 ((%exception-handler
167 (if pre-unwind-handler
168 (custom-throw-handler tag k pre-unwind-handler)
169 (default-throw-handler tag k))))
170 (thunk)))
171 (lambda (cont k . args)
172 (apply handler k args))))))
173
174 (set! with-throw-handler
175 (lambda (k thunk pre-unwind-handler)
176 "Add @var{handler} to the dynamic context as a throw handler
177 for key @var{key}, then invoke @var{thunk}."
178 (if (not (or (symbol? k) (eqv? k #t)))
179 (scm-error "with-throw-handler" 'wrong-type-arg
180 "Wrong type argument in position ~a: ~a"
181 (list 1 k) (list k)))
182 (with-fluids ((%exception-handler
183 (custom-throw-handler #f k pre-unwind-handler)))
184 (thunk))))
185
186 (set! throw
187 (lambda (key . args)
188 "Invoke the catch form matching @var{key}, passing @var{args} to the
189 @var{handler}.
190
191 @var{key} is a symbol. It will match catches of the same symbol or of @code{#t}.
192
193 If there is no handler at all, Guile prints an error and then exits."
194 (if (not (symbol? key))
195 ((exception-handler) 'wrong-type-arg "throw"
196 "Wrong type argument in position ~a: ~a" (list 1 key) (list key))
197 (apply (exception-handler) key args)))))
198
199
200 \f
201
202 ;;; {R4RS compliance}
203 ;;;
204
205 (primitive-load-path "ice-9/r4rs")
206
207 \f
208
209 ;;; {Simple Debugging Tools}
210 ;;;
211
212 ;; peek takes any number of arguments, writes them to the
213 ;; current ouput port, and returns the last argument.
214 ;; It is handy to wrap around an expression to look at
215 ;; a value each time is evaluated, e.g.:
216 ;;
217 ;; (+ 10 (troublesome-fn))
218 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
219 ;;
220
221 (define (peek . stuff)
222 (newline)
223 (display ";;; ")
224 (write stuff)
225 (newline)
226 (car (last-pair stuff)))
227
228 (define pk peek)
229
230
231 (define (warn . stuff)
232 (with-output-to-port (current-error-port)
233 (lambda ()
234 (newline)
235 (display ";;; WARNING ")
236 (display stuff)
237 (newline)
238 (car (last-pair stuff)))))
239
240 \f
241
242 ;;; {Features}
243 ;;;
244
245 (define (provide sym)
246 (if (not (memq sym *features*))
247 (set! *features* (cons sym *features*))))
248
249 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
250 ;; provided? also checks to see if the module is available. We should do that
251 ;; too, but don't.
252
253 (define (provided? feature)
254 (and (memq feature *features*) #t))
255
256 \f
257
258 ;;; {Structs}
259 ;;;
260
261 (define (make-struct/no-tail vtable . args)
262 (apply make-struct vtable 0 args))
263
264 \f
265
266 ;;; Boot versions of `map' and `for-each', enough to get the expander
267 ;;; running.
268 ;;;
269 (define map
270 (case-lambda
271 ((f l)
272 (let map1 ((l l))
273 (if (null? l)
274 '()
275 (cons (f (car l)) (map1 (cdr l))))))
276 ((f l1 l2)
277 (let map2 ((l1 l1) (l2 l2))
278 (if (null? l1)
279 '()
280 (cons (f (car l1) (car l2))
281 (map2 (cdr l1) (cdr l2))))))
282 ((f l1 . rest)
283 (let lp ((l1 l1) (rest rest))
284 (if (null? l1)
285 '()
286 (cons (apply f (car l1) (map car rest))
287 (lp (cdr l1) (map cdr rest))))))))
288
289 (define for-each
290 (case-lambda
291 ((f l)
292 (let for-each1 ((l l))
293 (if (pair? l)
294 (begin
295 (f (car l))
296 (for-each1 (cdr l))))))
297 ((f l1 l2)
298 (let for-each2 ((l1 l1) (l2 l2))
299 (if (pair? l1)
300 (begin
301 (f (car l1) (car l2))
302 (for-each2 (cdr l1) (cdr l2))))))
303 ((f l1 . rest)
304 (let lp ((l1 l1) (rest rest))
305 (if (pair? l1)
306 (begin
307 (apply f (car l1) (map car rest))
308 (lp (cdr l1) (map cdr rest))))))))
309
310 ;;; {and-map and or-map}
311 ;;;
312 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
313 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
314 ;;;
315
316 ;; and-map f l
317 ;;
318 ;; Apply f to successive elements of l until exhaustion or f returns #f.
319 ;; If returning early, return #f. Otherwise, return the last value returned
320 ;; by f. If f has never been called because l is empty, return #t.
321 ;;
322 (define (and-map f lst)
323 (let loop ((result #t)
324 (l lst))
325 (and result
326 (or (and (null? l)
327 result)
328 (loop (f (car l)) (cdr l))))))
329
330 ;; or-map f l
331 ;;
332 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
333 ;; If returning early, return the return value of f.
334 ;;
335 (define (or-map f lst)
336 (let loop ((result #f)
337 (l lst))
338 (or result
339 (and (not (null? l))
340 (loop (f (car l)) (cdr l))))))
341
342 \f
343
344 ;; let format alias simple-format until the more complete version is loaded
345
346 (define format simple-format)
347
348 ;; this is scheme wrapping the C code so the final pred call is a tail call,
349 ;; per SRFI-13 spec
350 (define string-any
351 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
352 (if (and (procedure? char_pred)
353 (> end start)
354 (<= end (string-length s))) ;; let c-code handle range error
355 (or (string-any-c-code char_pred s start (1- end))
356 (char_pred (string-ref s (1- end))))
357 (string-any-c-code char_pred s start end))))
358
359 ;; this is scheme wrapping the C code so the final pred call is a tail call,
360 ;; per SRFI-13 spec
361 (define string-every
362 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
363 (if (and (procedure? char_pred)
364 (> end start)
365 (<= end (string-length s))) ;; let c-code handle range error
366 (and (string-every-c-code char_pred s start (1- end))
367 (char_pred (string-ref s (1- end))))
368 (string-every-c-code char_pred s start end))))
369
370 ;; A variant of string-fill! that we keep for compatability
371 ;;
372 (define (substring-fill! str start end fill)
373 (string-fill! str fill start end))
374
375 \f
376
377 ;; Define a minimal stub of the module API for psyntax, before modules
378 ;; have booted.
379 (define (module-name x)
380 '(guile))
381 (define (module-add! module sym var)
382 (hashq-set! (%get-pre-modules-obarray) sym var))
383 (define (module-define! module sym val)
384 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
385 (if v
386 (variable-set! v val)
387 (module-add! (current-module) sym (make-variable val)))))
388 (define (module-ref module sym)
389 (let ((v (module-variable module sym)))
390 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
391 (define (resolve-module . args)
392 #f)
393
394 ;; API provided by psyntax
395 (define syntax-violation #f)
396 (define datum->syntax #f)
397 (define syntax->datum #f)
398 (define syntax-source #f)
399 (define identifier? #f)
400 (define generate-temporaries #f)
401 (define bound-identifier=? #f)
402 (define free-identifier=? #f)
403
404 ;; $sc-dispatch is an implementation detail of psyntax. It is used by
405 ;; expanded macros, to dispatch an input against a set of patterns.
406 (define $sc-dispatch #f)
407
408 ;; Load it up!
409 (primitive-load-path "ice-9/psyntax-pp")
410 ;; The binding for `macroexpand' has now been overridden, making psyntax the
411 ;; expander now.
412
413 (define-syntax and
414 (syntax-rules ()
415 ((_) #t)
416 ((_ x) x)
417 ((_ x y ...) (if x (and y ...) #f))))
418
419 (define-syntax or
420 (syntax-rules ()
421 ((_) #f)
422 ((_ x) x)
423 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
424
425 ;; The "maybe-more" bits are something of a hack, so that we can support
426 ;; SRFI-61. Rewrites into a standalone syntax-case macro would be
427 ;; appreciated.
428 (define-syntax cond
429 (syntax-rules (=> else)
430 ((_ "maybe-more" test consequent)
431 (if test consequent))
432
433 ((_ "maybe-more" test consequent clause ...)
434 (if test consequent (cond clause ...)))
435
436 ((_ (else else1 else2 ...))
437 (begin else1 else2 ...))
438
439 ((_ (test => receiver) more-clause ...)
440 (let ((t test))
441 (cond "maybe-more" t (receiver t) more-clause ...)))
442
443 ((_ (generator guard => receiver) more-clause ...)
444 (call-with-values (lambda () generator)
445 (lambda t
446 (cond "maybe-more"
447 (apply guard t) (apply receiver t) more-clause ...))))
448
449 ((_ (test => receiver ...) more-clause ...)
450 (syntax-violation 'cond "wrong number of receiver expressions"
451 '(test => receiver ...)))
452 ((_ (generator guard => receiver ...) more-clause ...)
453 (syntax-violation 'cond "wrong number of receiver expressions"
454 '(generator guard => receiver ...)))
455
456 ((_ (test) more-clause ...)
457 (let ((t test))
458 (cond "maybe-more" t t more-clause ...)))
459
460 ((_ (test body1 body2 ...) more-clause ...)
461 (cond "maybe-more"
462 test (begin body1 body2 ...) more-clause ...))))
463
464 (define-syntax case
465 (syntax-rules (else)
466 ((case (key ...)
467 clauses ...)
468 (let ((atom-key (key ...)))
469 (case atom-key clauses ...)))
470 ((case key
471 (else result1 result2 ...))
472 (begin result1 result2 ...))
473 ((case key
474 ((atoms ...) result1 result2 ...))
475 (if (memv key '(atoms ...))
476 (begin result1 result2 ...)))
477 ((case key
478 ((atoms ...) result1 result2 ...)
479 clause clauses ...)
480 (if (memv key '(atoms ...))
481 (begin result1 result2 ...)
482 (case key clause clauses ...)))))
483
484 (define-syntax do
485 (syntax-rules ()
486 ((do ((var init step ...) ...)
487 (test expr ...)
488 command ...)
489 (letrec
490 ((loop
491 (lambda (var ...)
492 (if test
493 (begin
494 (if #f #f)
495 expr ...)
496 (begin
497 command
498 ...
499 (loop (do "step" var step ...)
500 ...))))))
501 (loop init ...)))
502 ((do "step" x)
503 x)
504 ((do "step" x y)
505 y)))
506
507 (define-syntax-rule (delay exp)
508 (make-promise (lambda () exp)))
509
510 (include-from-path "ice-9/quasisyntax")
511
512 (define-syntax current-source-location
513 (lambda (x)
514 (syntax-case x ()
515 ((_)
516 (with-syntax ((s (datum->syntax x (syntax-source x))))
517 #''s)))))
518
519 (define-syntax-rule (define-once sym val)
520 (define sym
521 (if (module-locally-bound? (current-module) 'sym) sym val)))
522
523 ;;; The real versions of `map' and `for-each', with cycle detection, and
524 ;;; that use reverse! instead of recursion in the case of `map'.
525 ;;;
526 (define map
527 (case-lambda
528 ((f l)
529 (let map1 ((hare l) (tortoise l) (move? #f) (out '()))
530 (if (pair? hare)
531 (if move?
532 (if (eq? tortoise hare)
533 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
534 (list l) #f)
535 (map1 (cdr hare) (cdr tortoise) #f
536 (cons (f (car hare)) out)))
537 (map1 (cdr hare) tortoise #t
538 (cons (f (car hare)) out)))
539 (if (null? hare)
540 (reverse! out)
541 (scm-error 'wrong-type-arg "map" "Not a list: ~S"
542 (list l) #f)))))
543
544 ((f l1 l2)
545 (let map2 ((h1 l1) (h2 l2) (t1 l1) (t2 l2) (move? #f) (out '()))
546 (cond
547 ((pair? h1)
548 (cond
549 ((not (pair? h2))
550 (scm-error 'wrong-type-arg "map"
551 (if (list? h2)
552 "List of wrong length: ~S"
553 "Not a list: ~S")
554 (list l2) #f))
555 ((not move?)
556 (map2 (cdr h1) (cdr h2) t1 t2 #t
557 (cons (f (car h1) (car h2)) out)))
558 ((eq? t1 h1)
559 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
560 (list l1) #f))
561 ((eq? t2 h2)
562 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
563 (list l2) #f))
564 (else
565 (map2 (cdr h1) (cdr h2) (cdr t1) (cdr t2) #f
566 (cons (f (car h1) (car h2)) out)))))
567
568 ((and (null? h1) (null? h2))
569 (reverse! out))
570
571 ((null? h1)
572 (scm-error 'wrong-type-arg "map"
573 (if (list? h2)
574 "List of wrong length: ~S"
575 "Not a list: ~S")
576 (list l2) #f))
577 (else
578 (scm-error 'wrong-type-arg "map"
579 "Not a list: ~S"
580 (list l1) #f)))))
581
582 ((f l1 . rest)
583 (let ((len (length l1)))
584 (let mapn ((rest rest))
585 (or (null? rest)
586 (if (= (length (car rest)) len)
587 (mapn (cdr rest))
588 (scm-error 'wrong-type-arg "map" "List of wrong length: ~S"
589 (list (car rest)) #f)))))
590 (let mapn ((l1 l1) (rest rest) (out '()))
591 (if (null? l1)
592 (reverse! out)
593 (mapn (cdr l1) (map cdr rest)
594 (cons (apply f (car l1) (map car rest)) out)))))))
595
596 (define map-in-order map)
597
598 (define for-each
599 (case-lambda
600 ((f l)
601 (let for-each1 ((hare l) (tortoise l) (move? #f))
602 (if (pair? hare)
603 (if move?
604 (if (eq? tortoise hare)
605 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
606 (list l) #f)
607 (begin
608 (f (car hare))
609 (for-each1 (cdr hare) (cdr tortoise) #f)))
610 (begin
611 (f (car hare))
612 (for-each1 (cdr hare) tortoise #t)))
613
614 (if (not (null? hare))
615 (scm-error 'wrong-type-arg "for-each" "Not a list: ~S"
616 (list l) #f)))))
617
618 ((f l1 l2)
619 (let for-each2 ((h1 l1) (h2 l2) (t1 l1) (t2 l2) (move? #f))
620 (cond
621 ((and (pair? h1) (pair? h2))
622 (cond
623 ((not move?)
624 (f (car h1) (car h2))
625 (for-each2 (cdr h1) (cdr h2) t1 t2 #t))
626 ((eq? t1 h1)
627 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
628 (list l1) #f))
629 ((eq? t2 h2)
630 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
631 (list l2) #f))
632 (else
633 (f (car h1) (car h2))
634 (for-each2 (cdr h1) (cdr h2) (cdr t1) (cdr t2) #f))))
635
636 ((if (null? h1)
637 (or (null? h2) (pair? h2))
638 (and (pair? h1) (null? h2)))
639 (if #f #f))
640
641 ((list? h1)
642 (scm-error 'wrong-type-arg "for-each" "Unexpected tail: ~S"
643 (list h2) #f))
644 (else
645 (scm-error 'wrong-type-arg "for-each" "Unexpected tail: ~S"
646 (list h1) #f)))))
647
648 ((f l1 . rest)
649 (let ((len (length l1)))
650 (let for-eachn ((rest rest))
651 (or (null? rest)
652 (if (= (length (car rest)) len)
653 (for-eachn (cdr rest))
654 (scm-error 'wrong-type-arg "for-each" "List of wrong length: ~S"
655 (list (car rest)) #f)))))
656
657 (let for-eachn ((l1 l1) (rest rest))
658 (if (pair? l1)
659 (begin
660 (apply f (car l1) (map car rest))
661 (for-eachn (cdr l1) (map cdr rest))))))))
662
663
664 \f
665
666 ;;;
667 ;;; Extensible exception printing.
668 ;;;
669
670 (define set-exception-printer! #f)
671 ;; There is already a definition of print-exception from backtrace.c
672 ;; that we will override.
673
674 (let ((exception-printers '()))
675 (define (print-location frame port)
676 (let ((source (and=> frame frame-source)))
677 ;; source := (addr . (filename . (line . column)))
678 (if source
679 (let ((filename (or (cadr source) "<unnamed port>"))
680 (line (caddr source))
681 (col (cdddr source)))
682 (format port "~a:~a:~a: " filename (1+ line) col))
683 (format port "ERROR: "))))
684
685 (set! set-exception-printer!
686 (lambda (key proc)
687 (set! exception-printers (acons key proc exception-printers))))
688
689 (set! print-exception
690 (lambda (port frame key args)
691 (define (default-printer)
692 (format port "Throw to key `~a' with args `~s'." key args))
693
694 (if frame
695 (let ((proc (frame-procedure frame)))
696 (print-location frame port)
697 (format port "In procedure ~a:\n"
698 (or (procedure-name proc) proc))))
699
700 (print-location frame port)
701 (catch #t
702 (lambda ()
703 (let ((printer (assq-ref exception-printers key)))
704 (if printer
705 (printer port key args default-printer)
706 (default-printer))))
707 (lambda (k . args)
708 (format port "Error while printing exception.")))
709 (newline port)
710 (force-output port))))
711
712 ;;;
713 ;;; Printers for those keys thrown by Guile.
714 ;;;
715 (let ()
716 (define (scm-error-printer port key args default-printer)
717 ;; Abuse case-lambda as a pattern matcher, given that we don't have
718 ;; ice-9 match at this point.
719 (apply (case-lambda
720 ((subr msg args . rest)
721 (if subr
722 (format port "In procedure ~a: " subr))
723 (apply format port msg (or args '())))
724 (_ (default-printer)))
725 args))
726
727 (define (syntax-error-printer port key args default-printer)
728 (apply (case-lambda
729 ((who what where form subform . extra)
730 (format port "Syntax error:\n")
731 (if where
732 (let ((file (or (assq-ref where 'filename) "unknown file"))
733 (line (and=> (assq-ref where 'line) 1+))
734 (col (assq-ref where 'column)))
735 (format port "~a:~a:~a: " file line col))
736 (format port "unknown location: "))
737 (if who
738 (format port "~a: " who))
739 (format port "~a" what)
740 (if subform
741 (format port " in subform ~s of ~s" subform form)
742 (if form
743 (format port " in form ~s" form))))
744 (_ (default-printer)))
745 args))
746
747 (set-exception-printer! 'goops-error scm-error-printer)
748 (set-exception-printer! 'host-not-found scm-error-printer)
749 (set-exception-printer! 'keyword-argument-error scm-error-printer)
750 (set-exception-printer! 'misc-error scm-error-printer)
751 (set-exception-printer! 'no-data scm-error-printer)
752 (set-exception-printer! 'no-recovery scm-error-printer)
753 (set-exception-printer! 'null-pointer-error scm-error-printer)
754 (set-exception-printer! 'out-of-range scm-error-printer)
755 (set-exception-printer! 'program-error scm-error-printer)
756 (set-exception-printer! 'read-error scm-error-printer)
757 (set-exception-printer! 'regular-expression-syntax scm-error-printer)
758 (set-exception-printer! 'signal scm-error-printer)
759 (set-exception-printer! 'stack-overflow scm-error-printer)
760 (set-exception-printer! 'system-error scm-error-printer)
761 (set-exception-printer! 'try-again scm-error-printer)
762 (set-exception-printer! 'unbound-variable scm-error-printer)
763 (set-exception-printer! 'wrong-number-of-args scm-error-printer)
764 (set-exception-printer! 'wrong-type-arg scm-error-printer)
765
766 (set-exception-printer! 'syntax-error syntax-error-printer))
767
768
769 \f
770
771 ;;; {Defmacros}
772 ;;;
773
774 (define-syntax define-macro
775 (lambda (x)
776 "Define a defmacro."
777 (syntax-case x ()
778 ((_ (macro . args) doc body1 body ...)
779 (string? (syntax->datum #'doc))
780 #'(define-macro macro doc (lambda args body1 body ...)))
781 ((_ (macro . args) body ...)
782 #'(define-macro macro #f (lambda args body ...)))
783 ((_ macro doc transformer)
784 (or (string? (syntax->datum #'doc))
785 (not (syntax->datum #'doc)))
786 #'(define-syntax macro
787 (lambda (y)
788 doc
789 #((macro-type . defmacro)
790 (defmacro-args args))
791 (syntax-case y ()
792 ((_ . args)
793 (let ((v (syntax->datum #'args)))
794 (datum->syntax y (apply transformer v)))))))))))
795
796 (define-syntax defmacro
797 (lambda (x)
798 "Define a defmacro, with the old lispy defun syntax."
799 (syntax-case x ()
800 ((_ macro args doc body1 body ...)
801 (string? (syntax->datum #'doc))
802 #'(define-macro macro doc (lambda args body1 body ...)))
803 ((_ macro args body ...)
804 #'(define-macro macro #f (lambda args body ...))))))
805
806 (provide 'defmacro)
807
808 \f
809
810 ;;; {Deprecation}
811 ;;;
812
813 (define-syntax begin-deprecated
814 (lambda (x)
815 (syntax-case x ()
816 ((_ form form* ...)
817 (if (include-deprecated-features)
818 #'(begin form form* ...)
819 #'(begin))))))
820
821 \f
822
823 ;;; {Trivial Functions}
824 ;;;
825
826 (define (identity x) x)
827
828 (define (compose proc . rest)
829 "Compose PROC with the procedures in REST, such that the last one in
830 REST is applied first and PROC last, and return the resulting procedure.
831 The given procedures must have compatible arity."
832 (if (null? rest)
833 proc
834 (let ((g (apply compose rest)))
835 (lambda args
836 (call-with-values (lambda () (apply g args)) proc)))))
837
838 (define (negate proc)
839 "Return a procedure with the same arity as PROC that returns the `not'
840 of PROC's result."
841 (lambda args
842 (not (apply proc args))))
843
844 (define (const value)
845 "Return a procedure that accepts any number of arguments and returns
846 VALUE."
847 (lambda _
848 value))
849
850 (define (and=> value procedure) (and value (procedure value)))
851 (define call/cc call-with-current-continuation)
852
853 (define-syntax-rule (false-if-exception expr)
854 (catch #t
855 (lambda () expr)
856 (lambda (k . args) #f)))
857
858 \f
859
860 ;;; {General Properties}
861 ;;;
862
863 ;; Properties are a lispy way to associate random info with random objects.
864 ;; Traditionally properties are implemented as an alist or a plist actually
865 ;; pertaining to the object in question.
866 ;;
867 ;; These "object properties" have the advantage that they can be associated with
868 ;; any object, even if the object has no plist. Object properties are good when
869 ;; you are extending pre-existing objects in unexpected ways. They also present
870 ;; a pleasing, uniform procedure-with-setter interface. But if you have a data
871 ;; type that always has properties, it's often still best to store those
872 ;; properties within the object itself.
873
874 (define (make-object-property)
875 (define-syntax-rule (with-mutex lock exp)
876 (dynamic-wind (lambda () (lock-mutex lock))
877 (lambda () exp)
878 (lambda () (unlock-mutex lock))))
879 (let ((prop (make-weak-key-hash-table))
880 (lock (make-mutex)))
881 (make-procedure-with-setter
882 (lambda (obj) (with-mutex lock (hashq-ref prop obj)))
883 (lambda (obj val) (with-mutex lock (hashq-set! prop obj val))))))
884
885
886 \f
887
888 ;;; {Symbol Properties}
889 ;;;
890
891 ;;; Symbol properties are something you see in old Lisp code. In most current
892 ;;; Guile code, symbols are not used as a data structure -- they are used as
893 ;;; keys into other data structures.
894
895 (define (symbol-property sym prop)
896 (let ((pair (assoc prop (symbol-pref sym))))
897 (and pair (cdr pair))))
898
899 (define (set-symbol-property! sym prop val)
900 (let ((pair (assoc prop (symbol-pref sym))))
901 (if pair
902 (set-cdr! pair val)
903 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
904
905 (define (symbol-property-remove! sym prop)
906 (let ((pair (assoc prop (symbol-pref sym))))
907 (if pair
908 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
909
910 \f
911
912 ;;; {Arrays}
913 ;;;
914
915 (define (array-shape a)
916 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
917 (array-dimensions a)))
918
919 \f
920
921 ;;; {Keywords}
922 ;;;
923
924 ;;; It's much better if you can use lambda* / define*, of course.
925
926 (define (kw-arg-ref args kw)
927 (let ((rem (member kw args)))
928 (and rem (pair? (cdr rem)) (cadr rem))))
929
930 \f
931
932 ;;; {Structs}
933 ;;;
934
935 (define (struct-layout s)
936 (struct-ref (struct-vtable s) vtable-index-layout))
937
938 \f
939
940 ;;; {Records}
941 ;;;
942
943 ;; Printing records: by default, records are printed as
944 ;;
945 ;; #<type-name field1: val1 field2: val2 ...>
946 ;;
947 ;; You can change that by giving a custom printing function to
948 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
949 ;; will be called like
950 ;;
951 ;; (<printer> object port)
952 ;;
953 ;; It should print OBJECT to PORT.
954
955 (define (inherit-print-state old-port new-port)
956 (if (get-print-state old-port)
957 (port-with-print-state new-port (get-print-state old-port))
958 new-port))
959
960 ;; 0: type-name, 1: fields, 2: constructor
961 (define record-type-vtable
962 ;; FIXME: This should just call make-vtable, not make-vtable-vtable; but for
963 ;; that we need to expose the bare vtable-vtable to Scheme.
964 (make-vtable-vtable "prprpw" 0
965 (lambda (s p)
966 (cond ((eq? s record-type-vtable)
967 (display "#<record-type-vtable>" p))
968 (else
969 (display "#<record-type " p)
970 (display (record-type-name s) p)
971 (display ">" p))))))
972
973 (define (record-type? obj)
974 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
975
976 (define* (make-record-type type-name fields #:optional printer)
977 ;; Pre-generate constructors for nfields < 20.
978 (define-syntax make-constructor
979 (lambda (x)
980 (define *max-static-argument-count* 20)
981 (define (make-formals n)
982 (let lp ((i 0))
983 (if (< i n)
984 (cons (datum->syntax
985 x
986 (string->symbol
987 (string (integer->char (+ (char->integer #\a) i)))))
988 (lp (1+ i)))
989 '())))
990 (syntax-case x ()
991 ((_ rtd exp) (not (identifier? #'exp))
992 #'(let ((n exp))
993 (make-constructor rtd n)))
994 ((_ rtd nfields)
995 #`(case nfields
996 #,@(let lp ((n 0))
997 (if (< n *max-static-argument-count*)
998 (cons (with-syntax (((formal ...) (make-formals n))
999 (n n))
1000 #'((n)
1001 (lambda (formal ...)
1002 (make-struct rtd 0 formal ...))))
1003 (lp (1+ n)))
1004 '()))
1005 (else
1006 (lambda args
1007 (if (= (length args) nfields)
1008 (apply make-struct rtd 0 args)
1009 (scm-error 'wrong-number-of-args
1010 (format #f "make-~a" type-name)
1011 "Wrong number of arguments" '() #f)))))))))
1012
1013 (define (default-record-printer s p)
1014 (display "#<" p)
1015 (display (record-type-name (record-type-descriptor s)) p)
1016 (let loop ((fields (record-type-fields (record-type-descriptor s)))
1017 (off 0))
1018 (cond
1019 ((not (null? fields))
1020 (display " " p)
1021 (display (car fields) p)
1022 (display ": " p)
1023 (display (struct-ref s off) p)
1024 (loop (cdr fields) (+ 1 off)))))
1025 (display ">" p))
1026
1027 (let ((rtd (make-struct record-type-vtable 0
1028 (make-struct-layout
1029 (apply string-append
1030 (map (lambda (f) "pw") fields)))
1031 (or printer default-record-printer)
1032 type-name
1033 (copy-tree fields))))
1034 (struct-set! rtd (+ vtable-offset-user 2)
1035 (make-constructor rtd (length fields)))
1036 ;; Temporary solution: Associate a name to the record type descriptor
1037 ;; so that the object system can create a wrapper class for it.
1038 (set-struct-vtable-name! rtd (if (symbol? type-name)
1039 type-name
1040 (string->symbol type-name)))
1041 rtd))
1042
1043 (define (record-type-name obj)
1044 (if (record-type? obj)
1045 (struct-ref obj vtable-offset-user)
1046 (error 'not-a-record-type obj)))
1047
1048 (define (record-type-fields obj)
1049 (if (record-type? obj)
1050 (struct-ref obj (+ 1 vtable-offset-user))
1051 (error 'not-a-record-type obj)))
1052
1053 (define* (record-constructor rtd #:optional field-names)
1054 (if (not field-names)
1055 (struct-ref rtd (+ 2 vtable-offset-user))
1056 (primitive-eval
1057 `(lambda ,field-names
1058 (make-struct ',rtd 0 ,@(map (lambda (f)
1059 (if (memq f field-names)
1060 f
1061 #f))
1062 (record-type-fields rtd)))))))
1063
1064 (define (record-predicate rtd)
1065 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
1066
1067 (define (%record-type-error rtd obj) ;; private helper
1068 (or (eq? rtd (record-type-descriptor obj))
1069 (scm-error 'wrong-type-arg "%record-type-check"
1070 "Wrong type record (want `~S'): ~S"
1071 (list (record-type-name rtd) obj)
1072 #f)))
1073
1074 (define (record-accessor rtd field-name)
1075 (let ((pos (list-index (record-type-fields rtd) field-name)))
1076 (if (not pos)
1077 (error 'no-such-field field-name))
1078 (lambda (obj)
1079 (if (eq? (struct-vtable obj) rtd)
1080 (struct-ref obj pos)
1081 (%record-type-error rtd obj)))))
1082
1083 (define (record-modifier rtd field-name)
1084 (let ((pos (list-index (record-type-fields rtd) field-name)))
1085 (if (not pos)
1086 (error 'no-such-field field-name))
1087 (lambda (obj val)
1088 (if (eq? (struct-vtable obj) rtd)
1089 (struct-set! obj pos val)
1090 (%record-type-error rtd obj)))))
1091
1092 (define (record? obj)
1093 (and (struct? obj) (record-type? (struct-vtable obj))))
1094
1095 (define (record-type-descriptor obj)
1096 (if (struct? obj)
1097 (struct-vtable obj)
1098 (error 'not-a-record obj)))
1099
1100 (provide 'record)
1101
1102 \f
1103
1104 ;;; {Booleans}
1105 ;;;
1106
1107 (define (->bool x) (not (not x)))
1108
1109 \f
1110
1111 ;;; {Symbols}
1112 ;;;
1113
1114 (define (symbol-append . args)
1115 (string->symbol (apply string-append (map symbol->string args))))
1116
1117 (define (list->symbol . args)
1118 (string->symbol (apply list->string args)))
1119
1120 (define (symbol . args)
1121 (string->symbol (apply string args)))
1122
1123 \f
1124
1125 ;;; {Lists}
1126 ;;;
1127
1128 (define (list-index l k)
1129 (let loop ((n 0)
1130 (l l))
1131 (and (not (null? l))
1132 (if (eq? (car l) k)
1133 n
1134 (loop (+ n 1) (cdr l))))))
1135
1136 \f
1137
1138 ;; Load `posix.scm' even when not (provided? 'posix) so that we get the
1139 ;; `stat' accessors.
1140 (primitive-load-path "ice-9/posix")
1141
1142 (if (provided? 'socket)
1143 (primitive-load-path "ice-9/networking"))
1144
1145 ;; For reference, Emacs file-exists-p uses stat in this same way.
1146 (define file-exists?
1147 (if (provided? 'posix)
1148 (lambda (str)
1149 (->bool (stat str #f)))
1150 (lambda (str)
1151 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
1152 (lambda args #f))))
1153 (if port (begin (close-port port) #t)
1154 #f)))))
1155
1156 (define file-is-directory?
1157 (if (provided? 'posix)
1158 (lambda (str)
1159 (eq? (stat:type (stat str)) 'directory))
1160 (lambda (str)
1161 (let ((port (catch 'system-error
1162 (lambda () (open-file (string-append str "/.")
1163 OPEN_READ))
1164 (lambda args #f))))
1165 (if port (begin (close-port port) #t)
1166 #f)))))
1167
1168 (define (system-error-errno args)
1169 (if (eq? (car args) 'system-error)
1170 (car (list-ref args 4))
1171 #f))
1172
1173 \f
1174
1175 ;;; {Error Handling}
1176 ;;;
1177
1178 (define error
1179 (case-lambda
1180 (()
1181 (scm-error 'misc-error #f "?" #f #f))
1182 ((message . args)
1183 (let ((msg (string-join (cons "~A" (make-list (length args) "~S")))))
1184 (scm-error 'misc-error #f msg (cons message args) #f)))))
1185
1186 \f
1187
1188 ;;; {Time Structures}
1189 ;;;
1190
1191 (define (tm:sec obj) (vector-ref obj 0))
1192 (define (tm:min obj) (vector-ref obj 1))
1193 (define (tm:hour obj) (vector-ref obj 2))
1194 (define (tm:mday obj) (vector-ref obj 3))
1195 (define (tm:mon obj) (vector-ref obj 4))
1196 (define (tm:year obj) (vector-ref obj 5))
1197 (define (tm:wday obj) (vector-ref obj 6))
1198 (define (tm:yday obj) (vector-ref obj 7))
1199 (define (tm:isdst obj) (vector-ref obj 8))
1200 (define (tm:gmtoff obj) (vector-ref obj 9))
1201 (define (tm:zone obj) (vector-ref obj 10))
1202
1203 (define (set-tm:sec obj val) (vector-set! obj 0 val))
1204 (define (set-tm:min obj val) (vector-set! obj 1 val))
1205 (define (set-tm:hour obj val) (vector-set! obj 2 val))
1206 (define (set-tm:mday obj val) (vector-set! obj 3 val))
1207 (define (set-tm:mon obj val) (vector-set! obj 4 val))
1208 (define (set-tm:year obj val) (vector-set! obj 5 val))
1209 (define (set-tm:wday obj val) (vector-set! obj 6 val))
1210 (define (set-tm:yday obj val) (vector-set! obj 7 val))
1211 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
1212 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
1213 (define (set-tm:zone obj val) (vector-set! obj 10 val))
1214
1215 (define (tms:clock obj) (vector-ref obj 0))
1216 (define (tms:utime obj) (vector-ref obj 1))
1217 (define (tms:stime obj) (vector-ref obj 2))
1218 (define (tms:cutime obj) (vector-ref obj 3))
1219 (define (tms:cstime obj) (vector-ref obj 4))
1220
1221 \f
1222
1223 ;;; {File Descriptors and Ports}
1224 ;;;
1225
1226 (define file-position ftell)
1227 (define* (file-set-position port offset #:optional (whence SEEK_SET))
1228 (seek port offset whence))
1229
1230 (define (move->fdes fd/port fd)
1231 (cond ((integer? fd/port)
1232 (dup->fdes fd/port fd)
1233 (close fd/port)
1234 fd)
1235 (else
1236 (primitive-move->fdes fd/port fd)
1237 (set-port-revealed! fd/port 1)
1238 fd/port)))
1239
1240 (define (release-port-handle port)
1241 (let ((revealed (port-revealed port)))
1242 (if (> revealed 0)
1243 (set-port-revealed! port (- revealed 1)))))
1244
1245 (define dup->port
1246 (case-lambda
1247 ((port/fd mode)
1248 (fdopen (dup->fdes port/fd) mode))
1249 ((port/fd mode new-fd)
1250 (let ((port (fdopen (dup->fdes port/fd new-fd) mode)))
1251 (set-port-revealed! port 1)
1252 port))))
1253
1254 (define dup->inport
1255 (case-lambda
1256 ((port/fd)
1257 (dup->port port/fd "r"))
1258 ((port/fd new-fd)
1259 (dup->port port/fd "r" new-fd))))
1260
1261 (define dup->outport
1262 (case-lambda
1263 ((port/fd)
1264 (dup->port port/fd "w"))
1265 ((port/fd new-fd)
1266 (dup->port port/fd "w" new-fd))))
1267
1268 (define dup
1269 (case-lambda
1270 ((port/fd)
1271 (if (integer? port/fd)
1272 (dup->fdes port/fd)
1273 (dup->port port/fd (port-mode port/fd))))
1274 ((port/fd new-fd)
1275 (if (integer? port/fd)
1276 (dup->fdes port/fd new-fd)
1277 (dup->port port/fd (port-mode port/fd) new-fd)))))
1278
1279 (define (duplicate-port port modes)
1280 (dup->port port modes))
1281
1282 (define (fdes->inport fdes)
1283 (let loop ((rest-ports (fdes->ports fdes)))
1284 (cond ((null? rest-ports)
1285 (let ((result (fdopen fdes "r")))
1286 (set-port-revealed! result 1)
1287 result))
1288 ((input-port? (car rest-ports))
1289 (set-port-revealed! (car rest-ports)
1290 (+ (port-revealed (car rest-ports)) 1))
1291 (car rest-ports))
1292 (else
1293 (loop (cdr rest-ports))))))
1294
1295 (define (fdes->outport fdes)
1296 (let loop ((rest-ports (fdes->ports fdes)))
1297 (cond ((null? rest-ports)
1298 (let ((result (fdopen fdes "w")))
1299 (set-port-revealed! result 1)
1300 result))
1301 ((output-port? (car rest-ports))
1302 (set-port-revealed! (car rest-ports)
1303 (+ (port-revealed (car rest-ports)) 1))
1304 (car rest-ports))
1305 (else
1306 (loop (cdr rest-ports))))))
1307
1308 (define (port->fdes port)
1309 (set-port-revealed! port (+ (port-revealed port) 1))
1310 (fileno port))
1311
1312 (define (setenv name value)
1313 (if value
1314 (putenv (string-append name "=" value))
1315 (putenv name)))
1316
1317 (define (unsetenv name)
1318 "Remove the entry for NAME from the environment."
1319 (putenv name))
1320
1321 \f
1322
1323 ;;; {Load Paths}
1324 ;;;
1325
1326 (define (in-vicinity vicinity file)
1327 (let ((tail (let ((len (string-length vicinity)))
1328 (if (zero? len)
1329 #f
1330 (string-ref vicinity (- len 1))))))
1331 (string-append vicinity
1332 (if (or (not tail)
1333 (eq? tail #\/))
1334 ""
1335 "/")
1336 file)))
1337
1338 \f
1339
1340 ;;; {Help for scm_shell}
1341 ;;;
1342 ;;; The argument-processing code used by Guile-based shells generates
1343 ;;; Scheme code based on the argument list. This page contains help
1344 ;;; functions for the code it generates.
1345 ;;;
1346
1347 (define (command-line) (program-arguments))
1348
1349 ;; This is mostly for the internal use of the code generated by
1350 ;; scm_compile_shell_switches.
1351
1352 (define (load-user-init)
1353 (let* ((home (or (getenv "HOME")
1354 (false-if-exception (passwd:dir (getpwuid (getuid))))
1355 "/")) ;; fallback for cygwin etc.
1356 (init-file (in-vicinity home ".guile")))
1357 (if (file-exists? init-file)
1358 (primitive-load init-file))))
1359
1360 \f
1361
1362 ;;; {The interpreter stack}
1363 ;;;
1364
1365 ;; %stacks defined in stacks.c
1366 (define (%start-stack tag thunk)
1367 (let ((prompt-tag (make-prompt-tag "start-stack")))
1368 (call-with-prompt
1369 prompt-tag
1370 (lambda ()
1371 (with-fluids ((%stacks (acons tag prompt-tag
1372 (or (fluid-ref %stacks) '()))))
1373 (thunk)))
1374 (lambda (k . args)
1375 (%start-stack tag (lambda () (apply k args)))))))
1376
1377 (define-syntax-rule (start-stack tag exp)
1378 (%start-stack tag (lambda () exp)))
1379
1380 \f
1381
1382 ;;; {Loading by paths}
1383 ;;;
1384
1385 ;;; Load a Scheme source file named NAME, searching for it in the
1386 ;;; directories listed in %load-path, and applying each of the file
1387 ;;; name extensions listed in %load-extensions.
1388 (define (load-from-path name)
1389 (start-stack 'load-stack
1390 (primitive-load-path name)))
1391
1392 (define %load-verbosely #f)
1393 (define (assert-load-verbosity v) (set! %load-verbosely v))
1394
1395 (define (%load-announce file)
1396 (if %load-verbosely
1397 (with-output-to-port (current-error-port)
1398 (lambda ()
1399 (display ";;; ")
1400 (display "loading ")
1401 (display file)
1402 (newline)
1403 (force-output)))))
1404
1405 (set! %load-hook %load-announce)
1406
1407 \f
1408
1409 ;;; {Reader Extensions}
1410 ;;;
1411 ;;; Reader code for various "#c" forms.
1412 ;;;
1413
1414 (define read-eval? (make-fluid))
1415 (fluid-set! read-eval? #f)
1416 (read-hash-extend #\.
1417 (lambda (c port)
1418 (if (fluid-ref read-eval?)
1419 (eval (read port) (interaction-environment))
1420 (error
1421 "#. read expansion found and read-eval? is #f."))))
1422
1423 \f
1424
1425 ;;; {Low Level Modules}
1426 ;;;
1427 ;;; These are the low level data structures for modules.
1428 ;;;
1429 ;;; Every module object is of the type 'module-type', which is a record
1430 ;;; consisting of the following members:
1431 ;;;
1432 ;;; - eval-closure: the function that defines for its module the strategy that
1433 ;;; shall be followed when looking up symbols in the module.
1434 ;;;
1435 ;;; An eval-closure is a function taking two arguments: the symbol to be
1436 ;;; looked up and a boolean value telling whether a binding for the symbol
1437 ;;; should be created if it does not exist yet. If the symbol lookup
1438 ;;; succeeded (either because an existing binding was found or because a new
1439 ;;; binding was created), a variable object representing the binding is
1440 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1441 ;;; closure does not take the module to be searched as an argument: During
1442 ;;; construction of the eval-closure, the eval-closure has to store the
1443 ;;; module it belongs to in its environment. This means, that any
1444 ;;; eval-closure can belong to only one module.
1445 ;;;
1446 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1447 ;;; special cases of eval-closures are to be distinguished: During startup
1448 ;;; the module system is not yet activated. In this phase, no modules are
1449 ;;; defined and all bindings are automatically stored by the system in the
1450 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1451 ;;; functions which require an eval-closure as their argument need to be
1452 ;;; passed the value #f.
1453 ;;;
1454 ;;; The other two special cases of eval-closures are the
1455 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1456 ;;; behave equally for the case that no new binding is to be created. The
1457 ;;; difference between the two comes in, when the boolean argument to the
1458 ;;; eval-closure indicates that a new binding shall be created if it is not
1459 ;;; found.
1460 ;;;
1461 ;;; Given that no new binding shall be created, both standard eval-closures
1462 ;;; define the following standard strategy of searching bindings in the
1463 ;;; module: First, the module's obarray is searched for the symbol. Second,
1464 ;;; if no binding for the symbol was found in the module's obarray, the
1465 ;;; module's binder procedure is exececuted. If this procedure did not
1466 ;;; return a binding for the symbol, the modules referenced in the module's
1467 ;;; uses list are recursively searched for a binding of the symbol. If the
1468 ;;; binding can not be found in these modules also, the symbol lookup has
1469 ;;; failed.
1470 ;;;
1471 ;;; If a new binding shall be created, the standard-interface-eval-closure
1472 ;;; immediately returns indicating failure. That is, it does not even try
1473 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1474 ;;; first search the obarray, and if no binding was found there, would
1475 ;;; create a new binding in the obarray, therefore not calling the binder
1476 ;;; procedure or searching the modules in the uses list.
1477 ;;;
1478 ;;; The explanation of the following members obarray, binder and uses
1479 ;;; assumes that the symbol lookup follows the strategy that is defined in
1480 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1481 ;;;
1482 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1483 ;;; hash table, the definitions are found that are local to the module (that
1484 ;;; is, not imported from other modules). When looking up bindings in the
1485 ;;; module, this hash table is searched first.
1486 ;;;
1487 ;;; - binder: either #f or a function taking a module and a symbol argument.
1488 ;;; If it is a function it is called after the obarray has been
1489 ;;; unsuccessfully searched for a binding. It then can provide bindings
1490 ;;; that would otherwise not be found locally in the module.
1491 ;;;
1492 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1493 ;;; These modules are the third place queried for bindings after the obarray
1494 ;;; has been unsuccessfully searched and the binder function did not deliver
1495 ;;; a result either.
1496 ;;;
1497 ;;; - transformer: either #f or a function taking a scheme expression as
1498 ;;; delivered by read. If it is a function, it will be called to perform
1499 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1500 ;;; expression. The output of the transformer function will then be passed
1501 ;;; to Guile's internal memoizer. This means that the output must be valid
1502 ;;; scheme code. The only exception is, that the output may make use of the
1503 ;;; syntax extensions provided to identify the modules that a binding
1504 ;;; belongs to.
1505 ;;;
1506 ;;; - name: the name of the module. This is used for all kinds of printing
1507 ;;; outputs. In certain places the module name also serves as a way of
1508 ;;; identification. When adding a module to the uses list of another
1509 ;;; module, it is made sure that the new uses list will not contain two
1510 ;;; modules of the same name.
1511 ;;;
1512 ;;; - kind: classification of the kind of module. The value is (currently?)
1513 ;;; only used for printing. It has no influence on how a module is treated.
1514 ;;; Currently the following values are used when setting the module kind:
1515 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1516 ;;; is set, it defaults to 'module.
1517 ;;;
1518 ;;; - duplicates-handlers: a list of procedures that get called to make a
1519 ;;; choice between two duplicate bindings when name clashes occur. See the
1520 ;;; `duplicate-handlers' global variable below.
1521 ;;;
1522 ;;; - observers: a list of procedures that get called when the module is
1523 ;;; modified.
1524 ;;;
1525 ;;; - weak-observers: a weak-key hash table of procedures that get called
1526 ;;; when the module is modified. See `module-observe-weak' for details.
1527 ;;;
1528 ;;; In addition, the module may (must?) contain a binding for
1529 ;;; `%module-public-interface'. This variable should be bound to a module
1530 ;;; representing the exported interface of a module. See the
1531 ;;; `module-public-interface' and `module-export!' procedures.
1532 ;;;
1533 ;;; !!! warning: The interface to lazy binder procedures is going
1534 ;;; to be changed in an incompatible way to permit all the basic
1535 ;;; module ops to be virtualized.
1536 ;;;
1537 ;;; (make-module size use-list lazy-binding-proc) => module
1538 ;;; module-{obarray,uses,binder}[|-set!]
1539 ;;; (module? obj) => [#t|#f]
1540 ;;; (module-locally-bound? module symbol) => [#t|#f]
1541 ;;; (module-bound? module symbol) => [#t|#f]
1542 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1543 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1544 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1545 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1546 ;;; (module-symbol-binding module symbol opt-value)
1547 ;;; => [ <obj> | opt-value | an error occurs ]
1548 ;;; (module-make-local-var! module symbol) => #<variable...>
1549 ;;; (module-add! module symbol var) => unspecified
1550 ;;; (module-remove! module symbol) => unspecified
1551 ;;; (module-for-each proc module) => unspecified
1552 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1553 ;;; (set-current-module module) => unspecified
1554 ;;; (current-module) => #<module...>
1555 ;;;
1556 ;;;
1557
1558 \f
1559
1560 ;;; {Printing Modules}
1561 ;;;
1562
1563 ;; This is how modules are printed. You can re-define it.
1564 (define (%print-module mod port)
1565 (display "#<" port)
1566 (display (or (module-kind mod) "module") port)
1567 (display " " port)
1568 (display (module-name mod) port)
1569 (display " " port)
1570 (display (number->string (object-address mod) 16) port)
1571 (display ">" port))
1572
1573 (letrec-syntax
1574 ;; Locally extend the syntax to allow record accessors to be defined at
1575 ;; compile-time. Cache the rtd locally to the constructor, the getters and
1576 ;; the setters, in order to allow for redefinition of the record type; not
1577 ;; relevant in the case of modules, but perhaps if we make this public, it
1578 ;; could matter.
1579
1580 ((define-record-type
1581 (lambda (x)
1582 (define (make-id scope . fragments)
1583 (datum->syntax #'scope
1584 (apply symbol-append
1585 (map (lambda (x)
1586 (if (symbol? x) x (syntax->datum x)))
1587 fragments))))
1588
1589 (define (getter rtd type-name field slot)
1590 #`(define #,(make-id rtd type-name '- field)
1591 (let ((rtd #,rtd))
1592 (lambda (#,type-name)
1593 (if (eq? (struct-vtable #,type-name) rtd)
1594 (struct-ref #,type-name #,slot)
1595 (%record-type-error rtd #,type-name))))))
1596
1597 (define (setter rtd type-name field slot)
1598 #`(define #,(make-id rtd 'set- type-name '- field '!)
1599 (let ((rtd #,rtd))
1600 (lambda (#,type-name val)
1601 (if (eq? (struct-vtable #,type-name) rtd)
1602 (struct-set! #,type-name #,slot val)
1603 (%record-type-error rtd #,type-name))))))
1604
1605 (define (accessors rtd type-name fields n exp)
1606 (syntax-case fields ()
1607 (() exp)
1608 (((field #:no-accessors) field* ...) (identifier? #'field)
1609 (accessors rtd type-name #'(field* ...) (1+ n)
1610 exp))
1611 (((field #:no-setter) field* ...) (identifier? #'field)
1612 (accessors rtd type-name #'(field* ...) (1+ n)
1613 #`(begin #,exp
1614 #,(getter rtd type-name #'field n))))
1615 (((field #:no-getter) field* ...) (identifier? #'field)
1616 (accessors rtd type-name #'(field* ...) (1+ n)
1617 #`(begin #,exp
1618 #,(setter rtd type-name #'field n))))
1619 ((field field* ...) (identifier? #'field)
1620 (accessors rtd type-name #'(field* ...) (1+ n)
1621 #`(begin #,exp
1622 #,(getter rtd type-name #'field n)
1623 #,(setter rtd type-name #'field n))))))
1624
1625 (define (predicate rtd type-name fields exp)
1626 (accessors
1627 rtd type-name fields 0
1628 #`(begin
1629 #,exp
1630 (define (#,(make-id rtd type-name '?) obj)
1631 (and (struct? obj) (eq? (struct-vtable obj) #,rtd))))))
1632
1633 (define (field-list fields)
1634 (syntax-case fields ()
1635 (() '())
1636 (((f . opts) . rest) (identifier? #'f)
1637 (cons #'f (field-list #'rest)))
1638 ((f . rest) (identifier? #'f)
1639 (cons #'f (field-list #'rest)))))
1640
1641 (define (constructor rtd type-name fields exp)
1642 (let ((ctor (make-id rtd type-name '-constructor))
1643 (args (field-list fields)))
1644 (predicate rtd type-name fields
1645 #`(begin #,exp
1646 (define #,ctor
1647 (let ((rtd #,rtd))
1648 (lambda #,args
1649 (make-struct rtd 0 #,@args))))
1650 (struct-set! #,rtd (+ vtable-offset-user 2)
1651 #,ctor)))))
1652
1653 (define (type type-name printer fields)
1654 (define (make-layout)
1655 (let lp ((fields fields) (slots '()))
1656 (syntax-case fields ()
1657 (() (datum->syntax #'here
1658 (make-struct-layout
1659 (apply string-append slots))))
1660 ((_ . rest) (lp #'rest (cons "pw" slots))))))
1661
1662 (let ((rtd (make-id type-name type-name '-type)))
1663 (constructor rtd type-name fields
1664 #`(begin
1665 (define #,rtd
1666 (make-struct record-type-vtable 0
1667 '#,(make-layout)
1668 #,printer
1669 '#,type-name
1670 '#,(field-list fields)))
1671 (set-struct-vtable-name! #,rtd '#,type-name)))))
1672
1673 (syntax-case x ()
1674 ((_ type-name printer (field ...))
1675 (type #'type-name #'printer #'(field ...)))))))
1676
1677 ;; module-type
1678 ;;
1679 ;; A module is characterized by an obarray in which local symbols
1680 ;; are interned, a list of modules, "uses", from which non-local
1681 ;; bindings can be inherited, and an optional lazy-binder which
1682 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1683 ;; bindings that would otherwise not be found locally in the module.
1684 ;;
1685 ;; NOTE: If you change the set of fields or their order, you also need to
1686 ;; change the constants in libguile/modules.h.
1687 ;;
1688 ;; NOTE: The getter `module-eval-closure' is used in libguile/modules.c.
1689 ;; NOTE: The getter `module-transfomer' is defined libguile/modules.c.
1690 ;; NOTE: The getter `module-name' is defined later, due to boot reasons.
1691 ;; NOTE: The getter `module-public-interface' is used in libguile/modules.c.
1692 ;;
1693 (define-record-type module
1694 (lambda (obj port) (%print-module obj port))
1695 (obarray
1696 uses
1697 binder
1698 eval-closure
1699 (transformer #:no-getter)
1700 (name #:no-getter)
1701 kind
1702 duplicates-handlers
1703 (import-obarray #:no-setter)
1704 observers
1705 (weak-observers #:no-setter)
1706 version
1707 submodules
1708 submodule-binder
1709 public-interface
1710 filename)))
1711
1712
1713 ;; make-module &opt size uses binder
1714 ;;
1715 ;; Create a new module, perhaps with a particular size of obarray,
1716 ;; initial uses list, or binding procedure.
1717 ;;
1718 (define* (make-module #:optional (size 31) (uses '()) (binder #f))
1719 (define %default-import-size
1720 ;; Typical number of imported bindings actually used by a module.
1721 600)
1722
1723 (if (not (integer? size))
1724 (error "Illegal size to make-module." size))
1725 (if (not (and (list? uses)
1726 (and-map module? uses)))
1727 (error "Incorrect use list." uses))
1728 (if (and binder (not (procedure? binder)))
1729 (error
1730 "Lazy-binder expected to be a procedure or #f." binder))
1731
1732 (let ((module (module-constructor (make-hash-table size)
1733 uses binder #f macroexpand
1734 #f #f #f
1735 (make-hash-table %default-import-size)
1736 '()
1737 (make-weak-key-hash-table 31) #f
1738 (make-hash-table 7) #f #f #f)))
1739
1740 ;; We can't pass this as an argument to module-constructor,
1741 ;; because we need it to close over a pointer to the module
1742 ;; itself.
1743 (set-module-eval-closure! module (standard-eval-closure module))
1744
1745 module))
1746
1747
1748 \f
1749
1750 ;;; {Observer protocol}
1751 ;;;
1752
1753 (define (module-observe module proc)
1754 (set-module-observers! module (cons proc (module-observers module)))
1755 (cons module proc))
1756
1757 (define* (module-observe-weak module observer-id #:optional (proc observer-id))
1758 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1759 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1760 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1761 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1762 ;; for instance).
1763
1764 ;; The two-argument version is kept for backward compatibility: when called
1765 ;; with two arguments, the observer gets unregistered when closure PROC
1766 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1767 (hashq-set! (module-weak-observers module) observer-id proc))
1768
1769 (define (module-unobserve token)
1770 (let ((module (car token))
1771 (id (cdr token)))
1772 (if (integer? id)
1773 (hash-remove! (module-weak-observers module) id)
1774 (set-module-observers! module (delq1! id (module-observers module)))))
1775 *unspecified*)
1776
1777 (define module-defer-observers #f)
1778 (define module-defer-observers-mutex (make-mutex 'recursive))
1779 (define module-defer-observers-table (make-hash-table))
1780
1781 (define (module-modified m)
1782 (if module-defer-observers
1783 (hash-set! module-defer-observers-table m #t)
1784 (module-call-observers m)))
1785
1786 ;;; This function can be used to delay calls to observers so that they
1787 ;;; can be called once only in the face of massive updating of modules.
1788 ;;;
1789 (define (call-with-deferred-observers thunk)
1790 (dynamic-wind
1791 (lambda ()
1792 (lock-mutex module-defer-observers-mutex)
1793 (set! module-defer-observers #t))
1794 thunk
1795 (lambda ()
1796 (set! module-defer-observers #f)
1797 (hash-for-each (lambda (m dummy)
1798 (module-call-observers m))
1799 module-defer-observers-table)
1800 (hash-clear! module-defer-observers-table)
1801 (unlock-mutex module-defer-observers-mutex))))
1802
1803 (define (module-call-observers m)
1804 (for-each (lambda (proc) (proc m)) (module-observers m))
1805
1806 ;; We assume that weak observers don't (un)register themselves as they are
1807 ;; called since this would preclude proper iteration over the hash table
1808 ;; elements.
1809 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1810
1811 \f
1812
1813 ;;; {Module Searching in General}
1814 ;;;
1815 ;;; We sometimes want to look for properties of a symbol
1816 ;;; just within the obarray of one module. If the property
1817 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1818 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1819 ;;;
1820 ;;;
1821 ;;; Other times, we want to test for a symbol property in the obarray
1822 ;;; of M and, if it is not found there, try each of the modules in the
1823 ;;; uses list of M. This is the normal way of testing for some
1824 ;;; property, so we state these properties without qualification as
1825 ;;; in: ``The symbol 'fnord is interned in module M because it is
1826 ;;; interned locally in module M2 which is a member of the uses list
1827 ;;; of M.''
1828 ;;;
1829
1830 ;; module-search fn m
1831 ;;
1832 ;; return the first non-#f result of FN applied to M and then to
1833 ;; the modules in the uses of m, and so on recursively. If all applications
1834 ;; return #f, then so does this function.
1835 ;;
1836 (define (module-search fn m v)
1837 (define (loop pos)
1838 (and (pair? pos)
1839 (or (module-search fn (car pos) v)
1840 (loop (cdr pos)))))
1841 (or (fn m v)
1842 (loop (module-uses m))))
1843
1844
1845 ;;; {Is a symbol bound in a module?}
1846 ;;;
1847 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1848 ;;; of S in M has been set to some well-defined value.
1849 ;;;
1850
1851 ;; module-locally-bound? module symbol
1852 ;;
1853 ;; Is a symbol bound (interned and defined) locally in a given module?
1854 ;;
1855 (define (module-locally-bound? m v)
1856 (let ((var (module-local-variable m v)))
1857 (and var
1858 (variable-bound? var))))
1859
1860 ;; module-bound? module symbol
1861 ;;
1862 ;; Is a symbol bound (interned and defined) anywhere in a given module
1863 ;; or its uses?
1864 ;;
1865 (define (module-bound? m v)
1866 (let ((var (module-variable m v)))
1867 (and var
1868 (variable-bound? var))))
1869
1870 ;;; {Is a symbol interned in a module?}
1871 ;;;
1872 ;;; Symbol S in Module M is interned if S occurs in
1873 ;;; of S in M has been set to some well-defined value.
1874 ;;;
1875 ;;; It is possible to intern a symbol in a module without providing
1876 ;;; an initial binding for the corresponding variable. This is done
1877 ;;; with:
1878 ;;; (module-add! module symbol (make-undefined-variable))
1879 ;;;
1880 ;;; In that case, the symbol is interned in the module, but not
1881 ;;; bound there. The unbound symbol shadows any binding for that
1882 ;;; symbol that might otherwise be inherited from a member of the uses list.
1883 ;;;
1884
1885 (define (module-obarray-get-handle ob key)
1886 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1887
1888 (define (module-obarray-ref ob key)
1889 ((if (symbol? key) hashq-ref hash-ref) ob key))
1890
1891 (define (module-obarray-set! ob key val)
1892 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1893
1894 (define (module-obarray-remove! ob key)
1895 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1896
1897 ;; module-symbol-locally-interned? module symbol
1898 ;;
1899 ;; is a symbol interned (not neccessarily defined) locally in a given module
1900 ;; or its uses? Interned symbols shadow inherited bindings even if
1901 ;; they are not themselves bound to a defined value.
1902 ;;
1903 (define (module-symbol-locally-interned? m v)
1904 (not (not (module-obarray-get-handle (module-obarray m) v))))
1905
1906 ;; module-symbol-interned? module symbol
1907 ;;
1908 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1909 ;; or its uses? Interned symbols shadow inherited bindings even if
1910 ;; they are not themselves bound to a defined value.
1911 ;;
1912 (define (module-symbol-interned? m v)
1913 (module-search module-symbol-locally-interned? m v))
1914
1915
1916 ;;; {Mapping modules x symbols --> variables}
1917 ;;;
1918
1919 ;; module-local-variable module symbol
1920 ;; return the local variable associated with a MODULE and SYMBOL.
1921 ;;
1922 ;;; This function is very important. It is the only function that can
1923 ;;; return a variable from a module other than the mutators that store
1924 ;;; new variables in modules. Therefore, this function is the location
1925 ;;; of the "lazy binder" hack.
1926 ;;;
1927 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1928 ;;; to a variable, return that variable object.
1929 ;;;
1930 ;;; If the symbols is not found at first, but the module has a lazy binder,
1931 ;;; then try the binder.
1932 ;;;
1933 ;;; If the symbol is not found at all, return #f.
1934 ;;;
1935 ;;; (This is now written in C, see `modules.c'.)
1936 ;;;
1937
1938 ;;; {Mapping modules x symbols --> bindings}
1939 ;;;
1940 ;;; These are similar to the mapping to variables, except that the
1941 ;;; variable is dereferenced.
1942 ;;;
1943
1944 ;; module-symbol-binding module symbol opt-value
1945 ;;
1946 ;; return the binding of a variable specified by name within
1947 ;; a given module, signalling an error if the variable is unbound.
1948 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1949 ;; return OPT-VALUE.
1950 ;;
1951 (define (module-symbol-local-binding m v . opt-val)
1952 (let ((var (module-local-variable m v)))
1953 (if (and var (variable-bound? var))
1954 (variable-ref var)
1955 (if (not (null? opt-val))
1956 (car opt-val)
1957 (error "Locally unbound variable." v)))))
1958
1959 ;; module-symbol-binding module symbol opt-value
1960 ;;
1961 ;; return the binding of a variable specified by name within
1962 ;; a given module, signalling an error if the variable is unbound.
1963 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1964 ;; return OPT-VALUE.
1965 ;;
1966 (define (module-symbol-binding m v . opt-val)
1967 (let ((var (module-variable m v)))
1968 (if (and var (variable-bound? var))
1969 (variable-ref var)
1970 (if (not (null? opt-val))
1971 (car opt-val)
1972 (error "Unbound variable." v)))))
1973
1974
1975 \f
1976
1977 ;;; {Adding Variables to Modules}
1978 ;;;
1979
1980 ;; module-make-local-var! module symbol
1981 ;;
1982 ;; ensure a variable for V in the local namespace of M.
1983 ;; If no variable was already there, then create a new and uninitialzied
1984 ;; variable.
1985 ;;
1986 ;; This function is used in modules.c.
1987 ;;
1988 (define (module-make-local-var! m v)
1989 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1990 (and (variable? b)
1991 (begin
1992 ;; Mark as modified since this function is called when
1993 ;; the standard eval closure defines a binding
1994 (module-modified m)
1995 b)))
1996
1997 ;; Create a new local variable.
1998 (let ((local-var (make-undefined-variable)))
1999 (module-add! m v local-var)
2000 local-var)))
2001
2002 ;; module-ensure-local-variable! module symbol
2003 ;;
2004 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
2005 ;; there is no binding for SYMBOL, create a new uninitialized
2006 ;; variable. Return the local variable.
2007 ;;
2008 (define (module-ensure-local-variable! module symbol)
2009 (or (module-local-variable module symbol)
2010 (let ((var (make-undefined-variable)))
2011 (module-add! module symbol var)
2012 var)))
2013
2014 ;; module-add! module symbol var
2015 ;;
2016 ;; ensure a particular variable for V in the local namespace of M.
2017 ;;
2018 (define (module-add! m v var)
2019 (if (not (variable? var))
2020 (error "Bad variable to module-add!" var))
2021 (module-obarray-set! (module-obarray m) v var)
2022 (module-modified m))
2023
2024 ;; module-remove!
2025 ;;
2026 ;; make sure that a symbol is undefined in the local namespace of M.
2027 ;;
2028 (define (module-remove! m v)
2029 (module-obarray-remove! (module-obarray m) v)
2030 (module-modified m))
2031
2032 (define (module-clear! m)
2033 (hash-clear! (module-obarray m))
2034 (module-modified m))
2035
2036 ;; MODULE-FOR-EACH -- exported
2037 ;;
2038 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
2039 ;;
2040 (define (module-for-each proc module)
2041 (hash-for-each proc (module-obarray module)))
2042
2043 (define (module-map proc module)
2044 (hash-map->list proc (module-obarray module)))
2045
2046 ;; Submodules
2047 ;;
2048 ;; Modules exist in a separate namespace from values, because you generally do
2049 ;; not want the name of a submodule, which you might not even use, to collide
2050 ;; with local variables that happen to be named the same as the submodule.
2051 ;;
2052 (define (module-ref-submodule module name)
2053 (or (hashq-ref (module-submodules module) name)
2054 (and (module-submodule-binder module)
2055 ((module-submodule-binder module) module name))))
2056
2057 (define (module-define-submodule! module name submodule)
2058 (hashq-set! (module-submodules module) name submodule))
2059
2060 ;; It used to be, however, that module names were also present in the
2061 ;; value namespace. When we enable deprecated code, we preserve this
2062 ;; legacy behavior.
2063 ;;
2064 ;; These shims are defined here instead of in deprecated.scm because we
2065 ;; need their definitions before loading other modules.
2066 ;;
2067 (begin-deprecated
2068 (define (module-ref-submodule module name)
2069 (or (hashq-ref (module-submodules module) name)
2070 (and (module-submodule-binder module)
2071 ((module-submodule-binder module) module name))
2072 (let ((var (module-local-variable module name)))
2073 (and var (variable-bound? var) (module? (variable-ref var))
2074 (begin
2075 (warn "module" module "not in submodules table")
2076 (variable-ref var))))))
2077
2078 (define (module-define-submodule! module name submodule)
2079 (let ((var (module-local-variable module name)))
2080 (if (and var
2081 (or (not (variable-bound? var))
2082 (not (module? (variable-ref var)))))
2083 (warn "defining module" module ": not overriding local definition" var)
2084 (module-define! module name submodule)))
2085 (hashq-set! (module-submodules module) name submodule)))
2086
2087 \f
2088
2089 ;;; {Module-based Loading}
2090 ;;;
2091
2092 (define (save-module-excursion thunk)
2093 (let ((inner-module (current-module))
2094 (outer-module #f))
2095 (dynamic-wind (lambda ()
2096 (set! outer-module (current-module))
2097 (set-current-module inner-module)
2098 (set! inner-module #f))
2099 thunk
2100 (lambda ()
2101 (set! inner-module (current-module))
2102 (set-current-module outer-module)
2103 (set! outer-module #f)))))
2104
2105 \f
2106
2107 ;;; {MODULE-REF -- exported}
2108 ;;;
2109
2110 ;; Returns the value of a variable called NAME in MODULE or any of its
2111 ;; used modules. If there is no such variable, then if the optional third
2112 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
2113 ;;
2114 (define (module-ref module name . rest)
2115 (let ((variable (module-variable module name)))
2116 (if (and variable (variable-bound? variable))
2117 (variable-ref variable)
2118 (if (null? rest)
2119 (error "No variable named" name 'in module)
2120 (car rest) ; default value
2121 ))))
2122
2123 ;; MODULE-SET! -- exported
2124 ;;
2125 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
2126 ;; to VALUE; if there is no such variable, an error is signaled.
2127 ;;
2128 (define (module-set! module name value)
2129 (let ((variable (module-variable module name)))
2130 (if variable
2131 (variable-set! variable value)
2132 (error "No variable named" name 'in module))))
2133
2134 ;; MODULE-DEFINE! -- exported
2135 ;;
2136 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
2137 ;; variable, it is added first.
2138 ;;
2139 (define (module-define! module name value)
2140 (let ((variable (module-local-variable module name)))
2141 (if variable
2142 (begin
2143 (variable-set! variable value)
2144 (module-modified module))
2145 (let ((variable (make-variable value)))
2146 (module-add! module name variable)))))
2147
2148 ;; MODULE-DEFINED? -- exported
2149 ;;
2150 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
2151 ;; uses)
2152 ;;
2153 (define (module-defined? module name)
2154 (let ((variable (module-variable module name)))
2155 (and variable (variable-bound? variable))))
2156
2157 ;; MODULE-USE! module interface
2158 ;;
2159 ;; Add INTERFACE to the list of interfaces used by MODULE.
2160 ;;
2161 (define (module-use! module interface)
2162 (if (not (or (eq? module interface)
2163 (memq interface (module-uses module))))
2164 (begin
2165 ;; Newly used modules must be appended rather than consed, so that
2166 ;; `module-variable' traverses the use list starting from the first
2167 ;; used module.
2168 (set-module-uses! module (append (module-uses module)
2169 (list interface)))
2170 (hash-clear! (module-import-obarray module))
2171 (module-modified module))))
2172
2173 ;; MODULE-USE-INTERFACES! module interfaces
2174 ;;
2175 ;; Same as MODULE-USE!, but only notifies module observers after all
2176 ;; interfaces are added to the inports list.
2177 ;;
2178 (define (module-use-interfaces! module interfaces)
2179 (let* ((cur (module-uses module))
2180 (new (let lp ((in interfaces) (out '()))
2181 (if (null? in)
2182 (reverse out)
2183 (lp (cdr in)
2184 (let ((iface (car in)))
2185 (if (or (memq iface cur) (memq iface out))
2186 out
2187 (cons iface out))))))))
2188 (set-module-uses! module (append cur new))
2189 (hash-clear! (module-import-obarray module))
2190 (module-modified module)))
2191
2192 \f
2193
2194 ;;; {Recursive Namespaces}
2195 ;;;
2196 ;;; A hierarchical namespace emerges if we consider some module to be
2197 ;;; root, and submodules of that module to be nested namespaces.
2198 ;;;
2199 ;;; The routines here manage variable names in hierarchical namespace.
2200 ;;; Each variable name is a list of elements, looked up in successively nested
2201 ;;; modules.
2202 ;;;
2203 ;;; (nested-ref some-root-module '(foo bar baz))
2204 ;;; => <value of a variable named baz in the submodule bar of
2205 ;;; the submodule foo of some-root-module>
2206 ;;;
2207 ;;;
2208 ;;; There are:
2209 ;;;
2210 ;;; ;; a-root is a module
2211 ;;; ;; name is a list of symbols
2212 ;;;
2213 ;;; nested-ref a-root name
2214 ;;; nested-set! a-root name val
2215 ;;; nested-define! a-root name val
2216 ;;; nested-remove! a-root name
2217 ;;;
2218 ;;; These functions manipulate values in namespaces. For referencing the
2219 ;;; namespaces themselves, use the following:
2220 ;;;
2221 ;;; nested-ref-module a-root name
2222 ;;; nested-define-module! a-root name mod
2223 ;;;
2224 ;;; (current-module) is a natural choice for a root so for convenience there are
2225 ;;; also:
2226 ;;;
2227 ;;; local-ref name == nested-ref (current-module) name
2228 ;;; local-set! name val == nested-set! (current-module) name val
2229 ;;; local-define name val == nested-define! (current-module) name val
2230 ;;; local-remove name == nested-remove! (current-module) name
2231 ;;; local-ref-module name == nested-ref-module (current-module) name
2232 ;;; local-define-module! name m == nested-define-module! (current-module) name m
2233 ;;;
2234
2235
2236 (define (nested-ref root names)
2237 (if (null? names)
2238 root
2239 (let loop ((cur root)
2240 (head (car names))
2241 (tail (cdr names)))
2242 (if (null? tail)
2243 (module-ref cur head #f)
2244 (let ((cur (module-ref-submodule cur head)))
2245 (and cur
2246 (loop cur (car tail) (cdr tail))))))))
2247
2248 (define (nested-set! root names val)
2249 (let loop ((cur root)
2250 (head (car names))
2251 (tail (cdr names)))
2252 (if (null? tail)
2253 (module-set! cur head val)
2254 (let ((cur (module-ref-submodule cur head)))
2255 (if (not cur)
2256 (error "failed to resolve module" names)
2257 (loop cur (car tail) (cdr tail)))))))
2258
2259 (define (nested-define! root names val)
2260 (let loop ((cur root)
2261 (head (car names))
2262 (tail (cdr names)))
2263 (if (null? tail)
2264 (module-define! cur head val)
2265 (let ((cur (module-ref-submodule cur head)))
2266 (if (not cur)
2267 (error "failed to resolve module" names)
2268 (loop cur (car tail) (cdr tail)))))))
2269
2270 (define (nested-remove! root names)
2271 (let loop ((cur root)
2272 (head (car names))
2273 (tail (cdr names)))
2274 (if (null? tail)
2275 (module-remove! cur head)
2276 (let ((cur (module-ref-submodule cur head)))
2277 (if (not cur)
2278 (error "failed to resolve module" names)
2279 (loop cur (car tail) (cdr tail)))))))
2280
2281
2282 (define (nested-ref-module root names)
2283 (let loop ((cur root)
2284 (names names))
2285 (if (null? names)
2286 cur
2287 (let ((cur (module-ref-submodule cur (car names))))
2288 (and cur
2289 (loop cur (cdr names)))))))
2290
2291 (define (nested-define-module! root names module)
2292 (if (null? names)
2293 (error "can't redefine root module" root module)
2294 (let loop ((cur root)
2295 (head (car names))
2296 (tail (cdr names)))
2297 (if (null? tail)
2298 (module-define-submodule! cur head module)
2299 (let ((cur (or (module-ref-submodule cur head)
2300 (let ((m (make-module 31)))
2301 (set-module-kind! m 'directory)
2302 (set-module-name! m (append (module-name cur)
2303 (list head)))
2304 (module-define-submodule! cur head m)
2305 m))))
2306 (loop cur (car tail) (cdr tail)))))))
2307
2308
2309 (define (local-ref names)
2310 (nested-ref (current-module) names))
2311
2312 (define (local-set! names val)
2313 (nested-set! (current-module) names val))
2314
2315 (define (local-define names val)
2316 (nested-define! (current-module) names val))
2317
2318 (define (local-remove names)
2319 (nested-remove! (current-module) names))
2320
2321 (define (local-ref-module names)
2322 (nested-ref-module (current-module) names))
2323
2324 (define (local-define-module names mod)
2325 (nested-define-module! (current-module) names mod))
2326
2327
2328
2329 \f
2330
2331 ;;; {The (guile) module}
2332 ;;;
2333 ;;; The standard module, which has the core Guile bindings. Also called the
2334 ;;; "root module", as it is imported by many other modules, but it is not
2335 ;;; necessarily the root of anything; and indeed, the module named '() might be
2336 ;;; better thought of as a root.
2337 ;;;
2338
2339 (define (set-system-module! m s)
2340 (set-procedure-property! (module-eval-closure m) 'system-module s))
2341
2342 ;; The root module uses the pre-modules-obarray as its obarray. This
2343 ;; special obarray accumulates all bindings that have been established
2344 ;; before the module system is fully booted.
2345 ;;
2346 ;; (The obarray continues to be used by code that has been closed over
2347 ;; before the module system has been booted.)
2348 ;;
2349 (define the-root-module
2350 (let ((m (make-module 0)))
2351 (set-module-obarray! m (%get-pre-modules-obarray))
2352 (set-module-name! m '(guile))
2353 (set-system-module! m #t)
2354 m))
2355
2356 ;; The root interface is a module that uses the same obarray as the
2357 ;; root module. It does not allow new definitions, tho.
2358 ;;
2359 (define the-scm-module
2360 (let ((m (make-module 0)))
2361 (set-module-obarray! m (%get-pre-modules-obarray))
2362 (set-module-eval-closure! m (standard-interface-eval-closure m))
2363 (set-module-name! m '(guile))
2364 (set-module-kind! m 'interface)
2365 (set-system-module! m #t)
2366
2367 ;; In Guile 1.8 and earlier M was its own public interface.
2368 (set-module-public-interface! m m)
2369
2370 m))
2371
2372 (set-module-public-interface! the-root-module the-scm-module)
2373
2374 \f
2375
2376 ;; Now that we have a root module, even though modules aren't fully booted,
2377 ;; expand the definition of resolve-module.
2378 ;;
2379 (define (resolve-module name . args)
2380 (if (equal? name '(guile))
2381 the-root-module
2382 (error "unexpected module to resolve during module boot" name)))
2383
2384 ;; Cheat. These bindings are needed by modules.c, but we don't want
2385 ;; to move their real definition here because that would be unnatural.
2386 ;;
2387 (define define-module* #f)
2388 (define process-use-modules #f)
2389 (define module-export! #f)
2390 (define default-duplicate-binding-procedures #f)
2391
2392 ;; This boots the module system. All bindings needed by modules.c
2393 ;; must have been defined by now.
2394 ;;
2395 (set-current-module the-root-module)
2396
2397
2398 \f
2399
2400 ;; Now that modules are booted, give module-name its final definition.
2401 ;;
2402 (define module-name
2403 (let ((accessor (record-accessor module-type 'name)))
2404 (lambda (mod)
2405 (or (accessor mod)
2406 (let ((name (list (gensym))))
2407 ;; Name MOD and bind it in the module root so that it's visible to
2408 ;; `resolve-module'. This is important as `psyntax' stores module
2409 ;; names and relies on being able to `resolve-module' them.
2410 (set-module-name! mod name)
2411 (nested-define-module! (resolve-module '() #f) name mod)
2412 (accessor mod))))))
2413
2414 (define (make-modules-in module name)
2415 (or (nested-ref-module module name)
2416 (let ((m (make-module 31)))
2417 (set-module-kind! m 'directory)
2418 (set-module-name! m (append (module-name module) name))
2419 (nested-define-module! module name m)
2420 m)))
2421
2422 (define (beautify-user-module! module)
2423 (let ((interface (module-public-interface module)))
2424 (if (or (not interface)
2425 (eq? interface module))
2426 (let ((interface (make-module 31)))
2427 (set-module-name! interface (module-name module))
2428 (set-module-version! interface (module-version module))
2429 (set-module-kind! interface 'interface)
2430 (set-module-public-interface! module interface))))
2431 (if (and (not (memq the-scm-module (module-uses module)))
2432 (not (eq? module the-root-module)))
2433 ;; Import the default set of bindings (from the SCM module) in MODULE.
2434 (module-use! module the-scm-module)))
2435
2436 (define (version-matches? version-ref target)
2437 (define (sub-versions-match? v-refs t)
2438 (define (sub-version-matches? v-ref t)
2439 (let ((matches? (lambda (v) (sub-version-matches? v t))))
2440 (cond
2441 ((number? v-ref) (eqv? v-ref t))
2442 ((list? v-ref)
2443 (case (car v-ref)
2444 ((>=) (>= t (cadr v-ref)))
2445 ((<=) (<= t (cadr v-ref)))
2446 ((and) (and-map matches? (cdr v-ref)))
2447 ((or) (or-map matches? (cdr v-ref)))
2448 ((not) (not (matches? (cadr v-ref))))
2449 (else (error "Invalid sub-version reference" v-ref))))
2450 (else (error "Invalid sub-version reference" v-ref)))))
2451 (or (null? v-refs)
2452 (and (not (null? t))
2453 (sub-version-matches? (car v-refs) (car t))
2454 (sub-versions-match? (cdr v-refs) (cdr t)))))
2455
2456 (let ((matches? (lambda (v) (version-matches? v target))))
2457 (or (null? version-ref)
2458 (case (car version-ref)
2459 ((and) (and-map matches? (cdr version-ref)))
2460 ((or) (or-map matches? (cdr version-ref)))
2461 ((not) (not (matches? (cadr version-ref))))
2462 (else (sub-versions-match? version-ref target))))))
2463
2464 (define (make-fresh-user-module)
2465 (let ((m (make-module)))
2466 (beautify-user-module! m)
2467 m))
2468
2469 ;; NOTE: This binding is used in libguile/modules.c.
2470 ;;
2471 (define resolve-module
2472 (let ((root (make-module)))
2473 (set-module-name! root '())
2474 ;; Define the-root-module as '(guile).
2475 (module-define-submodule! root 'guile the-root-module)
2476
2477 (lambda* (name #:optional (autoload #t) (version #f) #:key (ensure #t))
2478 (let ((already (nested-ref-module root name)))
2479 (cond
2480 ((and already
2481 (or (not autoload) (module-public-interface already)))
2482 ;; A hit, a palpable hit.
2483 (if (and version
2484 (not (version-matches? version (module-version already))))
2485 (error "incompatible module version already loaded" name))
2486 already)
2487 (autoload
2488 ;; Try to autoload the module, and recurse.
2489 (try-load-module name version)
2490 (resolve-module name #f #:ensure ensure))
2491 (else
2492 ;; No module found (or if one was, it had no public interface), and
2493 ;; we're not autoloading. Make an empty module if #:ensure is true.
2494 (or already
2495 (and ensure
2496 (make-modules-in root name)))))))))
2497
2498
2499 (define (try-load-module name version)
2500 (try-module-autoload name version))
2501
2502 (define (reload-module m)
2503 "Revisit the source file corresponding to the module @var{m}."
2504 (let ((f (module-filename m)))
2505 (if f
2506 (save-module-excursion
2507 (lambda ()
2508 ;; Re-set the initial environment, as in try-module-autoload.
2509 (set-current-module (make-fresh-user-module))
2510 (primitive-load-path f)
2511 m))
2512 ;; Though we could guess, we *should* know it.
2513 (error "unknown file name for module" m))))
2514
2515 (define (purify-module! module)
2516 "Removes bindings in MODULE which are inherited from the (guile) module."
2517 (let ((use-list (module-uses module)))
2518 (if (and (pair? use-list)
2519 (eq? (car (last-pair use-list)) the-scm-module))
2520 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2521
2522 ;; Return a module that is an interface to the module designated by
2523 ;; NAME.
2524 ;;
2525 ;; `resolve-interface' takes four keyword arguments:
2526 ;;
2527 ;; #:select SELECTION
2528 ;;
2529 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
2530 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2531 ;; is the name in the used module and SEEN is the name in the using
2532 ;; module. Note that SEEN is also passed through RENAMER, below. The
2533 ;; default is to select all bindings. If you specify no selection but
2534 ;; a renamer, only the bindings that already exist in the used module
2535 ;; are made available in the interface. Bindings that are added later
2536 ;; are not picked up.
2537 ;;
2538 ;; #:hide BINDINGS
2539 ;;
2540 ;; BINDINGS is a list of bindings which should not be imported.
2541 ;;
2542 ;; #:prefix PREFIX
2543 ;;
2544 ;; PREFIX is a symbol that will be appended to each exported name.
2545 ;; The default is to not perform any renaming.
2546 ;;
2547 ;; #:renamer RENAMER
2548 ;;
2549 ;; RENAMER is a procedure that takes a symbol and returns its new
2550 ;; name. The default is not perform any renaming.
2551 ;;
2552 ;; Signal "no code for module" error if module name is not resolvable
2553 ;; or its public interface is not available. Signal "no binding"
2554 ;; error if selected binding does not exist in the used module.
2555 ;;
2556 (define* (resolve-interface name #:key
2557 (select #f)
2558 (hide '())
2559 (prefix #f)
2560 (renamer (if prefix
2561 (symbol-prefix-proc prefix)
2562 identity))
2563 version)
2564 (let* ((module (resolve-module name #t version #:ensure #f))
2565 (public-i (and module (module-public-interface module))))
2566 (and (or (not module) (not public-i))
2567 (error "no code for module" name))
2568 (if (and (not select) (null? hide) (eq? renamer identity))
2569 public-i
2570 (let ((selection (or select (module-map (lambda (sym var) sym)
2571 public-i)))
2572 (custom-i (make-module 31)))
2573 (set-module-kind! custom-i 'custom-interface)
2574 (set-module-name! custom-i name)
2575 ;; XXX - should use a lazy binder so that changes to the
2576 ;; used module are picked up automatically.
2577 (for-each (lambda (bspec)
2578 (let* ((direct? (symbol? bspec))
2579 (orig (if direct? bspec (car bspec)))
2580 (seen (if direct? bspec (cdr bspec)))
2581 (var (or (module-local-variable public-i orig)
2582 (module-local-variable module orig)
2583 (error
2584 ;; fixme: format manually for now
2585 (simple-format
2586 #f "no binding `~A' in module ~A"
2587 orig name)))))
2588 (if (memq orig hide)
2589 (set! hide (delq! orig hide))
2590 (module-add! custom-i
2591 (renamer seen)
2592 var))))
2593 selection)
2594 ;; Check that we are not hiding bindings which don't exist
2595 (for-each (lambda (binding)
2596 (if (not (module-local-variable public-i binding))
2597 (error
2598 (simple-format
2599 #f "no binding `~A' to hide in module ~A"
2600 binding name))))
2601 hide)
2602 custom-i))))
2603
2604 (define (symbol-prefix-proc prefix)
2605 (lambda (symbol)
2606 (symbol-append prefix symbol)))
2607
2608 ;; This function is called from "modules.c". If you change it, be
2609 ;; sure to update "modules.c" as well.
2610
2611 (define* (define-module* name
2612 #:key filename pure version (duplicates '())
2613 (imports '()) (exports '()) (replacements '())
2614 (re-exports '()) (autoloads '()) transformer)
2615 (define (list-of pred l)
2616 (or (null? l)
2617 (and (pair? l) (pred (car l)) (list-of pred (cdr l)))))
2618 (define (valid-export? x)
2619 (or (symbol? x) (and (pair? x) (symbol? (car x)) (symbol? (cdr x)))))
2620 (define (valid-autoload? x)
2621 (and (pair? x) (list-of symbol? (car x)) (list-of symbol? (cdr x))))
2622
2623 (define (resolve-imports imports)
2624 (define (resolve-import import-spec)
2625 (if (list? import-spec)
2626 (apply resolve-interface import-spec)
2627 (error "unexpected use-module specification" import-spec)))
2628 (let lp ((imports imports) (out '()))
2629 (cond
2630 ((null? imports) (reverse! out))
2631 ((pair? imports)
2632 (lp (cdr imports)
2633 (cons (resolve-import (car imports)) out)))
2634 (else (error "unexpected tail of imports list" imports)))))
2635
2636 ;; We could add a #:no-check arg, set by the define-module macro, if
2637 ;; these checks are taking too much time.
2638 ;;
2639 (let ((module (resolve-module name #f)))
2640 (beautify-user-module! module)
2641 (if filename
2642 (set-module-filename! module filename))
2643 (if pure
2644 (purify-module! module))
2645 (if version
2646 (begin
2647 (if (not (list-of integer? version))
2648 (error "expected list of integers for version"))
2649 (set-module-version! module version)
2650 (set-module-version! (module-public-interface module) version)))
2651 (let ((imports (resolve-imports imports)))
2652 (call-with-deferred-observers
2653 (lambda ()
2654 (if (pair? imports)
2655 (module-use-interfaces! module imports))
2656 (if (list-of valid-export? exports)
2657 (if (pair? exports)
2658 (module-export! module exports))
2659 (error "expected exports to be a list of symbols or symbol pairs"))
2660 (if (list-of valid-export? replacements)
2661 (if (pair? replacements)
2662 (module-replace! module replacements))
2663 (error "expected replacements to be a list of symbols or symbol pairs"))
2664 (if (list-of valid-export? re-exports)
2665 (if (pair? re-exports)
2666 (module-re-export! module re-exports))
2667 (error "expected re-exports to be a list of symbols or symbol pairs"))
2668 ;; FIXME
2669 (if (not (null? autoloads))
2670 (apply module-autoload! module autoloads))
2671 ;; Wait until modules have been loaded to resolve duplicates
2672 ;; handlers.
2673 (if (pair? duplicates)
2674 (let ((handlers (lookup-duplicates-handlers duplicates)))
2675 (set-module-duplicates-handlers! module handlers))))))
2676
2677 (if transformer
2678 (if (and (pair? transformer) (list-of symbol? transformer))
2679 (let ((iface (resolve-interface transformer))
2680 (sym (car (last-pair transformer))))
2681 (set-module-transformer! module (module-ref iface sym)))
2682 (error "expected transformer to be a module name" transformer)))
2683
2684 (run-hook module-defined-hook module)
2685 module))
2686
2687 ;; `module-defined-hook' is a hook that is run whenever a new module
2688 ;; is defined. Its members are called with one argument, the new
2689 ;; module.
2690 (define module-defined-hook (make-hook 1))
2691
2692 \f
2693
2694 ;;; {Autoload}
2695 ;;;
2696
2697 (define (make-autoload-interface module name bindings)
2698 (let ((b (lambda (a sym definep)
2699 (and (memq sym bindings)
2700 (let ((i (module-public-interface (resolve-module name))))
2701 (if (not i)
2702 (error "missing interface for module" name))
2703 (let ((autoload (memq a (module-uses module))))
2704 ;; Replace autoload-interface with actual interface if
2705 ;; that has not happened yet.
2706 (if (pair? autoload)
2707 (set-car! autoload i)))
2708 (module-local-variable i sym))))))
2709 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2710 (make-hash-table 0) '() (make-weak-value-hash-table 31) #f
2711 (make-hash-table 0) #f #f #f)))
2712
2713 (define (module-autoload! module . args)
2714 "Have @var{module} automatically load the module named @var{name} when one
2715 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2716 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2717 module '(ice-9 q) '(make-q q-length))}."
2718 (let loop ((args args))
2719 (cond ((null? args)
2720 #t)
2721 ((null? (cdr args))
2722 (error "invalid name+binding autoload list" args))
2723 (else
2724 (let ((name (car args))
2725 (bindings (cadr args)))
2726 (module-use! module (make-autoload-interface module
2727 name bindings))
2728 (loop (cddr args)))))))
2729
2730
2731 \f
2732
2733 ;;; {Autoloading modules}
2734 ;;;
2735
2736 (define autoloads-in-progress '())
2737
2738 ;; This function is called from "modules.c". If you change it, be
2739 ;; sure to update "modules.c" as well.
2740
2741 (define* (try-module-autoload module-name #:optional version)
2742 (let* ((reverse-name (reverse module-name))
2743 (name (symbol->string (car reverse-name)))
2744 (dir-hint-module-name (reverse (cdr reverse-name)))
2745 (dir-hint (apply string-append
2746 (map (lambda (elt)
2747 (string-append (symbol->string elt) "/"))
2748 dir-hint-module-name))))
2749 (resolve-module dir-hint-module-name #f)
2750 (and (not (autoload-done-or-in-progress? dir-hint name))
2751 (let ((didit #f))
2752 (dynamic-wind
2753 (lambda () (autoload-in-progress! dir-hint name))
2754 (lambda ()
2755 (with-fluids ((current-reader #f))
2756 (save-module-excursion
2757 (lambda ()
2758 ;; The initial environment when loading a module is a fresh
2759 ;; user module.
2760 (set-current-module (make-fresh-user-module))
2761 ;; Here we could allow some other search strategy (other than
2762 ;; primitive-load-path), for example using versions encoded
2763 ;; into the file system -- but then we would have to figure
2764 ;; out how to locate the compiled file, do auto-compilation,
2765 ;; etc. Punt for now, and don't use versions when locating
2766 ;; the file.
2767 (primitive-load-path (in-vicinity dir-hint name) #f)
2768 (set! didit #t)))))
2769 (lambda () (set-autoloaded! dir-hint name didit)))
2770 didit))))
2771
2772 \f
2773
2774 ;;; {Dynamic linking of modules}
2775 ;;;
2776
2777 (define autoloads-done '((guile . guile)))
2778
2779 (define (autoload-done-or-in-progress? p m)
2780 (let ((n (cons p m)))
2781 (->bool (or (member n autoloads-done)
2782 (member n autoloads-in-progress)))))
2783
2784 (define (autoload-done! p m)
2785 (let ((n (cons p m)))
2786 (set! autoloads-in-progress
2787 (delete! n autoloads-in-progress))
2788 (or (member n autoloads-done)
2789 (set! autoloads-done (cons n autoloads-done)))))
2790
2791 (define (autoload-in-progress! p m)
2792 (let ((n (cons p m)))
2793 (set! autoloads-done
2794 (delete! n autoloads-done))
2795 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2796
2797 (define (set-autoloaded! p m done?)
2798 (if done?
2799 (autoload-done! p m)
2800 (let ((n (cons p m)))
2801 (set! autoloads-done (delete! n autoloads-done))
2802 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2803
2804 \f
2805
2806 ;;; {Run-time options}
2807 ;;;
2808
2809 (define-syntax define-option-interface
2810 (syntax-rules ()
2811 ((_ (interface (options enable disable) (option-set!)))
2812 (begin
2813 (define options
2814 (case-lambda
2815 (() (interface))
2816 ((arg)
2817 (if (list? arg)
2818 (begin (interface arg) (interface))
2819 (for-each
2820 (lambda (option)
2821 (apply (lambda (name value documentation)
2822 (display name)
2823 (if (< (string-length (symbol->string name)) 8)
2824 (display #\tab))
2825 (display #\tab)
2826 (display value)
2827 (display #\tab)
2828 (display documentation)
2829 (newline))
2830 option))
2831 (interface #t))))))
2832 (define (enable . flags)
2833 (interface (append flags (interface)))
2834 (interface))
2835 (define (disable . flags)
2836 (let ((options (interface)))
2837 (for-each (lambda (flag) (set! options (delq! flag options)))
2838 flags)
2839 (interface options)
2840 (interface)))
2841 (define-syntax-rule (option-set! opt val)
2842 (eval-when (eval load compile expand)
2843 (options (append (options) (list 'opt val)))))))))
2844
2845 (define-option-interface
2846 (debug-options-interface
2847 (debug-options debug-enable debug-disable)
2848 (debug-set!)))
2849
2850 (define-option-interface
2851 (read-options-interface
2852 (read-options read-enable read-disable)
2853 (read-set!)))
2854
2855 (define-option-interface
2856 (print-options-interface
2857 (print-options print-enable print-disable)
2858 (print-set!)))
2859
2860 \f
2861
2862 ;;; {The Unspecified Value}
2863 ;;;
2864 ;;; Currently Guile represents unspecified values via one particular value,
2865 ;;; which may be obtained by evaluating (if #f #f). It would be nice in the
2866 ;;; future if we could replace this with a return of 0 values, though.
2867 ;;;
2868
2869 (define-syntax *unspecified*
2870 (identifier-syntax (if #f #f)))
2871
2872 (define (unspecified? v) (eq? v *unspecified*))
2873
2874
2875 \f
2876
2877 ;;; {Running Repls}
2878 ;;;
2879
2880 (define *repl-stack* (make-fluid))
2881
2882 ;; Programs can call `batch-mode?' to see if they are running as part of a
2883 ;; script or if they are running interactively. REPL implementations ensure that
2884 ;; `batch-mode?' returns #f during their extent.
2885 ;;
2886 (define (batch-mode?)
2887 (null? (or (fluid-ref *repl-stack*) '())))
2888
2889 ;; Programs can re-enter batch mode, for example after a fork, by calling
2890 ;; `ensure-batch-mode!'. It's not a great interface, though; it would be better
2891 ;; to abort to the outermost prompt, and call a thunk there.
2892 ;;
2893 (define (ensure-batch-mode!)
2894 (set! batch-mode? (lambda () #t)))
2895
2896 (define (quit . args)
2897 (apply throw 'quit args))
2898
2899 (define exit quit)
2900
2901 (define (gc-run-time)
2902 (cdr (assq 'gc-time-taken (gc-stats))))
2903
2904 (define abort-hook (make-hook))
2905 (define before-error-hook (make-hook))
2906 (define after-error-hook (make-hook))
2907 (define before-backtrace-hook (make-hook))
2908 (define after-backtrace-hook (make-hook))
2909
2910 (define before-read-hook (make-hook))
2911 (define after-read-hook (make-hook))
2912 (define before-eval-hook (make-hook 1))
2913 (define after-eval-hook (make-hook 1))
2914 (define before-print-hook (make-hook 1))
2915 (define after-print-hook (make-hook 1))
2916
2917 ;;; This hook is run at the very end of an interactive session.
2918 ;;;
2919 (define exit-hook (make-hook))
2920
2921 ;;; The default repl-reader function. We may override this if we've
2922 ;;; the readline library.
2923 (define repl-reader
2924 (lambda* (prompt #:optional (reader (fluid-ref current-reader)))
2925 (if (not (char-ready?))
2926 (begin
2927 (display (if (string? prompt) prompt (prompt)))
2928 ;; An interesting situation. The printer resets the column to
2929 ;; 0 by printing a newline, but we then advance it by printing
2930 ;; the prompt. However the port-column of the output port
2931 ;; does not typically correspond with the actual column on the
2932 ;; screen, because the input is is echoed back! Since the
2933 ;; input is line-buffered and thus ends with a newline, the
2934 ;; output will really start on column zero. So, here we zero
2935 ;; it out. See bug 9664.
2936 ;;
2937 ;; Note that for similar reasons, the output-line will not
2938 ;; reflect the actual line on the screen. But given the
2939 ;; possibility of multiline input, the fix is not as
2940 ;; straightforward, so we don't bother.
2941 ;;
2942 ;; Also note that the readline implementation papers over
2943 ;; these concerns, because it's readline itself printing the
2944 ;; prompt, and not Guile.
2945 (set-port-column! (current-output-port) 0)))
2946 (force-output)
2947 (run-hook before-read-hook)
2948 ((or reader read) (current-input-port))))
2949
2950
2951 \f
2952
2953 ;;; {IOTA functions: generating lists of numbers}
2954 ;;;
2955
2956 (define (iota n)
2957 (let loop ((count (1- n)) (result '()))
2958 (if (< count 0) result
2959 (loop (1- count) (cons count result)))))
2960
2961 \f
2962
2963 ;;; {While}
2964 ;;;
2965 ;;; with `continue' and `break'.
2966 ;;;
2967
2968 ;; The inliner will remove the prompts at compile-time if it finds that
2969 ;; `continue' or `break' are not used.
2970 ;;
2971 (define-syntax while
2972 (lambda (x)
2973 (syntax-case x ()
2974 ((while cond body ...)
2975 #`(let ((break-tag (make-prompt-tag "break"))
2976 (continue-tag (make-prompt-tag "continue")))
2977 (call-with-prompt
2978 break-tag
2979 (lambda ()
2980 (define-syntax #,(datum->syntax #'while 'break)
2981 (lambda (x)
2982 (syntax-case x ()
2983 ((_ arg (... ...))
2984 #'(abort-to-prompt break-tag arg (... ...)))
2985 (_
2986 #'(lambda args
2987 (apply abort-to-prompt break-tag args))))))
2988 (let lp ()
2989 (call-with-prompt
2990 continue-tag
2991 (lambda ()
2992 (define-syntax #,(datum->syntax #'while 'continue)
2993 (lambda (x)
2994 (syntax-case x ()
2995 ((_)
2996 #'(abort-to-prompt continue-tag))
2997 ((_ . args)
2998 (syntax-violation 'continue "too many arguments" x))
2999 (_
3000 #'(lambda ()
3001 (abort-to-prompt continue-tag))))))
3002 (do () ((not cond) #f) body ...))
3003 (lambda (k) (lp)))))
3004 (lambda (k . args)
3005 (if (null? args)
3006 #t
3007 (apply values args)))))))))
3008
3009
3010 \f
3011
3012 ;;; {Module System Macros}
3013 ;;;
3014
3015 ;; Return a list of expressions that evaluate to the appropriate
3016 ;; arguments for resolve-interface according to SPEC.
3017
3018 (eval-when (compile)
3019 (if (memq 'prefix (read-options))
3020 (error "boot-9 must be compiled with #:kw, not :kw")))
3021
3022 (define (keyword-like-symbol->keyword sym)
3023 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3024
3025 (define-syntax define-module
3026 (lambda (x)
3027 (define (keyword-like? stx)
3028 (let ((dat (syntax->datum stx)))
3029 (and (symbol? dat)
3030 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3031 (define (->keyword sym)
3032 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3033
3034 (define (parse-iface args)
3035 (let loop ((in args) (out '()))
3036 (syntax-case in ()
3037 (() (reverse! out))
3038 ;; The user wanted #:foo, but wrote :foo. Fix it.
3039 ((sym . in) (keyword-like? #'sym)
3040 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3041 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3042 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3043 ((#:renamer renamer . in)
3044 (loop #'in (cons* #',renamer #:renamer out)))
3045 ((kw val . in)
3046 (loop #'in (cons* #'val #'kw out))))))
3047
3048 (define (parse args imp exp rex rep aut)
3049 ;; Just quote everything except #:use-module and #:use-syntax. We
3050 ;; need to know about all arguments regardless since we want to turn
3051 ;; symbols that look like keywords into real keywords, and the
3052 ;; keyword args in a define-module form are not regular
3053 ;; (i.e. no-backtrace doesn't take a value).
3054 (syntax-case args ()
3055 (()
3056 (let ((imp (if (null? imp) '() #`(#:imports `#,imp)))
3057 (exp (if (null? exp) '() #`(#:exports '#,exp)))
3058 (rex (if (null? rex) '() #`(#:re-exports '#,rex)))
3059 (rep (if (null? rep) '() #`(#:replacements '#,rep)))
3060 (aut (if (null? aut) '() #`(#:autoloads '#,aut))))
3061 #`(#,@imp #,@exp #,@rex #,@rep #,@aut)))
3062 ;; The user wanted #:foo, but wrote :foo. Fix it.
3063 ((sym . args) (keyword-like? #'sym)
3064 (parse #`(#,(->keyword (syntax->datum #'sym)) . args)
3065 imp exp rex rep aut))
3066 ((kw . args) (not (keyword? (syntax->datum #'kw)))
3067 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3068 ((#:no-backtrace . args)
3069 ;; Ignore this one.
3070 (parse #'args imp exp rex rep aut))
3071 ((#:pure . args)
3072 #`(#:pure #t . #,(parse #'args imp exp rex rep aut)))
3073 ((kw)
3074 (syntax-violation 'define-module "keyword arg without value" x #'kw))
3075 ((#:version (v ...) . args)
3076 #`(#:version '(v ...) . #,(parse #'args imp exp rex rep aut)))
3077 ((#:duplicates (d ...) . args)
3078 #`(#:duplicates '(d ...) . #,(parse #'args imp exp rex rep aut)))
3079 ((#:filename f . args)
3080 #`(#:filename 'f . #,(parse #'args imp exp rex rep aut)))
3081 ((#:use-module (name name* ...) . args)
3082 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3083 (parse #'args #`(#,@imp ((name name* ...))) exp rex rep aut))
3084 ((#:use-syntax (name name* ...) . args)
3085 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3086 #`(#:transformer '(name name* ...)
3087 . #,(parse #'args #`(#,@imp ((name name* ...))) exp rex rep aut)))
3088 ((#:use-module ((name name* ...) arg ...) . args)
3089 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3090 (parse #'args
3091 #`(#,@imp ((name name* ...) #,@(parse-iface #'(arg ...))))
3092 exp rex rep aut))
3093 ((#:export (ex ...) . args)
3094 (parse #'args imp #`(#,@exp ex ...) rex rep aut))
3095 ((#:export-syntax (ex ...) . args)
3096 (parse #'args imp #`(#,@exp ex ...) rex rep aut))
3097 ((#:re-export (re ...) . args)
3098 (parse #'args imp exp #`(#,@rex re ...) rep aut))
3099 ((#:re-export-syntax (re ...) . args)
3100 (parse #'args imp exp #`(#,@rex re ...) rep aut))
3101 ((#:replace (r ...) . args)
3102 (parse #'args imp exp rex #`(#,@rep r ...) aut))
3103 ((#:replace-syntax (r ...) . args)
3104 (parse #'args imp exp rex #`(#,@rep r ...) aut))
3105 ((#:autoload name bindings . args)
3106 (parse #'args imp exp rex rep #`(#,@aut name bindings)))
3107 ((kw val . args)
3108 (syntax-violation 'define-module "unknown keyword or bad argument"
3109 #'kw #'val))))
3110
3111 (syntax-case x ()
3112 ((_ (name name* ...) arg ...)
3113 (and-map symbol? (syntax->datum #'(name name* ...)))
3114 (with-syntax (((quoted-arg ...)
3115 (parse #'(arg ...) '() '() '() '() '()))
3116 ;; Ideally the filename is either a string or #f;
3117 ;; this hack is to work around a case in which
3118 ;; port-filename returns a symbol (`socket') for
3119 ;; sockets.
3120 (filename (let ((f (assq-ref (or (syntax-source x) '())
3121 'filename)))
3122 (and (string? f) f))))
3123 #'(eval-when (eval load compile expand)
3124 (let ((m (define-module* '(name name* ...)
3125 #:filename filename quoted-arg ...)))
3126 (set-current-module m)
3127 m)))))))
3128
3129 ;; The guts of the use-modules macro. Add the interfaces of the named
3130 ;; modules to the use-list of the current module, in order.
3131
3132 ;; This function is called by "modules.c". If you change it, be sure
3133 ;; to change scm_c_use_module as well.
3134
3135 (define (process-use-modules module-interface-args)
3136 (let ((interfaces (map (lambda (mif-args)
3137 (or (apply resolve-interface mif-args)
3138 (error "no such module" mif-args)))
3139 module-interface-args)))
3140 (call-with-deferred-observers
3141 (lambda ()
3142 (module-use-interfaces! (current-module) interfaces)))))
3143
3144 (define-syntax use-modules
3145 (lambda (x)
3146 (define (keyword-like? stx)
3147 (let ((dat (syntax->datum stx)))
3148 (and (symbol? dat)
3149 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3150 (define (->keyword sym)
3151 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3152
3153 (define (quotify-iface args)
3154 (let loop ((in args) (out '()))
3155 (syntax-case in ()
3156 (() (reverse! out))
3157 ;; The user wanted #:foo, but wrote :foo. Fix it.
3158 ((sym . in) (keyword-like? #'sym)
3159 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3160 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3161 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3162 ((#:renamer renamer . in)
3163 (loop #'in (cons* #'renamer #:renamer out)))
3164 ((kw val . in)
3165 (loop #'in (cons* #''val #'kw out))))))
3166
3167 (define (quotify specs)
3168 (let lp ((in specs) (out '()))
3169 (syntax-case in ()
3170 (() (reverse out))
3171 (((name name* ...) . in)
3172 (and-map symbol? (syntax->datum #'(name name* ...)))
3173 (lp #'in (cons #''((name name* ...)) out)))
3174 ((((name name* ...) arg ...) . in)
3175 (and-map symbol? (syntax->datum #'(name name* ...)))
3176 (with-syntax (((quoted-arg ...) (quotify-iface #'(arg ...))))
3177 (lp #'in (cons #`(list '(name name* ...) quoted-arg ...)
3178 out)))))))
3179
3180 (syntax-case x ()
3181 ((_ spec ...)
3182 (with-syntax (((quoted-args ...) (quotify #'(spec ...))))
3183 #'(eval-when (eval load compile expand)
3184 (process-use-modules (list quoted-args ...))
3185 *unspecified*))))))
3186
3187 (define-syntax-rule (use-syntax spec ...)
3188 (begin
3189 (eval-when (eval load compile expand)
3190 (issue-deprecation-warning
3191 "`use-syntax' is deprecated. Please contact guile-devel for more info."))
3192 (use-modules spec ...)))
3193
3194 (include-from-path "ice-9/r6rs-libraries")
3195
3196 (define-syntax-rule (define-private foo bar)
3197 (define foo bar))
3198
3199 (define-syntax define-public
3200 (syntax-rules ()
3201 ((_ (name . args) . body)
3202 (define-public name (lambda args . body)))
3203 ((_ name val)
3204 (begin
3205 (define name val)
3206 (export name)))))
3207
3208 (define-syntax-rule (defmacro-public name args body ...)
3209 (begin
3210 (defmacro name args body ...)
3211 (export-syntax name)))
3212
3213 ;; And now for the most important macro.
3214 (define-syntax-rule (λ formals body ...)
3215 (lambda formals body ...))
3216
3217 \f
3218 ;; Export a local variable
3219
3220 ;; This function is called from "modules.c". If you change it, be
3221 ;; sure to update "modules.c" as well.
3222
3223 (define (module-export! m names)
3224 (let ((public-i (module-public-interface m)))
3225 (for-each (lambda (name)
3226 (let* ((internal-name (if (pair? name) (car name) name))
3227 (external-name (if (pair? name) (cdr name) name))
3228 (var (module-ensure-local-variable! m internal-name)))
3229 (module-add! public-i external-name var)))
3230 names)))
3231
3232 (define (module-replace! m names)
3233 (let ((public-i (module-public-interface m)))
3234 (for-each (lambda (name)
3235 (let* ((internal-name (if (pair? name) (car name) name))
3236 (external-name (if (pair? name) (cdr name) name))
3237 (var (module-ensure-local-variable! m internal-name)))
3238 ;; FIXME: use a bit on variables instead of object
3239 ;; properties.
3240 (set-object-property! var 'replace #t)
3241 (module-add! public-i external-name var)))
3242 names)))
3243
3244 ;; Export all local variables from a module
3245 ;;
3246 (define (module-export-all! mod)
3247 (define (fresh-interface!)
3248 (let ((iface (make-module)))
3249 (set-module-name! iface (module-name mod))
3250 (set-module-version! iface (module-version mod))
3251 (set-module-kind! iface 'interface)
3252 (set-module-public-interface! mod iface)
3253 iface))
3254 (let ((iface (or (module-public-interface mod)
3255 (fresh-interface!))))
3256 (set-module-obarray! iface (module-obarray mod))))
3257
3258 ;; Re-export a imported variable
3259 ;;
3260 (define (module-re-export! m names)
3261 (let ((public-i (module-public-interface m)))
3262 (for-each (lambda (name)
3263 (let* ((internal-name (if (pair? name) (car name) name))
3264 (external-name (if (pair? name) (cdr name) name))
3265 (var (module-variable m internal-name)))
3266 (cond ((not var)
3267 (error "Undefined variable:" internal-name))
3268 ((eq? var (module-local-variable m internal-name))
3269 (error "re-exporting local variable:" internal-name))
3270 (else
3271 (module-add! public-i external-name var)))))
3272 names)))
3273
3274 (define-syntax-rule (export name ...)
3275 (eval-when (eval load compile expand)
3276 (call-with-deferred-observers
3277 (lambda ()
3278 (module-export! (current-module) '(name ...))))))
3279
3280 (define-syntax-rule (re-export name ...)
3281 (eval-when (eval load compile expand)
3282 (call-with-deferred-observers
3283 (lambda ()
3284 (module-re-export! (current-module) '(name ...))))))
3285
3286 (define-syntax-rule (export! name ...)
3287 (eval-when (eval load compile expand)
3288 (call-with-deferred-observers
3289 (lambda ()
3290 (module-replace! (current-module) '(name ...))))))
3291
3292 (define-syntax-rule (export-syntax name ...)
3293 (export name ...))
3294
3295 (define-syntax-rule (re-export-syntax name ...)
3296 (re-export name ...))
3297
3298 \f
3299
3300 ;;; {Parameters}
3301 ;;;
3302
3303 (define* (make-mutable-parameter init #:optional (converter identity))
3304 (let ((fluid (make-fluid)))
3305 (fluid-set! fluid (converter init))
3306 (case-lambda
3307 (() (fluid-ref fluid))
3308 ((val) (fluid-set! fluid (converter val))))))
3309
3310
3311 \f
3312
3313 ;;; {Handling of duplicate imported bindings}
3314 ;;;
3315
3316 ;; Duplicate handlers take the following arguments:
3317 ;;
3318 ;; module importing module
3319 ;; name conflicting name
3320 ;; int1 old interface where name occurs
3321 ;; val1 value of binding in old interface
3322 ;; int2 new interface where name occurs
3323 ;; val2 value of binding in new interface
3324 ;; var previous resolution or #f
3325 ;; val value of previous resolution
3326 ;;
3327 ;; A duplicate handler can take three alternative actions:
3328 ;;
3329 ;; 1. return #f => leave responsibility to next handler
3330 ;; 2. exit with an error
3331 ;; 3. return a variable resolving the conflict
3332 ;;
3333
3334 (define duplicate-handlers
3335 (let ((m (make-module 7)))
3336
3337 (define (check module name int1 val1 int2 val2 var val)
3338 (scm-error 'misc-error
3339 #f
3340 "~A: `~A' imported from both ~A and ~A"
3341 (list (module-name module)
3342 name
3343 (module-name int1)
3344 (module-name int2))
3345 #f))
3346
3347 (define (warn module name int1 val1 int2 val2 var val)
3348 (format (current-error-port)
3349 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3350 (module-name module)
3351 name
3352 (module-name int1)
3353 (module-name int2))
3354 #f)
3355
3356 (define (replace module name int1 val1 int2 val2 var val)
3357 (let ((old (or (and var (object-property var 'replace) var)
3358 (module-variable int1 name)))
3359 (new (module-variable int2 name)))
3360 (if (object-property old 'replace)
3361 (and (or (eq? old new)
3362 (not (object-property new 'replace)))
3363 old)
3364 (and (object-property new 'replace)
3365 new))))
3366
3367 (define (warn-override-core module name int1 val1 int2 val2 var val)
3368 (and (eq? int1 the-scm-module)
3369 (begin
3370 (format (current-error-port)
3371 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3372 (module-name module)
3373 (module-name int2)
3374 name)
3375 (module-local-variable int2 name))))
3376
3377 (define (first module name int1 val1 int2 val2 var val)
3378 (or var (module-local-variable int1 name)))
3379
3380 (define (last module name int1 val1 int2 val2 var val)
3381 (module-local-variable int2 name))
3382
3383 (define (noop module name int1 val1 int2 val2 var val)
3384 #f)
3385
3386 (set-module-name! m 'duplicate-handlers)
3387 (set-module-kind! m 'interface)
3388 (module-define! m 'check check)
3389 (module-define! m 'warn warn)
3390 (module-define! m 'replace replace)
3391 (module-define! m 'warn-override-core warn-override-core)
3392 (module-define! m 'first first)
3393 (module-define! m 'last last)
3394 (module-define! m 'merge-generics noop)
3395 (module-define! m 'merge-accessors noop)
3396 m))
3397
3398 (define (lookup-duplicates-handlers handler-names)
3399 (and handler-names
3400 (map (lambda (handler-name)
3401 (or (module-symbol-local-binding
3402 duplicate-handlers handler-name #f)
3403 (error "invalid duplicate handler name:"
3404 handler-name)))
3405 (if (list? handler-names)
3406 handler-names
3407 (list handler-names)))))
3408
3409 (define default-duplicate-binding-procedures
3410 (make-mutable-parameter #f))
3411
3412 (define default-duplicate-binding-handler
3413 (make-mutable-parameter '(replace warn-override-core warn last)
3414 (lambda (handler-names)
3415 (default-duplicate-binding-procedures
3416 (lookup-duplicates-handlers handler-names))
3417 handler-names)))
3418
3419 \f
3420
3421 ;;; {`load'.}
3422 ;;;
3423 ;;; Load is tricky when combined with relative paths, compilation, and
3424 ;;; the filesystem. If a path is relative, what is it relative to? The
3425 ;;; path of the source file at the time it was compiled? The path of
3426 ;;; the compiled file? What if both or either were installed? And how
3427 ;;; do you get that information? Tricky, I say.
3428 ;;;
3429 ;;; To get around all of this, we're going to do something nasty, and
3430 ;;; turn `load' into a macro. That way it can know the path of the
3431 ;;; source file with respect to which it was invoked, so it can resolve
3432 ;;; relative paths with respect to the original source path.
3433 ;;;
3434 ;;; There is an exception, and that is that if the source file was in
3435 ;;; the load path when it was compiled, instead of looking up against
3436 ;;; the absolute source location, we load-from-path against the relative
3437 ;;; source location.
3438 ;;;
3439
3440 (define %auto-compilation-options
3441 ;; Default `compile-file' option when auto-compiling.
3442 '(#:warnings (unbound-variable arity-mismatch format)))
3443
3444 (define* (load-in-vicinity dir path #:optional reader)
3445 (define (canonical->suffix canon)
3446 (cond
3447 ((string-prefix? "/" canon) canon)
3448 ((and (> (string-length canon) 2)
3449 (eqv? (string-ref canon 1) #\:))
3450 ;; Paths like C:... transform to /C...
3451 (string-append "/" (substring canon 0 1) (substring canon 2)))
3452 (else canon)))
3453
3454 ;; Returns the .go file corresponding to `name'. Does not search load
3455 ;; paths, only the fallback path. If the .go file is missing or out of
3456 ;; date, and auto-compilation is enabled, will try auto-compilation, just
3457 ;; as primitive-load-path does internally. primitive-load is
3458 ;; unaffected. Returns #f if auto-compilation failed or was disabled.
3459 ;;
3460 ;; NB: Unless we need to compile the file, this function should not cause
3461 ;; (system base compile) to be loaded up. For that reason compiled-file-name
3462 ;; partially duplicates functionality from (system base compile).
3463 ;;
3464 (define (compiled-file-name canon-path)
3465 ;; FIXME: would probably be better just to append SHA1(canon-path)
3466 ;; to the %compile-fallback-path, to avoid deep directory stats.
3467 (and %compile-fallback-path
3468 (string-append
3469 %compile-fallback-path
3470 (canonical->suffix canon-path)
3471 (cond ((or (null? %load-compiled-extensions)
3472 (string-null? (car %load-compiled-extensions)))
3473 (warn "invalid %load-compiled-extensions"
3474 %load-compiled-extensions)
3475 ".go")
3476 (else (car %load-compiled-extensions))))))
3477
3478 (define (fresh-compiled-file-name name go-path)
3479 (catch #t
3480 (lambda ()
3481 (let* ((scmstat (stat name))
3482 (gostat (and (not %fresh-auto-compile)
3483 (stat go-path #f))))
3484 (if (and gostat
3485 (or (> (stat:mtime gostat) (stat:mtime scmstat))
3486 (and (= (stat:mtime gostat) (stat:mtime scmstat))
3487 (>= (stat:mtimensec gostat)
3488 (stat:mtimensec scmstat)))))
3489 go-path
3490 (begin
3491 (if gostat
3492 (format (current-error-port)
3493 ";;; note: source file ~a\n;;; newer than compiled ~a\n"
3494 name go-path))
3495 (cond
3496 (%load-should-auto-compile
3497 (%warn-auto-compilation-enabled)
3498 (format (current-error-port) ";;; compiling ~a\n" name)
3499 (let ((cfn
3500 ((module-ref
3501 (resolve-interface '(system base compile))
3502 'compile-file)
3503 name
3504 #:opts %auto-compilation-options
3505 #:env (current-module))))
3506 (format (current-error-port) ";;; compiled ~a\n" cfn)
3507 cfn))
3508 (else #f))))))
3509 (lambda (k . args)
3510 (format (current-error-port)
3511 ";;; WARNING: compilation of ~a failed:\n" name)
3512 (for-each (lambda (s)
3513 (if (not (string-null? s))
3514 (format (current-error-port) ";;; ~a\n" s)))
3515 (string-split
3516 (call-with-output-string
3517 (lambda (port) (print-exception port #f k args)))
3518 #\newline))
3519 #f)))
3520
3521 (define (absolute-path? path)
3522 (string-prefix? "/" path))
3523
3524 (define (load-absolute abs-path)
3525 (let ((cfn (let ((canon (false-if-exception (canonicalize-path abs-path))))
3526 (and canon
3527 (let ((go-path (compiled-file-name canon)))
3528 (and go-path
3529 (fresh-compiled-file-name abs-path go-path)))))))
3530 (if cfn
3531 (begin
3532 (if %load-hook
3533 (%load-hook abs-path))
3534 (load-compiled cfn))
3535 (start-stack 'load-stack
3536 (primitive-load abs-path)))))
3537
3538 (save-module-excursion
3539 (lambda ()
3540 (with-fluids ((current-reader reader)
3541 (%file-port-name-canonicalization 'relative))
3542 (cond
3543 ((or (absolute-path? path))
3544 (load-absolute path))
3545 ((absolute-path? dir)
3546 (load-absolute (in-vicinity dir path)))
3547 (else
3548 (load-from-path (in-vicinity dir path))))))))
3549
3550 (define-syntax load
3551 (make-variable-transformer
3552 (lambda (x)
3553 (let* ((src (syntax-source x))
3554 (file (and src (assq-ref src 'filename)))
3555 (dir (and (string? file) (dirname file))))
3556 (syntax-case x ()
3557 ((_ arg ...)
3558 #`(load-in-vicinity #,(or dir #'(getcwd)) arg ...))
3559 (id
3560 (identifier? #'id)
3561 #`(lambda args
3562 (apply load-in-vicinity #,(or dir #'(getcwd)) args))))))))
3563
3564 \f
3565
3566 ;;; {`cond-expand' for SRFI-0 support.}
3567 ;;;
3568 ;;; This syntactic form expands into different commands or
3569 ;;; definitions, depending on the features provided by the Scheme
3570 ;;; implementation.
3571 ;;;
3572 ;;; Syntax:
3573 ;;;
3574 ;;; <cond-expand>
3575 ;;; --> (cond-expand <cond-expand-clause>+)
3576 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3577 ;;; <cond-expand-clause>
3578 ;;; --> (<feature-requirement> <command-or-definition>*)
3579 ;;; <feature-requirement>
3580 ;;; --> <feature-identifier>
3581 ;;; | (and <feature-requirement>*)
3582 ;;; | (or <feature-requirement>*)
3583 ;;; | (not <feature-requirement>)
3584 ;;; <feature-identifier>
3585 ;;; --> <a symbol which is the name or alias of a SRFI>
3586 ;;;
3587 ;;; Additionally, this implementation provides the
3588 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3589 ;;; determine the implementation type and the supported standard.
3590 ;;;
3591 ;;; Currently, the following feature identifiers are supported:
3592 ;;;
3593 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3594 ;;;
3595 ;;; Remember to update the features list when adding more SRFIs.
3596 ;;;
3597
3598 (define %cond-expand-features
3599 ;; Adjust the above comment when changing this.
3600 '(guile
3601 guile-2
3602 r5rs
3603 srfi-0 ;; cond-expand itself
3604 srfi-4 ;; homogenous numeric vectors
3605 srfi-6 ;; open-input-string etc, in the guile core
3606 srfi-13 ;; string library
3607 srfi-23 ;; `error` procedure
3608 srfi-14 ;; character sets
3609 srfi-55 ;; require-extension
3610 srfi-61 ;; general cond clause
3611 ))
3612
3613 ;; This table maps module public interfaces to the list of features.
3614 ;;
3615 (define %cond-expand-table (make-hash-table 31))
3616
3617 ;; Add one or more features to the `cond-expand' feature list of the
3618 ;; module `module'.
3619 ;;
3620 (define (cond-expand-provide module features)
3621 (let ((mod (module-public-interface module)))
3622 (and mod
3623 (hashq-set! %cond-expand-table mod
3624 (append (hashq-ref %cond-expand-table mod '())
3625 features)))))
3626
3627 (define-syntax cond-expand
3628 (lambda (x)
3629 (define (module-has-feature? mod sym)
3630 (or-map (lambda (mod)
3631 (memq sym (hashq-ref %cond-expand-table mod '())))
3632 (module-uses mod)))
3633
3634 (define (condition-matches? condition)
3635 (syntax-case condition (and or not)
3636 ((and c ...)
3637 (and-map condition-matches? #'(c ...)))
3638 ((or c ...)
3639 (or-map condition-matches? #'(c ...)))
3640 ((not c)
3641 (if (condition-matches? #'c) #f #t))
3642 (c
3643 (identifier? #'c)
3644 (let ((sym (syntax->datum #'c)))
3645 (if (memq sym %cond-expand-features)
3646 #t
3647 (module-has-feature? (current-module) sym))))))
3648
3649 (define (match clauses alternate)
3650 (syntax-case clauses ()
3651 (((condition form ...) . rest)
3652 (if (condition-matches? #'condition)
3653 #'(begin form ...)
3654 (match #'rest alternate)))
3655 (() (alternate))))
3656
3657 (syntax-case x (else)
3658 ((_ clause ... (else form ...))
3659 (match #'(clause ...)
3660 (lambda ()
3661 #'(begin form ...))))
3662 ((_ clause ...)
3663 (match #'(clause ...)
3664 (lambda ()
3665 (syntax-violation 'cond-expand "unfulfilled cond-expand" x)))))))
3666
3667 ;; This procedure gets called from the startup code with a list of
3668 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3669 ;;
3670 (define (use-srfis srfis)
3671 (process-use-modules
3672 (map (lambda (num)
3673 (list (list 'srfi (string->symbol
3674 (string-append "srfi-" (number->string num))))))
3675 srfis)))
3676
3677 \f
3678
3679 ;;; srfi-55: require-extension
3680 ;;;
3681
3682 (define-syntax require-extension
3683 (lambda (x)
3684 (syntax-case x (srfi)
3685 ((_ (srfi n ...))
3686 (and-map integer? (syntax->datum #'(n ...)))
3687 (with-syntax
3688 (((srfi-n ...)
3689 (map (lambda (n)
3690 (datum->syntax x (symbol-append 'srfi- n)))
3691 (map string->symbol
3692 (map number->string (syntax->datum #'(n ...)))))))
3693 #'(use-modules (srfi srfi-n) ...)))
3694 ((_ (type arg ...))
3695 (identifier? #'type)
3696 (syntax-violation 'require-extension "Not a recognized extension type"
3697 x)))))
3698
3699 \f
3700 ;;; Defining transparently inlinable procedures
3701 ;;;
3702
3703 (define-syntax define-inlinable
3704 ;; Define a macro and a procedure such that direct calls are inlined, via
3705 ;; the macro expansion, whereas references in non-call contexts refer to
3706 ;; the procedure. Inspired by the `define-integrable' macro by Dybvig et al.
3707 (lambda (x)
3708 ;; Use a space in the prefix to avoid potential -Wunused-toplevel
3709 ;; warning
3710 (define prefix (string->symbol "% "))
3711 (define (make-procedure-name name)
3712 (datum->syntax name
3713 (symbol-append prefix (syntax->datum name)
3714 '-procedure)))
3715
3716 (syntax-case x ()
3717 ((_ (name formals ...) body ...)
3718 (identifier? #'name)
3719 (with-syntax ((proc-name (make-procedure-name #'name))
3720 ((args ...) (generate-temporaries #'(formals ...))))
3721 #`(begin
3722 (define (proc-name formals ...)
3723 (fluid-let-syntax ((name (identifier-syntax proc-name)))
3724 body ...))
3725 (define-syntax name
3726 (lambda (x)
3727 (syntax-case x ()
3728 ((_ args ...)
3729 #'((fluid-let-syntax ((name (identifier-syntax proc-name)))
3730 (lambda (formals ...)
3731 body ...))
3732 args ...))
3733 (_
3734 (identifier? x)
3735 #'proc-name))))))))))
3736
3737 \f
3738
3739 (define using-readline?
3740 (let ((using-readline? (make-fluid)))
3741 (make-procedure-with-setter
3742 (lambda () (fluid-ref using-readline?))
3743 (lambda (v) (fluid-set! using-readline? v)))))
3744
3745 \f
3746
3747 ;;; {Deprecated stuff}
3748 ;;;
3749
3750 (begin-deprecated
3751 (module-use! the-scm-module (resolve-interface '(ice-9 deprecated))))
3752
3753 \f
3754
3755 ;;; Place the user in the guile-user module.
3756 ;;;
3757
3758 ;; FIXME:
3759 (module-use! the-scm-module (resolve-interface '(srfi srfi-4)))
3760
3761 ;; Set filename to #f to prevent reload.
3762 (define-module (guile-user)
3763 #:autoload (system base compile) (compile compile-file)
3764 #:filename #f)
3765
3766 ;; Remain in the `(guile)' module at compilation-time so that the
3767 ;; `-Wunused-toplevel' warning works as expected.
3768 (eval-when (compile) (set-current-module the-root-module))
3769
3770 ;;; boot-9.scm ends here