First-order CPS has $program and $closure forms
[bpt/guile.git] / module / language / cps / dfg.scm
1 ;;; Continuation-passing style (CPS) intermediate language (IL)
2
3 ;; Copyright (C) 2013, 2014 Free Software Foundation, Inc.
4
5 ;;;; This library is free software; you can redistribute it and/or
6 ;;;; modify it under the terms of the GNU Lesser General Public
7 ;;;; License as published by the Free Software Foundation; either
8 ;;;; version 3 of the License, or (at your option) any later version.
9 ;;;;
10 ;;;; This library is distributed in the hope that it will be useful,
11 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 ;;;; Lesser General Public License for more details.
14 ;;;;
15 ;;;; You should have received a copy of the GNU Lesser General Public
16 ;;;; License along with this library; if not, write to the Free Software
17 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18
19 ;;; Commentary:
20 ;;;
21 ;;; Many passes rely on a local or global static analysis of a function.
22 ;;; This module implements a simple data-flow graph (DFG) analysis,
23 ;;; tracking the definitions and uses of variables and continuations.
24 ;;; It also builds a table of continuations and scope links, to be able
25 ;;; to easily determine if one continuation is in the scope of another,
26 ;;; and to get to the expression inside a continuation.
27 ;;;
28 ;;; Note that the data-flow graph of continuation labels is a
29 ;;; control-flow graph.
30 ;;;
31 ;;; We currently don't expose details of the DFG type outside this
32 ;;; module, preferring to only expose accessors. That may change in the
33 ;;; future but it seems to work for now.
34 ;;;
35 ;;; Code:
36
37 (define-module (language cps dfg)
38 #:use-module (ice-9 match)
39 #:use-module (srfi srfi-1)
40 #:use-module (srfi srfi-9)
41 #:use-module (srfi srfi-26)
42 #:use-module (language cps)
43 #:export (build-cont-table
44 lookup-cont
45
46 compute-dfg
47 dfg-cont-table
48 dfg-min-label
49 dfg-label-count
50 dfg-min-var
51 dfg-var-count
52 with-fresh-name-state-from-dfg
53 lookup-def
54 lookup-uses
55 lookup-predecessors
56 lookup-successors
57 lookup-block-scope
58 find-call
59 call-expression
60 find-expression
61 find-defining-expression
62 find-constant-value
63 continuation-bound-in?
64 variable-free-in?
65 constant-needs-allocation?
66 control-point?
67 lookup-bound-syms
68
69 ;; Data flow analysis.
70 compute-live-variables
71 dfa-k-idx dfa-k-sym dfa-k-count dfa-k-in dfa-k-out
72 dfa-var-idx dfa-var-sym dfa-var-count
73 print-dfa))
74
75 ;; These definitions are here because currently we don't do cross-module
76 ;; inlining. They can be removed once that restriction is gone.
77 (define-inlinable (for-each f l)
78 (unless (list? l)
79 (scm-error 'wrong-type-arg "for-each" "Not a list: ~S" (list l) #f))
80 (let for-each1 ((l l))
81 (unless (null? l)
82 (f (car l))
83 (for-each1 (cdr l)))))
84
85 (define-inlinable (for-each/2 f l1 l2)
86 (unless (= (length l1) (length l2))
87 (scm-error 'wrong-type-arg "for-each" "List of wrong length: ~S"
88 (list l2) #f))
89 (let for-each2 ((l1 l1) (l2 l2))
90 (unless (null? l1)
91 (f (car l1) (car l2))
92 (for-each2 (cdr l1) (cdr l2)))))
93
94 (define (build-cont-table fun)
95 (let ((max-k (fold-conts (lambda (k cont max-k) (max k max-k))
96 -1 fun)))
97 (fold-conts (lambda (k cont table)
98 (vector-set! table k cont)
99 table)
100 (make-vector (1+ max-k) #f)
101 fun)))
102
103 ;; Data-flow graph for CPS: both for values and continuations.
104 (define-record-type $dfg
105 (make-dfg conts preds defs uses scopes scope-levels
106 min-label max-label label-count
107 min-var max-var var-count)
108 dfg?
109 ;; vector of label -> $kif, $kargs, etc
110 (conts dfg-cont-table)
111 ;; vector of label -> (pred-label ...)
112 (preds dfg-preds)
113 ;; vector of var -> def-label
114 (defs dfg-defs)
115 ;; vector of var -> (use-label ...)
116 (uses dfg-uses)
117 ;; vector of label -> label
118 (scopes dfg-scopes)
119 ;; vector of label -> int
120 (scope-levels dfg-scope-levels)
121
122 (min-label dfg-min-label)
123 (max-label dfg-max-label)
124 (label-count dfg-label-count)
125
126 (min-var dfg-min-var)
127 (max-var dfg-max-var)
128 (var-count dfg-var-count))
129
130 (define-inlinable (vector-push! vec idx val)
131 (let ((v vec) (i idx))
132 (vector-set! v i (cons val (vector-ref v i)))))
133
134 (define (compute-reachable dfg min-label label-count)
135 "Compute and return the continuations that may be reached if flow
136 reaches a continuation N. Returns a vector of bitvectors, whose first
137 index corresponds to MIN-LABEL, and so on."
138 (let (;; Vector of bitvectors, indicating that continuation N can
139 ;; reach a set M...
140 (reachable (make-vector label-count #f)))
141
142 (define (label->idx label) (- label min-label))
143
144 ;; All continuations are reachable from themselves.
145 (let lp ((n 0))
146 (when (< n label-count)
147 (let ((bv (make-bitvector label-count #f)))
148 (bitvector-set! bv n #t)
149 (vector-set! reachable n bv)
150 (lp (1+ n)))))
151
152 ;; Iterate labels backwards, to converge quickly.
153 (let ((tmp (make-bitvector label-count #f)))
154 (define (add-reachable! succ)
155 (bit-set*! tmp (vector-ref reachable (label->idx succ)) #t))
156 (let lp ((label (+ min-label label-count)) (changed? #f))
157 (cond
158 ((= label min-label)
159 (if changed?
160 (lp (+ min-label label-count) #f)
161 reachable))
162 (else
163 (let* ((label (1- label))
164 (idx (label->idx label)))
165 (bitvector-fill! tmp #f)
166 (visit-cont-successors
167 (case-lambda
168 (() #t)
169 ((succ0) (add-reachable! succ0))
170 ((succ0 succ1) (add-reachable! succ0) (add-reachable! succ1)))
171 (lookup-cont label dfg))
172 (bitvector-set! tmp idx #t)
173 (bit-set*! tmp (vector-ref reachable idx) #f)
174 (cond
175 ((bit-position #t tmp 0)
176 (bit-set*! (vector-ref reachable idx) tmp #t)
177 (lp label #t))
178 (else
179 (lp label changed?))))))))))
180
181 (define (find-prompts dfg min-label label-count)
182 "Find the prompts in DFG between MIN-LABEL and MIN-LABEL +
183 LABEL-COUNT, and return them as a list of PROMPT-LABEL, HANDLER-LABEL
184 pairs."
185 (let lp ((label min-label) (prompts '()))
186 (cond
187 ((= label (+ min-label label-count))
188 (reverse prompts))
189 (else
190 (match (lookup-cont label dfg)
191 (($ $kargs names syms body)
192 (match (find-expression body)
193 (($ $prompt escape? tag handler)
194 (lp (1+ label) (acons label handler prompts)))
195 (_ (lp (1+ label) prompts))))
196 (_ (lp (1+ label) prompts)))))))
197
198 (define (compute-interval reachable min-label label-count start end)
199 "Compute and return the set of continuations that may be reached from
200 START, inclusive, but not reached by END, exclusive. Returns a
201 bitvector."
202 (let ((body (make-bitvector label-count #f)))
203 (bit-set*! body (vector-ref reachable (- start min-label)) #t)
204 (bit-set*! body (vector-ref reachable (- end min-label)) #f)
205 body))
206
207 (define (find-prompt-bodies dfg min-label label-count)
208 "Find all the prompts in DFG from the LABEL-COUNT continuations
209 starting at MIN-LABEL, and compute the set of continuations that is
210 reachable from the prompt bodies but not from the corresponding handler.
211 Returns a list of PROMPT, HANDLER, BODY lists, where the BODY is a
212 bitvector."
213 (match (find-prompts dfg min-label label-count)
214 (() '())
215 (((prompt . handler) ...)
216 (let ((reachable (compute-reachable dfg min-label label-count)))
217 (map (lambda (prompt handler)
218 ;; FIXME: It isn't correct to use all continuations
219 ;; reachable from the prompt, because that includes
220 ;; continuations outside the prompt body. This point is
221 ;; moot if the handler's control flow joins with the the
222 ;; body, as is usually but not always the case.
223 ;;
224 ;; One counter-example is when the handler contifies an
225 ;; infinite loop; in that case we compute a too-large
226 ;; prompt body. This error is currently innocuous, but we
227 ;; should fix it at some point.
228 ;;
229 ;; The fix is to end the body at the corresponding "pop"
230 ;; primcall, if any.
231 (let ((body (compute-interval reachable min-label label-count
232 prompt handler)))
233 (list prompt handler body)))
234 prompt handler)))))
235
236 (define* (visit-prompt-control-flow dfg min-label label-count f #:key complete?)
237 "For all prompts in DFG in the range [MIN-LABEL, MIN-LABEL +
238 LABEL-COUNT), invoke F with arguments PROMPT, HANDLER, and BODY for each
239 body continuation in the prompt."
240 (define (label->idx label) (- label min-label))
241 (define (idx->label idx) (+ idx min-label))
242 (for-each
243 (match-lambda
244 ((prompt handler body)
245 (define (out-or-back-edge? n)
246 ;; Most uses of visit-prompt-control-flow don't need every body
247 ;; continuation, and would be happy getting called only for
248 ;; continuations that postdominate the rest of the body. Unless
249 ;; you pass #:complete? #t, we only invoke F on continuations
250 ;; that can leave the body, or on back-edges in loops.
251 ;;
252 ;; You would think that looking for the final "pop" primcall
253 ;; would be sufficient, but that is incorrect; it's possible for
254 ;; a loop in the prompt body to be contified, and that loop need
255 ;; not continue to the pop if it never terminates. The pop could
256 ;; even be removed by DCE, in that case.
257 (or-map (lambda (succ)
258 (let ((succ (label->idx succ)))
259 (or (not (bitvector-ref body succ))
260 (<= succ n))))
261 (lookup-successors (idx->label n) dfg)))
262 (let lp ((n 0))
263 (let ((n (bit-position #t body n)))
264 (when n
265 (when (or complete? (out-or-back-edge? n))
266 (f prompt handler (idx->label n)))
267 (lp (1+ n)))))))
268 (find-prompt-bodies dfg min-label label-count)))
269
270 (define (analyze-reverse-control-flow fun dfg min-label label-count)
271 (define (compute-reverse-control-flow-order ktail dfg)
272 (let ((order (make-vector label-count #f))
273 (label-map (make-vector label-count #f))
274 (next -1))
275 (define (label->idx label) (- label min-label))
276 (define (idx->label idx) (+ idx min-label))
277
278 (let visit ((k ktail))
279 ;; Mark this label as visited.
280 (vector-set! label-map (label->idx k) #t)
281 (for-each (lambda (k)
282 ;; Visit predecessors unless they are already visited.
283 (unless (vector-ref label-map (label->idx k))
284 (visit k)))
285 (lookup-predecessors k dfg))
286 ;; Add to reverse post-order chain.
287 (vector-set! label-map (label->idx k) next)
288 (set! next k))
289
290 (let lp ((n 0) (head next))
291 (if (< head 0)
292 ;; Add nodes that are not reachable from the tail.
293 (let lp ((n n) (m label-count))
294 (unless (= n label-count)
295 (let find-unvisited ((m (1- m)))
296 (if (vector-ref label-map m)
297 (find-unvisited (1- m))
298 (begin
299 (vector-set! label-map m n)
300 (lp (1+ n) m))))))
301 ;; Pop the head off the chain, give it its
302 ;; reverse-post-order numbering, and continue.
303 (let ((next (vector-ref label-map (label->idx head))))
304 (vector-set! label-map (label->idx head) n)
305 (lp (1+ n) next))))
306
307 (let lp ((n 0))
308 (when (< n label-count)
309 (vector-set! order (vector-ref label-map n) (idx->label n))
310 (lp (1+ n))))
311
312 (values order label-map)))
313
314 (define (convert-successors k-map)
315 (define (idx->label idx) (+ idx min-label))
316 (define (renumber label)
317 (vector-ref k-map (- label min-label)))
318 (let ((succs (make-vector (vector-length k-map) #f)))
319 (let lp ((n 0))
320 (when (< n (vector-length succs))
321 (vector-set! succs (vector-ref k-map n)
322 (map renumber
323 (lookup-successors (idx->label n) dfg)))
324 (lp (1+ n))))
325 succs))
326
327 (match fun
328 (($ $cont kfun ($ $kfun src meta self ($ $cont ktail tail)))
329 (call-with-values
330 (lambda ()
331 (compute-reverse-control-flow-order ktail dfg))
332 (lambda (order k-map)
333 (let ((succs (convert-successors k-map)))
334 ;; Any expression in the prompt body could cause an abort to
335 ;; the handler. This code adds links from every block in the
336 ;; prompt body to the handler. This causes all values used
337 ;; by the handler to be seen as live in the prompt body, as
338 ;; indeed they are.
339 (visit-prompt-control-flow
340 dfg min-label label-count
341 (lambda (prompt handler body)
342 (define (renumber label)
343 (vector-ref k-map (- label min-label)))
344 (vector-push! succs (renumber body) (renumber handler))))
345
346 (values k-map order succs)))))))
347
348 ;; Dominator analysis.
349 (define-record-type $dominator-analysis
350 (make-dominator-analysis min-label idoms dom-levels loop-header irreducible)
351 dominator-analysis?
352 ;; Label corresponding to first entry in idoms, dom-levels, etc
353 (min-label dominator-analysis-min-label)
354 ;; Vector of k-idx -> k-idx
355 (idoms dominator-analysis-idoms)
356 ;; Vector of k-idx -> dom-level
357 (dom-levels dominator-analysis-dom-levels)
358 ;; Vector of k-idx -> k-idx or -1
359 (loop-header dominator-analysis-loop-header)
360 ;; Vector of k-idx -> true or false value
361 (irreducible dominator-analysis-irreducible))
362
363 (define (compute-dom-levels idoms)
364 (let ((dom-levels (make-vector (vector-length idoms) #f)))
365 (define (compute-dom-level n)
366 (or (vector-ref dom-levels n)
367 (let ((dom-level (1+ (compute-dom-level (vector-ref idoms n)))))
368 (vector-set! dom-levels n dom-level)
369 dom-level)))
370 (vector-set! dom-levels 0 0)
371 (let lp ((n 0))
372 (when (< n (vector-length idoms))
373 (compute-dom-level n)
374 (lp (1+ n))))
375 dom-levels))
376
377 (define (compute-idoms preds min-label label-count)
378 (define (label->idx label) (- label min-label))
379 (define (idx->label idx) (+ idx min-label))
380 (let ((idoms (make-vector label-count 0)))
381 (define (common-idom d0 d1)
382 ;; We exploit the fact that a reverse post-order is a topological
383 ;; sort, and so the idom of a node is always numerically less than
384 ;; the node itself.
385 (cond
386 ((= d0 d1) d0)
387 ((< d0 d1) (common-idom d0 (vector-ref idoms d1)))
388 (else (common-idom (vector-ref idoms d0) d1))))
389 (define (compute-idom preds)
390 (match preds
391 (() 0)
392 ((pred . preds)
393 (let lp ((idom (label->idx pred)) (preds preds))
394 (match preds
395 (() idom)
396 ((pred . preds)
397 (lp (common-idom idom (label->idx pred)) preds)))))))
398 ;; This is the iterative O(n^2) fixpoint algorithm, originally from
399 ;; Allen and Cocke ("Graph-theoretic constructs for program flow
400 ;; analysis", 1972). See the discussion in Cooper, Harvey, and
401 ;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001.
402 (let iterate ((n 0) (changed? #f))
403 (cond
404 ((< n label-count)
405 (let ((idom (vector-ref idoms n))
406 (idom* (compute-idom (vector-ref preds (idx->label n)))))
407 (cond
408 ((eqv? idom idom*)
409 (iterate (1+ n) changed?))
410 (else
411 (vector-set! idoms n idom*)
412 (iterate (1+ n) #t)))))
413 (changed?
414 (iterate 0 #f))
415 (else idoms)))))
416
417 ;; Compute a vector containing, for each node, a list of the nodes that
418 ;; it immediately dominates. These are the "D" edges in the DJ tree.
419 (define (compute-dom-edges idoms)
420 (let ((doms (make-vector (vector-length idoms) '())))
421 (let lp ((n 0))
422 (when (< n (vector-length idoms))
423 (let ((idom (vector-ref idoms n)))
424 (vector-push! doms idom n))
425 (lp (1+ n))))
426 doms))
427
428 ;; Compute a vector containing, for each node, a list of the successors
429 ;; of that node that are not dominated by that node. These are the "J"
430 ;; edges in the DJ tree.
431 (define (compute-join-edges preds min-label idoms)
432 (define (dominates? n1 n2)
433 (or (= n1 n2)
434 (and (< n1 n2)
435 (dominates? n1 (vector-ref idoms n2)))))
436 (let ((joins (make-vector (vector-length idoms) '())))
437 (let lp ((n 0))
438 (when (< n (vector-length idoms))
439 (for-each (lambda (pred)
440 (let ((pred (- pred min-label)))
441 (unless (dominates? pred n)
442 (vector-push! joins pred n))))
443 (vector-ref preds (+ n min-label)))
444 (lp (1+ n))))
445 joins))
446
447 ;; Compute a vector containing, for each node, a list of the back edges
448 ;; to that node. If a node is not the entry of a reducible loop, that
449 ;; list is empty.
450 (define (compute-reducible-back-edges joins idoms)
451 (define (dominates? n1 n2)
452 (or (= n1 n2)
453 (and (< n1 n2)
454 (dominates? n1 (vector-ref idoms n2)))))
455 (let ((back-edges (make-vector (vector-length idoms) '())))
456 (let lp ((n 0))
457 (when (< n (vector-length joins))
458 (for-each (lambda (succ)
459 (when (dominates? succ n)
460 (vector-push! back-edges succ n)))
461 (vector-ref joins n))
462 (lp (1+ n))))
463 back-edges))
464
465 ;; Compute the levels in the dominator tree at which there are
466 ;; irreducible loops, as an integer. If a bit N is set in the integer,
467 ;; that indicates that at level N in the dominator tree, there is at
468 ;; least one irreducible loop.
469 (define (compute-irreducible-dom-levels doms joins idoms dom-levels)
470 (define (dominates? n1 n2)
471 (or (= n1 n2)
472 (and (< n1 n2)
473 (dominates? n1 (vector-ref idoms n2)))))
474 (let ((pre-order (make-vector (vector-length doms) #f))
475 (last-pre-order (make-vector (vector-length doms) #f))
476 (res 0)
477 (count 0))
478 ;; Is MAYBE-PARENT an ancestor of N on the depth-first spanning tree
479 ;; computed from the DJ graph? See Havlak 1997, "Nesting of
480 ;; Reducible and Irreducible Loops".
481 (define (ancestor? a b)
482 (let ((w (vector-ref pre-order a))
483 (v (vector-ref pre-order b)))
484 (and (<= w v)
485 (<= v (vector-ref last-pre-order w)))))
486 ;; Compute depth-first spanning tree of DJ graph.
487 (define (recurse n)
488 (unless (vector-ref pre-order n)
489 (visit n)))
490 (define (visit n)
491 ;; Pre-order visitation index.
492 (vector-set! pre-order n count)
493 (set! count (1+ count))
494 (for-each recurse (vector-ref doms n))
495 (for-each recurse (vector-ref joins n))
496 ;; Pre-order visitation index of last descendant.
497 (vector-set! last-pre-order (vector-ref pre-order n) (1- count)))
498
499 (visit 0)
500
501 (let lp ((n 0))
502 (when (< n (vector-length joins))
503 (for-each (lambda (succ)
504 ;; If this join edge is not a loop back edge but it
505 ;; does go to an ancestor on the DFST of the DJ
506 ;; graph, then we have an irreducible loop.
507 (when (and (not (dominates? succ n))
508 (ancestor? succ n))
509 (set! res (logior (ash 1 (vector-ref dom-levels succ))))))
510 (vector-ref joins n))
511 (lp (1+ n))))
512
513 res))
514
515 (define (compute-nodes-by-level dom-levels)
516 (let* ((max-level (let lp ((n 0) (max-level 0))
517 (if (< n (vector-length dom-levels))
518 (lp (1+ n) (max (vector-ref dom-levels n) max-level))
519 max-level)))
520 (nodes-by-level (make-vector (1+ max-level) '())))
521 (let lp ((n (1- (vector-length dom-levels))))
522 (when (>= n 0)
523 (vector-push! nodes-by-level (vector-ref dom-levels n) n)
524 (lp (1- n))))
525 nodes-by-level))
526
527 ;; Collect all predecessors to the back-nodes that are strictly
528 ;; dominated by the loop header, and mark them as belonging to the loop.
529 ;; If they already have a loop header, that means they are either in a
530 ;; nested loop, or they have already been visited already.
531 (define (mark-loop-body header back-nodes preds min-label idoms loop-headers)
532 (define (strictly-dominates? n1 n2)
533 (and (< n1 n2)
534 (let ((idom (vector-ref idoms n2)))
535 (or (= n1 idom)
536 (strictly-dominates? n1 idom)))))
537 (define (visit node)
538 (when (strictly-dominates? header node)
539 (cond
540 ((vector-ref loop-headers node) => visit)
541 (else
542 (vector-set! loop-headers node header)
543 (for-each (lambda (pred) (visit (- pred min-label)))
544 (vector-ref preds (+ node min-label)))))))
545 (for-each visit back-nodes))
546
547 (define (mark-irreducible-loops level idoms dom-levels loop-headers)
548 ;; FIXME: Identify strongly-connected components that are >= LEVEL in
549 ;; the dominator tree, and somehow mark them as irreducible.
550 (warn 'irreducible-loops-at-level level))
551
552 ;; "Identifying Loops Using DJ Graphs" by Sreedhar, Gao, and Lee, ACAPS
553 ;; Technical Memo 98, 1995.
554 (define (identify-loops preds min-label idoms dom-levels)
555 (let* ((doms (compute-dom-edges idoms))
556 (joins (compute-join-edges preds min-label idoms))
557 (back-edges (compute-reducible-back-edges joins idoms))
558 (irreducible-levels
559 (compute-irreducible-dom-levels doms joins idoms dom-levels))
560 (loop-headers (make-vector (vector-length idoms) #f))
561 (nodes-by-level (compute-nodes-by-level dom-levels)))
562 (let lp ((level (1- (vector-length nodes-by-level))))
563 (when (>= level 0)
564 (for-each (lambda (n)
565 (let ((edges (vector-ref back-edges n)))
566 (unless (null? edges)
567 (mark-loop-body n edges preds min-label
568 idoms loop-headers))))
569 (vector-ref nodes-by-level level))
570 (when (logbit? level irreducible-levels)
571 (mark-irreducible-loops level idoms dom-levels loop-headers))
572 (lp (1- level))))
573 loop-headers))
574
575 (define (analyze-dominators dfg min-label label-count)
576 (let* ((idoms (compute-idoms (dfg-preds dfg) min-label label-count))
577 (dom-levels (compute-dom-levels idoms))
578 (loop-headers (identify-loops (dfg-preds dfg) min-label idoms dom-levels)))
579 (make-dominator-analysis min-label idoms dom-levels loop-headers #f)))
580
581
582 ;; Compute the maximum fixed point of the data-flow constraint problem.
583 ;;
584 ;; This always completes, as the graph is finite and the in and out sets
585 ;; are complete semi-lattices. If the graph is reducible and the blocks
586 ;; are sorted in reverse post-order, this completes in a maximum of LC +
587 ;; 2 iterations, where LC is the loop connectedness number. See Hecht
588 ;; and Ullman, "Analysis of a simple algorithm for global flow
589 ;; problems", POPL 1973, or the recent summary in "Notes on graph
590 ;; algorithms used in optimizing compilers", Offner 2013.
591 (define (compute-maximum-fixed-point preds inv outv killv genv union?)
592 (define (bitvector-copy! dst src)
593 (bitvector-fill! dst #f)
594 (bit-set*! dst src #t))
595 (define (bitvector-meet! accum src)
596 (bit-set*! accum src union?))
597 (let lp ((n 0) (changed? #f))
598 (cond
599 ((< n (vector-length preds))
600 (let ((in (vector-ref inv n))
601 (out (vector-ref outv n))
602 (kill (vector-ref killv n))
603 (gen (vector-ref genv n)))
604 (let ((out-count (or changed? (bit-count #t out))))
605 (for-each
606 (lambda (pred)
607 (bitvector-meet! in (vector-ref outv pred)))
608 (vector-ref preds n))
609 (bitvector-copy! out in)
610 (for-each (cut bitvector-set! out <> #f) kill)
611 (for-each (cut bitvector-set! out <> #t) gen)
612 (lp (1+ n)
613 (or changed? (not (eqv? out-count (bit-count #t out))))))))
614 (changed?
615 (lp 0 #f)))))
616
617 ;; Data-flow analysis.
618 (define-record-type $dfa
619 (make-dfa min-label k-map k-order min-var var-count in out)
620 dfa?
621 ;; Minimum label.
622 (min-label dfa-min-label)
623 ;; Vector of (k - min-label) -> k-idx
624 (k-map dfa-k-map)
625 ;; Vector of k-idx -> k-sym, in (possibly reversed) control-flow order
626 (k-order dfa-k-order)
627
628 ;; Minimum var in this function.
629 (min-var dfa-min-var)
630 ;; Minimum var in this function.
631 (var-count dfa-var-count)
632 ;; Vector of k-idx -> bitvector
633 (in dfa-in)
634 ;; Vector of k-idx -> bitvector
635 (out dfa-out))
636
637 (define (dfa-k-idx dfa k)
638 (vector-ref (dfa-k-map dfa) (- k (dfa-min-label dfa))))
639
640 (define (dfa-k-sym dfa idx)
641 (vector-ref (dfa-k-order dfa) idx))
642
643 (define (dfa-k-count dfa)
644 (vector-length (dfa-k-map dfa)))
645
646 (define (dfa-var-idx dfa var)
647 (let ((idx (- var (dfa-min-var dfa))))
648 (unless (< -1 idx (dfa-var-count dfa))
649 (error "var out of range" var))
650 idx))
651
652 (define (dfa-var-sym dfa idx)
653 (unless (< -1 idx (dfa-var-count dfa))
654 (error "idx out of range" idx))
655 (+ idx (dfa-min-var dfa)))
656
657 (define (dfa-k-in dfa idx)
658 (vector-ref (dfa-in dfa) idx))
659
660 (define (dfa-k-out dfa idx)
661 (vector-ref (dfa-out dfa) idx))
662
663 (define (compute-live-variables fun dfg)
664 (unless (and (= (vector-length (dfg-uses dfg)) (dfg-var-count dfg))
665 (= (vector-length (dfg-cont-table dfg)) (dfg-label-count dfg)))
666 (error "function needs renumbering"))
667 (let* ((min-label (dfg-min-label dfg))
668 (nlabels (dfg-label-count dfg))
669 (min-var (dfg-min-var dfg))
670 (nvars (dfg-var-count dfg))
671 (usev (make-vector nlabels '()))
672 (defv (make-vector nlabels '()))
673 (live-in (make-vector nlabels #f))
674 (live-out (make-vector nlabels #f)))
675 (call-with-values
676 (lambda ()
677 (analyze-reverse-control-flow fun dfg min-label nlabels))
678 (lambda (k-map k-order succs)
679 (define (var->idx var) (- var min-var))
680 (define (idx->var idx) (+ idx min-var))
681 (define (label->idx label)
682 (vector-ref k-map (- label min-label)))
683
684 ;; Initialize defv and usev.
685 (let ((defs (dfg-defs dfg))
686 (uses (dfg-uses dfg)))
687 (let lp ((n 0))
688 (when (< n (vector-length defs))
689 (let ((def (vector-ref defs n)))
690 (unless def
691 (error "internal error -- var array not packed"))
692 (for-each (lambda (def)
693 (vector-push! defv (label->idx def) n))
694 (lookup-predecessors def dfg))
695 (for-each (lambda (use)
696 (vector-push! usev (label->idx use) n))
697 (vector-ref uses n))
698 (lp (1+ n))))))
699
700 ;; Initialize live-in and live-out sets.
701 (let lp ((n 0))
702 (when (< n (vector-length live-out))
703 (vector-set! live-in n (make-bitvector nvars #f))
704 (vector-set! live-out n (make-bitvector nvars #f))
705 (lp (1+ n))))
706
707 ;; Liveness is a reverse data-flow problem, so we give
708 ;; compute-maximum-fixed-point a reversed graph, swapping in for
709 ;; out, usev for defv, and using successors instead of
710 ;; predecessors. Continuation 0 is ktail.
711 (compute-maximum-fixed-point succs live-out live-in defv usev #t)
712
713 (make-dfa min-label k-map k-order min-var nvars live-in live-out)))))
714
715 (define (print-dfa dfa)
716 (match dfa
717 (($ $dfa min-label k-map k-order min-var var-count in out)
718 (define (print-var-set bv)
719 (let lp ((n 0))
720 (let ((n (bit-position #t bv n)))
721 (when n
722 (format #t " ~A" (+ n min-var))
723 (lp (1+ n))))))
724 (let lp ((n 0))
725 (when (< n (vector-length k-order))
726 (format #t "~A:\n" (vector-ref k-order n))
727 (format #t " in:")
728 (print-var-set (vector-ref in n))
729 (newline)
730 (format #t " out:")
731 (print-var-set (vector-ref out n))
732 (newline)
733 (lp (1+ n)))))))
734
735 (define (compute-label-and-var-ranges fun global?)
736 (define (min* a b)
737 (if b (min a b) a))
738 (define-syntax-rule (do-fold make-cont-folder)
739 ((make-cont-folder min-label max-label label-count
740 min-var max-var var-count)
741 (lambda (label cont
742 min-label max-label label-count
743 min-var max-var var-count)
744 (let ((min-label (min* label min-label))
745 (max-label (max label max-label)))
746 (define (visit-letrec body min-var max-var var-count)
747 (match body
748 (($ $letk conts body)
749 (visit-letrec body min-var max-var var-count))
750 (($ $letrec names vars funs body)
751 (visit-letrec body
752 (cond (min-var (fold min min-var vars))
753 ((pair? vars) (fold min (car vars) (cdr vars)))
754 (else min-var))
755 (fold max max-var vars)
756 (+ var-count (length vars))))
757 (($ $continue) (values min-var max-var var-count))))
758 (match cont
759 (($ $kargs names vars body)
760 (call-with-values
761 (lambda ()
762 (if global?
763 (visit-letrec body min-var max-var var-count)
764 (values min-var max-var var-count)))
765 (lambda (min-var max-var var-count)
766 (values min-label max-label (1+ label-count)
767 (cond (min-var (fold min min-var vars))
768 ((pair? vars) (fold min (car vars) (cdr vars)))
769 (else min-var))
770 (fold max max-var vars)
771 (+ var-count (length vars))))))
772 (($ $kfun src meta self)
773 (values min-label max-label (1+ label-count)
774 (min* self min-var) (max self max-var) (1+ var-count)))
775 (_ (values min-label max-label (1+ label-count)
776 min-var max-var var-count)))))
777 fun
778 #f -1 0 #f -1 0))
779 (if global?
780 (do-fold make-global-cont-folder)
781 (do-fold make-local-cont-folder)))
782
783 (define* (compute-dfg fun #:key (global? #t))
784 (call-with-values (lambda () (compute-label-and-var-ranges fun global?))
785 (lambda (min-label max-label label-count min-var max-var var-count)
786 (when (or (zero? label-count) (zero? var-count))
787 (error "internal error (no vars or labels for fun?)"))
788 (let* ((nlabels (- (1+ max-label) min-label))
789 (nvars (- (1+ max-var) min-var))
790 (conts (make-vector nlabels #f))
791 (preds (make-vector nlabels '()))
792 (defs (make-vector nvars #f))
793 (uses (make-vector nvars '()))
794 (scopes (make-vector nlabels #f))
795 (scope-levels (make-vector nlabels #f)))
796 (define (var->idx var) (- var min-var))
797 (define (label->idx label) (- label min-label))
798
799 (define (add-def! var def-k)
800 (vector-set! defs (var->idx var) def-k))
801 (define (add-use! var use-k)
802 (vector-push! uses (var->idx var) use-k))
803
804 (define* (declare-block! label cont parent
805 #:optional (level
806 (1+ (vector-ref
807 scope-levels
808 (label->idx parent)))))
809 (vector-set! conts (label->idx label) cont)
810 (vector-set! scopes (label->idx label) parent)
811 (vector-set! scope-levels (label->idx label) level))
812
813 (define (link-blocks! pred succ)
814 (vector-push! preds (label->idx succ) pred))
815
816 (define (visit-cont cont label)
817 (match cont
818 (($ $kargs names syms body)
819 (for-each (cut add-def! <> label) syms)
820 (visit-term body label))
821 (($ $kif kt kf)
822 (link-blocks! label kt)
823 (link-blocks! label kf))
824 (($ $kreceive arity k)
825 (link-blocks! label k))))
826
827 (define (visit-term term label)
828 (match term
829 (($ $letk (($ $cont k cont) ...) body)
830 ;; Set up recursive environment before visiting cont bodies.
831 (for-each/2 (lambda (cont k)
832 (declare-block! k cont label))
833 cont k)
834 (for-each/2 visit-cont cont k)
835 (visit-term body label))
836 (($ $letrec names syms funs body)
837 (unless global?
838 (error "$letrec should not be present when building a local DFG"))
839 (for-each (cut add-def! <> label) syms)
840 (for-each (lambda (fun)
841 (match fun
842 (($ $fun free body)
843 (visit-fun body))))
844 funs)
845 (visit-term body label))
846 (($ $continue k src exp)
847 (link-blocks! label k)
848 (visit-exp exp label))))
849
850 (define (visit-exp exp label)
851 (define (use! sym)
852 (add-use! sym label))
853 (match exp
854 ((or ($ $void) ($ $const) ($ $prim) ($ $closure)) #f)
855 (($ $call proc args)
856 (use! proc)
857 (for-each use! args))
858 (($ $callk k proc args)
859 (use! proc)
860 (for-each use! args))
861 (($ $primcall name args)
862 (for-each use! args))
863 (($ $values args)
864 (for-each use! args))
865 (($ $prompt escape? tag handler)
866 (use! tag)
867 (link-blocks! label handler))
868 (($ $fun free body)
869 (when global?
870 (visit-fun body)))))
871
872 (define (visit-clause clause kfun)
873 (match clause
874 (#f #t)
875 (($ $cont kclause
876 (and clause ($ $kclause arity ($ $cont kbody body)
877 alternate)))
878 (declare-block! kclause clause kfun)
879 (link-blocks! kfun kclause)
880
881 (declare-block! kbody body kclause)
882 (link-blocks! kclause kbody)
883
884 (visit-cont body kbody)
885 (visit-clause alternate kfun))))
886
887 (define (visit-fun fun)
888 (match fun
889 (($ $cont kfun
890 (and cont
891 ($ $kfun src meta self ($ $cont ktail tail) clause)))
892 (declare-block! kfun cont #f 0)
893 (add-def! self kfun)
894 (declare-block! ktail tail kfun)
895 (visit-clause clause kfun))))
896
897 (visit-fun fun)
898
899 (make-dfg conts preds defs uses scopes scope-levels
900 min-label max-label label-count
901 min-var max-var var-count)))))
902
903 (define-syntax-rule (with-fresh-name-state-from-dfg dfg body ...)
904 (parameterize ((label-counter (1+ (dfg-max-label dfg)))
905 (var-counter (1+ (dfg-max-var dfg))))
906 body ...))
907
908 (define (lookup-cont label dfg)
909 (let ((res (vector-ref (dfg-cont-table dfg) (- label (dfg-min-label dfg)))))
910 (unless res
911 (error "Unknown continuation!" label))
912 res))
913
914 (define (lookup-predecessors k dfg)
915 (vector-ref (dfg-preds dfg) (- k (dfg-min-label dfg))))
916
917 (define (lookup-successors k dfg)
918 (let ((cont (vector-ref (dfg-cont-table dfg) (- k (dfg-min-label dfg)))))
919 (visit-cont-successors list cont)))
920
921 (define (lookup-def var dfg)
922 (vector-ref (dfg-defs dfg) (- var (dfg-min-var dfg))))
923
924 (define (lookup-uses var dfg)
925 (vector-ref (dfg-uses dfg) (- var (dfg-min-var dfg))))
926
927 (define (lookup-block-scope k dfg)
928 (vector-ref (dfg-scopes dfg) (- k (dfg-min-label dfg))))
929
930 (define (lookup-scope-level k dfg)
931 (vector-ref (dfg-scope-levels dfg) (- k (dfg-min-label dfg))))
932
933 (define (find-defining-term sym dfg)
934 (match (lookup-predecessors (lookup-def sym dfg) dfg)
935 ((def-exp-k)
936 (lookup-cont def-exp-k dfg))
937 (else #f)))
938
939 (define (find-call term)
940 (match term
941 (($ $kargs names syms body) (find-call body))
942 (($ $letk conts body) (find-call body))
943 (($ $letrec names syms funs body) (find-call body))
944 (($ $continue) term)))
945
946 (define (call-expression call)
947 (match call
948 (($ $continue k src exp) exp)))
949
950 (define (find-expression term)
951 (call-expression (find-call term)))
952
953 (define (find-defining-expression sym dfg)
954 (match (find-defining-term sym dfg)
955 (#f #f)
956 (($ $kreceive) #f)
957 (($ $kclause) #f)
958 (term (find-expression term))))
959
960 (define (find-constant-value sym dfg)
961 (match (find-defining-expression sym dfg)
962 (($ $const val)
963 (values #t val))
964 (($ $continue k src ($ $void))
965 (values #t *unspecified*))
966 (else
967 (values #f #f))))
968
969 (define (constant-needs-allocation? var val dfg)
970 (define (immediate-u8? val)
971 (and (integer? val) (exact? val) (<= 0 val 255)))
972
973 (define (find-exp term)
974 (match term
975 (($ $kargs names vars body) (find-exp body))
976 (($ $letk conts body) (find-exp body))
977 (else term)))
978
979 (or-map
980 (lambda (use)
981 (match (find-expression (lookup-cont use dfg))
982 (($ $call) #f)
983 (($ $callk) #f)
984 (($ $values) #f)
985 (($ $primcall 'free-ref (closure slot))
986 (eq? var closure))
987 (($ $primcall 'free-set! (closure slot value))
988 (or (eq? var closure) (eq? var value)))
989 (($ $primcall 'cache-current-module! (mod . _))
990 (eq? var mod))
991 (($ $primcall 'cached-toplevel-box _)
992 #f)
993 (($ $primcall 'cached-module-box _)
994 #f)
995 (($ $primcall 'resolve (name bound?))
996 (eq? var name))
997 (($ $primcall 'make-vector/immediate (len init))
998 (eq? var init))
999 (($ $primcall 'vector-ref/immediate (v i))
1000 (eq? var v))
1001 (($ $primcall 'vector-set!/immediate (v i x))
1002 (or (eq? var v) (eq? var x)))
1003 (($ $primcall 'allocate-struct/immediate (vtable nfields))
1004 (eq? var vtable))
1005 (($ $primcall 'struct-ref/immediate (s n))
1006 (eq? var s))
1007 (($ $primcall 'struct-set!/immediate (s n x))
1008 (or (eq? var s) (eq? var x)))
1009 (($ $primcall 'builtin-ref (idx))
1010 #f)
1011 (_ #t)))
1012 (vector-ref (dfg-uses dfg) (- var (dfg-min-var dfg)))))
1013
1014 (define (continuation-scope-contains? scope-k k dfg)
1015 (let ((scope-level (lookup-scope-level scope-k dfg)))
1016 (let lp ((k k))
1017 (or (eq? scope-k k)
1018 (and (< scope-level (lookup-scope-level k dfg))
1019 (lp (lookup-block-scope k dfg)))))))
1020
1021 (define (continuation-bound-in? k use-k dfg)
1022 (continuation-scope-contains? (lookup-block-scope k dfg) use-k dfg))
1023
1024 (define (variable-free-in? var k dfg)
1025 (or-map (lambda (use)
1026 (continuation-scope-contains? k use dfg))
1027 (lookup-uses var dfg)))
1028
1029 ;; A continuation is a control point if it has multiple predecessors, or
1030 ;; if its single predecessor does not have a single successor.
1031 (define (control-point? k dfg)
1032 (match (lookup-predecessors k dfg)
1033 ((pred)
1034 (let ((cont (vector-ref (dfg-cont-table dfg)
1035 (- pred (dfg-min-label dfg)))))
1036 (visit-cont-successors (case-lambda
1037 (() #t)
1038 ((succ0) #f)
1039 ((succ1 succ2) #t))
1040 cont)))
1041 (_ #t)))
1042
1043 (define (lookup-bound-syms k dfg)
1044 (match (lookup-cont k dfg)
1045 (($ $kargs names syms body)
1046 syms)))