Merge remote-tracking branch 'origin/stable-2.0'
[bpt/guile.git] / module / ice-9 / psyntax.scm
1 ;;;; -*-scheme-*-
2 ;;;;
3 ;;;; Copyright (C) 2001, 2003, 2006, 2009, 2010, 2011,
4 ;;;; 2012, 2013 Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 3 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20 \f
21
22 ;;; Portable implementation of syntax-case
23 ;;; Originally extracted from Chez Scheme Version 5.9f
24 ;;; Authors: R. Kent Dybvig, Oscar Waddell, Bob Hieb, Carl Bruggeman
25
26 ;;; Copyright (c) 1992-1997 Cadence Research Systems
27 ;;; Permission to copy this software, in whole or in part, to use this
28 ;;; software for any lawful purpose, and to redistribute this software
29 ;;; is granted subject to the restriction that all copies made of this
30 ;;; software must include this copyright notice in full. This software
31 ;;; is provided AS IS, with NO WARRANTY, EITHER EXPRESS OR IMPLIED,
32 ;;; INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
33 ;;; OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL THE
34 ;;; AUTHORS BE LIABLE FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES OF ANY
35 ;;; NATURE WHATSOEVER.
36
37 ;;; Modified by Mikael Djurfeldt <djurfeldt@nada.kth.se> according
38 ;;; to the ChangeLog distributed in the same directory as this file:
39 ;;; 1997-08-19, 1997-09-03, 1997-09-10, 2000-08-13, 2000-08-24,
40 ;;; 2000-09-12, 2001-03-08
41
42 ;;; Modified by Andy Wingo <wingo@pobox.com> according to the Git
43 ;;; revision control logs corresponding to this file: 2009, 2010.
44
45
46 ;;; This file defines the syntax-case expander, macroexpand, and a set
47 ;;; of associated syntactic forms and procedures. Of these, the
48 ;;; following are documented in The Scheme Programming Language,
49 ;;; Fourth Edition (R. Kent Dybvig, MIT Press, 2009), and in the
50 ;;; R6RS:
51 ;;;
52 ;;; bound-identifier=?
53 ;;; datum->syntax
54 ;;; define-syntax
55 ;;; syntax-parameterize
56 ;;; free-identifier=?
57 ;;; generate-temporaries
58 ;;; identifier?
59 ;;; identifier-syntax
60 ;;; let-syntax
61 ;;; letrec-syntax
62 ;;; syntax
63 ;;; syntax-case
64 ;;; syntax->datum
65 ;;; syntax-rules
66 ;;; with-syntax
67 ;;;
68 ;;; Additionally, the expander provides definitions for a number of core
69 ;;; Scheme syntactic bindings, such as `let', `lambda', and the like.
70
71 ;;; The remaining exports are listed below:
72 ;;;
73 ;;; (macroexpand datum)
74 ;;; if datum represents a valid expression, macroexpand returns an
75 ;;; expanded version of datum in a core language that includes no
76 ;;; syntactic abstractions. The core language includes begin,
77 ;;; define, if, lambda, letrec, quote, and set!.
78 ;;; (eval-when situations expr ...)
79 ;;; conditionally evaluates expr ... at compile-time or run-time
80 ;;; depending upon situations (see the Chez Scheme System Manual,
81 ;;; Revision 3, for a complete description)
82 ;;; (syntax-violation who message form [subform])
83 ;;; used to report errors found during expansion
84 ;;; ($sc-dispatch e p)
85 ;;; used by expanded code to handle syntax-case matching
86
87 ;;; This file is shipped along with an expanded version of itself,
88 ;;; psyntax-pp.scm, which is loaded when psyntax.scm has not yet been
89 ;;; compiled. In this way, psyntax bootstraps off of an expanded
90 ;;; version of itself.
91
92 ;;; This implementation of the expander sometimes uses syntactic
93 ;;; abstractions when procedural abstractions would suffice. For
94 ;;; example, we define top-wrap and top-marked? as
95 ;;;
96 ;;; (define-syntax top-wrap (identifier-syntax '((top))))
97 ;;; (define-syntax top-marked?
98 ;;; (syntax-rules ()
99 ;;; ((_ w) (memq 'top (wrap-marks w)))))
100 ;;;
101 ;;; rather than
102 ;;;
103 ;;; (define top-wrap '((top)))
104 ;;; (define top-marked?
105 ;;; (lambda (w) (memq 'top (wrap-marks w))))
106 ;;;
107 ;;; On the other hand, we don't do this consistently; we define
108 ;;; make-wrap, wrap-marks, and wrap-subst simply as
109 ;;;
110 ;;; (define make-wrap cons)
111 ;;; (define wrap-marks car)
112 ;;; (define wrap-subst cdr)
113 ;;;
114 ;;; In Chez Scheme, the syntactic and procedural forms of these
115 ;;; abstractions are equivalent, since the optimizer consistently
116 ;;; integrates constants and small procedures. This will be true of
117 ;;; Guile as well, once we implement a proper inliner.
118
119
120 ;;; Implementation notes:
121
122 ;;; Objects with no standard print syntax, including objects containing
123 ;;; cycles and syntax object, are allowed in quoted data as long as they
124 ;;; are contained within a syntax form or produced by datum->syntax.
125 ;;; Such objects are never copied.
126
127 ;;; All identifiers that don't have macro definitions and are not bound
128 ;;; lexically are assumed to be global variables.
129
130 ;;; Top-level definitions of macro-introduced identifiers are allowed.
131 ;;; This may not be appropriate for implementations in which the
132 ;;; model is that bindings are created by definitions, as opposed to
133 ;;; one in which initial values are assigned by definitions.
134
135 ;;; Identifiers and syntax objects are implemented as vectors for
136 ;;; portability. As a result, it is possible to "forge" syntax objects.
137
138 ;;; The implementation of generate-temporaries assumes that it is
139 ;;; possible to generate globally unique symbols (gensyms).
140
141 ;;; The source location associated with incoming expressions is tracked
142 ;;; via the source-properties mechanism, a weak map from expression to
143 ;;; source information. At times the source is separated from the
144 ;;; expression; see the note below about "efficiency and confusion".
145
146
147 ;;; Bootstrapping:
148
149 ;;; When changing syntax-object representations, it is necessary to support
150 ;;; both old and new syntax-object representations in id-var-name. It
151 ;;; should be sufficient to recognize old representations and treat
152 ;;; them as not lexically bound.
153
154
155
156 (eval-when (compile)
157 (set-current-module (resolve-module '(guile))))
158
159 (let ()
160 (define-syntax define-expansion-constructors
161 (lambda (x)
162 (syntax-case x ()
163 ((_)
164 (let lp ((n 0) (out '()))
165 (if (< n (vector-length %expanded-vtables))
166 (lp (1+ n)
167 (let* ((vtable (vector-ref %expanded-vtables n))
168 (stem (struct-ref vtable (+ vtable-offset-user 0)))
169 (fields (struct-ref vtable (+ vtable-offset-user 2)))
170 (sfields (map (lambda (f) (datum->syntax x f)) fields))
171 (ctor (datum->syntax x (symbol-append 'make- stem))))
172 (cons #`(define (#,ctor #,@sfields)
173 (make-struct (vector-ref %expanded-vtables #,n) 0
174 #,@sfields))
175 out)))
176 #`(begin #,@(reverse out))))))))
177
178 (define-syntax define-expansion-accessors
179 (lambda (x)
180 (syntax-case x ()
181 ((_ stem field ...)
182 (let lp ((n 0))
183 (let ((vtable (vector-ref %expanded-vtables n))
184 (stem (syntax->datum #'stem)))
185 (if (eq? (struct-ref vtable (+ vtable-offset-user 0)) stem)
186 #`(begin
187 (define (#,(datum->syntax x (symbol-append stem '?)) x)
188 (and (struct? x)
189 (eq? (struct-vtable x)
190 (vector-ref %expanded-vtables #,n))))
191 #,@(map
192 (lambda (f)
193 (let ((get (datum->syntax x (symbol-append stem '- f)))
194 (set (datum->syntax x (symbol-append 'set- stem '- f '!)))
195 (idx (list-index (struct-ref vtable
196 (+ vtable-offset-user 2))
197 f)))
198 #`(begin
199 (define (#,get x)
200 (struct-ref x #,idx))
201 (define (#,set x v)
202 (struct-set! x #,idx v)))))
203 (syntax->datum #'(field ...))))
204 (lp (1+ n)))))))))
205
206 (define-syntax define-structure
207 (lambda (x)
208 (define construct-name
209 (lambda (template-identifier . args)
210 (datum->syntax
211 template-identifier
212 (string->symbol
213 (apply string-append
214 (map (lambda (x)
215 (if (string? x)
216 x
217 (symbol->string (syntax->datum x))))
218 args))))))
219 (syntax-case x ()
220 ((_ (name id1 ...))
221 (and-map identifier? #'(name id1 ...))
222 (with-syntax
223 ((constructor (construct-name #'name "make-" #'name))
224 (predicate (construct-name #'name #'name "?"))
225 ((access ...)
226 (map (lambda (x) (construct-name x #'name "-" x))
227 #'(id1 ...)))
228 ((assign ...)
229 (map (lambda (x)
230 (construct-name x "set-" #'name "-" x "!"))
231 #'(id1 ...)))
232 (structure-length
233 (+ (length #'(id1 ...)) 1))
234 ((index ...)
235 (let f ((i 1) (ids #'(id1 ...)))
236 (if (null? ids)
237 '()
238 (cons i (f (+ i 1) (cdr ids)))))))
239 #'(begin
240 (define constructor
241 (lambda (id1 ...)
242 (vector 'name id1 ... )))
243 (define predicate
244 (lambda (x)
245 (and (vector? x)
246 (= (vector-length x) structure-length)
247 (eq? (vector-ref x 0) 'name))))
248 (define access
249 (lambda (x)
250 (vector-ref x index)))
251 ...
252 (define assign
253 (lambda (x update)
254 (vector-set! x index update)))
255 ...))))))
256
257 (let ()
258 (define-expansion-constructors)
259 (define-expansion-accessors lambda meta)
260
261 ;; hooks to nonportable run-time helpers
262 (begin
263 (define-syntax fx+ (identifier-syntax +))
264 (define-syntax fx- (identifier-syntax -))
265 (define-syntax fx= (identifier-syntax =))
266 (define-syntax fx< (identifier-syntax <))
267
268 (define top-level-eval-hook
269 (lambda (x mod)
270 (primitive-eval x)))
271
272 (define local-eval-hook
273 (lambda (x mod)
274 (primitive-eval x)))
275
276 ;; Capture syntax-session-id before we shove it off into a module.
277 (define session-id
278 (let ((v (module-variable (current-module) 'syntax-session-id)))
279 (lambda ()
280 ((variable-ref v)))))
281
282 (define put-global-definition-hook
283 (lambda (symbol type val)
284 (module-define! (current-module)
285 symbol
286 (make-syntax-transformer symbol type val))))
287
288 (define get-global-definition-hook
289 (lambda (symbol module)
290 (if (and (not module) (current-module))
291 (warn "module system is booted, we should have a module" symbol))
292 (let ((v (module-variable (if module
293 (resolve-module (cdr module))
294 (current-module))
295 symbol)))
296 (and v (variable-bound? v)
297 (let ((val (variable-ref v)))
298 (and (macro? val) (macro-type val)
299 (cons (macro-type val)
300 (macro-binding val)))))))))
301
302
303 (define (decorate-source e s)
304 (if (and s (supports-source-properties? e))
305 (set-source-properties! e s))
306 e)
307
308 (define (maybe-name-value! name val)
309 (if (lambda? val)
310 (let ((meta (lambda-meta val)))
311 (if (not (assq 'name meta))
312 (set-lambda-meta! val (acons 'name name meta))))))
313
314 ;; output constructors
315 (define build-void
316 (lambda (source)
317 (make-void source)))
318
319 (define build-call
320 (lambda (source fun-exp arg-exps)
321 (make-call source fun-exp arg-exps)))
322
323 (define build-conditional
324 (lambda (source test-exp then-exp else-exp)
325 (make-conditional source test-exp then-exp else-exp)))
326
327 (define build-dynlet
328 (lambda (source fluids vals body)
329 (make-dynlet source fluids vals body)))
330
331 (define build-lexical-reference
332 (lambda (type source name var)
333 (make-lexical-ref source name var)))
334
335 (define build-lexical-assignment
336 (lambda (source name var exp)
337 (maybe-name-value! name exp)
338 (make-lexical-set source name var exp)))
339
340 (define (analyze-variable mod var modref-cont bare-cont)
341 (if (not mod)
342 (bare-cont var)
343 (let ((kind (car mod))
344 (mod (cdr mod)))
345 (case kind
346 ((public) (modref-cont mod var #t))
347 ((private) (if (not (equal? mod (module-name (current-module))))
348 (modref-cont mod var #f)
349 (bare-cont var)))
350 ((bare) (bare-cont var))
351 ((hygiene) (if (and (not (equal? mod (module-name (current-module))))
352 (module-variable (resolve-module mod) var))
353 (modref-cont mod var #f)
354 (bare-cont var)))
355 (else (syntax-violation #f "bad module kind" var mod))))))
356
357 (define build-global-reference
358 (lambda (source var mod)
359 (analyze-variable
360 mod var
361 (lambda (mod var public?)
362 (make-module-ref source mod var public?))
363 (lambda (var)
364 (make-toplevel-ref source var)))))
365
366 (define build-global-assignment
367 (lambda (source var exp mod)
368 (maybe-name-value! var exp)
369 (analyze-variable
370 mod var
371 (lambda (mod var public?)
372 (make-module-set source mod var public? exp))
373 (lambda (var)
374 (make-toplevel-set source var exp)))))
375
376 (define build-global-definition
377 (lambda (source var exp)
378 (maybe-name-value! var exp)
379 (make-toplevel-define source var exp)))
380
381 (define build-simple-lambda
382 (lambda (src req rest vars meta exp)
383 (make-lambda src
384 meta
385 ;; hah, a case in which kwargs would be nice.
386 (make-lambda-case
387 ;; src req opt rest kw inits vars body else
388 src req #f rest #f '() vars exp #f))))
389
390 (define build-case-lambda
391 (lambda (src meta body)
392 (make-lambda src meta body)))
393
394 (define build-lambda-case
395 ;; req := (name ...)
396 ;; opt := (name ...) | #f
397 ;; rest := name | #f
398 ;; kw := (allow-other-keys? (keyword name var) ...) | #f
399 ;; inits: (init ...)
400 ;; vars: (sym ...)
401 ;; vars map to named arguments in the following order:
402 ;; required, optional (positional), rest, keyword.
403 ;; the body of a lambda: anything, already expanded
404 ;; else: lambda-case | #f
405 (lambda (src req opt rest kw inits vars body else-case)
406 (make-lambda-case src req opt rest kw inits vars body else-case)))
407
408 (define build-primcall
409 (lambda (src name args)
410 (make-primcall src name args)))
411
412 (define build-primref
413 (lambda (src name)
414 (make-primitive-ref src name)))
415
416 (define (build-data src exp)
417 (make-const src exp))
418
419 (define build-sequence
420 (lambda (src exps)
421 (if (null? (cdr exps))
422 (car exps)
423 (make-seq src (car exps) (build-sequence #f (cdr exps))))))
424
425 (define build-let
426 (lambda (src ids vars val-exps body-exp)
427 (for-each maybe-name-value! ids val-exps)
428 (if (null? vars)
429 body-exp
430 (make-let src ids vars val-exps body-exp))))
431
432 (define build-named-let
433 (lambda (src ids vars val-exps body-exp)
434 (let ((f (car vars))
435 (f-name (car ids))
436 (vars (cdr vars))
437 (ids (cdr ids)))
438 (let ((proc (build-simple-lambda src ids #f vars '() body-exp)))
439 (maybe-name-value! f-name proc)
440 (for-each maybe-name-value! ids val-exps)
441 (make-letrec
442 src #f
443 (list f-name) (list f) (list proc)
444 (build-call src (build-lexical-reference 'fun src f-name f)
445 val-exps))))))
446
447 (define build-letrec
448 (lambda (src in-order? ids vars val-exps body-exp)
449 (if (null? vars)
450 body-exp
451 (begin
452 (for-each maybe-name-value! ids val-exps)
453 (make-letrec src in-order? ids vars val-exps body-exp)))))
454
455
456 ;; FIXME: use a faster gensym
457 (define-syntax-rule (build-lexical-var src id)
458 (gensym (string-append (symbol->string id) "-")))
459
460 (define-structure (syntax-object expression wrap module))
461
462 (define-syntax no-source (identifier-syntax #f))
463
464 (define source-annotation
465 (lambda (x)
466 (let ((props (source-properties
467 (if (syntax-object? x)
468 (syntax-object-expression x)
469 x))))
470 (and (pair? props) props))))
471
472 (define-syntax-rule (arg-check pred? e who)
473 (let ((x e))
474 (if (not (pred? x)) (syntax-violation who "invalid argument" x))))
475
476 ;; compile-time environments
477
478 ;; wrap and environment comprise two level mapping.
479 ;; wrap : id --> label
480 ;; env : label --> <element>
481
482 ;; environments are represented in two parts: a lexical part and a global
483 ;; part. The lexical part is a simple list of associations from labels
484 ;; to bindings. The global part is implemented by
485 ;; {put,get}-global-definition-hook and associates symbols with
486 ;; bindings.
487
488 ;; global (assumed global variable) and displaced-lexical (see below)
489 ;; do not show up in any environment; instead, they are fabricated by
490 ;; resolve-identifier when it finds no other bindings.
491
492 ;; <environment> ::= ((<label> . <binding>)*)
493
494 ;; identifier bindings include a type and a value
495
496 ;; <binding> ::= (macro . <procedure>) macros
497 ;; (syntax-parameter . (<procedure>)) syntax parameters
498 ;; (core . <procedure>) core forms
499 ;; (module-ref . <procedure>) @ or @@
500 ;; (begin) begin
501 ;; (define) define
502 ;; (define-syntax) define-syntax
503 ;; (define-syntax-parameter) define-syntax-parameter
504 ;; (local-syntax . rec?) let-syntax/letrec-syntax
505 ;; (eval-when) eval-when
506 ;; (syntax . (<var> . <level>)) pattern variables
507 ;; (global) assumed global variable
508 ;; (lexical . <var>) lexical variables
509 ;; (displaced-lexical) displaced lexicals
510 ;; <level> ::= <nonnegative integer>
511 ;; <var> ::= variable returned by build-lexical-var
512
513 ;; a macro is a user-defined syntactic-form. a core is a
514 ;; system-defined syntactic form. begin, define, define-syntax,
515 ;; define-syntax-parameter, and eval-when are treated specially
516 ;; since they are sensitive to whether the form is at top-level and
517 ;; (except for eval-when) can denote valid internal definitions.
518
519 ;; a pattern variable is a variable introduced by syntax-case and can
520 ;; be referenced only within a syntax form.
521
522 ;; any identifier for which no top-level syntax definition or local
523 ;; binding of any kind has been seen is assumed to be a global
524 ;; variable.
525
526 ;; a lexical variable is a lambda- or letrec-bound variable.
527
528 ;; a displaced-lexical identifier is a lexical identifier removed from
529 ;; it's scope by the return of a syntax object containing the identifier.
530 ;; a displaced lexical can also appear when a letrec-syntax-bound
531 ;; keyword is referenced on the rhs of one of the letrec-syntax clauses.
532 ;; a displaced lexical should never occur with properly written macros.
533
534 (define-syntax make-binding
535 (syntax-rules (quote)
536 ((_ type value) (cons type value))
537 ((_ 'type) '(type))
538 ((_ type) (cons type '()))))
539 (define-syntax-rule (binding-type x)
540 (car x))
541 (define-syntax-rule (binding-value x)
542 (cdr x))
543
544 (define-syntax null-env (identifier-syntax '()))
545
546 (define extend-env
547 (lambda (labels bindings r)
548 (if (null? labels)
549 r
550 (extend-env (cdr labels) (cdr bindings)
551 (cons (cons (car labels) (car bindings)) r)))))
552
553 (define extend-var-env
554 ;; variant of extend-env that forms "lexical" binding
555 (lambda (labels vars r)
556 (if (null? labels)
557 r
558 (extend-var-env (cdr labels) (cdr vars)
559 (cons (cons (car labels) (make-binding 'lexical (car vars))) r)))))
560
561 ;; we use a "macros only" environment in expansion of local macro
562 ;; definitions so that their definitions can use local macros without
563 ;; attempting to use other lexical identifiers.
564 (define macros-only-env
565 (lambda (r)
566 (if (null? r)
567 '()
568 (let ((a (car r)))
569 (if (memq (cadr a) '(macro syntax-parameter))
570 (cons a (macros-only-env (cdr r)))
571 (macros-only-env (cdr r)))))))
572
573 (define global-extend
574 (lambda (type sym val)
575 (put-global-definition-hook sym type val)))
576
577
578 ;; Conceptually, identifiers are always syntax objects. Internally,
579 ;; however, the wrap is sometimes maintained separately (a source of
580 ;; efficiency and confusion), so that symbols are also considered
581 ;; identifiers by id?. Externally, they are always wrapped.
582
583 (define nonsymbol-id?
584 (lambda (x)
585 (and (syntax-object? x)
586 (symbol? (syntax-object-expression x)))))
587
588 (define id?
589 (lambda (x)
590 (cond
591 ((symbol? x) #t)
592 ((syntax-object? x) (symbol? (syntax-object-expression x)))
593 (else #f))))
594
595 (define-syntax-rule (id-sym-name e)
596 (let ((x e))
597 (if (syntax-object? x)
598 (syntax-object-expression x)
599 x)))
600
601 (define id-sym-name&marks
602 (lambda (x w)
603 (if (syntax-object? x)
604 (values
605 (syntax-object-expression x)
606 (join-marks (wrap-marks w) (wrap-marks (syntax-object-wrap x))))
607 (values x (wrap-marks w)))))
608
609 ;; syntax object wraps
610
611 ;; <wrap> ::= ((<mark> ...) . (<subst> ...))
612 ;; <subst> ::= shift | <subs>
613 ;; <subs> ::= #(ribcage #(<sym> ...) #(<mark> ...) #(<label> ...))
614 ;; | #(ribcage (<sym> ...) (<mark> ...) (<label> ...))
615
616 (define-syntax make-wrap (identifier-syntax cons))
617 (define-syntax wrap-marks (identifier-syntax car))
618 (define-syntax wrap-subst (identifier-syntax cdr))
619
620 ;; labels must be comparable with "eq?", have read-write invariance,
621 ;; and distinct from symbols.
622 (define (gen-label)
623 (string-append "l-" (session-id) (symbol->string (gensym "-"))))
624
625 (define gen-labels
626 (lambda (ls)
627 (if (null? ls)
628 '()
629 (cons (gen-label) (gen-labels (cdr ls))))))
630
631 (define-structure (ribcage symnames marks labels))
632
633 (define-syntax empty-wrap (identifier-syntax '(())))
634
635 (define-syntax top-wrap (identifier-syntax '((top))))
636
637 (define-syntax-rule (top-marked? w)
638 (memq 'top (wrap-marks w)))
639
640 ;; Marks must be comparable with "eq?" and distinct from pairs and
641 ;; the symbol top. We do not use integers so that marks will remain
642 ;; unique even across file compiles.
643
644 (define-syntax the-anti-mark (identifier-syntax #f))
645
646 (define anti-mark
647 (lambda (w)
648 (make-wrap (cons the-anti-mark (wrap-marks w))
649 (cons 'shift (wrap-subst w)))))
650
651 (define-syntax-rule (new-mark)
652 (gensym (string-append "m-" (session-id) "-")))
653
654 ;; make-empty-ribcage and extend-ribcage maintain list-based ribcages for
655 ;; internal definitions, in which the ribcages are built incrementally
656 (define-syntax-rule (make-empty-ribcage)
657 (make-ribcage '() '() '()))
658
659 (define extend-ribcage!
660 ;; must receive ids with complete wraps
661 (lambda (ribcage id label)
662 (set-ribcage-symnames! ribcage
663 (cons (syntax-object-expression id)
664 (ribcage-symnames ribcage)))
665 (set-ribcage-marks! ribcage
666 (cons (wrap-marks (syntax-object-wrap id))
667 (ribcage-marks ribcage)))
668 (set-ribcage-labels! ribcage
669 (cons label (ribcage-labels ribcage)))))
670
671 ;; make-binding-wrap creates vector-based ribcages
672 (define make-binding-wrap
673 (lambda (ids labels w)
674 (if (null? ids)
675 w
676 (make-wrap
677 (wrap-marks w)
678 (cons
679 (let ((labelvec (list->vector labels)))
680 (let ((n (vector-length labelvec)))
681 (let ((symnamevec (make-vector n)) (marksvec (make-vector n)))
682 (let f ((ids ids) (i 0))
683 (if (not (null? ids))
684 (call-with-values
685 (lambda () (id-sym-name&marks (car ids) w))
686 (lambda (symname marks)
687 (vector-set! symnamevec i symname)
688 (vector-set! marksvec i marks)
689 (f (cdr ids) (fx+ i 1))))))
690 (make-ribcage symnamevec marksvec labelvec))))
691 (wrap-subst w))))))
692
693 (define smart-append
694 (lambda (m1 m2)
695 (if (null? m2)
696 m1
697 (append m1 m2))))
698
699 (define join-wraps
700 (lambda (w1 w2)
701 (let ((m1 (wrap-marks w1)) (s1 (wrap-subst w1)))
702 (if (null? m1)
703 (if (null? s1)
704 w2
705 (make-wrap
706 (wrap-marks w2)
707 (smart-append s1 (wrap-subst w2))))
708 (make-wrap
709 (smart-append m1 (wrap-marks w2))
710 (smart-append s1 (wrap-subst w2)))))))
711
712 (define join-marks
713 (lambda (m1 m2)
714 (smart-append m1 m2)))
715
716 (define same-marks?
717 (lambda (x y)
718 (or (eq? x y)
719 (and (not (null? x))
720 (not (null? y))
721 (eq? (car x) (car y))
722 (same-marks? (cdr x) (cdr y))))))
723
724 (define id-var-name
725 ;; Syntax objects use wraps to associate names with marked
726 ;; identifiers. This function returns the name corresponding to
727 ;; the given identifier and wrap, or the original identifier if no
728 ;; corresponding name was found.
729 ;;
730 ;; The name may be a string created by gen-label, indicating a
731 ;; lexical binding, or another syntax object, indicating a
732 ;; reference to a top-level definition created during a previous
733 ;; macroexpansion.
734 ;;
735 ;; For lexical variables, finding a label simply amounts to
736 ;; looking for an entry with the same symbolic name and the same
737 ;; marks. Finding a toplevel definition is the same, except we
738 ;; also have to compare modules, hence the `mod' parameter.
739 ;; Instead of adding a separate entry in the ribcage for modules,
740 ;; which wouldn't be used for lexicals, we arrange for the entry
741 ;; for the name entry to be a pair with the module in its car, and
742 ;; the name itself in the cdr. So if the name that we find is a
743 ;; pair, we have to check modules.
744 ;;
745 ;; The identifer may be passed in wrapped or unwrapped. In any
746 ;; case, this routine returns either a symbol, a syntax object, or
747 ;; a string label.
748 ;;
749 (lambda (id w mod)
750 (define-syntax-rule (first e)
751 ;; Rely on Guile's multiple-values truncation.
752 e)
753 (define search
754 (lambda (sym subst marks mod)
755 (if (null? subst)
756 (values #f marks)
757 (let ((fst (car subst)))
758 (if (eq? fst 'shift)
759 (search sym (cdr subst) (cdr marks) mod)
760 (let ((symnames (ribcage-symnames fst)))
761 (if (vector? symnames)
762 (search-vector-rib sym subst marks symnames fst mod)
763 (search-list-rib sym subst marks symnames fst mod))))))))
764 (define search-list-rib
765 (lambda (sym subst marks symnames ribcage mod)
766 (let f ((symnames symnames) (i 0))
767 (cond
768 ((null? symnames) (search sym (cdr subst) marks mod))
769 ((and (eq? (car symnames) sym)
770 (same-marks? marks (list-ref (ribcage-marks ribcage) i)))
771 (let ((n (list-ref (ribcage-labels ribcage) i)))
772 (if (pair? n)
773 (if (equal? mod (car n))
774 (values (cdr n) marks)
775 (f (cdr symnames) (fx+ i 1)))
776 (values n marks))))
777 (else (f (cdr symnames) (fx+ i 1)))))))
778 (define search-vector-rib
779 (lambda (sym subst marks symnames ribcage mod)
780 (let ((n (vector-length symnames)))
781 (let f ((i 0))
782 (cond
783 ((fx= i n) (search sym (cdr subst) marks mod))
784 ((and (eq? (vector-ref symnames i) sym)
785 (same-marks? marks (vector-ref (ribcage-marks ribcage) i)))
786 (let ((n (vector-ref (ribcage-labels ribcage) i)))
787 (if (pair? n)
788 (if (equal? mod (car n))
789 (values (cdr n) marks)
790 (f (fx+ i 1)))
791 (values n marks))))
792 (else (f (fx+ i 1))))))))
793 (cond
794 ((symbol? id)
795 (or (first (search id (wrap-subst w) (wrap-marks w) mod)) id))
796 ((syntax-object? id)
797 (let ((id (syntax-object-expression id))
798 (w1 (syntax-object-wrap id))
799 (mod (syntax-object-module id)))
800 (let ((marks (join-marks (wrap-marks w) (wrap-marks w1))))
801 (call-with-values (lambda () (search id (wrap-subst w) marks mod))
802 (lambda (new-id marks)
803 (or new-id
804 (first (search id (wrap-subst w1) marks mod))
805 id))))))
806 (else (syntax-violation 'id-var-name "invalid id" id)))))
807
808 ;; A helper procedure for syntax-locally-bound-identifiers, which
809 ;; itself is a helper for transformer procedures.
810 ;; `locally-bound-identifiers' returns a list of all bindings
811 ;; visible to a syntax object with the given wrap. They are in
812 ;; order from outer to inner.
813 ;;
814 ;; The purpose of this procedure is to give a transformer procedure
815 ;; references on bound identifiers, that the transformer can then
816 ;; introduce some of them in its output. As such, the identifiers
817 ;; are anti-marked, so that rebuild-macro-output doesn't apply new
818 ;; marks to them.
819 ;;
820 (define locally-bound-identifiers
821 (lambda (w mod)
822 (define scan
823 (lambda (subst results)
824 (if (null? subst)
825 results
826 (let ((fst (car subst)))
827 (if (eq? fst 'shift)
828 (scan (cdr subst) results)
829 (let ((symnames (ribcage-symnames fst))
830 (marks (ribcage-marks fst)))
831 (if (vector? symnames)
832 (scan-vector-rib subst symnames marks results)
833 (scan-list-rib subst symnames marks results))))))))
834 (define scan-list-rib
835 (lambda (subst symnames marks results)
836 (let f ((symnames symnames) (marks marks) (results results))
837 (if (null? symnames)
838 (scan (cdr subst) results)
839 (f (cdr symnames) (cdr marks)
840 (cons (wrap (car symnames)
841 (anti-mark (make-wrap (car marks) subst))
842 mod)
843 results))))))
844 (define scan-vector-rib
845 (lambda (subst symnames marks results)
846 (let ((n (vector-length symnames)))
847 (let f ((i 0) (results results))
848 (if (fx= i n)
849 (scan (cdr subst) results)
850 (f (fx+ i 1)
851 (cons (wrap (vector-ref symnames i)
852 (anti-mark (make-wrap (vector-ref marks i) subst))
853 mod)
854 results)))))))
855 (scan (wrap-subst w) '())))
856
857 ;; Returns three values: binding type, binding value, the module (for
858 ;; resolving toplevel vars).
859 (define (resolve-identifier id w r mod resolve-syntax-parameters?)
860 (define (resolve-syntax-parameters b)
861 (if (and resolve-syntax-parameters?
862 (eq? (binding-type b) 'syntax-parameter))
863 (or (assq-ref r (binding-value b))
864 (make-binding 'macro (car (binding-value b))))
865 b))
866 (define (resolve-global var mod)
867 (let ((b (resolve-syntax-parameters
868 (or (get-global-definition-hook var mod)
869 (make-binding 'global)))))
870 (if (eq? (binding-type b) 'global)
871 (values 'global var mod)
872 (values (binding-type b) (binding-value b) mod))))
873 (define (resolve-lexical label mod)
874 (let ((b (resolve-syntax-parameters
875 (or (assq-ref r label)
876 (make-binding 'displaced-lexical)))))
877 (values (binding-type b) (binding-value b) mod)))
878 (let ((n (id-var-name id w mod)))
879 (cond
880 ((syntax-object? n)
881 ;; Recursing allows syntax-parameterize to override
882 ;; macro-introduced syntax parameters.
883 (resolve-identifier n w r mod resolve-syntax-parameters?))
884 ((symbol? n)
885 (resolve-global n (if (syntax-object? id)
886 (syntax-object-module id)
887 mod)))
888 ((string? n)
889 (resolve-lexical n (if (syntax-object? id)
890 (syntax-object-module id)
891 mod)))
892 (else
893 (error "unexpected id-var-name" id w n)))))
894
895 (define transformer-environment
896 (make-fluid
897 (lambda (k)
898 (error "called outside the dynamic extent of a syntax transformer"))))
899
900 (define (with-transformer-environment k)
901 ((fluid-ref transformer-environment) k))
902
903 ;; free-id=? must be passed fully wrapped ids since (free-id=? x y)
904 ;; may be true even if (free-id=? (wrap x w) (wrap y w)) is not.
905
906 (define free-id=?
907 (lambda (i j)
908 (let* ((mi (and (syntax-object? i) (syntax-object-module i)))
909 (mj (and (syntax-object? j) (syntax-object-module j)))
910 (ni (id-var-name i empty-wrap mi))
911 (nj (id-var-name j empty-wrap mj)))
912 (define (id-module-binding id mod)
913 (module-variable
914 (if mod
915 ;; The normal case.
916 (resolve-module (cdr mod))
917 ;; Either modules have not been booted, or we have a
918 ;; raw symbol coming in, which is possible.
919 (current-module))
920 (id-sym-name id)))
921 (cond
922 ((syntax-object? ni) (free-id=? ni j))
923 ((syntax-object? nj) (free-id=? i nj))
924 ((symbol? ni)
925 ;; `i' is not lexically bound. Assert that `j' is free,
926 ;; and if so, compare their bindings, that they are either
927 ;; bound to the same variable, or both unbound and have
928 ;; the same name.
929 (and (eq? nj (id-sym-name j))
930 (let ((bi (id-module-binding i mi)))
931 (if bi
932 (eq? bi (id-module-binding j mj))
933 (and (not (id-module-binding j mj))
934 (eq? ni nj))))
935 (eq? (id-module-binding i mi) (id-module-binding j mj))))
936 (else
937 ;; Otherwise `i' is bound, so check that `j' is bound, and
938 ;; bound to the same thing.
939 (equal? ni nj))))))
940
941 ;; bound-id=? may be passed unwrapped (or partially wrapped) ids as
942 ;; long as the missing portion of the wrap is common to both of the ids
943 ;; since (bound-id=? x y) iff (bound-id=? (wrap x w) (wrap y w))
944
945 (define bound-id=?
946 (lambda (i j)
947 (if (and (syntax-object? i) (syntax-object? j))
948 (and (eq? (syntax-object-expression i)
949 (syntax-object-expression j))
950 (same-marks? (wrap-marks (syntax-object-wrap i))
951 (wrap-marks (syntax-object-wrap j))))
952 (eq? i j))))
953
954 ;; "valid-bound-ids?" returns #t if it receives a list of distinct ids.
955 ;; valid-bound-ids? may be passed unwrapped (or partially wrapped) ids
956 ;; as long as the missing portion of the wrap is common to all of the
957 ;; ids.
958
959 (define valid-bound-ids?
960 (lambda (ids)
961 (and (let all-ids? ((ids ids))
962 (or (null? ids)
963 (and (id? (car ids))
964 (all-ids? (cdr ids)))))
965 (distinct-bound-ids? ids))))
966
967 ;; distinct-bound-ids? expects a list of ids and returns #t if there are
968 ;; no duplicates. It is quadratic on the length of the id list; long
969 ;; lists could be sorted to make it more efficient. distinct-bound-ids?
970 ;; may be passed unwrapped (or partially wrapped) ids as long as the
971 ;; missing portion of the wrap is common to all of the ids.
972
973 (define distinct-bound-ids?
974 (lambda (ids)
975 (let distinct? ((ids ids))
976 (or (null? ids)
977 (and (not (bound-id-member? (car ids) (cdr ids)))
978 (distinct? (cdr ids)))))))
979
980 (define bound-id-member?
981 (lambda (x list)
982 (and (not (null? list))
983 (or (bound-id=? x (car list))
984 (bound-id-member? x (cdr list))))))
985
986 ;; wrapping expressions and identifiers
987
988 (define wrap
989 (lambda (x w defmod)
990 (cond
991 ((and (null? (wrap-marks w)) (null? (wrap-subst w))) x)
992 ((syntax-object? x)
993 (make-syntax-object
994 (syntax-object-expression x)
995 (join-wraps w (syntax-object-wrap x))
996 (syntax-object-module x)))
997 ((null? x) x)
998 (else (make-syntax-object x w defmod)))))
999
1000 (define source-wrap
1001 (lambda (x w s defmod)
1002 (wrap (decorate-source x s) w defmod)))
1003
1004 ;; expanding
1005
1006 (define expand-sequence
1007 (lambda (body r w s mod)
1008 (build-sequence s
1009 (let dobody ((body body) (r r) (w w) (mod mod))
1010 (if (null? body)
1011 '()
1012 (let ((first (expand (car body) r w mod)))
1013 (cons first (dobody (cdr body) r w mod))))))))
1014
1015 ;; At top-level, we allow mixed definitions and expressions. Like
1016 ;; expand-body we expand in two passes.
1017 ;;
1018 ;; First, from left to right, we expand just enough to know what
1019 ;; expressions are definitions, syntax definitions, and splicing
1020 ;; statements (`begin'). If we anything needs evaluating at
1021 ;; expansion-time, it is expanded directly.
1022 ;;
1023 ;; Otherwise we collect expressions to expand, in thunks, and then
1024 ;; expand them all at the end. This allows all syntax expanders
1025 ;; visible in a toplevel sequence to be visible during the
1026 ;; expansions of all normal definitions and expressions in the
1027 ;; sequence.
1028 ;;
1029 (define expand-top-sequence
1030 (lambda (body r w s m esew mod)
1031 (let* ((r (cons '("placeholder" . (placeholder)) r))
1032 (ribcage (make-empty-ribcage))
1033 (w (make-wrap (wrap-marks w) (cons ribcage (wrap-subst w)))))
1034 (define (record-definition! id var)
1035 (let ((mod (cons 'hygiene (module-name (current-module)))))
1036 ;; Ribcages map symbol+marks to names, mostly for
1037 ;; resolving lexicals. Here to add a mapping for toplevel
1038 ;; definitions we also need to match the module. So, we
1039 ;; put it in the name instead, and make id-var-name handle
1040 ;; the special case of names that are pairs. See the
1041 ;; comments in id-var-name for more.
1042 (extend-ribcage! ribcage id
1043 (cons (syntax-object-module id)
1044 (wrap var top-wrap mod)))))
1045 (define (macro-introduced-identifier? id)
1046 (not (equal? (wrap-marks (syntax-object-wrap id)) '(top))))
1047 (define (fresh-derived-name id orig-form)
1048 (symbol-append
1049 (syntax-object-expression id)
1050 '-
1051 (string->symbol
1052 ;; FIXME: `hash' currently stops descending into nested
1053 ;; data at some point, so it's less unique than we would
1054 ;; like. Also this encodes hash values into the ABI of
1055 ;; compiled modules; a problem?
1056 (number->string
1057 (hash (syntax->datum orig-form) most-positive-fixnum)
1058 16))))
1059 (define (parse body r w s m esew mod)
1060 (let lp ((body body) (exps '()))
1061 (if (null? body)
1062 exps
1063 (lp (cdr body)
1064 (append (parse1 (car body) r w s m esew mod)
1065 exps)))))
1066 (define (parse1 x r w s m esew mod)
1067 (call-with-values
1068 (lambda ()
1069 (syntax-type x r w (source-annotation x) ribcage mod #f))
1070 (lambda (type value form e w s mod)
1071 (case type
1072 ((define-form)
1073 (let* ((id (wrap value w mod))
1074 (label (gen-label))
1075 (var (if (macro-introduced-identifier? id)
1076 (fresh-derived-name id x)
1077 (syntax-object-expression id))))
1078 (record-definition! id var)
1079 (list
1080 (if (eq? m 'c&e)
1081 (let ((x (build-global-definition s var (expand e r w mod))))
1082 (top-level-eval-hook x mod)
1083 (lambda () x))
1084 (lambda ()
1085 (build-global-definition s var (expand e r w mod)))))))
1086 ((define-syntax-form define-syntax-parameter-form)
1087 (let* ((id (wrap value w mod))
1088 (label (gen-label))
1089 (var (if (macro-introduced-identifier? id)
1090 (fresh-derived-name id x)
1091 (syntax-object-expression id))))
1092 (record-definition! id var)
1093 (case m
1094 ((c)
1095 (cond
1096 ((memq 'compile esew)
1097 (let ((e (expand-install-global var type (expand e r w mod))))
1098 (top-level-eval-hook e mod)
1099 (if (memq 'load esew)
1100 (list (lambda () e))
1101 '())))
1102 ((memq 'load esew)
1103 (list (lambda ()
1104 (expand-install-global var type (expand e r w mod)))))
1105 (else '())))
1106 ((c&e)
1107 (let ((e (expand-install-global var type (expand e r w mod))))
1108 (top-level-eval-hook e mod)
1109 (list (lambda () e))))
1110 (else
1111 (if (memq 'eval esew)
1112 (top-level-eval-hook
1113 (expand-install-global var type (expand e r w mod))
1114 mod))
1115 '()))))
1116 ((begin-form)
1117 (syntax-case e ()
1118 ((_ e1 ...)
1119 (parse #'(e1 ...) r w s m esew mod))))
1120 ((local-syntax-form)
1121 (expand-local-syntax value e r w s mod
1122 (lambda (forms r w s mod)
1123 (parse forms r w s m esew mod))))
1124 ((eval-when-form)
1125 (syntax-case e ()
1126 ((_ (x ...) e1 e2 ...)
1127 (let ((when-list (parse-when-list e #'(x ...)))
1128 (body #'(e1 e2 ...)))
1129 (define (recurse m esew)
1130 (parse body r w s m esew mod))
1131 (cond
1132 ((eq? m 'e)
1133 (if (memq 'eval when-list)
1134 (recurse (if (memq 'expand when-list) 'c&e 'e)
1135 '(eval))
1136 (begin
1137 (if (memq 'expand when-list)
1138 (top-level-eval-hook
1139 (expand-top-sequence body r w s 'e '(eval) mod)
1140 mod))
1141 '())))
1142 ((memq 'load when-list)
1143 (if (or (memq 'compile when-list)
1144 (memq 'expand when-list)
1145 (and (eq? m 'c&e) (memq 'eval when-list)))
1146 (recurse 'c&e '(compile load))
1147 (if (memq m '(c c&e))
1148 (recurse 'c '(load))
1149 '())))
1150 ((or (memq 'compile when-list)
1151 (memq 'expand when-list)
1152 (and (eq? m 'c&e) (memq 'eval when-list)))
1153 (top-level-eval-hook
1154 (expand-top-sequence body r w s 'e '(eval) mod)
1155 mod)
1156 '())
1157 (else
1158 '()))))))
1159 (else
1160 (list
1161 (if (eq? m 'c&e)
1162 (let ((x (expand-expr type value form e r w s mod)))
1163 (top-level-eval-hook x mod)
1164 (lambda () x))
1165 (lambda ()
1166 (expand-expr type value form e r w s mod)))))))))
1167 (let ((exps (map (lambda (x) (x))
1168 (reverse (parse body r w s m esew mod)))))
1169 (if (null? exps)
1170 (build-void s)
1171 (build-sequence s exps))))))
1172
1173 (define expand-install-global
1174 (lambda (name type e)
1175 (build-global-definition
1176 no-source
1177 name
1178 (build-primcall
1179 no-source
1180 'make-syntax-transformer
1181 (if (eq? type 'define-syntax-parameter-form)
1182 (list (build-data no-source name)
1183 (build-data no-source 'syntax-parameter)
1184 (build-primcall no-source 'list (list e)))
1185 (list (build-data no-source name)
1186 (build-data no-source 'macro)
1187 e))))))
1188
1189 (define parse-when-list
1190 (lambda (e when-list)
1191 ;; `when-list' is syntax'd version of list of situations. We
1192 ;; could match these keywords lexically, via free-id=?, but then
1193 ;; we twingle the definition of eval-when to the bindings of
1194 ;; eval, load, expand, and compile, which is totally unintended.
1195 ;; So do a symbolic match instead.
1196 (let ((result (strip when-list empty-wrap)))
1197 (let lp ((l result))
1198 (if (null? l)
1199 result
1200 (if (memq (car l) '(compile load eval expand))
1201 (lp (cdr l))
1202 (syntax-violation 'eval-when "invalid situation" e
1203 (car l))))))))
1204
1205 ;; syntax-type returns seven values: type, value, form, e, w, s, and
1206 ;; mod. The first two are described in the table below.
1207 ;;
1208 ;; type value explanation
1209 ;; -------------------------------------------------------------------
1210 ;; core procedure core singleton
1211 ;; core-form procedure core form
1212 ;; module-ref procedure @ or @@ singleton
1213 ;; lexical name lexical variable reference
1214 ;; global name global variable reference
1215 ;; begin none begin keyword
1216 ;; define none define keyword
1217 ;; define-syntax none define-syntax keyword
1218 ;; define-syntax-parameter none define-syntax-parameter keyword
1219 ;; local-syntax rec? letrec-syntax/let-syntax keyword
1220 ;; eval-when none eval-when keyword
1221 ;; syntax level pattern variable
1222 ;; displaced-lexical none displaced lexical identifier
1223 ;; lexical-call name call to lexical variable
1224 ;; global-call name call to global variable
1225 ;; call none any other call
1226 ;; begin-form none begin expression
1227 ;; define-form id variable definition
1228 ;; define-syntax-form id syntax definition
1229 ;; define-syntax-parameter-form id syntax parameter definition
1230 ;; local-syntax-form rec? syntax definition
1231 ;; eval-when-form none eval-when form
1232 ;; constant none self-evaluating datum
1233 ;; other none anything else
1234 ;;
1235 ;; form is the entire form. For definition forms (define-form,
1236 ;; define-syntax-form, and define-syntax-parameter-form), e is the
1237 ;; rhs expression. For all others, e is the entire form. w is the
1238 ;; wrap for both form and e. s is the source for the entire form.
1239 ;; mod is the module for both form and e.
1240 ;;
1241 ;; syntax-type expands macros and unwraps as necessary to get to one
1242 ;; of the forms above. It also parses definition forms, although
1243 ;; perhaps this should be done by the consumer.
1244
1245 (define syntax-type
1246 (lambda (e r w s rib mod for-car?)
1247 (cond
1248 ((symbol? e)
1249 (call-with-values (lambda () (resolve-identifier e w r mod #t))
1250 (lambda (type value mod*)
1251 (case type
1252 ((macro)
1253 (if for-car?
1254 (values type value e e w s mod)
1255 (syntax-type (expand-macro value e r w s rib mod)
1256 r empty-wrap s rib mod #f)))
1257 ((global)
1258 ;; Toplevel definitions may resolve to bindings with
1259 ;; different names or in different modules.
1260 (values type value e value w s mod*))
1261 (else (values type value e e w s mod))))))
1262 ((pair? e)
1263 (let ((first (car e)))
1264 (call-with-values
1265 (lambda () (syntax-type first r w s rib mod #t))
1266 (lambda (ftype fval fform fe fw fs fmod)
1267 (case ftype
1268 ((lexical)
1269 (values 'lexical-call fval e e w s mod))
1270 ((global)
1271 ;; If we got here via an (@@ ...) expansion, we need to
1272 ;; make sure the fmod information is propagated back
1273 ;; correctly -- hence this consing.
1274 (values 'global-call (make-syntax-object fval w fmod)
1275 e e w s mod))
1276 ((macro)
1277 (syntax-type (expand-macro fval e r w s rib mod)
1278 r empty-wrap s rib mod for-car?))
1279 ((module-ref)
1280 (call-with-values (lambda () (fval e r w))
1281 (lambda (e r w s mod)
1282 (syntax-type e r w s rib mod for-car?))))
1283 ((core)
1284 (values 'core-form fval e e w s mod))
1285 ((local-syntax)
1286 (values 'local-syntax-form fval e e w s mod))
1287 ((begin)
1288 (values 'begin-form #f e e w s mod))
1289 ((eval-when)
1290 (values 'eval-when-form #f e e w s mod))
1291 ((define)
1292 (syntax-case e ()
1293 ((_ name val)
1294 (id? #'name)
1295 (values 'define-form #'name e #'val w s mod))
1296 ((_ (name . args) e1 e2 ...)
1297 (and (id? #'name)
1298 (valid-bound-ids? (lambda-var-list #'args)))
1299 ;; need lambda here...
1300 (values 'define-form (wrap #'name w mod)
1301 (wrap e w mod)
1302 (decorate-source
1303 (cons #'lambda (wrap #'(args e1 e2 ...) w mod))
1304 s)
1305 empty-wrap s mod))
1306 ((_ name)
1307 (id? #'name)
1308 (values 'define-form (wrap #'name w mod)
1309 (wrap e w mod)
1310 #'(if #f #f)
1311 empty-wrap s mod))))
1312 ((define-syntax)
1313 (syntax-case e ()
1314 ((_ name val)
1315 (id? #'name)
1316 (values 'define-syntax-form #'name e #'val w s mod))))
1317 ((define-syntax-parameter)
1318 (syntax-case e ()
1319 ((_ name val)
1320 (id? #'name)
1321 (values 'define-syntax-parameter-form #'name e #'val w s mod))))
1322 (else
1323 (values 'call #f e e w s mod)))))))
1324 ((syntax-object? e)
1325 (syntax-type (syntax-object-expression e)
1326 r
1327 (join-wraps w (syntax-object-wrap e))
1328 (or (source-annotation e) s) rib
1329 (or (syntax-object-module e) mod) for-car?))
1330 ((self-evaluating? e) (values 'constant #f e e w s mod))
1331 (else (values 'other #f e e w s mod)))))
1332
1333 (define expand
1334 (lambda (e r w mod)
1335 (call-with-values
1336 (lambda () (syntax-type e r w (source-annotation e) #f mod #f))
1337 (lambda (type value form e w s mod)
1338 (expand-expr type value form e r w s mod)))))
1339
1340 (define expand-expr
1341 (lambda (type value form e r w s mod)
1342 (case type
1343 ((lexical)
1344 (build-lexical-reference 'value s e value))
1345 ((core core-form)
1346 ;; apply transformer
1347 (value e r w s mod))
1348 ((module-ref)
1349 (call-with-values (lambda () (value e r w))
1350 (lambda (e r w s mod)
1351 (expand e r w mod))))
1352 ((lexical-call)
1353 (expand-call
1354 (let ((id (car e)))
1355 (build-lexical-reference 'fun (source-annotation id)
1356 (if (syntax-object? id)
1357 (syntax->datum id)
1358 id)
1359 value))
1360 e r w s mod))
1361 ((global-call)
1362 (expand-call
1363 (build-global-reference (source-annotation (car e))
1364 (if (syntax-object? value)
1365 (syntax-object-expression value)
1366 value)
1367 (if (syntax-object? value)
1368 (syntax-object-module value)
1369 mod))
1370 e r w s mod))
1371 ((constant) (build-data s (strip (source-wrap e w s mod) empty-wrap)))
1372 ((global) (build-global-reference s value mod))
1373 ((call) (expand-call (expand (car e) r w mod) e r w s mod))
1374 ((begin-form)
1375 (syntax-case e ()
1376 ((_ e1 e2 ...) (expand-sequence #'(e1 e2 ...) r w s mod))
1377 ((_)
1378 (syntax-violation #f "sequence of zero expressions"
1379 (source-wrap e w s mod)))))
1380 ((local-syntax-form)
1381 (expand-local-syntax value e r w s mod expand-sequence))
1382 ((eval-when-form)
1383 (syntax-case e ()
1384 ((_ (x ...) e1 e2 ...)
1385 (let ((when-list (parse-when-list e #'(x ...))))
1386 (if (memq 'eval when-list)
1387 (expand-sequence #'(e1 e2 ...) r w s mod)
1388 (expand-void))))))
1389 ((define-form define-syntax-form define-syntax-parameter-form)
1390 (syntax-violation #f "definition in expression context, where definitions are not allowed,"
1391 (source-wrap form w s mod)))
1392 ((syntax)
1393 (syntax-violation #f "reference to pattern variable outside syntax form"
1394 (source-wrap e w s mod)))
1395 ((displaced-lexical)
1396 (syntax-violation #f "reference to identifier outside its scope"
1397 (source-wrap e w s mod)))
1398 (else (syntax-violation #f "unexpected syntax"
1399 (source-wrap e w s mod))))))
1400
1401 (define expand-call
1402 (lambda (x e r w s mod)
1403 (syntax-case e ()
1404 ((e0 e1 ...)
1405 (build-call s x
1406 (map (lambda (e) (expand e r w mod)) #'(e1 ...)))))))
1407
1408 ;; (What follows is my interpretation of what's going on here -- Andy)
1409 ;;
1410 ;; A macro takes an expression, a tree, the leaves of which are identifiers
1411 ;; and datums. Identifiers are symbols along with a wrap and a module. For
1412 ;; efficiency, subtrees that share wraps and modules may be grouped as one
1413 ;; syntax object.
1414 ;;
1415 ;; Going into the expansion, the expression is given an anti-mark, which
1416 ;; logically propagates to all leaves. Then, in the new expression returned
1417 ;; from the transfomer, if we see an expression with an anti-mark, we know it
1418 ;; pertains to the original expression; conversely, expressions without the
1419 ;; anti-mark are known to be introduced by the transformer.
1420 ;;
1421 ;; OK, good until now. We know this algorithm does lexical scoping
1422 ;; appropriately because it's widely known in the literature, and psyntax is
1423 ;; widely used. But what about modules? Here we're on our own. What we do is
1424 ;; to mark the module of expressions produced by a macro as pertaining to the
1425 ;; module that was current when the macro was defined -- that is, free
1426 ;; identifiers introduced by a macro are scoped in the macro's module, not in
1427 ;; the expansion's module. Seems to work well.
1428 ;;
1429 ;; The only wrinkle is when we want a macro to expand to code in another
1430 ;; module, as is the case for the r6rs `library' form -- the body expressions
1431 ;; should be scoped relative the the new module, the one defined by the macro.
1432 ;; For that, use `(@@ mod-name body)'.
1433 ;;
1434 ;; Part of the macro output will be from the site of the macro use and part
1435 ;; from the macro definition. We allow source information from the macro use
1436 ;; to pass through, but we annotate the parts coming from the macro with the
1437 ;; source location information corresponding to the macro use. It would be
1438 ;; really nice if we could also annotate introduced expressions with the
1439 ;; locations corresponding to the macro definition, but that is not yet
1440 ;; possible.
1441 (define expand-macro
1442 (lambda (p e r w s rib mod)
1443 (define rebuild-macro-output
1444 (lambda (x m)
1445 (cond ((pair? x)
1446 (decorate-source
1447 (cons (rebuild-macro-output (car x) m)
1448 (rebuild-macro-output (cdr x) m))
1449 s))
1450 ((syntax-object? x)
1451 (let ((w (syntax-object-wrap x)))
1452 (let ((ms (wrap-marks w)) (ss (wrap-subst w)))
1453 (if (and (pair? ms) (eq? (car ms) the-anti-mark))
1454 ;; output is from original text
1455 (make-syntax-object
1456 (syntax-object-expression x)
1457 (make-wrap (cdr ms) (if rib (cons rib (cdr ss)) (cdr ss)))
1458 (syntax-object-module x))
1459 ;; output introduced by macro
1460 (make-syntax-object
1461 (decorate-source (syntax-object-expression x) s)
1462 (make-wrap (cons m ms)
1463 (if rib
1464 (cons rib (cons 'shift ss))
1465 (cons 'shift ss)))
1466 (syntax-object-module x))))))
1467
1468 ((vector? x)
1469 (let* ((n (vector-length x))
1470 (v (decorate-source (make-vector n) s)))
1471 (do ((i 0 (fx+ i 1)))
1472 ((fx= i n) v)
1473 (vector-set! v i
1474 (rebuild-macro-output (vector-ref x i) m)))))
1475 ((symbol? x)
1476 (syntax-violation #f "encountered raw symbol in macro output"
1477 (source-wrap e w (wrap-subst w) mod) x))
1478 (else (decorate-source x s)))))
1479 (with-fluids ((transformer-environment
1480 (lambda (k) (k e r w s rib mod))))
1481 (rebuild-macro-output (p (source-wrap e (anti-mark w) s mod))
1482 (new-mark)))))
1483
1484 (define expand-body
1485 ;; In processing the forms of the body, we create a new, empty wrap.
1486 ;; This wrap is augmented (destructively) each time we discover that
1487 ;; the next form is a definition. This is done:
1488 ;;
1489 ;; (1) to allow the first nondefinition form to be a call to
1490 ;; one of the defined ids even if the id previously denoted a
1491 ;; definition keyword or keyword for a macro expanding into a
1492 ;; definition;
1493 ;; (2) to prevent subsequent definition forms (but unfortunately
1494 ;; not earlier ones) and the first nondefinition form from
1495 ;; confusing one of the bound identifiers for an auxiliary
1496 ;; keyword; and
1497 ;; (3) so that we do not need to restart the expansion of the
1498 ;; first nondefinition form, which is problematic anyway
1499 ;; since it might be the first element of a begin that we
1500 ;; have just spliced into the body (meaning if we restarted,
1501 ;; we'd really need to restart with the begin or the macro
1502 ;; call that expanded into the begin, and we'd have to give
1503 ;; up allowing (begin <defn>+ <expr>+), which is itself
1504 ;; problematic since we don't know if a begin contains only
1505 ;; definitions until we've expanded it).
1506 ;;
1507 ;; Before processing the body, we also create a new environment
1508 ;; containing a placeholder for the bindings we will add later and
1509 ;; associate this environment with each form. In processing a
1510 ;; let-syntax or letrec-syntax, the associated environment may be
1511 ;; augmented with local keyword bindings, so the environment may
1512 ;; be different for different forms in the body. Once we have
1513 ;; gathered up all of the definitions, we evaluate the transformer
1514 ;; expressions and splice into r at the placeholder the new variable
1515 ;; and keyword bindings. This allows let-syntax or letrec-syntax
1516 ;; forms local to a portion or all of the body to shadow the
1517 ;; definition bindings.
1518 ;;
1519 ;; Subforms of a begin, let-syntax, or letrec-syntax are spliced
1520 ;; into the body.
1521 ;;
1522 ;; outer-form is fully wrapped w/source
1523 (lambda (body outer-form r w mod)
1524 (let* ((r (cons '("placeholder" . (placeholder)) r))
1525 (ribcage (make-empty-ribcage))
1526 (w (make-wrap (wrap-marks w) (cons ribcage (wrap-subst w)))))
1527 (let parse ((body (map (lambda (x) (cons r (wrap x w mod))) body))
1528 (ids '()) (labels '())
1529 (var-ids '()) (vars '()) (vals '()) (bindings '()))
1530 (if (null? body)
1531 (syntax-violation #f "no expressions in body" outer-form)
1532 (let ((e (cdar body)) (er (caar body)))
1533 (call-with-values
1534 (lambda () (syntax-type e er empty-wrap (source-annotation e) ribcage mod #f))
1535 (lambda (type value form e w s mod)
1536 (case type
1537 ((define-form)
1538 (let ((id (wrap value w mod)) (label (gen-label)))
1539 (let ((var (gen-var id)))
1540 (extend-ribcage! ribcage id label)
1541 (parse (cdr body)
1542 (cons id ids) (cons label labels)
1543 (cons id var-ids)
1544 (cons var vars) (cons (cons er (wrap e w mod)) vals)
1545 (cons (make-binding 'lexical var) bindings)))))
1546 ((define-syntax-form)
1547 (let ((id (wrap value w mod))
1548 (label (gen-label))
1549 (trans-r (macros-only-env er)))
1550 (extend-ribcage! ribcage id label)
1551 ;; As required by R6RS, evaluate the right-hand-sides of internal
1552 ;; syntax definition forms and add their transformers to the
1553 ;; compile-time environment immediately, so that the newly-defined
1554 ;; keywords may be used in definition context within the same
1555 ;; lexical contour.
1556 (set-cdr! r (extend-env
1557 (list label)
1558 (list (make-binding
1559 'macro
1560 (eval-local-transformer
1561 (expand e trans-r w mod)
1562 mod)))
1563 (cdr r)))
1564 (parse (cdr body) (cons id ids) labels var-ids vars vals bindings)))
1565 ((define-syntax-parameter-form)
1566 ;; Same as define-syntax-form, but different format of the binding.
1567 (let ((id (wrap value w mod))
1568 (label (gen-label))
1569 (trans-r (macros-only-env er)))
1570 (extend-ribcage! ribcage id label)
1571 (set-cdr! r (extend-env
1572 (list label)
1573 (list (make-binding
1574 'syntax-parameter
1575 (list (eval-local-transformer
1576 (expand e trans-r w mod)
1577 mod))))
1578 (cdr r)))
1579 (parse (cdr body) (cons id ids) labels var-ids vars vals bindings)))
1580 ((begin-form)
1581 (syntax-case e ()
1582 ((_ e1 ...)
1583 (parse (let f ((forms #'(e1 ...)))
1584 (if (null? forms)
1585 (cdr body)
1586 (cons (cons er (wrap (car forms) w mod))
1587 (f (cdr forms)))))
1588 ids labels var-ids vars vals bindings))))
1589 ((local-syntax-form)
1590 (expand-local-syntax value e er w s mod
1591 (lambda (forms er w s mod)
1592 (parse (let f ((forms forms))
1593 (if (null? forms)
1594 (cdr body)
1595 (cons (cons er (wrap (car forms) w mod))
1596 (f (cdr forms)))))
1597 ids labels var-ids vars vals bindings))))
1598 (else ; found a non-definition
1599 (if (null? ids)
1600 (build-sequence no-source
1601 (map (lambda (x)
1602 (expand (cdr x) (car x) empty-wrap mod))
1603 (cons (cons er (source-wrap e w s mod))
1604 (cdr body))))
1605 (begin
1606 (if (not (valid-bound-ids? ids))
1607 (syntax-violation
1608 #f "invalid or duplicate identifier in definition"
1609 outer-form))
1610 (set-cdr! r (extend-env labels bindings (cdr r)))
1611 (build-letrec no-source #t
1612 (reverse (map syntax->datum var-ids))
1613 (reverse vars)
1614 (map (lambda (x)
1615 (expand (cdr x) (car x) empty-wrap mod))
1616 (reverse vals))
1617 (build-sequence no-source
1618 (map (lambda (x)
1619 (expand (cdr x) (car x) empty-wrap mod))
1620 (cons (cons er (source-wrap e w s mod))
1621 (cdr body)))))))))))))))))
1622
1623 (define expand-local-syntax
1624 (lambda (rec? e r w s mod k)
1625 (syntax-case e ()
1626 ((_ ((id val) ...) e1 e2 ...)
1627 (let ((ids #'(id ...)))
1628 (if (not (valid-bound-ids? ids))
1629 (syntax-violation #f "duplicate bound keyword" e)
1630 (let ((labels (gen-labels ids)))
1631 (let ((new-w (make-binding-wrap ids labels w)))
1632 (k #'(e1 e2 ...)
1633 (extend-env
1634 labels
1635 (let ((w (if rec? new-w w))
1636 (trans-r (macros-only-env r)))
1637 (map (lambda (x)
1638 (make-binding 'macro
1639 (eval-local-transformer
1640 (expand x trans-r w mod)
1641 mod)))
1642 #'(val ...)))
1643 r)
1644 new-w
1645 s
1646 mod))))))
1647 (_ (syntax-violation #f "bad local syntax definition"
1648 (source-wrap e w s mod))))))
1649
1650 (define eval-local-transformer
1651 (lambda (expanded mod)
1652 (let ((p (local-eval-hook expanded mod)))
1653 (if (procedure? p)
1654 p
1655 (syntax-violation #f "nonprocedure transformer" p)))))
1656
1657 (define expand-void
1658 (lambda ()
1659 (build-void no-source)))
1660
1661 (define ellipsis?
1662 (lambda (x)
1663 (and (nonsymbol-id? x)
1664 (free-id=? x #'(... ...)))))
1665
1666 (define lambda-formals
1667 (lambda (orig-args)
1668 (define (req args rreq)
1669 (syntax-case args ()
1670 (()
1671 (check (reverse rreq) #f))
1672 ((a . b) (id? #'a)
1673 (req #'b (cons #'a rreq)))
1674 (r (id? #'r)
1675 (check (reverse rreq) #'r))
1676 (else
1677 (syntax-violation 'lambda "invalid argument list" orig-args args))))
1678 (define (check req rest)
1679 (cond
1680 ((distinct-bound-ids? (if rest (cons rest req) req))
1681 (values req #f rest #f))
1682 (else
1683 (syntax-violation 'lambda "duplicate identifier in argument list"
1684 orig-args))))
1685 (req orig-args '())))
1686
1687 (define expand-simple-lambda
1688 (lambda (e r w s mod req rest meta body)
1689 (let* ((ids (if rest (append req (list rest)) req))
1690 (vars (map gen-var ids))
1691 (labels (gen-labels ids)))
1692 (build-simple-lambda
1693 s
1694 (map syntax->datum req) (and rest (syntax->datum rest)) vars
1695 meta
1696 (expand-body body (source-wrap e w s mod)
1697 (extend-var-env labels vars r)
1698 (make-binding-wrap ids labels w)
1699 mod)))))
1700
1701 (define lambda*-formals
1702 (lambda (orig-args)
1703 (define (req args rreq)
1704 (syntax-case args ()
1705 (()
1706 (check (reverse rreq) '() #f '()))
1707 ((a . b) (id? #'a)
1708 (req #'b (cons #'a rreq)))
1709 ((a . b) (eq? (syntax->datum #'a) #:optional)
1710 (opt #'b (reverse rreq) '()))
1711 ((a . b) (eq? (syntax->datum #'a) #:key)
1712 (key #'b (reverse rreq) '() '()))
1713 ((a b) (eq? (syntax->datum #'a) #:rest)
1714 (rest #'b (reverse rreq) '() '()))
1715 (r (id? #'r)
1716 (rest #'r (reverse rreq) '() '()))
1717 (else
1718 (syntax-violation 'lambda* "invalid argument list" orig-args args))))
1719 (define (opt args req ropt)
1720 (syntax-case args ()
1721 (()
1722 (check req (reverse ropt) #f '()))
1723 ((a . b) (id? #'a)
1724 (opt #'b req (cons #'(a #f) ropt)))
1725 (((a init) . b) (id? #'a)
1726 (opt #'b req (cons #'(a init) ropt)))
1727 ((a . b) (eq? (syntax->datum #'a) #:key)
1728 (key #'b req (reverse ropt) '()))
1729 ((a b) (eq? (syntax->datum #'a) #:rest)
1730 (rest #'b req (reverse ropt) '()))
1731 (r (id? #'r)
1732 (rest #'r req (reverse ropt) '()))
1733 (else
1734 (syntax-violation 'lambda* "invalid optional argument list"
1735 orig-args args))))
1736 (define (key args req opt rkey)
1737 (syntax-case args ()
1738 (()
1739 (check req opt #f (cons #f (reverse rkey))))
1740 ((a . b) (id? #'a)
1741 (with-syntax ((k (symbol->keyword (syntax->datum #'a))))
1742 (key #'b req opt (cons #'(k a #f) rkey))))
1743 (((a init) . b) (id? #'a)
1744 (with-syntax ((k (symbol->keyword (syntax->datum #'a))))
1745 (key #'b req opt (cons #'(k a init) rkey))))
1746 (((a init k) . b) (and (id? #'a)
1747 (keyword? (syntax->datum #'k)))
1748 (key #'b req opt (cons #'(k a init) rkey)))
1749 ((aok) (eq? (syntax->datum #'aok) #:allow-other-keys)
1750 (check req opt #f (cons #t (reverse rkey))))
1751 ((aok a b) (and (eq? (syntax->datum #'aok) #:allow-other-keys)
1752 (eq? (syntax->datum #'a) #:rest))
1753 (rest #'b req opt (cons #t (reverse rkey))))
1754 ((aok . r) (and (eq? (syntax->datum #'aok) #:allow-other-keys)
1755 (id? #'r))
1756 (rest #'r req opt (cons #t (reverse rkey))))
1757 ((a b) (eq? (syntax->datum #'a) #:rest)
1758 (rest #'b req opt (cons #f (reverse rkey))))
1759 (r (id? #'r)
1760 (rest #'r req opt (cons #f (reverse rkey))))
1761 (else
1762 (syntax-violation 'lambda* "invalid keyword argument list"
1763 orig-args args))))
1764 (define (rest args req opt kw)
1765 (syntax-case args ()
1766 (r (id? #'r)
1767 (check req opt #'r kw))
1768 (else
1769 (syntax-violation 'lambda* "invalid rest argument"
1770 orig-args args))))
1771 (define (check req opt rest kw)
1772 (cond
1773 ((distinct-bound-ids?
1774 (append req (map car opt) (if rest (list rest) '())
1775 (if (pair? kw) (map cadr (cdr kw)) '())))
1776 (values req opt rest kw))
1777 (else
1778 (syntax-violation 'lambda* "duplicate identifier in argument list"
1779 orig-args))))
1780 (req orig-args '())))
1781
1782 (define expand-lambda-case
1783 (lambda (e r w s mod get-formals clauses)
1784 (define (parse-req req opt rest kw body)
1785 (let ((vars (map gen-var req))
1786 (labels (gen-labels req)))
1787 (let ((r* (extend-var-env labels vars r))
1788 (w* (make-binding-wrap req labels w)))
1789 (parse-opt (map syntax->datum req)
1790 opt rest kw body (reverse vars) r* w* '() '()))))
1791 (define (parse-opt req opt rest kw body vars r* w* out inits)
1792 (cond
1793 ((pair? opt)
1794 (syntax-case (car opt) ()
1795 ((id i)
1796 (let* ((v (gen-var #'id))
1797 (l (gen-labels (list v)))
1798 (r** (extend-var-env l (list v) r*))
1799 (w** (make-binding-wrap (list #'id) l w*)))
1800 (parse-opt req (cdr opt) rest kw body (cons v vars)
1801 r** w** (cons (syntax->datum #'id) out)
1802 (cons (expand #'i r* w* mod) inits))))))
1803 (rest
1804 (let* ((v (gen-var rest))
1805 (l (gen-labels (list v)))
1806 (r* (extend-var-env l (list v) r*))
1807 (w* (make-binding-wrap (list rest) l w*)))
1808 (parse-kw req (if (pair? out) (reverse out) #f)
1809 (syntax->datum rest)
1810 (if (pair? kw) (cdr kw) kw)
1811 body (cons v vars) r* w*
1812 (if (pair? kw) (car kw) #f)
1813 '() inits)))
1814 (else
1815 (parse-kw req (if (pair? out) (reverse out) #f) #f
1816 (if (pair? kw) (cdr kw) kw)
1817 body vars r* w*
1818 (if (pair? kw) (car kw) #f)
1819 '() inits))))
1820 (define (parse-kw req opt rest kw body vars r* w* aok out inits)
1821 (cond
1822 ((pair? kw)
1823 (syntax-case (car kw) ()
1824 ((k id i)
1825 (let* ((v (gen-var #'id))
1826 (l (gen-labels (list v)))
1827 (r** (extend-var-env l (list v) r*))
1828 (w** (make-binding-wrap (list #'id) l w*)))
1829 (parse-kw req opt rest (cdr kw) body (cons v vars)
1830 r** w** aok
1831 (cons (list (syntax->datum #'k)
1832 (syntax->datum #'id)
1833 v)
1834 out)
1835 (cons (expand #'i r* w* mod) inits))))))
1836 (else
1837 (parse-body req opt rest
1838 (if (or aok (pair? out)) (cons aok (reverse out)) #f)
1839 body (reverse vars) r* w* (reverse inits) '()))))
1840 (define (parse-body req opt rest kw body vars r* w* inits meta)
1841 (syntax-case body ()
1842 ((docstring e1 e2 ...) (string? (syntax->datum #'docstring))
1843 (parse-body req opt rest kw #'(e1 e2 ...) vars r* w* inits
1844 (append meta
1845 `((documentation
1846 . ,(syntax->datum #'docstring))))))
1847 ((#((k . v) ...) e1 e2 ...)
1848 (parse-body req opt rest kw #'(e1 e2 ...) vars r* w* inits
1849 (append meta (syntax->datum #'((k . v) ...)))))
1850 ((e1 e2 ...)
1851 (values meta req opt rest kw inits vars
1852 (expand-body #'(e1 e2 ...) (source-wrap e w s mod)
1853 r* w* mod)))))
1854
1855 (syntax-case clauses ()
1856 (() (values '() #f))
1857 (((args e1 e2 ...) (args* e1* e2* ...) ...)
1858 (call-with-values (lambda () (get-formals #'args))
1859 (lambda (req opt rest kw)
1860 (call-with-values (lambda ()
1861 (parse-req req opt rest kw #'(e1 e2 ...)))
1862 (lambda (meta req opt rest kw inits vars body)
1863 (call-with-values
1864 (lambda ()
1865 (expand-lambda-case e r w s mod get-formals
1866 #'((args* e1* e2* ...) ...)))
1867 (lambda (meta* else*)
1868 (values
1869 (append meta meta*)
1870 (build-lambda-case s req opt rest kw inits vars
1871 body else*))))))))))))
1872
1873 ;; data
1874
1875 ;; strips syntax-objects down to top-wrap
1876 ;;
1877 ;; since only the head of a list is annotated by the reader, not each pair
1878 ;; in the spine, we also check for pairs whose cars are annotated in case
1879 ;; we've been passed the cdr of an annotated list
1880
1881 (define strip
1882 (lambda (x w)
1883 (if (top-marked? w)
1884 x
1885 (let f ((x x))
1886 (cond
1887 ((syntax-object? x)
1888 (strip (syntax-object-expression x) (syntax-object-wrap x)))
1889 ((pair? x)
1890 (let ((a (f (car x))) (d (f (cdr x))))
1891 (if (and (eq? a (car x)) (eq? d (cdr x)))
1892 x
1893 (cons a d))))
1894 ((vector? x)
1895 (let ((old (vector->list x)))
1896 (let ((new (map f old)))
1897 ;; inlined and-map with two args
1898 (let lp ((l1 old) (l2 new))
1899 (if (null? l1)
1900 x
1901 (if (eq? (car l1) (car l2))
1902 (lp (cdr l1) (cdr l2))
1903 (list->vector new)))))))
1904 (else x))))))
1905
1906 ;; lexical variables
1907
1908 (define gen-var
1909 (lambda (id)
1910 (let ((id (if (syntax-object? id) (syntax-object-expression id) id)))
1911 (build-lexical-var no-source id))))
1912
1913 ;; appears to return a reversed list
1914 (define lambda-var-list
1915 (lambda (vars)
1916 (let lvl ((vars vars) (ls '()) (w empty-wrap))
1917 (cond
1918 ((pair? vars) (lvl (cdr vars) (cons (wrap (car vars) w #f) ls) w))
1919 ((id? vars) (cons (wrap vars w #f) ls))
1920 ((null? vars) ls)
1921 ((syntax-object? vars)
1922 (lvl (syntax-object-expression vars)
1923 ls
1924 (join-wraps w (syntax-object-wrap vars))))
1925 ;; include anything else to be caught by subsequent error
1926 ;; checking
1927 (else (cons vars ls))))))
1928
1929 ;; core transformers
1930
1931 (global-extend 'local-syntax 'letrec-syntax #t)
1932 (global-extend 'local-syntax 'let-syntax #f)
1933
1934 (global-extend
1935 'core 'syntax-parameterize
1936 (lambda (e r w s mod)
1937 (syntax-case e ()
1938 ((_ ((var val) ...) e1 e2 ...)
1939 (valid-bound-ids? #'(var ...))
1940 (let ((names
1941 (map (lambda (x)
1942 (call-with-values
1943 (lambda () (resolve-identifier x w r mod #f))
1944 (lambda (type value mod)
1945 (case type
1946 ((displaced-lexical)
1947 (syntax-violation 'syntax-parameterize
1948 "identifier out of context"
1949 e
1950 (source-wrap x w s mod)))
1951 ((syntax-parameter)
1952 value)
1953 (else
1954 (syntax-violation 'syntax-parameterize
1955 "invalid syntax parameter"
1956 e
1957 (source-wrap x w s mod)))))))
1958 #'(var ...)))
1959 (bindings
1960 (let ((trans-r (macros-only-env r)))
1961 (map (lambda (x)
1962 (make-binding
1963 'macro
1964 (eval-local-transformer (expand x trans-r w mod) mod)))
1965 #'(val ...)))))
1966 (expand-body #'(e1 e2 ...)
1967 (source-wrap e w s mod)
1968 (extend-env names bindings r)
1969 w
1970 mod)))
1971 (_ (syntax-violation 'syntax-parameterize "bad syntax"
1972 (source-wrap e w s mod))))))
1973
1974 (global-extend 'core 'quote
1975 (lambda (e r w s mod)
1976 (syntax-case e ()
1977 ((_ e) (build-data s (strip #'e w)))
1978 (_ (syntax-violation 'quote "bad syntax"
1979 (source-wrap e w s mod))))))
1980
1981 (global-extend
1982 'core 'syntax
1983 (let ()
1984 (define gen-syntax
1985 (lambda (src e r maps ellipsis? mod)
1986 (if (id? e)
1987 (call-with-values (lambda ()
1988 (resolve-identifier e empty-wrap r mod #f))
1989 (lambda (type value mod)
1990 (case type
1991 ((syntax)
1992 (call-with-values
1993 (lambda () (gen-ref src (car value) (cdr value) maps))
1994 (lambda (var maps)
1995 (values `(ref ,var) maps))))
1996 (else
1997 (if (ellipsis? e)
1998 (syntax-violation 'syntax "misplaced ellipsis" src)
1999 (values `(quote ,e) maps))))))
2000 (syntax-case e ()
2001 ((dots e)
2002 (ellipsis? #'dots)
2003 (gen-syntax src #'e r maps (lambda (x) #f) mod))
2004 ((x dots . y)
2005 ;; this could be about a dozen lines of code, except that we
2006 ;; choose to handle #'(x ... ...) forms
2007 (ellipsis? #'dots)
2008 (let f ((y #'y)
2009 (k (lambda (maps)
2010 (call-with-values
2011 (lambda ()
2012 (gen-syntax src #'x r
2013 (cons '() maps) ellipsis? mod))
2014 (lambda (x maps)
2015 (if (null? (car maps))
2016 (syntax-violation 'syntax "extra ellipsis"
2017 src)
2018 (values (gen-map x (car maps))
2019 (cdr maps))))))))
2020 (syntax-case y ()
2021 ((dots . y)
2022 (ellipsis? #'dots)
2023 (f #'y
2024 (lambda (maps)
2025 (call-with-values
2026 (lambda () (k (cons '() maps)))
2027 (lambda (x maps)
2028 (if (null? (car maps))
2029 (syntax-violation 'syntax "extra ellipsis" src)
2030 (values (gen-mappend x (car maps))
2031 (cdr maps))))))))
2032 (_ (call-with-values
2033 (lambda () (gen-syntax src y r maps ellipsis? mod))
2034 (lambda (y maps)
2035 (call-with-values
2036 (lambda () (k maps))
2037 (lambda (x maps)
2038 (values (gen-append x y) maps)))))))))
2039 ((x . y)
2040 (call-with-values
2041 (lambda () (gen-syntax src #'x r maps ellipsis? mod))
2042 (lambda (x maps)
2043 (call-with-values
2044 (lambda () (gen-syntax src #'y r maps ellipsis? mod))
2045 (lambda (y maps) (values (gen-cons x y) maps))))))
2046 (#(e1 e2 ...)
2047 (call-with-values
2048 (lambda ()
2049 (gen-syntax src #'(e1 e2 ...) r maps ellipsis? mod))
2050 (lambda (e maps) (values (gen-vector e) maps))))
2051 (_ (values `(quote ,e) maps))))))
2052
2053 (define gen-ref
2054 (lambda (src var level maps)
2055 (if (fx= level 0)
2056 (values var maps)
2057 (if (null? maps)
2058 (syntax-violation 'syntax "missing ellipsis" src)
2059 (call-with-values
2060 (lambda () (gen-ref src var (fx- level 1) (cdr maps)))
2061 (lambda (outer-var outer-maps)
2062 (let ((b (assq outer-var (car maps))))
2063 (if b
2064 (values (cdr b) maps)
2065 (let ((inner-var (gen-var 'tmp)))
2066 (values inner-var
2067 (cons (cons (cons outer-var inner-var)
2068 (car maps))
2069 outer-maps)))))))))))
2070
2071 (define gen-mappend
2072 (lambda (e map-env)
2073 `(apply (primitive append) ,(gen-map e map-env))))
2074
2075 (define gen-map
2076 (lambda (e map-env)
2077 (let ((formals (map cdr map-env))
2078 (actuals (map (lambda (x) `(ref ,(car x))) map-env)))
2079 (cond
2080 ((eq? (car e) 'ref)
2081 ;; identity map equivalence:
2082 ;; (map (lambda (x) x) y) == y
2083 (car actuals))
2084 ((and-map
2085 (lambda (x) (and (eq? (car x) 'ref) (memq (cadr x) formals)))
2086 (cdr e))
2087 ;; eta map equivalence:
2088 ;; (map (lambda (x ...) (f x ...)) y ...) == (map f y ...)
2089 `(map (primitive ,(car e))
2090 ,@(map (let ((r (map cons formals actuals)))
2091 (lambda (x) (cdr (assq (cadr x) r))))
2092 (cdr e))))
2093 (else `(map (lambda ,formals ,e) ,@actuals))))))
2094
2095 (define gen-cons
2096 (lambda (x y)
2097 (case (car y)
2098 ((quote)
2099 (if (eq? (car x) 'quote)
2100 `(quote (,(cadr x) . ,(cadr y)))
2101 (if (eq? (cadr y) '())
2102 `(list ,x)
2103 `(cons ,x ,y))))
2104 ((list) `(list ,x ,@(cdr y)))
2105 (else `(cons ,x ,y)))))
2106
2107 (define gen-append
2108 (lambda (x y)
2109 (if (equal? y '(quote ()))
2110 x
2111 `(append ,x ,y))))
2112
2113 (define gen-vector
2114 (lambda (x)
2115 (cond
2116 ((eq? (car x) 'list) `(vector ,@(cdr x)))
2117 ((eq? (car x) 'quote) `(quote #(,@(cadr x))))
2118 (else `(list->vector ,x)))))
2119
2120
2121 (define regen
2122 (lambda (x)
2123 (case (car x)
2124 ((ref) (build-lexical-reference 'value no-source (cadr x) (cadr x)))
2125 ((primitive) (build-primref no-source (cadr x)))
2126 ((quote) (build-data no-source (cadr x)))
2127 ((lambda)
2128 (if (list? (cadr x))
2129 (build-simple-lambda no-source (cadr x) #f (cadr x) '() (regen (caddr x)))
2130 (error "how did we get here" x)))
2131 (else (build-primcall no-source (car x) (map regen (cdr x)))))))
2132
2133 (lambda (e r w s mod)
2134 (let ((e (source-wrap e w s mod)))
2135 (syntax-case e ()
2136 ((_ x)
2137 (call-with-values
2138 (lambda () (gen-syntax e #'x r '() ellipsis? mod))
2139 (lambda (e maps) (regen e))))
2140 (_ (syntax-violation 'syntax "bad `syntax' form" e)))))))
2141
2142 (global-extend 'core 'lambda
2143 (lambda (e r w s mod)
2144 (syntax-case e ()
2145 ((_ args e1 e2 ...)
2146 (call-with-values (lambda () (lambda-formals #'args))
2147 (lambda (req opt rest kw)
2148 (let lp ((body #'(e1 e2 ...)) (meta '()))
2149 (syntax-case body ()
2150 ((docstring e1 e2 ...) (string? (syntax->datum #'docstring))
2151 (lp #'(e1 e2 ...)
2152 (append meta
2153 `((documentation
2154 . ,(syntax->datum #'docstring))))))
2155 ((#((k . v) ...) e1 e2 ...)
2156 (lp #'(e1 e2 ...)
2157 (append meta (syntax->datum #'((k . v) ...)))))
2158 (_ (expand-simple-lambda e r w s mod req rest meta body)))))))
2159 (_ (syntax-violation 'lambda "bad lambda" e)))))
2160
2161 (global-extend 'core 'lambda*
2162 (lambda (e r w s mod)
2163 (syntax-case e ()
2164 ((_ args e1 e2 ...)
2165 (call-with-values
2166 (lambda ()
2167 (expand-lambda-case e r w s mod
2168 lambda*-formals #'((args e1 e2 ...))))
2169 (lambda (meta lcase)
2170 (build-case-lambda s meta lcase))))
2171 (_ (syntax-violation 'lambda "bad lambda*" e)))))
2172
2173 (global-extend 'core 'case-lambda
2174 (lambda (e r w s mod)
2175 (syntax-case e ()
2176 ((_ (args e1 e2 ...) ...)
2177 (call-with-values
2178 (lambda ()
2179 (expand-lambda-case e r w s mod
2180 lambda-formals
2181 #'((args e1 e2 ...) ...)))
2182 (lambda (meta lcase)
2183 (build-case-lambda s meta lcase))))
2184 (_ (syntax-violation 'case-lambda "bad case-lambda" e)))))
2185
2186 (global-extend 'core 'case-lambda*
2187 (lambda (e r w s mod)
2188 (syntax-case e ()
2189 ((_ (args e1 e2 ...) ...)
2190 (call-with-values
2191 (lambda ()
2192 (expand-lambda-case e r w s mod
2193 lambda*-formals
2194 #'((args e1 e2 ...) ...)))
2195 (lambda (meta lcase)
2196 (build-case-lambda s meta lcase))))
2197 (_ (syntax-violation 'case-lambda "bad case-lambda*" e)))))
2198
2199 (global-extend 'core 'let
2200 (let ()
2201 (define (expand-let e r w s mod constructor ids vals exps)
2202 (if (not (valid-bound-ids? ids))
2203 (syntax-violation 'let "duplicate bound variable" e)
2204 (let ((labels (gen-labels ids))
2205 (new-vars (map gen-var ids)))
2206 (let ((nw (make-binding-wrap ids labels w))
2207 (nr (extend-var-env labels new-vars r)))
2208 (constructor s
2209 (map syntax->datum ids)
2210 new-vars
2211 (map (lambda (x) (expand x r w mod)) vals)
2212 (expand-body exps (source-wrap e nw s mod)
2213 nr nw mod))))))
2214 (lambda (e r w s mod)
2215 (syntax-case e ()
2216 ((_ ((id val) ...) e1 e2 ...)
2217 (and-map id? #'(id ...))
2218 (expand-let e r w s mod
2219 build-let
2220 #'(id ...)
2221 #'(val ...)
2222 #'(e1 e2 ...)))
2223 ((_ f ((id val) ...) e1 e2 ...)
2224 (and (id? #'f) (and-map id? #'(id ...)))
2225 (expand-let e r w s mod
2226 build-named-let
2227 #'(f id ...)
2228 #'(val ...)
2229 #'(e1 e2 ...)))
2230 (_ (syntax-violation 'let "bad let" (source-wrap e w s mod)))))))
2231
2232
2233 (global-extend 'core 'letrec
2234 (lambda (e r w s mod)
2235 (syntax-case e ()
2236 ((_ ((id val) ...) e1 e2 ...)
2237 (and-map id? #'(id ...))
2238 (let ((ids #'(id ...)))
2239 (if (not (valid-bound-ids? ids))
2240 (syntax-violation 'letrec "duplicate bound variable" e)
2241 (let ((labels (gen-labels ids))
2242 (new-vars (map gen-var ids)))
2243 (let ((w (make-binding-wrap ids labels w))
2244 (r (extend-var-env labels new-vars r)))
2245 (build-letrec s #f
2246 (map syntax->datum ids)
2247 new-vars
2248 (map (lambda (x) (expand x r w mod)) #'(val ...))
2249 (expand-body #'(e1 e2 ...)
2250 (source-wrap e w s mod) r w mod)))))))
2251 (_ (syntax-violation 'letrec "bad letrec" (source-wrap e w s mod))))))
2252
2253
2254 (global-extend 'core 'letrec*
2255 (lambda (e r w s mod)
2256 (syntax-case e ()
2257 ((_ ((id val) ...) e1 e2 ...)
2258 (and-map id? #'(id ...))
2259 (let ((ids #'(id ...)))
2260 (if (not (valid-bound-ids? ids))
2261 (syntax-violation 'letrec* "duplicate bound variable" e)
2262 (let ((labels (gen-labels ids))
2263 (new-vars (map gen-var ids)))
2264 (let ((w (make-binding-wrap ids labels w))
2265 (r (extend-var-env labels new-vars r)))
2266 (build-letrec s #t
2267 (map syntax->datum ids)
2268 new-vars
2269 (map (lambda (x) (expand x r w mod)) #'(val ...))
2270 (expand-body #'(e1 e2 ...)
2271 (source-wrap e w s mod) r w mod)))))))
2272 (_ (syntax-violation 'letrec* "bad letrec*" (source-wrap e w s mod))))))
2273
2274
2275 (global-extend
2276 'core 'set!
2277 (lambda (e r w s mod)
2278 (syntax-case e ()
2279 ((_ id val)
2280 (id? #'id)
2281 (call-with-values
2282 (lambda () (resolve-identifier #'id w r mod #t))
2283 (lambda (type value id-mod)
2284 (case type
2285 ((lexical)
2286 (build-lexical-assignment s (syntax->datum #'id) value
2287 (expand #'val r w mod)))
2288 ((global)
2289 (build-global-assignment s value (expand #'val r w mod) id-mod))
2290 ((macro)
2291 (if (procedure-property value 'variable-transformer)
2292 ;; As syntax-type does, call expand-macro with
2293 ;; the mod of the expression. Hmm.
2294 (expand (expand-macro value e r w s #f mod) r empty-wrap mod)
2295 (syntax-violation 'set! "not a variable transformer"
2296 (wrap e w mod)
2297 (wrap #'id w id-mod))))
2298 ((displaced-lexical)
2299 (syntax-violation 'set! "identifier out of context"
2300 (wrap #'id w mod)))
2301 (else
2302 (syntax-violation 'set! "bad set!" (source-wrap e w s mod)))))))
2303 ((_ (head tail ...) val)
2304 (call-with-values
2305 (lambda () (syntax-type #'head r empty-wrap no-source #f mod #t))
2306 (lambda (type value ee* ee ww ss modmod)
2307 (case type
2308 ((module-ref)
2309 (let ((val (expand #'val r w mod)))
2310 (call-with-values (lambda () (value #'(head tail ...) r w))
2311 (lambda (e r w s* mod)
2312 (syntax-case e ()
2313 (e (id? #'e)
2314 (build-global-assignment s (syntax->datum #'e)
2315 val mod)))))))
2316 (else
2317 (build-call s
2318 (expand #'(setter head) r w mod)
2319 (map (lambda (e) (expand e r w mod))
2320 #'(tail ... val))))))))
2321 (_ (syntax-violation 'set! "bad set!" (source-wrap e w s mod))))))
2322
2323 (global-extend 'module-ref '@
2324 (lambda (e r w)
2325 (syntax-case e ()
2326 ((_ (mod ...) id)
2327 (and (and-map id? #'(mod ...)) (id? #'id))
2328 ;; Strip the wrap from the identifier and return top-wrap
2329 ;; so that the identifier will not be captured by lexicals.
2330 (values (syntax->datum #'id) r top-wrap #f
2331 (syntax->datum
2332 #'(public mod ...)))))))
2333
2334 (global-extend 'module-ref '@@
2335 (lambda (e r w)
2336 (define remodulate
2337 (lambda (x mod)
2338 (cond ((pair? x)
2339 (cons (remodulate (car x) mod)
2340 (remodulate (cdr x) mod)))
2341 ((syntax-object? x)
2342 (make-syntax-object
2343 (remodulate (syntax-object-expression x) mod)
2344 (syntax-object-wrap x)
2345 ;; hither the remodulation
2346 mod))
2347 ((vector? x)
2348 (let* ((n (vector-length x)) (v (make-vector n)))
2349 (do ((i 0 (fx+ i 1)))
2350 ((fx= i n) v)
2351 (vector-set! v i (remodulate (vector-ref x i) mod)))))
2352 (else x))))
2353 (syntax-case e (@@)
2354 ((_ (mod ...) id)
2355 (and (and-map id? #'(mod ...)) (id? #'id))
2356 ;; Strip the wrap from the identifier and return top-wrap
2357 ;; so that the identifier will not be captured by lexicals.
2358 (values (syntax->datum #'id) r top-wrap #f
2359 (syntax->datum
2360 #'(private mod ...))))
2361 ((_ @@ (mod ...) exp)
2362 (and-map id? #'(mod ...))
2363 ;; This is a special syntax used to support R6RS library forms.
2364 ;; Unlike the syntax above, the last item is not restricted to
2365 ;; be a single identifier, and the syntax objects are kept
2366 ;; intact, with only their module changed.
2367 (let ((mod (syntax->datum #'(private mod ...))))
2368 (values (remodulate #'exp mod)
2369 r w (source-annotation #'exp)
2370 mod))))))
2371
2372 (global-extend 'core 'if
2373 (lambda (e r w s mod)
2374 (syntax-case e ()
2375 ((_ test then)
2376 (build-conditional
2377 s
2378 (expand #'test r w mod)
2379 (expand #'then r w mod)
2380 (build-void no-source)))
2381 ((_ test then else)
2382 (build-conditional
2383 s
2384 (expand #'test r w mod)
2385 (expand #'then r w mod)
2386 (expand #'else r w mod))))))
2387
2388 (global-extend 'core 'with-fluids
2389 (lambda (e r w s mod)
2390 (syntax-case e ()
2391 ((_ ((fluid val) ...) b b* ...)
2392 (build-dynlet
2393 s
2394 (map (lambda (x) (expand x r w mod)) #'(fluid ...))
2395 (map (lambda (x) (expand x r w mod)) #'(val ...))
2396 (expand-body #'(b b* ...)
2397 (source-wrap e w s mod) r w mod))))))
2398
2399 (global-extend 'begin 'begin '())
2400
2401 (global-extend 'define 'define '())
2402
2403 (global-extend 'define-syntax 'define-syntax '())
2404 (global-extend 'define-syntax-parameter 'define-syntax-parameter '())
2405
2406 (global-extend 'eval-when 'eval-when '())
2407
2408 (global-extend 'core 'syntax-case
2409 (let ()
2410 (define convert-pattern
2411 ;; accepts pattern & keys
2412 ;; returns $sc-dispatch pattern & ids
2413 (lambda (pattern keys)
2414 (define cvt*
2415 (lambda (p* n ids)
2416 (if (not (pair? p*))
2417 (cvt p* n ids)
2418 (call-with-values
2419 (lambda () (cvt* (cdr p*) n ids))
2420 (lambda (y ids)
2421 (call-with-values
2422 (lambda () (cvt (car p*) n ids))
2423 (lambda (x ids)
2424 (values (cons x y) ids))))))))
2425
2426 (define (v-reverse x)
2427 (let loop ((r '()) (x x))
2428 (if (not (pair? x))
2429 (values r x)
2430 (loop (cons (car x) r) (cdr x)))))
2431
2432 (define cvt
2433 (lambda (p n ids)
2434 (if (id? p)
2435 (cond
2436 ((bound-id-member? p keys)
2437 (values (vector 'free-id p) ids))
2438 ((free-id=? p #'_)
2439 (values '_ ids))
2440 (else
2441 (values 'any (cons (cons p n) ids))))
2442 (syntax-case p ()
2443 ((x dots)
2444 (ellipsis? (syntax dots))
2445 (call-with-values
2446 (lambda () (cvt (syntax x) (fx+ n 1) ids))
2447 (lambda (p ids)
2448 (values (if (eq? p 'any) 'each-any (vector 'each p))
2449 ids))))
2450 ((x dots . ys)
2451 (ellipsis? (syntax dots))
2452 (call-with-values
2453 (lambda () (cvt* (syntax ys) n ids))
2454 (lambda (ys ids)
2455 (call-with-values
2456 (lambda () (cvt (syntax x) (+ n 1) ids))
2457 (lambda (x ids)
2458 (call-with-values
2459 (lambda () (v-reverse ys))
2460 (lambda (ys e)
2461 (values `#(each+ ,x ,ys ,e)
2462 ids))))))))
2463 ((x . y)
2464 (call-with-values
2465 (lambda () (cvt (syntax y) n ids))
2466 (lambda (y ids)
2467 (call-with-values
2468 (lambda () (cvt (syntax x) n ids))
2469 (lambda (x ids)
2470 (values (cons x y) ids))))))
2471 (() (values '() ids))
2472 (#(x ...)
2473 (call-with-values
2474 (lambda () (cvt (syntax (x ...)) n ids))
2475 (lambda (p ids) (values (vector 'vector p) ids))))
2476 (x (values (vector 'atom (strip p empty-wrap)) ids))))))
2477 (cvt pattern 0 '())))
2478
2479 (define build-dispatch-call
2480 (lambda (pvars exp y r mod)
2481 (let ((ids (map car pvars)) (levels (map cdr pvars)))
2482 (let ((labels (gen-labels ids)) (new-vars (map gen-var ids)))
2483 (build-primcall
2484 no-source
2485 'apply
2486 (list (build-simple-lambda no-source (map syntax->datum ids) #f new-vars '()
2487 (expand exp
2488 (extend-env
2489 labels
2490 (map (lambda (var level)
2491 (make-binding 'syntax `(,var . ,level)))
2492 new-vars
2493 (map cdr pvars))
2494 r)
2495 (make-binding-wrap ids labels empty-wrap)
2496 mod))
2497 y))))))
2498
2499 (define gen-clause
2500 (lambda (x keys clauses r pat fender exp mod)
2501 (call-with-values
2502 (lambda () (convert-pattern pat keys))
2503 (lambda (p pvars)
2504 (cond
2505 ((not (distinct-bound-ids? (map car pvars)))
2506 (syntax-violation 'syntax-case "duplicate pattern variable" pat))
2507 ((not (and-map (lambda (x) (not (ellipsis? (car x)))) pvars))
2508 (syntax-violation 'syntax-case "misplaced ellipsis" pat))
2509 (else
2510 (let ((y (gen-var 'tmp)))
2511 ;; fat finger binding and references to temp variable y
2512 (build-call no-source
2513 (build-simple-lambda no-source (list 'tmp) #f (list y) '()
2514 (let ((y (build-lexical-reference 'value no-source
2515 'tmp y)))
2516 (build-conditional no-source
2517 (syntax-case fender ()
2518 (#t y)
2519 (_ (build-conditional no-source
2520 y
2521 (build-dispatch-call pvars fender y r mod)
2522 (build-data no-source #f))))
2523 (build-dispatch-call pvars exp y r mod)
2524 (gen-syntax-case x keys clauses r mod))))
2525 (list (if (eq? p 'any)
2526 (build-primcall no-source 'list (list x))
2527 (build-primcall no-source '$sc-dispatch
2528 (list x (build-data no-source p)))))))))))))
2529
2530 (define gen-syntax-case
2531 (lambda (x keys clauses r mod)
2532 (if (null? clauses)
2533 (build-primcall no-source 'syntax-violation
2534 (list (build-data no-source #f)
2535 (build-data no-source
2536 "source expression failed to match any pattern")
2537 x))
2538 (syntax-case (car clauses) ()
2539 ((pat exp)
2540 (if (and (id? #'pat)
2541 (and-map (lambda (x) (not (free-id=? #'pat x)))
2542 (cons #'(... ...) keys)))
2543 (if (free-id=? #'pat #'_)
2544 (expand #'exp r empty-wrap mod)
2545 (let ((labels (list (gen-label)))
2546 (var (gen-var #'pat)))
2547 (build-call no-source
2548 (build-simple-lambda
2549 no-source (list (syntax->datum #'pat)) #f (list var)
2550 '()
2551 (expand #'exp
2552 (extend-env labels
2553 (list (make-binding 'syntax `(,var . 0)))
2554 r)
2555 (make-binding-wrap #'(pat)
2556 labels empty-wrap)
2557 mod))
2558 (list x))))
2559 (gen-clause x keys (cdr clauses) r
2560 #'pat #t #'exp mod)))
2561 ((pat fender exp)
2562 (gen-clause x keys (cdr clauses) r
2563 #'pat #'fender #'exp mod))
2564 (_ (syntax-violation 'syntax-case "invalid clause"
2565 (car clauses)))))))
2566
2567 (lambda (e r w s mod)
2568 (let ((e (source-wrap e w s mod)))
2569 (syntax-case e ()
2570 ((_ val (key ...) m ...)
2571 (if (and-map (lambda (x) (and (id? x) (not (ellipsis? x))))
2572 #'(key ...))
2573 (let ((x (gen-var 'tmp)))
2574 ;; fat finger binding and references to temp variable x
2575 (build-call s
2576 (build-simple-lambda no-source (list 'tmp) #f (list x) '()
2577 (gen-syntax-case (build-lexical-reference 'value no-source
2578 'tmp x)
2579 #'(key ...) #'(m ...)
2580 r
2581 mod))
2582 (list (expand #'val r empty-wrap mod))))
2583 (syntax-violation 'syntax-case "invalid literals list" e))))))))
2584
2585 ;; The portable macroexpand seeds expand-top's mode m with 'e (for
2586 ;; evaluating) and esew (which stands for "eval syntax expanders
2587 ;; when") with '(eval). In Chez Scheme, m is set to 'c instead of e
2588 ;; if we are compiling a file, and esew is set to
2589 ;; (eval-syntactic-expanders-when), which defaults to the list
2590 ;; '(compile load eval). This means that, by default, top-level
2591 ;; syntactic definitions are evaluated immediately after they are
2592 ;; expanded, and the expanded definitions are also residualized into
2593 ;; the object file if we are compiling a file.
2594 (set! macroexpand
2595 (lambda* (x #:optional (m 'e) (esew '(eval)))
2596 (expand-top-sequence (list x) null-env top-wrap #f m esew
2597 (cons 'hygiene (module-name (current-module))))))
2598
2599 (set! identifier?
2600 (lambda (x)
2601 (nonsymbol-id? x)))
2602
2603 (set! datum->syntax
2604 (lambda (id datum)
2605 (make-syntax-object datum (syntax-object-wrap id)
2606 (syntax-object-module id))))
2607
2608 (set! syntax->datum
2609 ;; accepts any object, since syntax objects may consist partially
2610 ;; or entirely of unwrapped, nonsymbolic data
2611 (lambda (x)
2612 (strip x empty-wrap)))
2613
2614 (set! syntax-source
2615 (lambda (x) (source-annotation x)))
2616
2617 (set! generate-temporaries
2618 (lambda (ls)
2619 (arg-check list? ls 'generate-temporaries)
2620 (let ((mod (cons 'hygiene (module-name (current-module)))))
2621 (map (lambda (x) (wrap (gensym "t-") top-wrap mod)) ls))))
2622
2623 (set! free-identifier=?
2624 (lambda (x y)
2625 (arg-check nonsymbol-id? x 'free-identifier=?)
2626 (arg-check nonsymbol-id? y 'free-identifier=?)
2627 (free-id=? x y)))
2628
2629 (set! bound-identifier=?
2630 (lambda (x y)
2631 (arg-check nonsymbol-id? x 'bound-identifier=?)
2632 (arg-check nonsymbol-id? y 'bound-identifier=?)
2633 (bound-id=? x y)))
2634
2635 (set! syntax-violation
2636 (lambda* (who message form #:optional subform)
2637 (arg-check (lambda (x) (or (not x) (string? x) (symbol? x)))
2638 who 'syntax-violation)
2639 (arg-check string? message 'syntax-violation)
2640 (throw 'syntax-error who message
2641 (or (source-annotation subform)
2642 (source-annotation form))
2643 (strip form empty-wrap)
2644 (and subform (strip subform empty-wrap)))))
2645
2646 (let ()
2647 (define (syntax-module id)
2648 (arg-check nonsymbol-id? id 'syntax-module)
2649 (cdr (syntax-object-module id)))
2650
2651 (define* (syntax-local-binding id #:key (resolve-syntax-parameters? #t))
2652 (arg-check nonsymbol-id? id 'syntax-local-binding)
2653 (with-transformer-environment
2654 (lambda (e r w s rib mod)
2655 (define (strip-anti-mark w)
2656 (let ((ms (wrap-marks w)) (s (wrap-subst w)))
2657 (if (and (pair? ms) (eq? (car ms) the-anti-mark))
2658 ;; output is from original text
2659 (make-wrap (cdr ms) (if rib (cons rib (cdr s)) (cdr s)))
2660 ;; output introduced by macro
2661 (make-wrap ms (if rib (cons rib s) s)))))
2662 (call-with-values (lambda ()
2663 (resolve-identifier
2664 (syntax-object-expression id)
2665 (strip-anti-mark (syntax-object-wrap id))
2666 r
2667 (syntax-object-module id)
2668 resolve-syntax-parameters?))
2669 (lambda (type value mod)
2670 (case type
2671 ((lexical) (values 'lexical value))
2672 ((macro) (values 'macro value))
2673 ((syntax-parameter) (values 'syntax-parameter (car value)))
2674 ((syntax) (values 'pattern-variable value))
2675 ((displaced-lexical) (values 'displaced-lexical #f))
2676 ((global) (values 'global (cons value (cdr mod))))
2677 (else (values 'other #f))))))))
2678
2679 (define (syntax-locally-bound-identifiers id)
2680 (arg-check nonsymbol-id? id 'syntax-locally-bound-identifiers)
2681 (locally-bound-identifiers (syntax-object-wrap id)
2682 (syntax-object-module id)))
2683
2684 ;; Using define! instead of set! to avoid warnings at
2685 ;; compile-time, after the variables are stolen away into (system
2686 ;; syntax). See the end of boot-9.scm.
2687 ;;
2688 (define! 'syntax-module syntax-module)
2689 (define! 'syntax-local-binding syntax-local-binding)
2690 (define! 'syntax-locally-bound-identifiers syntax-locally-bound-identifiers))
2691
2692 ;; $sc-dispatch expects an expression and a pattern. If the expression
2693 ;; matches the pattern a list of the matching expressions for each
2694 ;; "any" is returned. Otherwise, #f is returned. (This use of #f will
2695 ;; not work on r4rs implementations that violate the ieee requirement
2696 ;; that #f and () be distinct.)
2697
2698 ;; The expression is matched with the pattern as follows:
2699
2700 ;; pattern: matches:
2701 ;; () empty list
2702 ;; any anything
2703 ;; (<pattern>1 . <pattern>2) (<pattern>1 . <pattern>2)
2704 ;; each-any (any*)
2705 ;; #(free-id <key>) <key> with free-identifier=?
2706 ;; #(each <pattern>) (<pattern>*)
2707 ;; #(each+ p1 (p2_1 ... p2_n) p3) (p1* (p2_n ... p2_1) . p3)
2708 ;; #(vector <pattern>) (list->vector <pattern>)
2709 ;; #(atom <object>) <object> with "equal?"
2710
2711 ;; Vector cops out to pair under assumption that vectors are rare. If
2712 ;; not, should convert to:
2713 ;; #(vector <pattern>*) #(<pattern>*)
2714
2715 (let ()
2716
2717 (define match-each
2718 (lambda (e p w mod)
2719 (cond
2720 ((pair? e)
2721 (let ((first (match (car e) p w '() mod)))
2722 (and first
2723 (let ((rest (match-each (cdr e) p w mod)))
2724 (and rest (cons first rest))))))
2725 ((null? e) '())
2726 ((syntax-object? e)
2727 (match-each (syntax-object-expression e)
2728 p
2729 (join-wraps w (syntax-object-wrap e))
2730 (syntax-object-module e)))
2731 (else #f))))
2732
2733 (define match-each+
2734 (lambda (e x-pat y-pat z-pat w r mod)
2735 (let f ((e e) (w w))
2736 (cond
2737 ((pair? e)
2738 (call-with-values (lambda () (f (cdr e) w))
2739 (lambda (xr* y-pat r)
2740 (if r
2741 (if (null? y-pat)
2742 (let ((xr (match (car e) x-pat w '() mod)))
2743 (if xr
2744 (values (cons xr xr*) y-pat r)
2745 (values #f #f #f)))
2746 (values
2747 '()
2748 (cdr y-pat)
2749 (match (car e) (car y-pat) w r mod)))
2750 (values #f #f #f)))))
2751 ((syntax-object? e)
2752 (f (syntax-object-expression e) (join-wraps w e)))
2753 (else
2754 (values '() y-pat (match e z-pat w r mod)))))))
2755
2756 (define match-each-any
2757 (lambda (e w mod)
2758 (cond
2759 ((pair? e)
2760 (let ((l (match-each-any (cdr e) w mod)))
2761 (and l (cons (wrap (car e) w mod) l))))
2762 ((null? e) '())
2763 ((syntax-object? e)
2764 (match-each-any (syntax-object-expression e)
2765 (join-wraps w (syntax-object-wrap e))
2766 mod))
2767 (else #f))))
2768
2769 (define match-empty
2770 (lambda (p r)
2771 (cond
2772 ((null? p) r)
2773 ((eq? p '_) r)
2774 ((eq? p 'any) (cons '() r))
2775 ((pair? p) (match-empty (car p) (match-empty (cdr p) r)))
2776 ((eq? p 'each-any) (cons '() r))
2777 (else
2778 (case (vector-ref p 0)
2779 ((each) (match-empty (vector-ref p 1) r))
2780 ((each+) (match-empty (vector-ref p 1)
2781 (match-empty
2782 (reverse (vector-ref p 2))
2783 (match-empty (vector-ref p 3) r))))
2784 ((free-id atom) r)
2785 ((vector) (match-empty (vector-ref p 1) r)))))))
2786
2787 (define combine
2788 (lambda (r* r)
2789 (if (null? (car r*))
2790 r
2791 (cons (map car r*) (combine (map cdr r*) r)))))
2792
2793 (define match*
2794 (lambda (e p w r mod)
2795 (cond
2796 ((null? p) (and (null? e) r))
2797 ((pair? p)
2798 (and (pair? e) (match (car e) (car p) w
2799 (match (cdr e) (cdr p) w r mod)
2800 mod)))
2801 ((eq? p 'each-any)
2802 (let ((l (match-each-any e w mod))) (and l (cons l r))))
2803 (else
2804 (case (vector-ref p 0)
2805 ((each)
2806 (if (null? e)
2807 (match-empty (vector-ref p 1) r)
2808 (let ((l (match-each e (vector-ref p 1) w mod)))
2809 (and l
2810 (let collect ((l l))
2811 (if (null? (car l))
2812 r
2813 (cons (map car l) (collect (map cdr l)))))))))
2814 ((each+)
2815 (call-with-values
2816 (lambda ()
2817 (match-each+ e (vector-ref p 1) (vector-ref p 2) (vector-ref p 3) w r mod))
2818 (lambda (xr* y-pat r)
2819 (and r
2820 (null? y-pat)
2821 (if (null? xr*)
2822 (match-empty (vector-ref p 1) r)
2823 (combine xr* r))))))
2824 ((free-id) (and (id? e) (free-id=? (wrap e w mod) (vector-ref p 1)) r))
2825 ((atom) (and (equal? (vector-ref p 1) (strip e w)) r))
2826 ((vector)
2827 (and (vector? e)
2828 (match (vector->list e) (vector-ref p 1) w r mod))))))))
2829
2830 (define match
2831 (lambda (e p w r mod)
2832 (cond
2833 ((not r) #f)
2834 ((eq? p '_) r)
2835 ((eq? p 'any) (cons (wrap e w mod) r))
2836 ((syntax-object? e)
2837 (match*
2838 (syntax-object-expression e)
2839 p
2840 (join-wraps w (syntax-object-wrap e))
2841 r
2842 (syntax-object-module e)))
2843 (else (match* e p w r mod)))))
2844
2845 (set! $sc-dispatch
2846 (lambda (e p)
2847 (cond
2848 ((eq? p 'any) (list e))
2849 ((eq? p '_) '())
2850 ((syntax-object? e)
2851 (match* (syntax-object-expression e)
2852 p (syntax-object-wrap e) '() (syntax-object-module e)))
2853 (else (match* e p empty-wrap '() #f))))))))
2854
2855
2856 (define-syntax with-syntax
2857 (lambda (x)
2858 (syntax-case x ()
2859 ((_ () e1 e2 ...)
2860 #'(let () e1 e2 ...))
2861 ((_ ((out in)) e1 e2 ...)
2862 #'(syntax-case in ()
2863 (out (let () e1 e2 ...))))
2864 ((_ ((out in) ...) e1 e2 ...)
2865 #'(syntax-case (list in ...) ()
2866 ((out ...) (let () e1 e2 ...)))))))
2867
2868 (define-syntax syntax-rules
2869 (lambda (xx)
2870 (syntax-case xx ()
2871 ((_ (k ...) ((keyword . pattern) template) ...)
2872 #'(lambda (x)
2873 ;; embed patterns as procedure metadata
2874 #((macro-type . syntax-rules)
2875 (patterns pattern ...))
2876 (syntax-case x (k ...)
2877 ((_ . pattern) #'template)
2878 ...)))
2879 ((_ (k ...) docstring ((keyword . pattern) template) ...)
2880 (string? (syntax->datum #'docstring))
2881 #'(lambda (x)
2882 ;; the same, but allow a docstring
2883 docstring
2884 #((macro-type . syntax-rules)
2885 (patterns pattern ...))
2886 (syntax-case x (k ...)
2887 ((_ . pattern) #'template)
2888 ...))))))
2889
2890 (define-syntax define-syntax-rule
2891 (lambda (x)
2892 (syntax-case x ()
2893 ((_ (name . pattern) template)
2894 #'(define-syntax name
2895 (syntax-rules ()
2896 ((_ . pattern) template))))
2897 ((_ (name . pattern) docstring template)
2898 (string? (syntax->datum #'docstring))
2899 #'(define-syntax name
2900 (syntax-rules ()
2901 docstring
2902 ((_ . pattern) template)))))))
2903
2904 (define-syntax let*
2905 (lambda (x)
2906 (syntax-case x ()
2907 ((let* ((x v) ...) e1 e2 ...)
2908 (and-map identifier? #'(x ...))
2909 (let f ((bindings #'((x v) ...)))
2910 (if (null? bindings)
2911 #'(let () e1 e2 ...)
2912 (with-syntax ((body (f (cdr bindings)))
2913 (binding (car bindings)))
2914 #'(let (binding) body))))))))
2915
2916 (define-syntax quasiquote
2917 (let ()
2918 (define (quasi p lev)
2919 (syntax-case p (unquote quasiquote)
2920 ((unquote p)
2921 (if (= lev 0)
2922 #'("value" p)
2923 (quasicons #'("quote" unquote) (quasi #'(p) (- lev 1)))))
2924 ((quasiquote p) (quasicons #'("quote" quasiquote) (quasi #'(p) (+ lev 1))))
2925 ((p . q)
2926 (syntax-case #'p (unquote unquote-splicing)
2927 ((unquote p ...)
2928 (if (= lev 0)
2929 (quasilist* #'(("value" p) ...) (quasi #'q lev))
2930 (quasicons
2931 (quasicons #'("quote" unquote) (quasi #'(p ...) (- lev 1)))
2932 (quasi #'q lev))))
2933 ((unquote-splicing p ...)
2934 (if (= lev 0)
2935 (quasiappend #'(("value" p) ...) (quasi #'q lev))
2936 (quasicons
2937 (quasicons #'("quote" unquote-splicing) (quasi #'(p ...) (- lev 1)))
2938 (quasi #'q lev))))
2939 (_ (quasicons (quasi #'p lev) (quasi #'q lev)))))
2940 (#(x ...) (quasivector (vquasi #'(x ...) lev)))
2941 (p #'("quote" p))))
2942 (define (vquasi p lev)
2943 (syntax-case p ()
2944 ((p . q)
2945 (syntax-case #'p (unquote unquote-splicing)
2946 ((unquote p ...)
2947 (if (= lev 0)
2948 (quasilist* #'(("value" p) ...) (vquasi #'q lev))
2949 (quasicons
2950 (quasicons #'("quote" unquote) (quasi #'(p ...) (- lev 1)))
2951 (vquasi #'q lev))))
2952 ((unquote-splicing p ...)
2953 (if (= lev 0)
2954 (quasiappend #'(("value" p) ...) (vquasi #'q lev))
2955 (quasicons
2956 (quasicons
2957 #'("quote" unquote-splicing)
2958 (quasi #'(p ...) (- lev 1)))
2959 (vquasi #'q lev))))
2960 (_ (quasicons (quasi #'p lev) (vquasi #'q lev)))))
2961 (() #'("quote" ()))))
2962 (define (quasicons x y)
2963 (with-syntax ((x x) (y y))
2964 (syntax-case #'y ()
2965 (("quote" dy)
2966 (syntax-case #'x ()
2967 (("quote" dx) #'("quote" (dx . dy)))
2968 (_ (if (null? #'dy) #'("list" x) #'("list*" x y)))))
2969 (("list" . stuff) #'("list" x . stuff))
2970 (("list*" . stuff) #'("list*" x . stuff))
2971 (_ #'("list*" x y)))))
2972 (define (quasiappend x y)
2973 (syntax-case y ()
2974 (("quote" ())
2975 (cond
2976 ((null? x) #'("quote" ()))
2977 ((null? (cdr x)) (car x))
2978 (else (with-syntax (((p ...) x)) #'("append" p ...)))))
2979 (_
2980 (cond
2981 ((null? x) y)
2982 (else (with-syntax (((p ...) x) (y y)) #'("append" p ... y)))))))
2983 (define (quasilist* x y)
2984 (let f ((x x))
2985 (if (null? x)
2986 y
2987 (quasicons (car x) (f (cdr x))))))
2988 (define (quasivector x)
2989 (syntax-case x ()
2990 (("quote" (x ...)) #'("quote" #(x ...)))
2991 (_
2992 (let f ((y x) (k (lambda (ls) #`("vector" #,@ls))))
2993 (syntax-case y ()
2994 (("quote" (y ...)) (k #'(("quote" y) ...)))
2995 (("list" y ...) (k #'(y ...)))
2996 (("list*" y ... z) (f #'z (lambda (ls) (k (append #'(y ...) ls)))))
2997 (else #`("list->vector" #,x)))))))
2998 (define (emit x)
2999 (syntax-case x ()
3000 (("quote" x) #''x)
3001 (("list" x ...) #`(list #,@(map emit #'(x ...))))
3002 ;; could emit list* for 3+ arguments if implementation supports
3003 ;; list*
3004 (("list*" x ... y)
3005 (let f ((x* #'(x ...)))
3006 (if (null? x*)
3007 (emit #'y)
3008 #`(cons #,(emit (car x*)) #,(f (cdr x*))))))
3009 (("append" x ...) #`(append #,@(map emit #'(x ...))))
3010 (("vector" x ...) #`(vector #,@(map emit #'(x ...))))
3011 (("list->vector" x) #`(list->vector #,(emit #'x)))
3012 (("value" x) #'x)))
3013 (lambda (x)
3014 (syntax-case x ()
3015 ;; convert to intermediate language, combining introduced (but
3016 ;; not unquoted source) quote expressions where possible and
3017 ;; choosing optimal construction code otherwise, then emit
3018 ;; Scheme code corresponding to the intermediate language forms.
3019 ((_ e) (emit (quasi #'e 0)))))))
3020
3021 (define-syntax include
3022 (lambda (x)
3023 (define read-file
3024 (lambda (fn dir k)
3025 (let ((p (open-input-file
3026 (if (absolute-file-name? fn)
3027 fn
3028 (in-vicinity dir fn)))))
3029 (let f ((x (read p))
3030 (result '()))
3031 (if (eof-object? x)
3032 (begin
3033 (close-input-port p)
3034 (reverse result))
3035 (f (read p)
3036 (cons (datum->syntax k x) result)))))))
3037 (let* ((src (syntax-source x))
3038 (file (and src (assq-ref src 'filename)))
3039 (dir (and (string? file) (dirname file))))
3040 (syntax-case x ()
3041 ((k filename)
3042 (let ((fn (syntax->datum #'filename)))
3043 (with-syntax (((exp ...) (read-file fn dir #'filename)))
3044 #'(begin exp ...))))))))
3045
3046 (define-syntax include-from-path
3047 (lambda (x)
3048 (syntax-case x ()
3049 ((k filename)
3050 (let ((fn (syntax->datum #'filename)))
3051 (with-syntax ((fn (datum->syntax
3052 #'filename
3053 (or (%search-load-path fn)
3054 (syntax-violation 'include-from-path
3055 "file not found in path"
3056 x #'filename)))))
3057 #'(include fn)))))))
3058
3059 (define-syntax unquote
3060 (lambda (x)
3061 (syntax-violation 'unquote
3062 "expression not valid outside of quasiquote"
3063 x)))
3064
3065 (define-syntax unquote-splicing
3066 (lambda (x)
3067 (syntax-violation 'unquote-splicing
3068 "expression not valid outside of quasiquote"
3069 x)))
3070
3071 (define (make-variable-transformer proc)
3072 (if (procedure? proc)
3073 (let ((trans (lambda (x)
3074 #((macro-type . variable-transformer))
3075 (proc x))))
3076 (set-procedure-property! trans 'variable-transformer #t)
3077 trans)
3078 (error "variable transformer not a procedure" proc)))
3079
3080 (define-syntax identifier-syntax
3081 (lambda (xx)
3082 (syntax-case xx (set!)
3083 ((_ e)
3084 #'(lambda (x)
3085 #((macro-type . identifier-syntax))
3086 (syntax-case x ()
3087 (id
3088 (identifier? #'id)
3089 #'e)
3090 ((_ x (... ...))
3091 #'(e x (... ...))))))
3092 ((_ (id exp1) ((set! var val) exp2))
3093 (and (identifier? #'id) (identifier? #'var))
3094 #'(make-variable-transformer
3095 (lambda (x)
3096 #((macro-type . variable-transformer))
3097 (syntax-case x (set!)
3098 ((set! var val) #'exp2)
3099 ((id x (... ...)) #'(exp1 x (... ...)))
3100 (id (identifier? #'id) #'exp1))))))))
3101
3102 (define-syntax define*
3103 (lambda (x)
3104 (syntax-case x ()
3105 ((_ (id . args) b0 b1 ...)
3106 #'(define id (lambda* args b0 b1 ...)))
3107 ((_ id val) (identifier? #'id)
3108 #'(define id val)))))