Doc and NEWS updates
[bpt/guile.git] / doc / ref / api-data.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007,
4 @c 2008, 2009, 2010, 2011, 2012, 2013, 2014 Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @node Simple Data Types
8 @section Simple Generic Data Types
9
10 This chapter describes those of Guile's simple data types which are
11 primarily used for their role as items of generic data. By
12 @dfn{simple} we mean data types that are not primarily used as
13 containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
14 For the documentation of such @dfn{compound} data types, see
15 @ref{Compound Data Types}.
16
17 @c One of the great strengths of Scheme is that there is no straightforward
18 @c distinction between ``data'' and ``functionality''. For example,
19 @c Guile's support for dynamic linking could be described:
20
21 @c @itemize @bullet
22 @c @item
23 @c either in a ``data-centric'' way, as the behaviour and properties of the
24 @c ``dynamically linked object'' data type, and the operations that may be
25 @c applied to instances of this type
26
27 @c @item
28 @c or in a ``functionality-centric'' way, as the set of procedures that
29 @c constitute Guile's support for dynamic linking, in the context of the
30 @c module system.
31 @c @end itemize
32
33 @c The contents of this chapter are, therefore, a matter of judgment. By
34 @c @dfn{generic}, we mean to select those data types whose typical use as
35 @c @emph{data} in a wide variety of programming contexts is more important
36 @c than their use in the implementation of a particular piece of
37 @c @emph{functionality}. The last section of this chapter provides
38 @c references for all the data types that are documented not here but in a
39 @c ``functionality-centric'' way elsewhere in the manual.
40
41 @menu
42 * Booleans:: True/false values.
43 * Numbers:: Numerical data types.
44 * Characters:: Single characters.
45 * Character Sets:: Sets of characters.
46 * Strings:: Sequences of characters.
47 * Bytevectors:: Sequences of bytes.
48 * Symbols:: Symbols.
49 * Keywords:: Self-quoting, customizable display keywords.
50 * Other Types:: "Functionality-centric" data types.
51 @end menu
52
53
54 @node Booleans
55 @subsection Booleans
56 @tpindex Booleans
57
58 The two boolean values are @code{#t} for true and @code{#f} for false.
59 They can also be written as @code{#true} and @code{#false}, as per R7RS.
60
61 Boolean values are returned by predicate procedures, such as the general
62 equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
63 (@pxref{Equality}) and numerical and string comparison operators like
64 @code{string=?} (@pxref{String Comparison}) and @code{<=}
65 (@pxref{Comparison}).
66
67 @lisp
68 (<= 3 8)
69 @result{} #t
70
71 (<= 3 -3)
72 @result{} #f
73
74 (equal? "house" "houses")
75 @result{} #f
76
77 (eq? #f #f)
78 @result{}
79 #t
80 @end lisp
81
82 In test condition contexts like @code{if} and @code{cond}
83 (@pxref{Conditionals}), where a group of subexpressions will be
84 evaluated only if a @var{condition} expression evaluates to ``true'',
85 ``true'' means any value at all except @code{#f}.
86
87 @lisp
88 (if #t "yes" "no")
89 @result{} "yes"
90
91 (if 0 "yes" "no")
92 @result{} "yes"
93
94 (if #f "yes" "no")
95 @result{} "no"
96 @end lisp
97
98 A result of this asymmetry is that typical Scheme source code more often
99 uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
100 represent an @code{if} or @code{cond} false value, whereas @code{#t} is
101 not necessary to represent an @code{if} or @code{cond} true value.
102
103 It is important to note that @code{#f} is @strong{not} equivalent to any
104 other Scheme value. In particular, @code{#f} is not the same as the
105 number 0 (like in C and C++), and not the same as the ``empty list''
106 (like in some Lisp dialects).
107
108 In C, the two Scheme boolean values are available as the two constants
109 @code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
110 Care must be taken with the false value @code{SCM_BOOL_F}: it is not
111 false when used in C conditionals. In order to test for it, use
112 @code{scm_is_false} or @code{scm_is_true}.
113
114 @rnindex not
115 @deffn {Scheme Procedure} not x
116 @deffnx {C Function} scm_not (x)
117 Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
118 @end deffn
119
120 @rnindex boolean?
121 @deffn {Scheme Procedure} boolean? obj
122 @deffnx {C Function} scm_boolean_p (obj)
123 Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
124 return @code{#f}.
125 @end deffn
126
127 @deftypevr {C Macro} SCM SCM_BOOL_T
128 The @code{SCM} representation of the Scheme object @code{#t}.
129 @end deftypevr
130
131 @deftypevr {C Macro} SCM SCM_BOOL_F
132 The @code{SCM} representation of the Scheme object @code{#f}.
133 @end deftypevr
134
135 @deftypefn {C Function} int scm_is_true (SCM obj)
136 Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
137 @end deftypefn
138
139 @deftypefn {C Function} int scm_is_false (SCM obj)
140 Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
141 @end deftypefn
142
143 @deftypefn {C Function} int scm_is_bool (SCM obj)
144 Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
145 return @code{0}.
146 @end deftypefn
147
148 @deftypefn {C Function} SCM scm_from_bool (int val)
149 Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
150 @end deftypefn
151
152 @deftypefn {C Function} int scm_to_bool (SCM val)
153 Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
154 when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
155
156 You should probably use @code{scm_is_true} instead of this function
157 when you just want to test a @code{SCM} value for trueness.
158 @end deftypefn
159
160 @node Numbers
161 @subsection Numerical data types
162 @tpindex Numbers
163
164 Guile supports a rich ``tower'' of numerical types --- integer,
165 rational, real and complex --- and provides an extensive set of
166 mathematical and scientific functions for operating on numerical
167 data. This section of the manual documents those types and functions.
168
169 You may also find it illuminating to read R5RS's presentation of numbers
170 in Scheme, which is particularly clear and accessible: see
171 @ref{Numbers,,,r5rs,R5RS}.
172
173 @menu
174 * Numerical Tower:: Scheme's numerical "tower".
175 * Integers:: Whole numbers.
176 * Reals and Rationals:: Real and rational numbers.
177 * Complex Numbers:: Complex numbers.
178 * Exactness:: Exactness and inexactness.
179 * Number Syntax:: Read syntax for numerical data.
180 * Integer Operations:: Operations on integer values.
181 * Comparison:: Comparison predicates.
182 * Conversion:: Converting numbers to and from strings.
183 * Complex:: Complex number operations.
184 * Arithmetic:: Arithmetic functions.
185 * Scientific:: Scientific functions.
186 * Bitwise Operations:: Logical AND, OR, NOT, and so on.
187 * Random:: Random number generation.
188 @end menu
189
190
191 @node Numerical Tower
192 @subsubsection Scheme's Numerical ``Tower''
193 @rnindex number?
194
195 Scheme's numerical ``tower'' consists of the following categories of
196 numbers:
197
198 @table @dfn
199 @item integers
200 Whole numbers, positive or negative; e.g.@: --5, 0, 18.
201
202 @item rationals
203 The set of numbers that can be expressed as @math{@var{p}/@var{q}}
204 where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
205 pi (an irrational number) doesn't. These include integers
206 (@math{@var{n}/1}).
207
208 @item real numbers
209 The set of numbers that describes all possible positions along a
210 one-dimensional line. This includes rationals as well as irrational
211 numbers.
212
213 @item complex numbers
214 The set of numbers that describes all possible positions in a two
215 dimensional space. This includes real as well as imaginary numbers
216 (@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
217 @var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
218 @minus{}1.)
219 @end table
220
221 It is called a tower because each category ``sits on'' the one that
222 follows it, in the sense that every integer is also a rational, every
223 rational is also real, and every real number is also a complex number
224 (but with zero imaginary part).
225
226 In addition to the classification into integers, rationals, reals and
227 complex numbers, Scheme also distinguishes between whether a number is
228 represented exactly or not. For example, the result of
229 @m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
230 can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
231 Instead, it stores an inexact approximation, using the C type
232 @code{double}.
233
234 Guile can represent exact rationals of any magnitude, inexact
235 rationals that fit into a C @code{double}, and inexact complex numbers
236 with @code{double} real and imaginary parts.
237
238 The @code{number?} predicate may be applied to any Scheme value to
239 discover whether the value is any of the supported numerical types.
240
241 @deffn {Scheme Procedure} number? obj
242 @deffnx {C Function} scm_number_p (obj)
243 Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
244 @end deffn
245
246 For example:
247
248 @lisp
249 (number? 3)
250 @result{} #t
251
252 (number? "hello there!")
253 @result{} #f
254
255 (define pi 3.141592654)
256 (number? pi)
257 @result{} #t
258 @end lisp
259
260 @deftypefn {C Function} int scm_is_number (SCM obj)
261 This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
262 @end deftypefn
263
264 The next few subsections document each of Guile's numerical data types
265 in detail.
266
267 @node Integers
268 @subsubsection Integers
269
270 @tpindex Integer numbers
271
272 @rnindex integer?
273
274 Integers are whole numbers, that is numbers with no fractional part,
275 such as 2, 83, and @minus{}3789.
276
277 Integers in Guile can be arbitrarily big, as shown by the following
278 example.
279
280 @lisp
281 (define (factorial n)
282 (let loop ((n n) (product 1))
283 (if (= n 0)
284 product
285 (loop (- n 1) (* product n)))))
286
287 (factorial 3)
288 @result{} 6
289
290 (factorial 20)
291 @result{} 2432902008176640000
292
293 (- (factorial 45))
294 @result{} -119622220865480194561963161495657715064383733760000000000
295 @end lisp
296
297 Readers whose background is in programming languages where integers are
298 limited by the need to fit into just 4 or 8 bytes of memory may find
299 this surprising, or suspect that Guile's representation of integers is
300 inefficient. In fact, Guile achieves a near optimal balance of
301 convenience and efficiency by using the host computer's native
302 representation of integers where possible, and a more general
303 representation where the required number does not fit in the native
304 form. Conversion between these two representations is automatic and
305 completely invisible to the Scheme level programmer.
306
307 C has a host of different integer types, and Guile offers a host of
308 functions to convert between them and the @code{SCM} representation.
309 For example, a C @code{int} can be handled with @code{scm_to_int} and
310 @code{scm_from_int}. Guile also defines a few C integer types of its
311 own, to help with differences between systems.
312
313 C integer types that are not covered can be handled with the generic
314 @code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
315 signed types, or with @code{scm_to_unsigned_integer} and
316 @code{scm_from_unsigned_integer} for unsigned types.
317
318 Scheme integers can be exact and inexact. For example, a number
319 written as @code{3.0} with an explicit decimal-point is inexact, but
320 it is also an integer. The functions @code{integer?} and
321 @code{scm_is_integer} report true for such a number, but the functions
322 @code{exact-integer?}, @code{scm_is_exact_integer},
323 @code{scm_is_signed_integer}, and @code{scm_is_unsigned_integer} only
324 allow exact integers and thus report false. Likewise, the conversion
325 functions like @code{scm_to_signed_integer} only accept exact
326 integers.
327
328 The motivation for this behavior is that the inexactness of a number
329 should not be lost silently. If you want to allow inexact integers,
330 you can explicitly insert a call to @code{inexact->exact} or to its C
331 equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
332 be converted by this call into exact integers; inexact non-integers
333 will become exact fractions.)
334
335 @deffn {Scheme Procedure} integer? x
336 @deffnx {C Function} scm_integer_p (x)
337 Return @code{#t} if @var{x} is an exact or inexact integer number, else
338 return @code{#f}.
339
340 @lisp
341 (integer? 487)
342 @result{} #t
343
344 (integer? 3.0)
345 @result{} #t
346
347 (integer? -3.4)
348 @result{} #f
349
350 (integer? +inf.0)
351 @result{} #f
352 @end lisp
353 @end deffn
354
355 @deftypefn {C Function} int scm_is_integer (SCM x)
356 This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
357 @end deftypefn
358
359 @deffn {Scheme Procedure} exact-integer? x
360 @deffnx {C Function} scm_exact_integer_p (x)
361 Return @code{#t} if @var{x} is an exact integer number, else
362 return @code{#f}.
363
364 @lisp
365 (exact-integer? 37)
366 @result{} #t
367
368 (exact-integer? 3.0)
369 @result{} #f
370 @end lisp
371 @end deffn
372
373 @deftypefn {C Function} int scm_is_exact_integer (SCM x)
374 This is equivalent to @code{scm_is_true (scm_exact_integer_p (x))}.
375 @end deftypefn
376
377 @defvr {C Type} scm_t_int8
378 @defvrx {C Type} scm_t_uint8
379 @defvrx {C Type} scm_t_int16
380 @defvrx {C Type} scm_t_uint16
381 @defvrx {C Type} scm_t_int32
382 @defvrx {C Type} scm_t_uint32
383 @defvrx {C Type} scm_t_int64
384 @defvrx {C Type} scm_t_uint64
385 @defvrx {C Type} scm_t_intmax
386 @defvrx {C Type} scm_t_uintmax
387 The C types are equivalent to the corresponding ISO C types but are
388 defined on all platforms, with the exception of @code{scm_t_int64} and
389 @code{scm_t_uint64}, which are only defined when a 64-bit type is
390 available. For example, @code{scm_t_int8} is equivalent to
391 @code{int8_t}.
392
393 You can regard these definitions as a stop-gap measure until all
394 platforms provide these types. If you know that all the platforms
395 that you are interested in already provide these types, it is better
396 to use them directly instead of the types provided by Guile.
397 @end defvr
398
399 @deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
400 @deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
401 Return @code{1} when @var{x} represents an exact integer that is
402 between @var{min} and @var{max}, inclusive.
403
404 These functions can be used to check whether a @code{SCM} value will
405 fit into a given range, such as the range of a given C integer type.
406 If you just want to convert a @code{SCM} value to a given C integer
407 type, use one of the conversion functions directly.
408 @end deftypefn
409
410 @deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
411 @deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
412 When @var{x} represents an exact integer that is between @var{min} and
413 @var{max} inclusive, return that integer. Else signal an error,
414 either a `wrong-type' error when @var{x} is not an exact integer, or
415 an `out-of-range' error when it doesn't fit the given range.
416 @end deftypefn
417
418 @deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
419 @deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
420 Return the @code{SCM} value that represents the integer @var{x}. This
421 function will always succeed and will always return an exact number.
422 @end deftypefn
423
424 @deftypefn {C Function} char scm_to_char (SCM x)
425 @deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
426 @deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
427 @deftypefnx {C Function} short scm_to_short (SCM x)
428 @deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
429 @deftypefnx {C Function} int scm_to_int (SCM x)
430 @deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
431 @deftypefnx {C Function} long scm_to_long (SCM x)
432 @deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
433 @deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
434 @deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
435 @deftypefnx {C Function} size_t scm_to_size_t (SCM x)
436 @deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
437 @deftypefnx {C Function} scm_t_ptrdiff scm_to_ptrdiff_t (SCM x)
438 @deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
439 @deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
440 @deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
441 @deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
442 @deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
443 @deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
444 @deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
445 @deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
446 @deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
447 @deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
448 @deftypefnx {C Function} scm_t_intptr scm_to_intptr_t (SCM x)
449 @deftypefnx {C Function} scm_t_uintptr scm_to_uintptr_t (SCM x)
450 When @var{x} represents an exact integer that fits into the indicated
451 C type, return that integer. Else signal an error, either a
452 `wrong-type' error when @var{x} is not an exact integer, or an
453 `out-of-range' error when it doesn't fit the given range.
454
455 The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
456 @code{scm_to_int64}, and @code{scm_to_uint64} are only available when
457 the corresponding types are.
458 @end deftypefn
459
460 @deftypefn {C Function} SCM scm_from_char (char x)
461 @deftypefnx {C Function} SCM scm_from_schar (signed char x)
462 @deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
463 @deftypefnx {C Function} SCM scm_from_short (short x)
464 @deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
465 @deftypefnx {C Function} SCM scm_from_int (int x)
466 @deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
467 @deftypefnx {C Function} SCM scm_from_long (long x)
468 @deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
469 @deftypefnx {C Function} SCM scm_from_long_long (long long x)
470 @deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
471 @deftypefnx {C Function} SCM scm_from_size_t (size_t x)
472 @deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
473 @deftypefnx {C Function} SCM scm_from_ptrdiff_t (scm_t_ptrdiff x)
474 @deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
475 @deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
476 @deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
477 @deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
478 @deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
479 @deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
480 @deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
481 @deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
482 @deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
483 @deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
484 @deftypefnx {C Function} SCM scm_from_intptr_t (scm_t_intptr x)
485 @deftypefnx {C Function} SCM scm_from_uintptr_t (scm_t_uintptr x)
486 Return the @code{SCM} value that represents the integer @var{x}.
487 These functions will always succeed and will always return an exact
488 number.
489 @end deftypefn
490
491 @deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
492 Assign @var{val} to the multiple precision integer @var{rop}.
493 @var{val} must be an exact integer, otherwise an error will be
494 signalled. @var{rop} must have been initialized with @code{mpz_init}
495 before this function is called. When @var{rop} is no longer needed
496 the occupied space must be freed with @code{mpz_clear}.
497 @xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
498 @end deftypefn
499
500 @deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
501 Return the @code{SCM} value that represents @var{val}.
502 @end deftypefn
503
504 @node Reals and Rationals
505 @subsubsection Real and Rational Numbers
506 @tpindex Real numbers
507 @tpindex Rational numbers
508
509 @rnindex real?
510 @rnindex rational?
511
512 Mathematically, the real numbers are the set of numbers that describe
513 all possible points along a continuous, infinite, one-dimensional line.
514 The rational numbers are the set of all numbers that can be written as
515 fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
516 All rational numbers are also real, but there are real numbers that
517 are not rational, for example @m{\sqrt{2}, the square root of 2}, and
518 @m{\pi,pi}.
519
520 Guile can represent both exact and inexact rational numbers, but it
521 cannot represent precise finite irrational numbers. Exact rationals are
522 represented by storing the numerator and denominator as two exact
523 integers. Inexact rationals are stored as floating point numbers using
524 the C type @code{double}.
525
526 Exact rationals are written as a fraction of integers. There must be
527 no whitespace around the slash:
528
529 @lisp
530 1/2
531 -22/7
532 @end lisp
533
534 Even though the actual encoding of inexact rationals is in binary, it
535 may be helpful to think of it as a decimal number with a limited
536 number of significant figures and a decimal point somewhere, since
537 this corresponds to the standard notation for non-whole numbers. For
538 example:
539
540 @lisp
541 0.34
542 -0.00000142857931198
543 -5648394822220000000000.0
544 4.0
545 @end lisp
546
547 The limited precision of Guile's encoding means that any finite ``real''
548 number in Guile can be written in a rational form, by multiplying and
549 then dividing by sufficient powers of 10 (or in fact, 2). For example,
550 @samp{-0.00000142857931198} is the same as @minus{}142857931198 divided
551 by 100000000000000000. In Guile's current incarnation, therefore, the
552 @code{rational?} and @code{real?} predicates are equivalent for finite
553 numbers.
554
555
556 Dividing by an exact zero leads to a error message, as one might expect.
557 However, dividing by an inexact zero does not produce an error.
558 Instead, the result of the division is either plus or minus infinity,
559 depending on the sign of the divided number and the sign of the zero
560 divisor (some platforms support signed zeroes @samp{-0.0} and
561 @samp{+0.0}; @samp{0.0} is the same as @samp{+0.0}).
562
563 Dividing zero by an inexact zero yields a @acronym{NaN} (`not a number')
564 value, although they are actually considered numbers by Scheme.
565 Attempts to compare a @acronym{NaN} value with any number (including
566 itself) using @code{=}, @code{<}, @code{>}, @code{<=} or @code{>=}
567 always returns @code{#f}. Although a @acronym{NaN} value is not
568 @code{=} to itself, it is both @code{eqv?} and @code{equal?} to itself
569 and other @acronym{NaN} values. However, the preferred way to test for
570 them is by using @code{nan?}.
571
572 The real @acronym{NaN} values and infinities are written @samp{+nan.0},
573 @samp{+inf.0} and @samp{-inf.0}. This syntax is also recognized by
574 @code{read} as an extension to the usual Scheme syntax. These special
575 values are considered by Scheme to be inexact real numbers but not
576 rational. Note that non-real complex numbers may also contain
577 infinities or @acronym{NaN} values in their real or imaginary parts. To
578 test a real number to see if it is infinite, a @acronym{NaN} value, or
579 neither, use @code{inf?}, @code{nan?}, or @code{finite?}, respectively.
580 Every real number in Scheme belongs to precisely one of those three
581 classes.
582
583 On platforms that follow @acronym{IEEE} 754 for their floating point
584 arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
585 are implemented using the corresponding @acronym{IEEE} 754 values.
586 They behave in arithmetic operations like @acronym{IEEE} 754 describes
587 it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
588
589 @deffn {Scheme Procedure} real? obj
590 @deffnx {C Function} scm_real_p (obj)
591 Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
592 that the sets of integer and rational values form subsets of the set
593 of real numbers, so the predicate will also be fulfilled if @var{obj}
594 is an integer number or a rational number.
595 @end deffn
596
597 @deffn {Scheme Procedure} rational? x
598 @deffnx {C Function} scm_rational_p (x)
599 Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
600 Note that the set of integer values forms a subset of the set of
601 rational numbers, i.e.@: the predicate will also be fulfilled if
602 @var{x} is an integer number.
603 @end deffn
604
605 @deffn {Scheme Procedure} rationalize x eps
606 @deffnx {C Function} scm_rationalize (x, eps)
607 Returns the @emph{simplest} rational number differing
608 from @var{x} by no more than @var{eps}.
609
610 As required by @acronym{R5RS}, @code{rationalize} only returns an
611 exact result when both its arguments are exact. Thus, you might need
612 to use @code{inexact->exact} on the arguments.
613
614 @lisp
615 (rationalize (inexact->exact 1.2) 1/100)
616 @result{} 6/5
617 @end lisp
618
619 @end deffn
620
621 @deffn {Scheme Procedure} inf? x
622 @deffnx {C Function} scm_inf_p (x)
623 Return @code{#t} if the real number @var{x} is @samp{+inf.0} or
624 @samp{-inf.0}. Otherwise return @code{#f}.
625 @end deffn
626
627 @deffn {Scheme Procedure} nan? x
628 @deffnx {C Function} scm_nan_p (x)
629 Return @code{#t} if the real number @var{x} is @samp{+nan.0}, or
630 @code{#f} otherwise.
631 @end deffn
632
633 @deffn {Scheme Procedure} finite? x
634 @deffnx {C Function} scm_finite_p (x)
635 Return @code{#t} if the real number @var{x} is neither infinite nor a
636 NaN, @code{#f} otherwise.
637 @end deffn
638
639 @deffn {Scheme Procedure} nan
640 @deffnx {C Function} scm_nan ()
641 Return @samp{+nan.0}, a @acronym{NaN} value.
642 @end deffn
643
644 @deffn {Scheme Procedure} inf
645 @deffnx {C Function} scm_inf ()
646 Return @samp{+inf.0}, positive infinity.
647 @end deffn
648
649 @deffn {Scheme Procedure} numerator x
650 @deffnx {C Function} scm_numerator (x)
651 Return the numerator of the rational number @var{x}.
652 @end deffn
653
654 @deffn {Scheme Procedure} denominator x
655 @deffnx {C Function} scm_denominator (x)
656 Return the denominator of the rational number @var{x}.
657 @end deffn
658
659 @deftypefn {C Function} int scm_is_real (SCM val)
660 @deftypefnx {C Function} int scm_is_rational (SCM val)
661 Equivalent to @code{scm_is_true (scm_real_p (val))} and
662 @code{scm_is_true (scm_rational_p (val))}, respectively.
663 @end deftypefn
664
665 @deftypefn {C Function} double scm_to_double (SCM val)
666 Returns the number closest to @var{val} that is representable as a
667 @code{double}. Returns infinity for a @var{val} that is too large in
668 magnitude. The argument @var{val} must be a real number.
669 @end deftypefn
670
671 @deftypefn {C Function} SCM scm_from_double (double val)
672 Return the @code{SCM} value that represents @var{val}. The returned
673 value is inexact according to the predicate @code{inexact?}, but it
674 will be exactly equal to @var{val}.
675 @end deftypefn
676
677 @node Complex Numbers
678 @subsubsection Complex Numbers
679 @tpindex Complex numbers
680
681 @rnindex complex?
682
683 Complex numbers are the set of numbers that describe all possible points
684 in a two-dimensional space. The two coordinates of a particular point
685 in this space are known as the @dfn{real} and @dfn{imaginary} parts of
686 the complex number that describes that point.
687
688 In Guile, complex numbers are written in rectangular form as the sum of
689 their real and imaginary parts, using the symbol @code{i} to indicate
690 the imaginary part.
691
692 @lisp
693 3+4i
694 @result{}
695 3.0+4.0i
696
697 (* 3-8i 2.3+0.3i)
698 @result{}
699 9.3-17.5i
700 @end lisp
701
702 @cindex polar form
703 @noindent
704 Polar form can also be used, with an @samp{@@} between magnitude and
705 angle,
706
707 @lisp
708 1@@3.141592 @result{} -1.0 (approx)
709 -1@@1.57079 @result{} 0.0-1.0i (approx)
710 @end lisp
711
712 Guile represents a complex number as a pair of inexact reals, so the
713 real and imaginary parts of a complex number have the same properties of
714 inexactness and limited precision as single inexact real numbers.
715
716 Note that each part of a complex number may contain any inexact real
717 value, including the special values @samp{+nan.0}, @samp{+inf.0} and
718 @samp{-inf.0}, as well as either of the signed zeroes @samp{0.0} or
719 @samp{-0.0}.
720
721
722 @deffn {Scheme Procedure} complex? z
723 @deffnx {C Function} scm_complex_p (z)
724 Return @code{#t} if @var{z} is a complex number, @code{#f}
725 otherwise. Note that the sets of real, rational and integer
726 values form subsets of the set of complex numbers, i.e.@: the
727 predicate will also be fulfilled if @var{z} is a real,
728 rational or integer number.
729 @end deffn
730
731 @deftypefn {C Function} int scm_is_complex (SCM val)
732 Equivalent to @code{scm_is_true (scm_complex_p (val))}.
733 @end deftypefn
734
735 @node Exactness
736 @subsubsection Exact and Inexact Numbers
737 @tpindex Exact numbers
738 @tpindex Inexact numbers
739
740 @rnindex exact?
741 @rnindex inexact?
742 @rnindex exact->inexact
743 @rnindex inexact->exact
744
745 R5RS requires that, with few exceptions, a calculation involving inexact
746 numbers always produces an inexact result. To meet this requirement,
747 Guile distinguishes between an exact integer value such as @samp{5} and
748 the corresponding inexact integer value which, to the limited precision
749 available, has no fractional part, and is printed as @samp{5.0}. Guile
750 will only convert the latter value to the former when forced to do so by
751 an invocation of the @code{inexact->exact} procedure.
752
753 The only exception to the above requirement is when the values of the
754 inexact numbers do not affect the result. For example @code{(expt n 0)}
755 is @samp{1} for any value of @code{n}, therefore @code{(expt 5.0 0)} is
756 permitted to return an exact @samp{1}.
757
758 @deffn {Scheme Procedure} exact? z
759 @deffnx {C Function} scm_exact_p (z)
760 Return @code{#t} if the number @var{z} is exact, @code{#f}
761 otherwise.
762
763 @lisp
764 (exact? 2)
765 @result{} #t
766
767 (exact? 0.5)
768 @result{} #f
769
770 (exact? (/ 2))
771 @result{} #t
772 @end lisp
773
774 @end deffn
775
776 @deftypefn {C Function} int scm_is_exact (SCM z)
777 Return a @code{1} if the number @var{z} is exact, and @code{0}
778 otherwise. This is equivalent to @code{scm_is_true (scm_exact_p (z))}.
779
780 An alternate approch to testing the exactness of a number is to
781 use @code{scm_is_signed_integer} or @code{scm_is_unsigned_integer}.
782 @end deftypefn
783
784 @deffn {Scheme Procedure} inexact? z
785 @deffnx {C Function} scm_inexact_p (z)
786 Return @code{#t} if the number @var{z} is inexact, @code{#f}
787 else.
788 @end deffn
789
790 @deftypefn {C Function} int scm_is_inexact (SCM z)
791 Return a @code{1} if the number @var{z} is inexact, and @code{0}
792 otherwise. This is equivalent to @code{scm_is_true (scm_inexact_p (z))}.
793 @end deftypefn
794
795 @deffn {Scheme Procedure} inexact->exact z
796 @deffnx {C Function} scm_inexact_to_exact (z)
797 Return an exact number that is numerically closest to @var{z}, when
798 there is one. For inexact rationals, Guile returns the exact rational
799 that is numerically equal to the inexact rational. Inexact complex
800 numbers with a non-zero imaginary part can not be made exact.
801
802 @lisp
803 (inexact->exact 0.5)
804 @result{} 1/2
805 @end lisp
806
807 The following happens because 12/10 is not exactly representable as a
808 @code{double} (on most platforms). However, when reading a decimal
809 number that has been marked exact with the ``#e'' prefix, Guile is
810 able to represent it correctly.
811
812 @lisp
813 (inexact->exact 1.2)
814 @result{} 5404319552844595/4503599627370496
815
816 #e1.2
817 @result{} 6/5
818 @end lisp
819
820 @end deffn
821
822 @c begin (texi-doc-string "guile" "exact->inexact")
823 @deffn {Scheme Procedure} exact->inexact z
824 @deffnx {C Function} scm_exact_to_inexact (z)
825 Convert the number @var{z} to its inexact representation.
826 @end deffn
827
828
829 @node Number Syntax
830 @subsubsection Read Syntax for Numerical Data
831
832 The read syntax for integers is a string of digits, optionally
833 preceded by a minus or plus character, a code indicating the
834 base in which the integer is encoded, and a code indicating whether
835 the number is exact or inexact. The supported base codes are:
836
837 @table @code
838 @item #b
839 @itemx #B
840 the integer is written in binary (base 2)
841
842 @item #o
843 @itemx #O
844 the integer is written in octal (base 8)
845
846 @item #d
847 @itemx #D
848 the integer is written in decimal (base 10)
849
850 @item #x
851 @itemx #X
852 the integer is written in hexadecimal (base 16)
853 @end table
854
855 If the base code is omitted, the integer is assumed to be decimal. The
856 following examples show how these base codes are used.
857
858 @lisp
859 -13
860 @result{} -13
861
862 #d-13
863 @result{} -13
864
865 #x-13
866 @result{} -19
867
868 #b+1101
869 @result{} 13
870
871 #o377
872 @result{} 255
873 @end lisp
874
875 The codes for indicating exactness (which can, incidentally, be applied
876 to all numerical values) are:
877
878 @table @code
879 @item #e
880 @itemx #E
881 the number is exact
882
883 @item #i
884 @itemx #I
885 the number is inexact.
886 @end table
887
888 If the exactness indicator is omitted, the number is exact unless it
889 contains a radix point. Since Guile can not represent exact complex
890 numbers, an error is signalled when asking for them.
891
892 @lisp
893 (exact? 1.2)
894 @result{} #f
895
896 (exact? #e1.2)
897 @result{} #t
898
899 (exact? #e+1i)
900 ERROR: Wrong type argument
901 @end lisp
902
903 Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
904 plus and minus infinity, respectively. The value must be written
905 exactly as shown, that is, they always must have a sign and exactly
906 one zero digit after the decimal point. It also understands
907 @samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
908 The sign is ignored for `not-a-number' and the value is always printed
909 as @samp{+nan.0}.
910
911 @node Integer Operations
912 @subsubsection Operations on Integer Values
913 @rnindex odd?
914 @rnindex even?
915 @rnindex quotient
916 @rnindex remainder
917 @rnindex modulo
918 @rnindex gcd
919 @rnindex lcm
920
921 @deffn {Scheme Procedure} odd? n
922 @deffnx {C Function} scm_odd_p (n)
923 Return @code{#t} if @var{n} is an odd number, @code{#f}
924 otherwise.
925 @end deffn
926
927 @deffn {Scheme Procedure} even? n
928 @deffnx {C Function} scm_even_p (n)
929 Return @code{#t} if @var{n} is an even number, @code{#f}
930 otherwise.
931 @end deffn
932
933 @c begin (texi-doc-string "guile" "quotient")
934 @c begin (texi-doc-string "guile" "remainder")
935 @deffn {Scheme Procedure} quotient n d
936 @deffnx {Scheme Procedure} remainder n d
937 @deffnx {C Function} scm_quotient (n, d)
938 @deffnx {C Function} scm_remainder (n, d)
939 Return the quotient or remainder from @var{n} divided by @var{d}. The
940 quotient is rounded towards zero, and the remainder will have the same
941 sign as @var{n}. In all cases quotient and remainder satisfy
942 @math{@var{n} = @var{q}*@var{d} + @var{r}}.
943
944 @lisp
945 (remainder 13 4) @result{} 1
946 (remainder -13 4) @result{} -1
947 @end lisp
948
949 See also @code{truncate-quotient}, @code{truncate-remainder} and
950 related operations in @ref{Arithmetic}.
951 @end deffn
952
953 @c begin (texi-doc-string "guile" "modulo")
954 @deffn {Scheme Procedure} modulo n d
955 @deffnx {C Function} scm_modulo (n, d)
956 Return the remainder from @var{n} divided by @var{d}, with the same
957 sign as @var{d}.
958
959 @lisp
960 (modulo 13 4) @result{} 1
961 (modulo -13 4) @result{} 3
962 (modulo 13 -4) @result{} -3
963 (modulo -13 -4) @result{} -1
964 @end lisp
965
966 See also @code{floor-quotient}, @code{floor-remainder} and
967 related operations in @ref{Arithmetic}.
968 @end deffn
969
970 @c begin (texi-doc-string "guile" "gcd")
971 @deffn {Scheme Procedure} gcd x@dots{}
972 @deffnx {C Function} scm_gcd (x, y)
973 Return the greatest common divisor of all arguments.
974 If called without arguments, 0 is returned.
975
976 The C function @code{scm_gcd} always takes two arguments, while the
977 Scheme function can take an arbitrary number.
978 @end deffn
979
980 @c begin (texi-doc-string "guile" "lcm")
981 @deffn {Scheme Procedure} lcm x@dots{}
982 @deffnx {C Function} scm_lcm (x, y)
983 Return the least common multiple of the arguments.
984 If called without arguments, 1 is returned.
985
986 The C function @code{scm_lcm} always takes two arguments, while the
987 Scheme function can take an arbitrary number.
988 @end deffn
989
990 @deffn {Scheme Procedure} modulo-expt n k m
991 @deffnx {C Function} scm_modulo_expt (n, k, m)
992 Return @var{n} raised to the integer exponent
993 @var{k}, modulo @var{m}.
994
995 @lisp
996 (modulo-expt 2 3 5)
997 @result{} 3
998 @end lisp
999 @end deffn
1000
1001 @deftypefn {Scheme Procedure} {} exact-integer-sqrt @var{k}
1002 @deftypefnx {C Function} void scm_exact_integer_sqrt (SCM @var{k}, SCM *@var{s}, SCM *@var{r})
1003 Return two exact non-negative integers @var{s} and @var{r}
1004 such that @math{@var{k} = @var{s}^2 + @var{r}} and
1005 @math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.
1006 An error is raised if @var{k} is not an exact non-negative integer.
1007
1008 @lisp
1009 (exact-integer-sqrt 10) @result{} 3 and 1
1010 @end lisp
1011 @end deftypefn
1012
1013 @node Comparison
1014 @subsubsection Comparison Predicates
1015 @rnindex zero?
1016 @rnindex positive?
1017 @rnindex negative?
1018
1019 The C comparison functions below always takes two arguments, while the
1020 Scheme functions can take an arbitrary number. Also keep in mind that
1021 the C functions return one of the Scheme boolean values
1022 @code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
1023 is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
1024 y))} when testing the two Scheme numbers @code{x} and @code{y} for
1025 equality, for example.
1026
1027 @c begin (texi-doc-string "guile" "=")
1028 @deffn {Scheme Procedure} =
1029 @deffnx {C Function} scm_num_eq_p (x, y)
1030 Return @code{#t} if all parameters are numerically equal.
1031 @end deffn
1032
1033 @c begin (texi-doc-string "guile" "<")
1034 @deffn {Scheme Procedure} <
1035 @deffnx {C Function} scm_less_p (x, y)
1036 Return @code{#t} if the list of parameters is monotonically
1037 increasing.
1038 @end deffn
1039
1040 @c begin (texi-doc-string "guile" ">")
1041 @deffn {Scheme Procedure} >
1042 @deffnx {C Function} scm_gr_p (x, y)
1043 Return @code{#t} if the list of parameters is monotonically
1044 decreasing.
1045 @end deffn
1046
1047 @c begin (texi-doc-string "guile" "<=")
1048 @deffn {Scheme Procedure} <=
1049 @deffnx {C Function} scm_leq_p (x, y)
1050 Return @code{#t} if the list of parameters is monotonically
1051 non-decreasing.
1052 @end deffn
1053
1054 @c begin (texi-doc-string "guile" ">=")
1055 @deffn {Scheme Procedure} >=
1056 @deffnx {C Function} scm_geq_p (x, y)
1057 Return @code{#t} if the list of parameters is monotonically
1058 non-increasing.
1059 @end deffn
1060
1061 @c begin (texi-doc-string "guile" "zero?")
1062 @deffn {Scheme Procedure} zero? z
1063 @deffnx {C Function} scm_zero_p (z)
1064 Return @code{#t} if @var{z} is an exact or inexact number equal to
1065 zero.
1066 @end deffn
1067
1068 @c begin (texi-doc-string "guile" "positive?")
1069 @deffn {Scheme Procedure} positive? x
1070 @deffnx {C Function} scm_positive_p (x)
1071 Return @code{#t} if @var{x} is an exact or inexact number greater than
1072 zero.
1073 @end deffn
1074
1075 @c begin (texi-doc-string "guile" "negative?")
1076 @deffn {Scheme Procedure} negative? x
1077 @deffnx {C Function} scm_negative_p (x)
1078 Return @code{#t} if @var{x} is an exact or inexact number less than
1079 zero.
1080 @end deffn
1081
1082
1083 @node Conversion
1084 @subsubsection Converting Numbers To and From Strings
1085 @rnindex number->string
1086 @rnindex string->number
1087
1088 The following procedures read and write numbers according to their
1089 external representation as defined by R5RS (@pxref{Lexical structure,
1090 R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
1091 Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
1092 i18n)} module}, for locale-dependent number parsing.
1093
1094 @deffn {Scheme Procedure} number->string n [radix]
1095 @deffnx {C Function} scm_number_to_string (n, radix)
1096 Return a string holding the external representation of the
1097 number @var{n} in the given @var{radix}. If @var{n} is
1098 inexact, a radix of 10 will be used.
1099 @end deffn
1100
1101 @deffn {Scheme Procedure} string->number string [radix]
1102 @deffnx {C Function} scm_string_to_number (string, radix)
1103 Return a number of the maximally precise representation
1104 expressed by the given @var{string}. @var{radix} must be an
1105 exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1106 is a default radix that may be overridden by an explicit radix
1107 prefix in @var{string} (e.g.@: "#o177"). If @var{radix} is not
1108 supplied, then the default radix is 10. If string is not a
1109 syntactically valid notation for a number, then
1110 @code{string->number} returns @code{#f}.
1111 @end deffn
1112
1113 @deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1114 As per @code{string->number} above, but taking a C string, as pointer
1115 and length. The string characters should be in the current locale
1116 encoding (@code{locale} in the name refers only to that, there's no
1117 locale-dependent parsing).
1118 @end deftypefn
1119
1120
1121 @node Complex
1122 @subsubsection Complex Number Operations
1123 @rnindex make-rectangular
1124 @rnindex make-polar
1125 @rnindex real-part
1126 @rnindex imag-part
1127 @rnindex magnitude
1128 @rnindex angle
1129
1130 @deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1131 @deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1132 Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
1133 @end deffn
1134
1135 @deffn {Scheme Procedure} make-polar mag ang
1136 @deffnx {C Function} scm_make_polar (mag, ang)
1137 @cindex polar form
1138 Return the complex number @var{mag} * e^(i * @var{ang}).
1139 @end deffn
1140
1141 @c begin (texi-doc-string "guile" "real-part")
1142 @deffn {Scheme Procedure} real-part z
1143 @deffnx {C Function} scm_real_part (z)
1144 Return the real part of the number @var{z}.
1145 @end deffn
1146
1147 @c begin (texi-doc-string "guile" "imag-part")
1148 @deffn {Scheme Procedure} imag-part z
1149 @deffnx {C Function} scm_imag_part (z)
1150 Return the imaginary part of the number @var{z}.
1151 @end deffn
1152
1153 @c begin (texi-doc-string "guile" "magnitude")
1154 @deffn {Scheme Procedure} magnitude z
1155 @deffnx {C Function} scm_magnitude (z)
1156 Return the magnitude of the number @var{z}. This is the same as
1157 @code{abs} for real arguments, but also allows complex numbers.
1158 @end deffn
1159
1160 @c begin (texi-doc-string "guile" "angle")
1161 @deffn {Scheme Procedure} angle z
1162 @deffnx {C Function} scm_angle (z)
1163 Return the angle of the complex number @var{z}.
1164 @end deffn
1165
1166 @deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1167 @deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1168 Like @code{scm_make_rectangular} or @code{scm_make_polar},
1169 respectively, but these functions take @code{double}s as their
1170 arguments.
1171 @end deftypefn
1172
1173 @deftypefn {C Function} double scm_c_real_part (z)
1174 @deftypefnx {C Function} double scm_c_imag_part (z)
1175 Returns the real or imaginary part of @var{z} as a @code{double}.
1176 @end deftypefn
1177
1178 @deftypefn {C Function} double scm_c_magnitude (z)
1179 @deftypefnx {C Function} double scm_c_angle (z)
1180 Returns the magnitude or angle of @var{z} as a @code{double}.
1181 @end deftypefn
1182
1183
1184 @node Arithmetic
1185 @subsubsection Arithmetic Functions
1186 @rnindex max
1187 @rnindex min
1188 @rnindex +
1189 @rnindex *
1190 @rnindex -
1191 @rnindex /
1192 @findex 1+
1193 @findex 1-
1194 @rnindex abs
1195 @rnindex floor
1196 @rnindex ceiling
1197 @rnindex truncate
1198 @rnindex round
1199 @rnindex euclidean/
1200 @rnindex euclidean-quotient
1201 @rnindex euclidean-remainder
1202 @rnindex floor/
1203 @rnindex floor-quotient
1204 @rnindex floor-remainder
1205 @rnindex ceiling/
1206 @rnindex ceiling-quotient
1207 @rnindex ceiling-remainder
1208 @rnindex truncate/
1209 @rnindex truncate-quotient
1210 @rnindex truncate-remainder
1211 @rnindex centered/
1212 @rnindex centered-quotient
1213 @rnindex centered-remainder
1214 @rnindex round/
1215 @rnindex round-quotient
1216 @rnindex round-remainder
1217
1218 The C arithmetic functions below always takes two arguments, while the
1219 Scheme functions can take an arbitrary number. When you need to
1220 invoke them with just one argument, for example to compute the
1221 equivalent of @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1222 one: @code{scm_difference (x, SCM_UNDEFINED)}.
1223
1224 @c begin (texi-doc-string "guile" "+")
1225 @deffn {Scheme Procedure} + z1 @dots{}
1226 @deffnx {C Function} scm_sum (z1, z2)
1227 Return the sum of all parameter values. Return 0 if called without any
1228 parameters.
1229 @end deffn
1230
1231 @c begin (texi-doc-string "guile" "-")
1232 @deffn {Scheme Procedure} - z1 z2 @dots{}
1233 @deffnx {C Function} scm_difference (z1, z2)
1234 If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1235 the sum of all but the first argument are subtracted from the first
1236 argument.
1237 @end deffn
1238
1239 @c begin (texi-doc-string "guile" "*")
1240 @deffn {Scheme Procedure} * z1 @dots{}
1241 @deffnx {C Function} scm_product (z1, z2)
1242 Return the product of all arguments. If called without arguments, 1 is
1243 returned.
1244 @end deffn
1245
1246 @c begin (texi-doc-string "guile" "/")
1247 @deffn {Scheme Procedure} / z1 z2 @dots{}
1248 @deffnx {C Function} scm_divide (z1, z2)
1249 Divide the first argument by the product of the remaining arguments. If
1250 called with one argument @var{z1}, 1/@var{z1} is returned.
1251 @end deffn
1252
1253 @deffn {Scheme Procedure} 1+ z
1254 @deffnx {C Function} scm_oneplus (z)
1255 Return @math{@var{z} + 1}.
1256 @end deffn
1257
1258 @deffn {Scheme Procedure} 1- z
1259 @deffnx {C function} scm_oneminus (z)
1260 Return @math{@var{z} - 1}.
1261 @end deffn
1262
1263 @c begin (texi-doc-string "guile" "abs")
1264 @deffn {Scheme Procedure} abs x
1265 @deffnx {C Function} scm_abs (x)
1266 Return the absolute value of @var{x}.
1267
1268 @var{x} must be a number with zero imaginary part. To calculate the
1269 magnitude of a complex number, use @code{magnitude} instead.
1270 @end deffn
1271
1272 @c begin (texi-doc-string "guile" "max")
1273 @deffn {Scheme Procedure} max x1 x2 @dots{}
1274 @deffnx {C Function} scm_max (x1, x2)
1275 Return the maximum of all parameter values.
1276 @end deffn
1277
1278 @c begin (texi-doc-string "guile" "min")
1279 @deffn {Scheme Procedure} min x1 x2 @dots{}
1280 @deffnx {C Function} scm_min (x1, x2)
1281 Return the minimum of all parameter values.
1282 @end deffn
1283
1284 @c begin (texi-doc-string "guile" "truncate")
1285 @deffn {Scheme Procedure} truncate x
1286 @deffnx {C Function} scm_truncate_number (x)
1287 Round the inexact number @var{x} towards zero.
1288 @end deffn
1289
1290 @c begin (texi-doc-string "guile" "round")
1291 @deffn {Scheme Procedure} round x
1292 @deffnx {C Function} scm_round_number (x)
1293 Round the inexact number @var{x} to the nearest integer. When exactly
1294 halfway between two integers, round to the even one.
1295 @end deffn
1296
1297 @c begin (texi-doc-string "guile" "floor")
1298 @deffn {Scheme Procedure} floor x
1299 @deffnx {C Function} scm_floor (x)
1300 Round the number @var{x} towards minus infinity.
1301 @end deffn
1302
1303 @c begin (texi-doc-string "guile" "ceiling")
1304 @deffn {Scheme Procedure} ceiling x
1305 @deffnx {C Function} scm_ceiling (x)
1306 Round the number @var{x} towards infinity.
1307 @end deffn
1308
1309 @deftypefn {C Function} double scm_c_truncate (double x)
1310 @deftypefnx {C Function} double scm_c_round (double x)
1311 Like @code{scm_truncate_number} or @code{scm_round_number},
1312 respectively, but these functions take and return @code{double}
1313 values.
1314 @end deftypefn
1315
1316 @deftypefn {Scheme Procedure} {} euclidean/ @var{x} @var{y}
1317 @deftypefnx {Scheme Procedure} {} euclidean-quotient @var{x} @var{y}
1318 @deftypefnx {Scheme Procedure} {} euclidean-remainder @var{x} @var{y}
1319 @deftypefnx {C Function} void scm_euclidean_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1320 @deftypefnx {C Function} SCM scm_euclidean_quotient (SCM @var{x}, SCM @var{y})
1321 @deftypefnx {C Function} SCM scm_euclidean_remainder (SCM @var{x}, SCM @var{y})
1322 These procedures accept two real numbers @var{x} and @var{y}, where the
1323 divisor @var{y} must be non-zero. @code{euclidean-quotient} returns the
1324 integer @var{q} and @code{euclidean-remainder} returns the real number
1325 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1326 @math{0 <= @var{r} < |@var{y}|}. @code{euclidean/} returns both @var{q} and
1327 @var{r}, and is more efficient than computing each separately. Note
1328 that when @math{@var{y} > 0}, @code{euclidean-quotient} returns
1329 @math{floor(@var{x}/@var{y})}, otherwise it returns
1330 @math{ceiling(@var{x}/@var{y})}.
1331
1332 Note that these operators are equivalent to the R6RS operators
1333 @code{div}, @code{mod}, and @code{div-and-mod}.
1334
1335 @lisp
1336 (euclidean-quotient 123 10) @result{} 12
1337 (euclidean-remainder 123 10) @result{} 3
1338 (euclidean/ 123 10) @result{} 12 and 3
1339 (euclidean/ 123 -10) @result{} -12 and 3
1340 (euclidean/ -123 10) @result{} -13 and 7
1341 (euclidean/ -123 -10) @result{} 13 and 7
1342 (euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8
1343 (euclidean/ 16/3 -10/7) @result{} -3 and 22/21
1344 @end lisp
1345 @end deftypefn
1346
1347 @deftypefn {Scheme Procedure} {} floor/ @var{x} @var{y}
1348 @deftypefnx {Scheme Procedure} {} floor-quotient @var{x} @var{y}
1349 @deftypefnx {Scheme Procedure} {} floor-remainder @var{x} @var{y}
1350 @deftypefnx {C Function} void scm_floor_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1351 @deftypefnx {C Function} SCM scm_floor_quotient (@var{x}, @var{y})
1352 @deftypefnx {C Function} SCM scm_floor_remainder (@var{x}, @var{y})
1353 These procedures accept two real numbers @var{x} and @var{y}, where the
1354 divisor @var{y} must be non-zero. @code{floor-quotient} returns the
1355 integer @var{q} and @code{floor-remainder} returns the real number
1356 @var{r} such that @math{@var{q} = floor(@var{x}/@var{y})} and
1357 @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{floor/} returns
1358 both @var{q} and @var{r}, and is more efficient than computing each
1359 separately. Note that @var{r}, if non-zero, will have the same sign
1360 as @var{y}.
1361
1362 When @var{x} and @var{y} are integers, @code{floor-remainder} is
1363 equivalent to the R5RS integer-only operator @code{modulo}.
1364
1365 @lisp
1366 (floor-quotient 123 10) @result{} 12
1367 (floor-remainder 123 10) @result{} 3
1368 (floor/ 123 10) @result{} 12 and 3
1369 (floor/ 123 -10) @result{} -13 and -7
1370 (floor/ -123 10) @result{} -13 and 7
1371 (floor/ -123 -10) @result{} 12 and -3
1372 (floor/ -123.2 -63.5) @result{} 1.0 and -59.7
1373 (floor/ 16/3 -10/7) @result{} -4 and -8/21
1374 @end lisp
1375 @end deftypefn
1376
1377 @deftypefn {Scheme Procedure} {} ceiling/ @var{x} @var{y}
1378 @deftypefnx {Scheme Procedure} {} ceiling-quotient @var{x} @var{y}
1379 @deftypefnx {Scheme Procedure} {} ceiling-remainder @var{x} @var{y}
1380 @deftypefnx {C Function} void scm_ceiling_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1381 @deftypefnx {C Function} SCM scm_ceiling_quotient (@var{x}, @var{y})
1382 @deftypefnx {C Function} SCM scm_ceiling_remainder (@var{x}, @var{y})
1383 These procedures accept two real numbers @var{x} and @var{y}, where the
1384 divisor @var{y} must be non-zero. @code{ceiling-quotient} returns the
1385 integer @var{q} and @code{ceiling-remainder} returns the real number
1386 @var{r} such that @math{@var{q} = ceiling(@var{x}/@var{y})} and
1387 @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{ceiling/} returns
1388 both @var{q} and @var{r}, and is more efficient than computing each
1389 separately. Note that @var{r}, if non-zero, will have the opposite sign
1390 of @var{y}.
1391
1392 @lisp
1393 (ceiling-quotient 123 10) @result{} 13
1394 (ceiling-remainder 123 10) @result{} -7
1395 (ceiling/ 123 10) @result{} 13 and -7
1396 (ceiling/ 123 -10) @result{} -12 and 3
1397 (ceiling/ -123 10) @result{} -12 and -3
1398 (ceiling/ -123 -10) @result{} 13 and 7
1399 (ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8
1400 (ceiling/ 16/3 -10/7) @result{} -3 and 22/21
1401 @end lisp
1402 @end deftypefn
1403
1404 @deftypefn {Scheme Procedure} {} truncate/ @var{x} @var{y}
1405 @deftypefnx {Scheme Procedure} {} truncate-quotient @var{x} @var{y}
1406 @deftypefnx {Scheme Procedure} {} truncate-remainder @var{x} @var{y}
1407 @deftypefnx {C Function} void scm_truncate_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1408 @deftypefnx {C Function} SCM scm_truncate_quotient (@var{x}, @var{y})
1409 @deftypefnx {C Function} SCM scm_truncate_remainder (@var{x}, @var{y})
1410 These procedures accept two real numbers @var{x} and @var{y}, where the
1411 divisor @var{y} must be non-zero. @code{truncate-quotient} returns the
1412 integer @var{q} and @code{truncate-remainder} returns the real number
1413 @var{r} such that @var{q} is @math{@var{x}/@var{y}} rounded toward zero,
1414 and @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{truncate/} returns
1415 both @var{q} and @var{r}, and is more efficient than computing each
1416 separately. Note that @var{r}, if non-zero, will have the same sign
1417 as @var{x}.
1418
1419 When @var{x} and @var{y} are integers, these operators are
1420 equivalent to the R5RS integer-only operators @code{quotient} and
1421 @code{remainder}.
1422
1423 @lisp
1424 (truncate-quotient 123 10) @result{} 12
1425 (truncate-remainder 123 10) @result{} 3
1426 (truncate/ 123 10) @result{} 12 and 3
1427 (truncate/ 123 -10) @result{} -12 and 3
1428 (truncate/ -123 10) @result{} -12 and -3
1429 (truncate/ -123 -10) @result{} 12 and -3
1430 (truncate/ -123.2 -63.5) @result{} 1.0 and -59.7
1431 (truncate/ 16/3 -10/7) @result{} -3 and 22/21
1432 @end lisp
1433 @end deftypefn
1434
1435 @deftypefn {Scheme Procedure} {} centered/ @var{x} @var{y}
1436 @deftypefnx {Scheme Procedure} {} centered-quotient @var{x} @var{y}
1437 @deftypefnx {Scheme Procedure} {} centered-remainder @var{x} @var{y}
1438 @deftypefnx {C Function} void scm_centered_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1439 @deftypefnx {C Function} SCM scm_centered_quotient (SCM @var{x}, SCM @var{y})
1440 @deftypefnx {C Function} SCM scm_centered_remainder (SCM @var{x}, SCM @var{y})
1441 These procedures accept two real numbers @var{x} and @var{y}, where the
1442 divisor @var{y} must be non-zero. @code{centered-quotient} returns the
1443 integer @var{q} and @code{centered-remainder} returns the real number
1444 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1445 @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}. @code{centered/}
1446 returns both @var{q} and @var{r}, and is more efficient than computing
1447 each separately.
1448
1449 Note that @code{centered-quotient} returns @math{@var{x}/@var{y}}
1450 rounded to the nearest integer. When @math{@var{x}/@var{y}} lies
1451 exactly half-way between two integers, the tie is broken according to
1452 the sign of @var{y}. If @math{@var{y} > 0}, ties are rounded toward
1453 positive infinity, otherwise they are rounded toward negative infinity.
1454 This is a consequence of the requirement that
1455 @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}.
1456
1457 Note that these operators are equivalent to the R6RS operators
1458 @code{div0}, @code{mod0}, and @code{div0-and-mod0}.
1459
1460 @lisp
1461 (centered-quotient 123 10) @result{} 12
1462 (centered-remainder 123 10) @result{} 3
1463 (centered/ 123 10) @result{} 12 and 3
1464 (centered/ 123 -10) @result{} -12 and 3
1465 (centered/ -123 10) @result{} -12 and -3
1466 (centered/ -123 -10) @result{} 12 and -3
1467 (centered/ 125 10) @result{} 13 and -5
1468 (centered/ 127 10) @result{} 13 and -3
1469 (centered/ 135 10) @result{} 14 and -5
1470 (centered/ -123.2 -63.5) @result{} 2.0 and 3.8
1471 (centered/ 16/3 -10/7) @result{} -4 and -8/21
1472 @end lisp
1473 @end deftypefn
1474
1475 @deftypefn {Scheme Procedure} {} round/ @var{x} @var{y}
1476 @deftypefnx {Scheme Procedure} {} round-quotient @var{x} @var{y}
1477 @deftypefnx {Scheme Procedure} {} round-remainder @var{x} @var{y}
1478 @deftypefnx {C Function} void scm_round_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1479 @deftypefnx {C Function} SCM scm_round_quotient (@var{x}, @var{y})
1480 @deftypefnx {C Function} SCM scm_round_remainder (@var{x}, @var{y})
1481 These procedures accept two real numbers @var{x} and @var{y}, where the
1482 divisor @var{y} must be non-zero. @code{round-quotient} returns the
1483 integer @var{q} and @code{round-remainder} returns the real number
1484 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1485 @var{q} is @math{@var{x}/@var{y}} rounded to the nearest integer,
1486 with ties going to the nearest even integer. @code{round/}
1487 returns both @var{q} and @var{r}, and is more efficient than computing
1488 each separately.
1489
1490 Note that @code{round/} and @code{centered/} are almost equivalent, but
1491 their behavior differs when @math{@var{x}/@var{y}} lies exactly half-way
1492 between two integers. In this case, @code{round/} chooses the nearest
1493 even integer, whereas @code{centered/} chooses in such a way to satisfy
1494 the constraint @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}, which
1495 is stronger than the corresponding constraint for @code{round/},
1496 @math{-|@var{y}/2| <= @var{r} <= |@var{y}/2|}. In particular,
1497 when @var{x} and @var{y} are integers, the number of possible remainders
1498 returned by @code{centered/} is @math{|@var{y}|}, whereas the number of
1499 possible remainders returned by @code{round/} is @math{|@var{y}|+1} when
1500 @var{y} is even.
1501
1502 @lisp
1503 (round-quotient 123 10) @result{} 12
1504 (round-remainder 123 10) @result{} 3
1505 (round/ 123 10) @result{} 12 and 3
1506 (round/ 123 -10) @result{} -12 and 3
1507 (round/ -123 10) @result{} -12 and -3
1508 (round/ -123 -10) @result{} 12 and -3
1509 (round/ 125 10) @result{} 12 and 5
1510 (round/ 127 10) @result{} 13 and -3
1511 (round/ 135 10) @result{} 14 and -5
1512 (round/ -123.2 -63.5) @result{} 2.0 and 3.8
1513 (round/ 16/3 -10/7) @result{} -4 and -8/21
1514 @end lisp
1515 @end deftypefn
1516
1517 @node Scientific
1518 @subsubsection Scientific Functions
1519
1520 The following procedures accept any kind of number as arguments,
1521 including complex numbers.
1522
1523 @rnindex sqrt
1524 @c begin (texi-doc-string "guile" "sqrt")
1525 @deffn {Scheme Procedure} sqrt z
1526 Return the square root of @var{z}. Of the two possible roots
1527 (positive and negative), the one with a positive real part is
1528 returned, or if that's zero then a positive imaginary part. Thus,
1529
1530 @example
1531 (sqrt 9.0) @result{} 3.0
1532 (sqrt -9.0) @result{} 0.0+3.0i
1533 (sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1534 (sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1535 @end example
1536 @end deffn
1537
1538 @rnindex expt
1539 @c begin (texi-doc-string "guile" "expt")
1540 @deffn {Scheme Procedure} expt z1 z2
1541 Return @var{z1} raised to the power of @var{z2}.
1542 @end deffn
1543
1544 @rnindex sin
1545 @c begin (texi-doc-string "guile" "sin")
1546 @deffn {Scheme Procedure} sin z
1547 Return the sine of @var{z}.
1548 @end deffn
1549
1550 @rnindex cos
1551 @c begin (texi-doc-string "guile" "cos")
1552 @deffn {Scheme Procedure} cos z
1553 Return the cosine of @var{z}.
1554 @end deffn
1555
1556 @rnindex tan
1557 @c begin (texi-doc-string "guile" "tan")
1558 @deffn {Scheme Procedure} tan z
1559 Return the tangent of @var{z}.
1560 @end deffn
1561
1562 @rnindex asin
1563 @c begin (texi-doc-string "guile" "asin")
1564 @deffn {Scheme Procedure} asin z
1565 Return the arcsine of @var{z}.
1566 @end deffn
1567
1568 @rnindex acos
1569 @c begin (texi-doc-string "guile" "acos")
1570 @deffn {Scheme Procedure} acos z
1571 Return the arccosine of @var{z}.
1572 @end deffn
1573
1574 @rnindex atan
1575 @c begin (texi-doc-string "guile" "atan")
1576 @deffn {Scheme Procedure} atan z
1577 @deffnx {Scheme Procedure} atan y x
1578 Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1579 @end deffn
1580
1581 @rnindex exp
1582 @c begin (texi-doc-string "guile" "exp")
1583 @deffn {Scheme Procedure} exp z
1584 Return e to the power of @var{z}, where e is the base of natural
1585 logarithms (2.71828@dots{}).
1586 @end deffn
1587
1588 @rnindex log
1589 @c begin (texi-doc-string "guile" "log")
1590 @deffn {Scheme Procedure} log z
1591 Return the natural logarithm of @var{z}.
1592 @end deffn
1593
1594 @c begin (texi-doc-string "guile" "log10")
1595 @deffn {Scheme Procedure} log10 z
1596 Return the base 10 logarithm of @var{z}.
1597 @end deffn
1598
1599 @c begin (texi-doc-string "guile" "sinh")
1600 @deffn {Scheme Procedure} sinh z
1601 Return the hyperbolic sine of @var{z}.
1602 @end deffn
1603
1604 @c begin (texi-doc-string "guile" "cosh")
1605 @deffn {Scheme Procedure} cosh z
1606 Return the hyperbolic cosine of @var{z}.
1607 @end deffn
1608
1609 @c begin (texi-doc-string "guile" "tanh")
1610 @deffn {Scheme Procedure} tanh z
1611 Return the hyperbolic tangent of @var{z}.
1612 @end deffn
1613
1614 @c begin (texi-doc-string "guile" "asinh")
1615 @deffn {Scheme Procedure} asinh z
1616 Return the hyperbolic arcsine of @var{z}.
1617 @end deffn
1618
1619 @c begin (texi-doc-string "guile" "acosh")
1620 @deffn {Scheme Procedure} acosh z
1621 Return the hyperbolic arccosine of @var{z}.
1622 @end deffn
1623
1624 @c begin (texi-doc-string "guile" "atanh")
1625 @deffn {Scheme Procedure} atanh z
1626 Return the hyperbolic arctangent of @var{z}.
1627 @end deffn
1628
1629
1630 @node Bitwise Operations
1631 @subsubsection Bitwise Operations
1632
1633 For the following bitwise functions, negative numbers are treated as
1634 infinite precision twos-complements. For instance @math{-6} is bits
1635 @math{@dots{}111010}, with infinitely many ones on the left. It can
1636 be seen that adding 6 (binary 110) to such a bit pattern gives all
1637 zeros.
1638
1639 @deffn {Scheme Procedure} logand n1 n2 @dots{}
1640 @deffnx {C Function} scm_logand (n1, n2)
1641 Return the bitwise @sc{and} of the integer arguments.
1642
1643 @lisp
1644 (logand) @result{} -1
1645 (logand 7) @result{} 7
1646 (logand #b111 #b011 #b001) @result{} 1
1647 @end lisp
1648 @end deffn
1649
1650 @deffn {Scheme Procedure} logior n1 n2 @dots{}
1651 @deffnx {C Function} scm_logior (n1, n2)
1652 Return the bitwise @sc{or} of the integer arguments.
1653
1654 @lisp
1655 (logior) @result{} 0
1656 (logior 7) @result{} 7
1657 (logior #b000 #b001 #b011) @result{} 3
1658 @end lisp
1659 @end deffn
1660
1661 @deffn {Scheme Procedure} logxor n1 n2 @dots{}
1662 @deffnx {C Function} scm_loxor (n1, n2)
1663 Return the bitwise @sc{xor} of the integer arguments. A bit is
1664 set in the result if it is set in an odd number of arguments.
1665
1666 @lisp
1667 (logxor) @result{} 0
1668 (logxor 7) @result{} 7
1669 (logxor #b000 #b001 #b011) @result{} 2
1670 (logxor #b000 #b001 #b011 #b011) @result{} 1
1671 @end lisp
1672 @end deffn
1673
1674 @deffn {Scheme Procedure} lognot n
1675 @deffnx {C Function} scm_lognot (n)
1676 Return the integer which is the ones-complement of the integer
1677 argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1678
1679 @lisp
1680 (number->string (lognot #b10000000) 2)
1681 @result{} "-10000001"
1682 (number->string (lognot #b0) 2)
1683 @result{} "-1"
1684 @end lisp
1685 @end deffn
1686
1687 @deffn {Scheme Procedure} logtest j k
1688 @deffnx {C Function} scm_logtest (j, k)
1689 Test whether @var{j} and @var{k} have any 1 bits in common. This is
1690 equivalent to @code{(not (zero? (logand j k)))}, but without actually
1691 calculating the @code{logand}, just testing for non-zero.
1692
1693 @lisp
1694 (logtest #b0100 #b1011) @result{} #f
1695 (logtest #b0100 #b0111) @result{} #t
1696 @end lisp
1697 @end deffn
1698
1699 @deffn {Scheme Procedure} logbit? index j
1700 @deffnx {C Function} scm_logbit_p (index, j)
1701 Test whether bit number @var{index} in @var{j} is set. @var{index}
1702 starts from 0 for the least significant bit.
1703
1704 @lisp
1705 (logbit? 0 #b1101) @result{} #t
1706 (logbit? 1 #b1101) @result{} #f
1707 (logbit? 2 #b1101) @result{} #t
1708 (logbit? 3 #b1101) @result{} #t
1709 (logbit? 4 #b1101) @result{} #f
1710 @end lisp
1711 @end deffn
1712
1713 @deffn {Scheme Procedure} ash n count
1714 @deffnx {C Function} scm_ash (n, count)
1715 Return @math{floor(n * 2^count)}.
1716 @var{n} and @var{count} must be exact integers.
1717
1718 With @var{n} viewed as an infinite-precision twos-complement
1719 integer, @code{ash} means a left shift introducing zero bits
1720 when @var{count} is positive, or a right shift dropping bits
1721 when @var{count} is negative. This is an ``arithmetic'' shift.
1722
1723 @lisp
1724 (number->string (ash #b1 3) 2) @result{} "1000"
1725 (number->string (ash #b1010 -1) 2) @result{} "101"
1726
1727 ;; -23 is bits ...11101001, -6 is bits ...111010
1728 (ash -23 -2) @result{} -6
1729 @end lisp
1730 @end deffn
1731
1732 @deffn {Scheme Procedure} round-ash n count
1733 @deffnx {C Function} scm_round_ash (n, count)
1734 Return @math{round(n * 2^count)}.
1735 @var{n} and @var{count} must be exact integers.
1736
1737 With @var{n} viewed as an infinite-precision twos-complement
1738 integer, @code{round-ash} means a left shift introducing zero
1739 bits when @var{count} is positive, or a right shift rounding
1740 to the nearest integer (with ties going to the nearest even
1741 integer) when @var{count} is negative. This is a rounded
1742 ``arithmetic'' shift.
1743
1744 @lisp
1745 (number->string (round-ash #b1 3) 2) @result{} \"1000\"
1746 (number->string (round-ash #b1010 -1) 2) @result{} \"101\"
1747 (number->string (round-ash #b1010 -2) 2) @result{} \"10\"
1748 (number->string (round-ash #b1011 -2) 2) @result{} \"11\"
1749 (number->string (round-ash #b1101 -2) 2) @result{} \"11\"
1750 (number->string (round-ash #b1110 -2) 2) @result{} \"100\"
1751 @end lisp
1752 @end deffn
1753
1754 @deffn {Scheme Procedure} logcount n
1755 @deffnx {C Function} scm_logcount (n)
1756 Return the number of bits in integer @var{n}. If @var{n} is
1757 positive, the 1-bits in its binary representation are counted.
1758 If negative, the 0-bits in its two's-complement binary
1759 representation are counted. If zero, 0 is returned.
1760
1761 @lisp
1762 (logcount #b10101010)
1763 @result{} 4
1764 (logcount 0)
1765 @result{} 0
1766 (logcount -2)
1767 @result{} 1
1768 @end lisp
1769 @end deffn
1770
1771 @deffn {Scheme Procedure} integer-length n
1772 @deffnx {C Function} scm_integer_length (n)
1773 Return the number of bits necessary to represent @var{n}.
1774
1775 For positive @var{n} this is how many bits to the most significant one
1776 bit. For negative @var{n} it's how many bits to the most significant
1777 zero bit in twos complement form.
1778
1779 @lisp
1780 (integer-length #b10101010) @result{} 8
1781 (integer-length #b1111) @result{} 4
1782 (integer-length 0) @result{} 0
1783 (integer-length -1) @result{} 0
1784 (integer-length -256) @result{} 8
1785 (integer-length -257) @result{} 9
1786 @end lisp
1787 @end deffn
1788
1789 @deffn {Scheme Procedure} integer-expt n k
1790 @deffnx {C Function} scm_integer_expt (n, k)
1791 Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1792 integer, @var{n} can be any number.
1793
1794 Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1795 in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1796 @math{0^0} is 1.
1797
1798 @lisp
1799 (integer-expt 2 5) @result{} 32
1800 (integer-expt -3 3) @result{} -27
1801 (integer-expt 5 -3) @result{} 1/125
1802 (integer-expt 0 0) @result{} 1
1803 @end lisp
1804 @end deffn
1805
1806 @deffn {Scheme Procedure} bit-extract n start end
1807 @deffnx {C Function} scm_bit_extract (n, start, end)
1808 Return the integer composed of the @var{start} (inclusive)
1809 through @var{end} (exclusive) bits of @var{n}. The
1810 @var{start}th bit becomes the 0-th bit in the result.
1811
1812 @lisp
1813 (number->string (bit-extract #b1101101010 0 4) 2)
1814 @result{} "1010"
1815 (number->string (bit-extract #b1101101010 4 9) 2)
1816 @result{} "10110"
1817 @end lisp
1818 @end deffn
1819
1820
1821 @node Random
1822 @subsubsection Random Number Generation
1823
1824 Pseudo-random numbers are generated from a random state object, which
1825 can be created with @code{seed->random-state} or
1826 @code{datum->random-state}. An external representation (i.e.@: one
1827 which can written with @code{write} and read with @code{read}) of a
1828 random state object can be obtained via
1829 @code{random-state->datum}. The @var{state} parameter to the
1830 various functions below is optional, it defaults to the state object
1831 in the @code{*random-state*} variable.
1832
1833 @deffn {Scheme Procedure} copy-random-state [state]
1834 @deffnx {C Function} scm_copy_random_state (state)
1835 Return a copy of the random state @var{state}.
1836 @end deffn
1837
1838 @deffn {Scheme Procedure} random n [state]
1839 @deffnx {C Function} scm_random (n, state)
1840 Return a number in [0, @var{n}).
1841
1842 Accepts a positive integer or real n and returns a
1843 number of the same type between zero (inclusive) and
1844 @var{n} (exclusive). The values returned have a uniform
1845 distribution.
1846 @end deffn
1847
1848 @deffn {Scheme Procedure} random:exp [state]
1849 @deffnx {C Function} scm_random_exp (state)
1850 Return an inexact real in an exponential distribution with mean
1851 1. For an exponential distribution with mean @var{u} use @code{(*
1852 @var{u} (random:exp))}.
1853 @end deffn
1854
1855 @deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1856 @deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1857 Fills @var{vect} with inexact real random numbers the sum of whose
1858 squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1859 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1860 the coordinates are uniformly distributed over the surface of the unit
1861 n-sphere.
1862 @end deffn
1863
1864 @deffn {Scheme Procedure} random:normal [state]
1865 @deffnx {C Function} scm_random_normal (state)
1866 Return an inexact real in a normal distribution. The distribution
1867 used has mean 0 and standard deviation 1. For a normal distribution
1868 with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1869 (* @var{d} (random:normal)))}.
1870 @end deffn
1871
1872 @deffn {Scheme Procedure} random:normal-vector! vect [state]
1873 @deffnx {C Function} scm_random_normal_vector_x (vect, state)
1874 Fills @var{vect} with inexact real random numbers that are
1875 independent and standard normally distributed
1876 (i.e., with mean 0 and variance 1).
1877 @end deffn
1878
1879 @deffn {Scheme Procedure} random:solid-sphere! vect [state]
1880 @deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1881 Fills @var{vect} with inexact real random numbers the sum of whose
1882 squares is less than 1.0. Thinking of @var{vect} as coordinates in
1883 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1884 the coordinates are uniformly distributed within the unit
1885 @var{n}-sphere.
1886 @c FIXME: What does this mean, particularly the n-sphere part?
1887 @end deffn
1888
1889 @deffn {Scheme Procedure} random:uniform [state]
1890 @deffnx {C Function} scm_random_uniform (state)
1891 Return a uniformly distributed inexact real random number in
1892 [0,1).
1893 @end deffn
1894
1895 @deffn {Scheme Procedure} seed->random-state seed
1896 @deffnx {C Function} scm_seed_to_random_state (seed)
1897 Return a new random state using @var{seed}.
1898 @end deffn
1899
1900 @deffn {Scheme Procedure} datum->random-state datum
1901 @deffnx {C Function} scm_datum_to_random_state (datum)
1902 Return a new random state from @var{datum}, which should have been
1903 obtained by @code{random-state->datum}.
1904 @end deffn
1905
1906 @deffn {Scheme Procedure} random-state->datum state
1907 @deffnx {C Function} scm_random_state_to_datum (state)
1908 Return a datum representation of @var{state} that may be written out and
1909 read back with the Scheme reader.
1910 @end deffn
1911
1912 @deffn {Scheme Procedure} random-state-from-platform
1913 @deffnx {C Function} scm_random_state_from_platform ()
1914 Construct a new random state seeded from a platform-specific source of
1915 entropy, appropriate for use in non-security-critical applications.
1916 Currently @file{/dev/urandom} is tried first, or else the seed is based
1917 on the time, date, process ID, an address from a freshly allocated heap
1918 cell, an address from the local stack frame, and a high-resolution timer
1919 if available.
1920 @end deffn
1921
1922 @defvar *random-state*
1923 The global random state used by the above functions when the
1924 @var{state} parameter is not given.
1925 @end defvar
1926
1927 Note that the initial value of @code{*random-state*} is the same every
1928 time Guile starts up. Therefore, if you don't pass a @var{state}
1929 parameter to the above procedures, and you don't set
1930 @code{*random-state*} to @code{(seed->random-state your-seed)}, where
1931 @code{your-seed} is something that @emph{isn't} the same every time,
1932 you'll get the same sequence of ``random'' numbers on every run.
1933
1934 For example, unless the relevant source code has changed, @code{(map
1935 random (cdr (iota 30)))}, if the first use of random numbers since
1936 Guile started up, will always give:
1937
1938 @lisp
1939 (map random (cdr (iota 19)))
1940 @result{}
1941 (0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1942 @end lisp
1943
1944 To seed the random state in a sensible way for non-security-critical
1945 applications, do this during initialization of your program:
1946
1947 @lisp
1948 (set! *random-state* (random-state-from-platform))
1949 @end lisp
1950
1951
1952 @node Characters
1953 @subsection Characters
1954 @tpindex Characters
1955
1956 In Scheme, there is a data type to describe a single character.
1957
1958 Defining what exactly a character @emph{is} can be more complicated
1959 than it seems. Guile follows the advice of R6RS and uses The Unicode
1960 Standard to help define what a character is. So, for Guile, a
1961 character is anything in the Unicode Character Database.
1962
1963 @cindex code point
1964 @cindex Unicode code point
1965
1966 The Unicode Character Database is basically a table of characters
1967 indexed using integers called 'code points'. Valid code points are in
1968 the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1969 @code{#x10FFFF} inclusive, which is about 1.1 million code points.
1970
1971 @cindex designated code point
1972 @cindex code point, designated
1973
1974 Any code point that has been assigned to a character or that has
1975 otherwise been given a meaning by Unicode is called a 'designated code
1976 point'. Most of the designated code points, about 200,000 of them,
1977 indicate characters, accents or other combining marks that modify
1978 other characters, symbols, whitespace, and control characters. Some
1979 are not characters but indicators that suggest how to format or
1980 display neighboring characters.
1981
1982 @cindex reserved code point
1983 @cindex code point, reserved
1984
1985 If a code point is not a designated code point -- if it has not been
1986 assigned to a character by The Unicode Standard -- it is a 'reserved
1987 code point', meaning that they are reserved for future use. Most of
1988 the code points, about 800,000, are 'reserved code points'.
1989
1990 By convention, a Unicode code point is written as
1991 ``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1992 this convenient notation is not valid code. Guile does not interpret
1993 ``U+XXXX'' as a character.
1994
1995 In Scheme, a character literal is written as @code{#\@var{name}} where
1996 @var{name} is the name of the character that you want. Printable
1997 characters have their usual single character name; for example,
1998 @code{#\a} is a lower case @code{a}.
1999
2000 Some of the code points are 'combining characters' that are not meant
2001 to be printed by themselves but are instead meant to modify the
2002 appearance of the previous character. For combining characters, an
2003 alternate form of the character literal is @code{#\} followed by
2004 U+25CC (a small, dotted circle), followed by the combining character.
2005 This allows the combining character to be drawn on the circle, not on
2006 the backslash of @code{#\}.
2007
2008 Many of the non-printing characters, such as whitespace characters and
2009 control characters, also have names.
2010
2011 The most commonly used non-printing characters have long character
2012 names, described in the table below.
2013
2014 @multitable {@code{#\backspace}} {Preferred}
2015 @item Character Name @tab Codepoint
2016 @item @code{#\nul} @tab U+0000
2017 @item @code{#\alarm} @tab u+0007
2018 @item @code{#\backspace} @tab U+0008
2019 @item @code{#\tab} @tab U+0009
2020 @item @code{#\linefeed} @tab U+000A
2021 @item @code{#\newline} @tab U+000A
2022 @item @code{#\vtab} @tab U+000B
2023 @item @code{#\page} @tab U+000C
2024 @item @code{#\return} @tab U+000D
2025 @item @code{#\esc} @tab U+001B
2026 @item @code{#\space} @tab U+0020
2027 @item @code{#\delete} @tab U+007F
2028 @end multitable
2029
2030 There are also short names for all of the ``C0 control characters''
2031 (those with code points below 32). The following table lists the short
2032 name for each character.
2033
2034 @multitable @columnfractions .25 .25 .25 .25
2035 @item 0 = @code{#\nul}
2036 @tab 1 = @code{#\soh}
2037 @tab 2 = @code{#\stx}
2038 @tab 3 = @code{#\etx}
2039 @item 4 = @code{#\eot}
2040 @tab 5 = @code{#\enq}
2041 @tab 6 = @code{#\ack}
2042 @tab 7 = @code{#\bel}
2043 @item 8 = @code{#\bs}
2044 @tab 9 = @code{#\ht}
2045 @tab 10 = @code{#\lf}
2046 @tab 11 = @code{#\vt}
2047 @item 12 = @code{#\ff}
2048 @tab 13 = @code{#\cr}
2049 @tab 14 = @code{#\so}
2050 @tab 15 = @code{#\si}
2051 @item 16 = @code{#\dle}
2052 @tab 17 = @code{#\dc1}
2053 @tab 18 = @code{#\dc2}
2054 @tab 19 = @code{#\dc3}
2055 @item 20 = @code{#\dc4}
2056 @tab 21 = @code{#\nak}
2057 @tab 22 = @code{#\syn}
2058 @tab 23 = @code{#\etb}
2059 @item 24 = @code{#\can}
2060 @tab 25 = @code{#\em}
2061 @tab 26 = @code{#\sub}
2062 @tab 27 = @code{#\esc}
2063 @item 28 = @code{#\fs}
2064 @tab 29 = @code{#\gs}
2065 @tab 30 = @code{#\rs}
2066 @tab 31 = @code{#\us}
2067 @item 32 = @code{#\sp}
2068 @end multitable
2069
2070 The short name for the ``delete'' character (code point U+007F) is
2071 @code{#\del}.
2072
2073 The R7RS name for the ``escape'' character (code point U+001B) is
2074 @code{#\escape}.
2075
2076 There are also a few alternative names left over for compatibility with
2077 previous versions of Guile.
2078
2079 @multitable {@code{#\backspace}} {Preferred}
2080 @item Alternate @tab Standard
2081 @item @code{#\nl} @tab @code{#\newline}
2082 @item @code{#\np} @tab @code{#\page}
2083 @item @code{#\null} @tab @code{#\nul}
2084 @end multitable
2085
2086 Characters may also be written using their code point values. They can
2087 be written with as an octal number, such as @code{#\10} for
2088 @code{#\bs} or @code{#\177} for @code{#\del}.
2089
2090 If one prefers hex to octal, there is an additional syntax for character
2091 escapes: @code{#\xHHHH} -- the letter 'x' followed by a hexadecimal
2092 number of one to eight digits.
2093
2094 @rnindex char?
2095 @deffn {Scheme Procedure} char? x
2096 @deffnx {C Function} scm_char_p (x)
2097 Return @code{#t} if @var{x} is a character, else @code{#f}.
2098 @end deffn
2099
2100 Fundamentally, the character comparison operations below are
2101 numeric comparisons of the character's code points.
2102
2103 @rnindex char=?
2104 @deffn {Scheme Procedure} char=? x y
2105 Return @code{#t} if code point of @var{x} is equal to the code point
2106 of @var{y}, else @code{#f}.
2107 @end deffn
2108
2109 @rnindex char<?
2110 @deffn {Scheme Procedure} char<? x y
2111 Return @code{#t} if the code point of @var{x} is less than the code
2112 point of @var{y}, else @code{#f}.
2113 @end deffn
2114
2115 @rnindex char<=?
2116 @deffn {Scheme Procedure} char<=? x y
2117 Return @code{#t} if the code point of @var{x} is less than or equal
2118 to the code point of @var{y}, else @code{#f}.
2119 @end deffn
2120
2121 @rnindex char>?
2122 @deffn {Scheme Procedure} char>? x y
2123 Return @code{#t} if the code point of @var{x} is greater than the
2124 code point of @var{y}, else @code{#f}.
2125 @end deffn
2126
2127 @rnindex char>=?
2128 @deffn {Scheme Procedure} char>=? x y
2129 Return @code{#t} if the code point of @var{x} is greater than or
2130 equal to the code point of @var{y}, else @code{#f}.
2131 @end deffn
2132
2133 @cindex case folding
2134
2135 Case-insensitive character comparisons use @emph{Unicode case
2136 folding}. In case folding comparisons, if a character is lowercase
2137 and has an uppercase form that can be expressed as a single character,
2138 it is converted to uppercase before comparison. All other characters
2139 undergo no conversion before the comparison occurs. This includes the
2140 German sharp S (Eszett) which is not uppercased before conversion
2141 because its uppercase form has two characters. Unicode case folding
2142 is language independent: it uses rules that are generally true, but,
2143 it cannot cover all cases for all languages.
2144
2145 @rnindex char-ci=?
2146 @deffn {Scheme Procedure} char-ci=? x y
2147 Return @code{#t} if the case-folded code point of @var{x} is the same
2148 as the case-folded code point of @var{y}, else @code{#f}.
2149 @end deffn
2150
2151 @rnindex char-ci<?
2152 @deffn {Scheme Procedure} char-ci<? x y
2153 Return @code{#t} if the case-folded code point of @var{x} is less
2154 than the case-folded code point of @var{y}, else @code{#f}.
2155 @end deffn
2156
2157 @rnindex char-ci<=?
2158 @deffn {Scheme Procedure} char-ci<=? x y
2159 Return @code{#t} if the case-folded code point of @var{x} is less
2160 than or equal to the case-folded code point of @var{y}, else
2161 @code{#f}.
2162 @end deffn
2163
2164 @rnindex char-ci>?
2165 @deffn {Scheme Procedure} char-ci>? x y
2166 Return @code{#t} if the case-folded code point of @var{x} is greater
2167 than the case-folded code point of @var{y}, else @code{#f}.
2168 @end deffn
2169
2170 @rnindex char-ci>=?
2171 @deffn {Scheme Procedure} char-ci>=? x y
2172 Return @code{#t} if the case-folded code point of @var{x} is greater
2173 than or equal to the case-folded code point of @var{y}, else
2174 @code{#f}.
2175 @end deffn
2176
2177 @rnindex char-alphabetic?
2178 @deffn {Scheme Procedure} char-alphabetic? chr
2179 @deffnx {C Function} scm_char_alphabetic_p (chr)
2180 Return @code{#t} if @var{chr} is alphabetic, else @code{#f}.
2181 @end deffn
2182
2183 @rnindex char-numeric?
2184 @deffn {Scheme Procedure} char-numeric? chr
2185 @deffnx {C Function} scm_char_numeric_p (chr)
2186 Return @code{#t} if @var{chr} is numeric, else @code{#f}.
2187 @end deffn
2188
2189 @rnindex char-whitespace?
2190 @deffn {Scheme Procedure} char-whitespace? chr
2191 @deffnx {C Function} scm_char_whitespace_p (chr)
2192 Return @code{#t} if @var{chr} is whitespace, else @code{#f}.
2193 @end deffn
2194
2195 @rnindex char-upper-case?
2196 @deffn {Scheme Procedure} char-upper-case? chr
2197 @deffnx {C Function} scm_char_upper_case_p (chr)
2198 Return @code{#t} if @var{chr} is uppercase, else @code{#f}.
2199 @end deffn
2200
2201 @rnindex char-lower-case?
2202 @deffn {Scheme Procedure} char-lower-case? chr
2203 @deffnx {C Function} scm_char_lower_case_p (chr)
2204 Return @code{#t} if @var{chr} is lowercase, else @code{#f}.
2205 @end deffn
2206
2207 @deffn {Scheme Procedure} char-is-both? chr
2208 @deffnx {C Function} scm_char_is_both_p (chr)
2209 Return @code{#t} if @var{chr} is either uppercase or lowercase, else
2210 @code{#f}.
2211 @end deffn
2212
2213 @deffn {Scheme Procedure} char-general-category chr
2214 @deffnx {C Function} scm_char_general_category (chr)
2215 Return a symbol giving the two-letter name of the Unicode general
2216 category assigned to @var{chr} or @code{#f} if no named category is
2217 assigned. The following table provides a list of category names along
2218 with their meanings.
2219
2220 @multitable @columnfractions .1 .4 .1 .4
2221 @item Lu
2222 @tab Uppercase letter
2223 @tab Pf
2224 @tab Final quote punctuation
2225 @item Ll
2226 @tab Lowercase letter
2227 @tab Po
2228 @tab Other punctuation
2229 @item Lt
2230 @tab Titlecase letter
2231 @tab Sm
2232 @tab Math symbol
2233 @item Lm
2234 @tab Modifier letter
2235 @tab Sc
2236 @tab Currency symbol
2237 @item Lo
2238 @tab Other letter
2239 @tab Sk
2240 @tab Modifier symbol
2241 @item Mn
2242 @tab Non-spacing mark
2243 @tab So
2244 @tab Other symbol
2245 @item Mc
2246 @tab Combining spacing mark
2247 @tab Zs
2248 @tab Space separator
2249 @item Me
2250 @tab Enclosing mark
2251 @tab Zl
2252 @tab Line separator
2253 @item Nd
2254 @tab Decimal digit number
2255 @tab Zp
2256 @tab Paragraph separator
2257 @item Nl
2258 @tab Letter number
2259 @tab Cc
2260 @tab Control
2261 @item No
2262 @tab Other number
2263 @tab Cf
2264 @tab Format
2265 @item Pc
2266 @tab Connector punctuation
2267 @tab Cs
2268 @tab Surrogate
2269 @item Pd
2270 @tab Dash punctuation
2271 @tab Co
2272 @tab Private use
2273 @item Ps
2274 @tab Open punctuation
2275 @tab Cn
2276 @tab Unassigned
2277 @item Pe
2278 @tab Close punctuation
2279 @tab
2280 @tab
2281 @item Pi
2282 @tab Initial quote punctuation
2283 @tab
2284 @tab
2285 @end multitable
2286 @end deffn
2287
2288 @rnindex char->integer
2289 @deffn {Scheme Procedure} char->integer chr
2290 @deffnx {C Function} scm_char_to_integer (chr)
2291 Return the code point of @var{chr}.
2292 @end deffn
2293
2294 @rnindex integer->char
2295 @deffn {Scheme Procedure} integer->char n
2296 @deffnx {C Function} scm_integer_to_char (n)
2297 Return the character that has code point @var{n}. The integer @var{n}
2298 must be a valid code point. Valid code points are in the ranges 0 to
2299 @code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
2300 @end deffn
2301
2302 @rnindex char-upcase
2303 @deffn {Scheme Procedure} char-upcase chr
2304 @deffnx {C Function} scm_char_upcase (chr)
2305 Return the uppercase character version of @var{chr}.
2306 @end deffn
2307
2308 @rnindex char-downcase
2309 @deffn {Scheme Procedure} char-downcase chr
2310 @deffnx {C Function} scm_char_downcase (chr)
2311 Return the lowercase character version of @var{chr}.
2312 @end deffn
2313
2314 @rnindex char-titlecase
2315 @deffn {Scheme Procedure} char-titlecase chr
2316 @deffnx {C Function} scm_char_titlecase (chr)
2317 Return the titlecase character version of @var{chr} if one exists;
2318 otherwise return the uppercase version.
2319
2320 For most characters these will be the same, but the Unicode Standard
2321 includes certain digraph compatibility characters, such as @code{U+01F3}
2322 ``dz'', for which the uppercase and titlecase characters are different
2323 (@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
2324 respectively).
2325 @end deffn
2326
2327 @tindex scm_t_wchar
2328 @deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
2329 @deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
2330 @deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
2331
2332 These C functions take an integer representation of a Unicode
2333 codepoint and return the codepoint corresponding to its uppercase,
2334 lowercase, and titlecase forms respectively. The type
2335 @code{scm_t_wchar} is a signed, 32-bit integer.
2336 @end deftypefn
2337
2338 @node Character Sets
2339 @subsection Character Sets
2340
2341 The features described in this section correspond directly to SRFI-14.
2342
2343 The data type @dfn{charset} implements sets of characters
2344 (@pxref{Characters}). Because the internal representation of
2345 character sets is not visible to the user, a lot of procedures for
2346 handling them are provided.
2347
2348 Character sets can be created, extended, tested for the membership of a
2349 characters and be compared to other character sets.
2350
2351 @menu
2352 * Character Set Predicates/Comparison::
2353 * Iterating Over Character Sets:: Enumerate charset elements.
2354 * Creating Character Sets:: Making new charsets.
2355 * Querying Character Sets:: Test charsets for membership etc.
2356 * Character-Set Algebra:: Calculating new charsets.
2357 * Standard Character Sets:: Variables containing predefined charsets.
2358 @end menu
2359
2360 @node Character Set Predicates/Comparison
2361 @subsubsection Character Set Predicates/Comparison
2362
2363 Use these procedures for testing whether an object is a character set,
2364 or whether several character sets are equal or subsets of each other.
2365 @code{char-set-hash} can be used for calculating a hash value, maybe for
2366 usage in fast lookup procedures.
2367
2368 @deffn {Scheme Procedure} char-set? obj
2369 @deffnx {C Function} scm_char_set_p (obj)
2370 Return @code{#t} if @var{obj} is a character set, @code{#f}
2371 otherwise.
2372 @end deffn
2373
2374 @deffn {Scheme Procedure} char-set= char_set @dots{}
2375 @deffnx {C Function} scm_char_set_eq (char_sets)
2376 Return @code{#t} if all given character sets are equal.
2377 @end deffn
2378
2379 @deffn {Scheme Procedure} char-set<= char_set @dots{}
2380 @deffnx {C Function} scm_char_set_leq (char_sets)
2381 Return @code{#t} if every character set @var{char_set}i is a subset
2382 of character set @var{char_set}i+1.
2383 @end deffn
2384
2385 @deffn {Scheme Procedure} char-set-hash cs [bound]
2386 @deffnx {C Function} scm_char_set_hash (cs, bound)
2387 Compute a hash value for the character set @var{cs}. If
2388 @var{bound} is given and non-zero, it restricts the
2389 returned value to the range 0 @dots{} @var{bound} - 1.
2390 @end deffn
2391
2392 @c ===================================================================
2393
2394 @node Iterating Over Character Sets
2395 @subsubsection Iterating Over Character Sets
2396
2397 Character set cursors are a means for iterating over the members of a
2398 character sets. After creating a character set cursor with
2399 @code{char-set-cursor}, a cursor can be dereferenced with
2400 @code{char-set-ref}, advanced to the next member with
2401 @code{char-set-cursor-next}. Whether a cursor has passed past the last
2402 element of the set can be checked with @code{end-of-char-set?}.
2403
2404 Additionally, mapping and (un-)folding procedures for character sets are
2405 provided.
2406
2407 @deffn {Scheme Procedure} char-set-cursor cs
2408 @deffnx {C Function} scm_char_set_cursor (cs)
2409 Return a cursor into the character set @var{cs}.
2410 @end deffn
2411
2412 @deffn {Scheme Procedure} char-set-ref cs cursor
2413 @deffnx {C Function} scm_char_set_ref (cs, cursor)
2414 Return the character at the current cursor position
2415 @var{cursor} in the character set @var{cs}. It is an error to
2416 pass a cursor for which @code{end-of-char-set?} returns true.
2417 @end deffn
2418
2419 @deffn {Scheme Procedure} char-set-cursor-next cs cursor
2420 @deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2421 Advance the character set cursor @var{cursor} to the next
2422 character in the character set @var{cs}. It is an error if the
2423 cursor given satisfies @code{end-of-char-set?}.
2424 @end deffn
2425
2426 @deffn {Scheme Procedure} end-of-char-set? cursor
2427 @deffnx {C Function} scm_end_of_char_set_p (cursor)
2428 Return @code{#t} if @var{cursor} has reached the end of a
2429 character set, @code{#f} otherwise.
2430 @end deffn
2431
2432 @deffn {Scheme Procedure} char-set-fold kons knil cs
2433 @deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2434 Fold the procedure @var{kons} over the character set @var{cs},
2435 initializing it with @var{knil}.
2436 @end deffn
2437
2438 @deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2439 @deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2440 This is a fundamental constructor for character sets.
2441 @itemize @bullet
2442 @item @var{g} is used to generate a series of ``seed'' values
2443 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2444 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2445 @item @var{p} tells us when to stop -- when it returns true
2446 when applied to one of the seed values.
2447 @item @var{f} maps each seed value to a character. These
2448 characters are added to the base character set @var{base_cs} to
2449 form the result; @var{base_cs} defaults to the empty set.
2450 @end itemize
2451 @end deffn
2452
2453 @deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2454 @deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2455 This is a fundamental constructor for character sets.
2456 @itemize @bullet
2457 @item @var{g} is used to generate a series of ``seed'' values
2458 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2459 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2460 @item @var{p} tells us when to stop -- when it returns true
2461 when applied to one of the seed values.
2462 @item @var{f} maps each seed value to a character. These
2463 characters are added to the base character set @var{base_cs} to
2464 form the result; @var{base_cs} defaults to the empty set.
2465 @end itemize
2466 @end deffn
2467
2468 @deffn {Scheme Procedure} char-set-for-each proc cs
2469 @deffnx {C Function} scm_char_set_for_each (proc, cs)
2470 Apply @var{proc} to every character in the character set
2471 @var{cs}. The return value is not specified.
2472 @end deffn
2473
2474 @deffn {Scheme Procedure} char-set-map proc cs
2475 @deffnx {C Function} scm_char_set_map (proc, cs)
2476 Map the procedure @var{proc} over every character in @var{cs}.
2477 @var{proc} must be a character -> character procedure.
2478 @end deffn
2479
2480 @c ===================================================================
2481
2482 @node Creating Character Sets
2483 @subsubsection Creating Character Sets
2484
2485 New character sets are produced with these procedures.
2486
2487 @deffn {Scheme Procedure} char-set-copy cs
2488 @deffnx {C Function} scm_char_set_copy (cs)
2489 Return a newly allocated character set containing all
2490 characters in @var{cs}.
2491 @end deffn
2492
2493 @deffn {Scheme Procedure} char-set chr @dots{}
2494 @deffnx {C Function} scm_char_set (chrs)
2495 Return a character set containing all given characters.
2496 @end deffn
2497
2498 @deffn {Scheme Procedure} list->char-set list [base_cs]
2499 @deffnx {C Function} scm_list_to_char_set (list, base_cs)
2500 Convert the character list @var{list} to a character set. If
2501 the character set @var{base_cs} is given, the character in this
2502 set are also included in the result.
2503 @end deffn
2504
2505 @deffn {Scheme Procedure} list->char-set! list base_cs
2506 @deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2507 Convert the character list @var{list} to a character set. The
2508 characters are added to @var{base_cs} and @var{base_cs} is
2509 returned.
2510 @end deffn
2511
2512 @deffn {Scheme Procedure} string->char-set str [base_cs]
2513 @deffnx {C Function} scm_string_to_char_set (str, base_cs)
2514 Convert the string @var{str} to a character set. If the
2515 character set @var{base_cs} is given, the characters in this
2516 set are also included in the result.
2517 @end deffn
2518
2519 @deffn {Scheme Procedure} string->char-set! str base_cs
2520 @deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2521 Convert the string @var{str} to a character set. The
2522 characters from the string are added to @var{base_cs}, and
2523 @var{base_cs} is returned.
2524 @end deffn
2525
2526 @deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2527 @deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2528 Return a character set containing every character from @var{cs}
2529 so that it satisfies @var{pred}. If provided, the characters
2530 from @var{base_cs} are added to the result.
2531 @end deffn
2532
2533 @deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2534 @deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2535 Return a character set containing every character from @var{cs}
2536 so that it satisfies @var{pred}. The characters are added to
2537 @var{base_cs} and @var{base_cs} is returned.
2538 @end deffn
2539
2540 @deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2541 @deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2542 Return a character set containing all characters whose
2543 character codes lie in the half-open range
2544 [@var{lower},@var{upper}).
2545
2546 If @var{error} is a true value, an error is signalled if the
2547 specified range contains characters which are not contained in
2548 the implemented character range. If @var{error} is @code{#f},
2549 these characters are silently left out of the resulting
2550 character set.
2551
2552 The characters in @var{base_cs} are added to the result, if
2553 given.
2554 @end deffn
2555
2556 @deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2557 @deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2558 Return a character set containing all characters whose
2559 character codes lie in the half-open range
2560 [@var{lower},@var{upper}).
2561
2562 If @var{error} is a true value, an error is signalled if the
2563 specified range contains characters which are not contained in
2564 the implemented character range. If @var{error} is @code{#f},
2565 these characters are silently left out of the resulting
2566 character set.
2567
2568 The characters are added to @var{base_cs} and @var{base_cs} is
2569 returned.
2570 @end deffn
2571
2572 @deffn {Scheme Procedure} ->char-set x
2573 @deffnx {C Function} scm_to_char_set (x)
2574 Coerces x into a char-set. @var{x} may be a string, character or
2575 char-set. A string is converted to the set of its constituent
2576 characters; a character is converted to a singleton set; a char-set is
2577 returned as-is.
2578 @end deffn
2579
2580 @c ===================================================================
2581
2582 @node Querying Character Sets
2583 @subsubsection Querying Character Sets
2584
2585 Access the elements and other information of a character set with these
2586 procedures.
2587
2588 @deffn {Scheme Procedure} %char-set-dump cs
2589 Returns an association list containing debugging information
2590 for @var{cs}. The association list has the following entries.
2591 @table @code
2592 @item char-set
2593 The char-set itself
2594 @item len
2595 The number of groups of contiguous code points the char-set
2596 contains
2597 @item ranges
2598 A list of lists where each sublist is a range of code points
2599 and their associated characters
2600 @end table
2601 The return value of this function cannot be relied upon to be
2602 consistent between versions of Guile and should not be used in code.
2603 @end deffn
2604
2605 @deffn {Scheme Procedure} char-set-size cs
2606 @deffnx {C Function} scm_char_set_size (cs)
2607 Return the number of elements in character set @var{cs}.
2608 @end deffn
2609
2610 @deffn {Scheme Procedure} char-set-count pred cs
2611 @deffnx {C Function} scm_char_set_count (pred, cs)
2612 Return the number of the elements int the character set
2613 @var{cs} which satisfy the predicate @var{pred}.
2614 @end deffn
2615
2616 @deffn {Scheme Procedure} char-set->list cs
2617 @deffnx {C Function} scm_char_set_to_list (cs)
2618 Return a list containing the elements of the character set
2619 @var{cs}.
2620 @end deffn
2621
2622 @deffn {Scheme Procedure} char-set->string cs
2623 @deffnx {C Function} scm_char_set_to_string (cs)
2624 Return a string containing the elements of the character set
2625 @var{cs}. The order in which the characters are placed in the
2626 string is not defined.
2627 @end deffn
2628
2629 @deffn {Scheme Procedure} char-set-contains? cs ch
2630 @deffnx {C Function} scm_char_set_contains_p (cs, ch)
2631 Return @code{#t} if the character @var{ch} is contained in the
2632 character set @var{cs}, or @code{#f} otherwise.
2633 @end deffn
2634
2635 @deffn {Scheme Procedure} char-set-every pred cs
2636 @deffnx {C Function} scm_char_set_every (pred, cs)
2637 Return a true value if every character in the character set
2638 @var{cs} satisfies the predicate @var{pred}.
2639 @end deffn
2640
2641 @deffn {Scheme Procedure} char-set-any pred cs
2642 @deffnx {C Function} scm_char_set_any (pred, cs)
2643 Return a true value if any character in the character set
2644 @var{cs} satisfies the predicate @var{pred}.
2645 @end deffn
2646
2647 @c ===================================================================
2648
2649 @node Character-Set Algebra
2650 @subsubsection Character-Set Algebra
2651
2652 Character sets can be manipulated with the common set algebra operation,
2653 such as union, complement, intersection etc. All of these procedures
2654 provide side-effecting variants, which modify their character set
2655 argument(s).
2656
2657 @deffn {Scheme Procedure} char-set-adjoin cs chr @dots{}
2658 @deffnx {C Function} scm_char_set_adjoin (cs, chrs)
2659 Add all character arguments to the first argument, which must
2660 be a character set.
2661 @end deffn
2662
2663 @deffn {Scheme Procedure} char-set-delete cs chr @dots{}
2664 @deffnx {C Function} scm_char_set_delete (cs, chrs)
2665 Delete all character arguments from the first argument, which
2666 must be a character set.
2667 @end deffn
2668
2669 @deffn {Scheme Procedure} char-set-adjoin! cs chr @dots{}
2670 @deffnx {C Function} scm_char_set_adjoin_x (cs, chrs)
2671 Add all character arguments to the first argument, which must
2672 be a character set.
2673 @end deffn
2674
2675 @deffn {Scheme Procedure} char-set-delete! cs chr @dots{}
2676 @deffnx {C Function} scm_char_set_delete_x (cs, chrs)
2677 Delete all character arguments from the first argument, which
2678 must be a character set.
2679 @end deffn
2680
2681 @deffn {Scheme Procedure} char-set-complement cs
2682 @deffnx {C Function} scm_char_set_complement (cs)
2683 Return the complement of the character set @var{cs}.
2684 @end deffn
2685
2686 Note that the complement of a character set is likely to contain many
2687 reserved code points (code points that are not associated with
2688 characters). It may be helpful to modify the output of
2689 @code{char-set-complement} by computing its intersection with the set
2690 of designated code points, @code{char-set:designated}.
2691
2692 @deffn {Scheme Procedure} char-set-union cs @dots{}
2693 @deffnx {C Function} scm_char_set_union (char_sets)
2694 Return the union of all argument character sets.
2695 @end deffn
2696
2697 @deffn {Scheme Procedure} char-set-intersection cs @dots{}
2698 @deffnx {C Function} scm_char_set_intersection (char_sets)
2699 Return the intersection of all argument character sets.
2700 @end deffn
2701
2702 @deffn {Scheme Procedure} char-set-difference cs1 cs @dots{}
2703 @deffnx {C Function} scm_char_set_difference (cs1, char_sets)
2704 Return the difference of all argument character sets.
2705 @end deffn
2706
2707 @deffn {Scheme Procedure} char-set-xor cs @dots{}
2708 @deffnx {C Function} scm_char_set_xor (char_sets)
2709 Return the exclusive-or of all argument character sets.
2710 @end deffn
2711
2712 @deffn {Scheme Procedure} char-set-diff+intersection cs1 cs @dots{}
2713 @deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, char_sets)
2714 Return the difference and the intersection of all argument
2715 character sets.
2716 @end deffn
2717
2718 @deffn {Scheme Procedure} char-set-complement! cs
2719 @deffnx {C Function} scm_char_set_complement_x (cs)
2720 Return the complement of the character set @var{cs}.
2721 @end deffn
2722
2723 @deffn {Scheme Procedure} char-set-union! cs1 cs @dots{}
2724 @deffnx {C Function} scm_char_set_union_x (cs1, char_sets)
2725 Return the union of all argument character sets.
2726 @end deffn
2727
2728 @deffn {Scheme Procedure} char-set-intersection! cs1 cs @dots{}
2729 @deffnx {C Function} scm_char_set_intersection_x (cs1, char_sets)
2730 Return the intersection of all argument character sets.
2731 @end deffn
2732
2733 @deffn {Scheme Procedure} char-set-difference! cs1 cs @dots{}
2734 @deffnx {C Function} scm_char_set_difference_x (cs1, char_sets)
2735 Return the difference of all argument character sets.
2736 @end deffn
2737
2738 @deffn {Scheme Procedure} char-set-xor! cs1 cs @dots{}
2739 @deffnx {C Function} scm_char_set_xor_x (cs1, char_sets)
2740 Return the exclusive-or of all argument character sets.
2741 @end deffn
2742
2743 @deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 cs @dots{}
2744 @deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, char_sets)
2745 Return the difference and the intersection of all argument
2746 character sets.
2747 @end deffn
2748
2749 @c ===================================================================
2750
2751 @node Standard Character Sets
2752 @subsubsection Standard Character Sets
2753
2754 In order to make the use of the character set data type and procedures
2755 useful, several predefined character set variables exist.
2756
2757 @cindex codeset
2758 @cindex charset
2759 @cindex locale
2760
2761 These character sets are locale independent and are not recomputed
2762 upon a @code{setlocale} call. They contain characters from the whole
2763 range of Unicode code points. For instance, @code{char-set:letter}
2764 contains about 100,000 characters.
2765
2766 @defvr {Scheme Variable} char-set:lower-case
2767 @defvrx {C Variable} scm_char_set_lower_case
2768 All lower-case characters.
2769 @end defvr
2770
2771 @defvr {Scheme Variable} char-set:upper-case
2772 @defvrx {C Variable} scm_char_set_upper_case
2773 All upper-case characters.
2774 @end defvr
2775
2776 @defvr {Scheme Variable} char-set:title-case
2777 @defvrx {C Variable} scm_char_set_title_case
2778 All single characters that function as if they were an upper-case
2779 letter followed by a lower-case letter.
2780 @end defvr
2781
2782 @defvr {Scheme Variable} char-set:letter
2783 @defvrx {C Variable} scm_char_set_letter
2784 All letters. This includes @code{char-set:lower-case},
2785 @code{char-set:upper-case}, @code{char-set:title-case}, and many
2786 letters that have no case at all. For example, Chinese and Japanese
2787 characters typically have no concept of case.
2788 @end defvr
2789
2790 @defvr {Scheme Variable} char-set:digit
2791 @defvrx {C Variable} scm_char_set_digit
2792 All digits.
2793 @end defvr
2794
2795 @defvr {Scheme Variable} char-set:letter+digit
2796 @defvrx {C Variable} scm_char_set_letter_and_digit
2797 The union of @code{char-set:letter} and @code{char-set:digit}.
2798 @end defvr
2799
2800 @defvr {Scheme Variable} char-set:graphic
2801 @defvrx {C Variable} scm_char_set_graphic
2802 All characters which would put ink on the paper.
2803 @end defvr
2804
2805 @defvr {Scheme Variable} char-set:printing
2806 @defvrx {C Variable} scm_char_set_printing
2807 The union of @code{char-set:graphic} and @code{char-set:whitespace}.
2808 @end defvr
2809
2810 @defvr {Scheme Variable} char-set:whitespace
2811 @defvrx {C Variable} scm_char_set_whitespace
2812 All whitespace characters.
2813 @end defvr
2814
2815 @defvr {Scheme Variable} char-set:blank
2816 @defvrx {C Variable} scm_char_set_blank
2817 All horizontal whitespace characters, which notably includes
2818 @code{#\space} and @code{#\tab}.
2819 @end defvr
2820
2821 @defvr {Scheme Variable} char-set:iso-control
2822 @defvrx {C Variable} scm_char_set_iso_control
2823 The ISO control characters are the C0 control characters (U+0000 to
2824 U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2825 U+009F).
2826 @end defvr
2827
2828 @defvr {Scheme Variable} char-set:punctuation
2829 @defvrx {C Variable} scm_char_set_punctuation
2830 All punctuation characters, such as the characters
2831 @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
2832 @end defvr
2833
2834 @defvr {Scheme Variable} char-set:symbol
2835 @defvrx {C Variable} scm_char_set_symbol
2836 All symbol characters, such as the characters @code{$+<=>^`|~}.
2837 @end defvr
2838
2839 @defvr {Scheme Variable} char-set:hex-digit
2840 @defvrx {C Variable} scm_char_set_hex_digit
2841 The hexadecimal digits @code{0123456789abcdefABCDEF}.
2842 @end defvr
2843
2844 @defvr {Scheme Variable} char-set:ascii
2845 @defvrx {C Variable} scm_char_set_ascii
2846 All ASCII characters.
2847 @end defvr
2848
2849 @defvr {Scheme Variable} char-set:empty
2850 @defvrx {C Variable} scm_char_set_empty
2851 The empty character set.
2852 @end defvr
2853
2854 @defvr {Scheme Variable} char-set:designated
2855 @defvrx {C Variable} scm_char_set_designated
2856 This character set contains all designated code points. This includes
2857 all the code points to which Unicode has assigned a character or other
2858 meaning.
2859 @end defvr
2860
2861 @defvr {Scheme Variable} char-set:full
2862 @defvrx {C Variable} scm_char_set_full
2863 This character set contains all possible code points. This includes
2864 both designated and reserved code points.
2865 @end defvr
2866
2867 @node Strings
2868 @subsection Strings
2869 @tpindex Strings
2870
2871 Strings are fixed-length sequences of characters. They can be created
2872 by calling constructor procedures, but they can also literally get
2873 entered at the @acronym{REPL} or in Scheme source files.
2874
2875 @c Guile provides a rich set of string processing procedures, because text
2876 @c handling is very important when Guile is used as a scripting language.
2877
2878 Strings always carry the information about how many characters they are
2879 composed of with them, so there is no special end-of-string character,
2880 like in C. That means that Scheme strings can contain any character,
2881 even the @samp{#\nul} character @samp{\0}.
2882
2883 To use strings efficiently, you need to know a bit about how Guile
2884 implements them. In Guile, a string consists of two parts, a head and
2885 the actual memory where the characters are stored. When a string (or
2886 a substring of it) is copied, only a new head gets created, the memory
2887 is usually not copied. The two heads start out pointing to the same
2888 memory.
2889
2890 When one of these two strings is modified, as with @code{string-set!},
2891 their common memory does get copied so that each string has its own
2892 memory and modifying one does not accidentally modify the other as well.
2893 Thus, Guile's strings are `copy on write'; the actual copying of their
2894 memory is delayed until one string is written to.
2895
2896 This implementation makes functions like @code{substring} very
2897 efficient in the common case that no modifications are done to the
2898 involved strings.
2899
2900 If you do know that your strings are getting modified right away, you
2901 can use @code{substring/copy} instead of @code{substring}. This
2902 function performs the copy immediately at the time of creation. This
2903 is more efficient, especially in a multi-threaded program. Also,
2904 @code{substring/copy} can avoid the problem that a short substring
2905 holds on to the memory of a very large original string that could
2906 otherwise be recycled.
2907
2908 If you want to avoid the copy altogether, so that modifications of one
2909 string show up in the other, you can use @code{substring/shared}. The
2910 strings created by this procedure are called @dfn{mutation sharing
2911 substrings} since the substring and the original string share
2912 modifications to each other.
2913
2914 If you want to prevent modifications, use @code{substring/read-only}.
2915
2916 Guile provides all procedures of SRFI-13 and a few more.
2917
2918 @menu
2919 * String Syntax:: Read syntax for strings.
2920 * String Predicates:: Testing strings for certain properties.
2921 * String Constructors:: Creating new string objects.
2922 * List/String Conversion:: Converting from/to lists of characters.
2923 * String Selection:: Select portions from strings.
2924 * String Modification:: Modify parts or whole strings.
2925 * String Comparison:: Lexicographic ordering predicates.
2926 * String Searching:: Searching in strings.
2927 * Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2928 * Reversing and Appending Strings:: Appending strings to form a new string.
2929 * Mapping Folding and Unfolding:: Iterating over strings.
2930 * Miscellaneous String Operations:: Replicating, insertion, parsing, ...
2931 * Representing Strings as Bytes:: Encoding and decoding strings.
2932 * Conversion to/from C::
2933 * String Internals:: The storage strategy for strings.
2934 @end menu
2935
2936 @node String Syntax
2937 @subsubsection String Read Syntax
2938
2939 @c In the following @code is used to get a good font in TeX etc, but
2940 @c is omitted for Info format, so as not to risk any confusion over
2941 @c whether surrounding ` ' quotes are part of the escape or are
2942 @c special in a string (they're not).
2943
2944 The read syntax for strings is an arbitrarily long sequence of
2945 characters enclosed in double quotes (@nicode{"}).
2946
2947 Backslash is an escape character and can be used to insert the following
2948 special characters. @nicode{\"} and @nicode{\\} are R5RS standard,
2949 @nicode{\|} is R7RS standard, the next seven are R6RS standard ---
2950 notice they follow C syntax --- and the remaining four are Guile
2951 extensions.
2952
2953 @table @asis
2954 @item @nicode{\\}
2955 Backslash character.
2956
2957 @item @nicode{\"}
2958 Double quote character (an unescaped @nicode{"} is otherwise the end
2959 of the string).
2960
2961 @item @nicode{\|}
2962 Vertical bar character.
2963
2964 @item @nicode{\a}
2965 Bell character (ASCII 7).
2966
2967 @item @nicode{\f}
2968 Formfeed character (ASCII 12).
2969
2970 @item @nicode{\n}
2971 Newline character (ASCII 10).
2972
2973 @item @nicode{\r}
2974 Carriage return character (ASCII 13).
2975
2976 @item @nicode{\t}
2977 Tab character (ASCII 9).
2978
2979 @item @nicode{\v}
2980 Vertical tab character (ASCII 11).
2981
2982 @item @nicode{\b}
2983 Backspace character (ASCII 8).
2984
2985 @item @nicode{\0}
2986 NUL character (ASCII 0).
2987
2988 @item @nicode{\} followed by newline (ASCII 10)
2989 Nothing. This way if @nicode{\} is the last character in a line, the
2990 string will continue with the first character from the next line,
2991 without a line break.
2992
2993 If the @code{hungry-eol-escapes} reader option is enabled, which is not
2994 the case by default, leading whitespace on the next line is discarded.
2995
2996 @lisp
2997 "foo\
2998 bar"
2999 @result{} "foo bar"
3000 (read-enable 'hungry-eol-escapes)
3001 "foo\
3002 bar"
3003 @result{} "foobar"
3004 @end lisp
3005 @item @nicode{\xHH}
3006 Character code given by two hexadecimal digits. For example
3007 @nicode{\x7f} for an ASCII DEL (127).
3008
3009 @item @nicode{\uHHHH}
3010 Character code given by four hexadecimal digits. For example
3011 @nicode{\u0100} for a capital A with macron (U+0100).
3012
3013 @item @nicode{\UHHHHHH}
3014 Character code given by six hexadecimal digits. For example
3015 @nicode{\U010402}.
3016 @end table
3017
3018 @noindent
3019 The following are examples of string literals:
3020
3021 @lisp
3022 "foo"
3023 "bar plonk"
3024 "Hello World"
3025 "\"Hi\", he said."
3026 @end lisp
3027
3028 The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
3029 chosen to not break compatibility with code written for previous versions of
3030 Guile. The R6RS specification suggests a different, incompatible syntax for hex
3031 escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
3032 digits terminated with a semicolon. If this escape format is desired instead,
3033 it can be enabled with the reader option @code{r6rs-hex-escapes}.
3034
3035 @lisp
3036 (read-enable 'r6rs-hex-escapes)
3037 @end lisp
3038
3039 For more on reader options, @xref{Scheme Read}.
3040
3041 @node String Predicates
3042 @subsubsection String Predicates
3043
3044 The following procedures can be used to check whether a given string
3045 fulfills some specified property.
3046
3047 @rnindex string?
3048 @deffn {Scheme Procedure} string? obj
3049 @deffnx {C Function} scm_string_p (obj)
3050 Return @code{#t} if @var{obj} is a string, else @code{#f}.
3051 @end deffn
3052
3053 @deftypefn {C Function} int scm_is_string (SCM obj)
3054 Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
3055 @end deftypefn
3056
3057 @deffn {Scheme Procedure} string-null? str
3058 @deffnx {C Function} scm_string_null_p (str)
3059 Return @code{#t} if @var{str}'s length is zero, and
3060 @code{#f} otherwise.
3061 @lisp
3062 (string-null? "") @result{} #t
3063 y @result{} "foo"
3064 (string-null? y) @result{} #f
3065 @end lisp
3066 @end deffn
3067
3068 @deffn {Scheme Procedure} string-any char_pred s [start [end]]
3069 @deffnx {C Function} scm_string_any (char_pred, s, start, end)
3070 Check if @var{char_pred} is true for any character in string @var{s}.
3071
3072 @var{char_pred} can be a character to check for any equal to that, or
3073 a character set (@pxref{Character Sets}) to check for any in that set,
3074 or a predicate procedure to call.
3075
3076 For a procedure, calls @code{(@var{char_pred} c)} are made
3077 successively on the characters from @var{start} to @var{end}. If
3078 @var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
3079 stops and that return value is the return from @code{string-any}. The
3080 call on the last character (ie.@: at @math{@var{end}-1}), if that
3081 point is reached, is a tail call.
3082
3083 If there are no characters in @var{s} (ie.@: @var{start} equals
3084 @var{end}) then the return is @code{#f}.
3085 @end deffn
3086
3087 @deffn {Scheme Procedure} string-every char_pred s [start [end]]
3088 @deffnx {C Function} scm_string_every (char_pred, s, start, end)
3089 Check if @var{char_pred} is true for every character in string
3090 @var{s}.
3091
3092 @var{char_pred} can be a character to check for every character equal
3093 to that, or a character set (@pxref{Character Sets}) to check for
3094 every character being in that set, or a predicate procedure to call.
3095
3096 For a procedure, calls @code{(@var{char_pred} c)} are made
3097 successively on the characters from @var{start} to @var{end}. If
3098 @var{char_pred} returns @code{#f}, @code{string-every} stops and
3099 returns @code{#f}. The call on the last character (ie.@: at
3100 @math{@var{end}-1}), if that point is reached, is a tail call and the
3101 return from that call is the return from @code{string-every}.
3102
3103 If there are no characters in @var{s} (ie.@: @var{start} equals
3104 @var{end}) then the return is @code{#t}.
3105 @end deffn
3106
3107 @node String Constructors
3108 @subsubsection String Constructors
3109
3110 The string constructor procedures create new string objects, possibly
3111 initializing them with some specified character data. See also
3112 @xref{String Selection}, for ways to create strings from existing
3113 strings.
3114
3115 @c FIXME::martin: list->string belongs into `List/String Conversion'
3116
3117 @deffn {Scheme Procedure} string char@dots{}
3118 @rnindex string
3119 Return a newly allocated string made from the given character
3120 arguments.
3121
3122 @example
3123 (string #\x #\y #\z) @result{} "xyz"
3124 (string) @result{} ""
3125 @end example
3126 @end deffn
3127
3128 @deffn {Scheme Procedure} list->string lst
3129 @deffnx {C Function} scm_string (lst)
3130 @rnindex list->string
3131 Return a newly allocated string made from a list of characters.
3132
3133 @example
3134 (list->string '(#\a #\b #\c)) @result{} "abc"
3135 @end example
3136 @end deffn
3137
3138 @deffn {Scheme Procedure} reverse-list->string lst
3139 @deffnx {C Function} scm_reverse_list_to_string (lst)
3140 Return a newly allocated string made from a list of characters, in
3141 reverse order.
3142
3143 @example
3144 (reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
3145 @end example
3146 @end deffn
3147
3148 @rnindex make-string
3149 @deffn {Scheme Procedure} make-string k [chr]
3150 @deffnx {C Function} scm_make_string (k, chr)
3151 Return a newly allocated string of
3152 length @var{k}. If @var{chr} is given, then all elements of
3153 the string are initialized to @var{chr}, otherwise the contents
3154 of the string are unspecified.
3155 @end deffn
3156
3157 @deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
3158 Like @code{scm_make_string}, but expects the length as a
3159 @code{size_t}.
3160 @end deftypefn
3161
3162 @deffn {Scheme Procedure} string-tabulate proc len
3163 @deffnx {C Function} scm_string_tabulate (proc, len)
3164 @var{proc} is an integer->char procedure. Construct a string
3165 of size @var{len} by applying @var{proc} to each index to
3166 produce the corresponding string element. The order in which
3167 @var{proc} is applied to the indices is not specified.
3168 @end deffn
3169
3170 @deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
3171 @deffnx {C Function} scm_string_join (ls, delimiter, grammar)
3172 Append the string in the string list @var{ls}, using the string
3173 @var{delimiter} as a delimiter between the elements of @var{ls}.
3174 @var{grammar} is a symbol which specifies how the delimiter is
3175 placed between the strings, and defaults to the symbol
3176 @code{infix}.
3177
3178 @table @code
3179 @item infix
3180 Insert the separator between list elements. An empty string
3181 will produce an empty list.
3182 @item strict-infix
3183 Like @code{infix}, but will raise an error if given the empty
3184 list.
3185 @item suffix
3186 Insert the separator after every list element.
3187 @item prefix
3188 Insert the separator before each list element.
3189 @end table
3190 @end deffn
3191
3192 @node List/String Conversion
3193 @subsubsection List/String conversion
3194
3195 When processing strings, it is often convenient to first convert them
3196 into a list representation by using the procedure @code{string->list},
3197 work with the resulting list, and then convert it back into a string.
3198 These procedures are useful for similar tasks.
3199
3200 @rnindex string->list
3201 @deffn {Scheme Procedure} string->list str [start [end]]
3202 @deffnx {C Function} scm_substring_to_list (str, start, end)
3203 @deffnx {C Function} scm_string_to_list (str)
3204 Convert the string @var{str} into a list of characters.
3205 @end deffn
3206
3207 @deffn {Scheme Procedure} string-split str char_pred
3208 @deffnx {C Function} scm_string_split (str, char_pred)
3209 Split the string @var{str} into a list of substrings delimited
3210 by appearances of characters that
3211
3212 @itemize @bullet
3213 @item
3214 equal @var{char_pred}, if it is a character,
3215
3216 @item
3217 satisfy the predicate @var{char_pred}, if it is a procedure,
3218
3219 @item
3220 are in the set @var{char_pred}, if it is a character set.
3221 @end itemize
3222
3223 Note that an empty substring between separator characters will result in
3224 an empty string in the result list.
3225
3226 @lisp
3227 (string-split "root:x:0:0:root:/root:/bin/bash" #\:)
3228 @result{}
3229 ("root" "x" "0" "0" "root" "/root" "/bin/bash")
3230
3231 (string-split "::" #\:)
3232 @result{}
3233 ("" "" "")
3234
3235 (string-split "" #\:)
3236 @result{}
3237 ("")
3238 @end lisp
3239 @end deffn
3240
3241
3242 @node String Selection
3243 @subsubsection String Selection
3244
3245 Portions of strings can be extracted by these procedures.
3246 @code{string-ref} delivers individual characters whereas
3247 @code{substring} can be used to extract substrings from longer strings.
3248
3249 @rnindex string-length
3250 @deffn {Scheme Procedure} string-length string
3251 @deffnx {C Function} scm_string_length (string)
3252 Return the number of characters in @var{string}.
3253 @end deffn
3254
3255 @deftypefn {C Function} size_t scm_c_string_length (SCM str)
3256 Return the number of characters in @var{str} as a @code{size_t}.
3257 @end deftypefn
3258
3259 @rnindex string-ref
3260 @deffn {Scheme Procedure} string-ref str k
3261 @deffnx {C Function} scm_string_ref (str, k)
3262 Return character @var{k} of @var{str} using zero-origin
3263 indexing. @var{k} must be a valid index of @var{str}.
3264 @end deffn
3265
3266 @deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
3267 Return character @var{k} of @var{str} using zero-origin
3268 indexing. @var{k} must be a valid index of @var{str}.
3269 @end deftypefn
3270
3271 @rnindex string-copy
3272 @deffn {Scheme Procedure} string-copy str [start [end]]
3273 @deffnx {C Function} scm_substring_copy (str, start, end)
3274 @deffnx {C Function} scm_string_copy (str)
3275 Return a copy of the given string @var{str}.
3276
3277 The returned string shares storage with @var{str} initially, but it is
3278 copied as soon as one of the two strings is modified.
3279 @end deffn
3280
3281 @rnindex substring
3282 @deffn {Scheme Procedure} substring str start [end]
3283 @deffnx {C Function} scm_substring (str, start, end)
3284 Return a new string formed from the characters
3285 of @var{str} beginning with index @var{start} (inclusive) and
3286 ending with index @var{end} (exclusive).
3287 @var{str} must be a string, @var{start} and @var{end} must be
3288 exact integers satisfying:
3289
3290 0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
3291
3292 The returned string shares storage with @var{str} initially, but it is
3293 copied as soon as one of the two strings is modified.
3294 @end deffn
3295
3296 @deffn {Scheme Procedure} substring/shared str start [end]
3297 @deffnx {C Function} scm_substring_shared (str, start, end)
3298 Like @code{substring}, but the strings continue to share their storage
3299 even if they are modified. Thus, modifications to @var{str} show up
3300 in the new string, and vice versa.
3301 @end deffn
3302
3303 @deffn {Scheme Procedure} substring/copy str start [end]
3304 @deffnx {C Function} scm_substring_copy (str, start, end)
3305 Like @code{substring}, but the storage for the new string is copied
3306 immediately.
3307 @end deffn
3308
3309 @deffn {Scheme Procedure} substring/read-only str start [end]
3310 @deffnx {C Function} scm_substring_read_only (str, start, end)
3311 Like @code{substring}, but the resulting string can not be modified.
3312 @end deffn
3313
3314 @deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
3315 @deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
3316 @deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
3317 @deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
3318 Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
3319 @end deftypefn
3320
3321 @deffn {Scheme Procedure} string-take s n
3322 @deffnx {C Function} scm_string_take (s, n)
3323 Return the @var{n} first characters of @var{s}.
3324 @end deffn
3325
3326 @deffn {Scheme Procedure} string-drop s n
3327 @deffnx {C Function} scm_string_drop (s, n)
3328 Return all but the first @var{n} characters of @var{s}.
3329 @end deffn
3330
3331 @deffn {Scheme Procedure} string-take-right s n
3332 @deffnx {C Function} scm_string_take_right (s, n)
3333 Return the @var{n} last characters of @var{s}.
3334 @end deffn
3335
3336 @deffn {Scheme Procedure} string-drop-right s n
3337 @deffnx {C Function} scm_string_drop_right (s, n)
3338 Return all but the last @var{n} characters of @var{s}.
3339 @end deffn
3340
3341 @deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
3342 @deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
3343 @deffnx {C Function} scm_string_pad (s, len, chr, start, end)
3344 @deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
3345 Take characters @var{start} to @var{end} from the string @var{s} and
3346 either pad with @var{chr} or truncate them to give @var{len}
3347 characters.
3348
3349 @code{string-pad} pads or truncates on the left, so for example
3350
3351 @example
3352 (string-pad "x" 3) @result{} " x"
3353 (string-pad "abcde" 3) @result{} "cde"
3354 @end example
3355
3356 @code{string-pad-right} pads or truncates on the right, so for example
3357
3358 @example
3359 (string-pad-right "x" 3) @result{} "x "
3360 (string-pad-right "abcde" 3) @result{} "abc"
3361 @end example
3362 @end deffn
3363
3364 @deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
3365 @deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
3366 @deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
3367 @deffnx {C Function} scm_string_trim (s, char_pred, start, end)
3368 @deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
3369 @deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
3370 Trim occurrences of @var{char_pred} from the ends of @var{s}.
3371
3372 @code{string-trim} trims @var{char_pred} characters from the left
3373 (start) of the string, @code{string-trim-right} trims them from the
3374 right (end) of the string, @code{string-trim-both} trims from both
3375 ends.
3376
3377 @var{char_pred} can be a character, a character set, or a predicate
3378 procedure to call on each character. If @var{char_pred} is not given
3379 the default is whitespace as per @code{char-set:whitespace}
3380 (@pxref{Standard Character Sets}).
3381
3382 @example
3383 (string-trim " x ") @result{} "x "
3384 (string-trim-right "banana" #\a) @result{} "banan"
3385 (string-trim-both ".,xy:;" char-set:punctuation)
3386 @result{} "xy"
3387 (string-trim-both "xyzzy" (lambda (c)
3388 (or (eqv? c #\x)
3389 (eqv? c #\y))))
3390 @result{} "zz"
3391 @end example
3392 @end deffn
3393
3394 @node String Modification
3395 @subsubsection String Modification
3396
3397 These procedures are for modifying strings in-place. This means that the
3398 result of the operation is not a new string; instead, the original string's
3399 memory representation is modified.
3400
3401 @rnindex string-set!
3402 @deffn {Scheme Procedure} string-set! str k chr
3403 @deffnx {C Function} scm_string_set_x (str, k, chr)
3404 Store @var{chr} in element @var{k} of @var{str} and return
3405 an unspecified value. @var{k} must be a valid index of
3406 @var{str}.
3407 @end deffn
3408
3409 @deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3410 Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3411 @end deftypefn
3412
3413 @rnindex string-fill!
3414 @deffn {Scheme Procedure} string-fill! str chr [start [end]]
3415 @deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
3416 @deffnx {C Function} scm_string_fill_x (str, chr)
3417 Stores @var{chr} in every element of the given @var{str} and
3418 returns an unspecified value.
3419 @end deffn
3420
3421 @deffn {Scheme Procedure} substring-fill! str start end fill
3422 @deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3423 Change every character in @var{str} between @var{start} and
3424 @var{end} to @var{fill}.
3425
3426 @lisp
3427 (define y (string-copy "abcdefg"))
3428 (substring-fill! y 1 3 #\r)
3429 y
3430 @result{} "arrdefg"
3431 @end lisp
3432 @end deffn
3433
3434 @deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3435 @deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3436 Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3437 into @var{str2} beginning at position @var{start2}.
3438 @var{str1} and @var{str2} can be the same string.
3439 @end deffn
3440
3441 @deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3442 @deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3443 Copy the sequence of characters from index range [@var{start},
3444 @var{end}) in string @var{s} to string @var{target}, beginning
3445 at index @var{tstart}. The characters are copied left-to-right
3446 or right-to-left as needed -- the copy is guaranteed to work,
3447 even if @var{target} and @var{s} are the same string. It is an
3448 error if the copy operation runs off the end of the target
3449 string.
3450 @end deffn
3451
3452
3453 @node String Comparison
3454 @subsubsection String Comparison
3455
3456 The procedures in this section are similar to the character ordering
3457 predicates (@pxref{Characters}), but are defined on character sequences.
3458
3459 The first set is specified in R5RS and has names that end in @code{?}.
3460 The second set is specified in SRFI-13 and the names have not ending
3461 @code{?}.
3462
3463 The predicates ending in @code{-ci} ignore the character case
3464 when comparing strings. For now, case-insensitive comparison is done
3465 using the R5RS rules, where every lower-case character that has a
3466 single character upper-case form is converted to uppercase before
3467 comparison. See @xref{Text Collation, the @code{(ice-9
3468 i18n)} module}, for locale-dependent string comparison.
3469
3470 @rnindex string=?
3471 @deffn {Scheme Procedure} string=? s1 s2 s3 @dots{}
3472 Lexicographic equality predicate; return @code{#t} if all strings are
3473 the same length and contain the same characters in the same positions,
3474 otherwise return @code{#f}.
3475
3476 The procedure @code{string-ci=?} treats upper and lower case
3477 letters as though they were the same character, but
3478 @code{string=?} treats upper and lower case as distinct
3479 characters.
3480 @end deffn
3481
3482 @rnindex string<?
3483 @deffn {Scheme Procedure} string<? s1 s2 s3 @dots{}
3484 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3485 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3486 lexicographically less than @var{str_i+1}.
3487 @end deffn
3488
3489 @rnindex string<=?
3490 @deffn {Scheme Procedure} string<=? s1 s2 s3 @dots{}
3491 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3492 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3493 lexicographically less than or equal to @var{str_i+1}.
3494 @end deffn
3495
3496 @rnindex string>?
3497 @deffn {Scheme Procedure} string>? s1 s2 s3 @dots{}
3498 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3499 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3500 lexicographically greater than @var{str_i+1}.
3501 @end deffn
3502
3503 @rnindex string>=?
3504 @deffn {Scheme Procedure} string>=? s1 s2 s3 @dots{}
3505 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3506 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3507 lexicographically greater than or equal to @var{str_i+1}.
3508 @end deffn
3509
3510 @rnindex string-ci=?
3511 @deffn {Scheme Procedure} string-ci=? s1 s2 s3 @dots{}
3512 Case-insensitive string equality predicate; return @code{#t} if
3513 all strings are the same length and their component
3514 characters match (ignoring case) at each position; otherwise
3515 return @code{#f}.
3516 @end deffn
3517
3518 @rnindex string-ci<?
3519 @deffn {Scheme Procedure} string-ci<? s1 s2 s3 @dots{}
3520 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3521 for every pair of consecutive string arguments @var{str_i} and
3522 @var{str_i+1}, @var{str_i} is lexicographically less than @var{str_i+1}
3523 regardless of case.
3524 @end deffn
3525
3526 @rnindex string<=?
3527 @deffn {Scheme Procedure} string-ci<=? s1 s2 s3 @dots{}
3528 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3529 for every pair of consecutive string arguments @var{str_i} and
3530 @var{str_i+1}, @var{str_i} is lexicographically less than or equal to
3531 @var{str_i+1} regardless of case.
3532 @end deffn
3533
3534 @rnindex string-ci>?
3535 @deffn {Scheme Procedure} string-ci>? s1 s2 s3 @dots{}
3536 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3537 for every pair of consecutive string arguments @var{str_i} and
3538 @var{str_i+1}, @var{str_i} is lexicographically greater than
3539 @var{str_i+1} regardless of case.
3540 @end deffn
3541
3542 @rnindex string-ci>=?
3543 @deffn {Scheme Procedure} string-ci>=? s1 s2 s3 @dots{}
3544 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3545 for every pair of consecutive string arguments @var{str_i} and
3546 @var{str_i+1}, @var{str_i} is lexicographically greater than or equal to
3547 @var{str_i+1} regardless of case.
3548 @end deffn
3549
3550 @deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3551 @deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3552 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3553 mismatch index, depending upon whether @var{s1} is less than,
3554 equal to, or greater than @var{s2}. The mismatch index is the
3555 largest index @var{i} such that for every 0 <= @var{j} <
3556 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3557 @var{i} is the first position that does not match.
3558 @end deffn
3559
3560 @deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3561 @deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3562 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3563 mismatch index, depending upon whether @var{s1} is less than,
3564 equal to, or greater than @var{s2}. The mismatch index is the
3565 largest index @var{i} such that for every 0 <= @var{j} <
3566 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3567 @var{i} is the first position where the lowercased letters
3568 do not match.
3569
3570 @end deffn
3571
3572 @deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3573 @deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3574 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3575 value otherwise.
3576 @end deffn
3577
3578 @deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3579 @deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3580 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3581 value otherwise.
3582 @end deffn
3583
3584 @deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3585 @deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3586 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3587 true value otherwise.
3588 @end deffn
3589
3590 @deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3591 @deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3592 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3593 true value otherwise.
3594 @end deffn
3595
3596 @deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3597 @deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3598 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3599 value otherwise.
3600 @end deffn
3601
3602 @deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3603 @deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3604 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3605 otherwise.
3606 @end deffn
3607
3608 @deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3609 @deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3610 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3611 value otherwise. The character comparison is done
3612 case-insensitively.
3613 @end deffn
3614
3615 @deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3616 @deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3617 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3618 value otherwise. The character comparison is done
3619 case-insensitively.
3620 @end deffn
3621
3622 @deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3623 @deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3624 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3625 true value otherwise. The character comparison is done
3626 case-insensitively.
3627 @end deffn
3628
3629 @deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3630 @deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3631 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3632 true value otherwise. The character comparison is done
3633 case-insensitively.
3634 @end deffn
3635
3636 @deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3637 @deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3638 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3639 value otherwise. The character comparison is done
3640 case-insensitively.
3641 @end deffn
3642
3643 @deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3644 @deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3645 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3646 otherwise. The character comparison is done
3647 case-insensitively.
3648 @end deffn
3649
3650 @deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3651 @deffnx {C Function} scm_substring_hash (s, bound, start, end)
3652 Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3653 @end deffn
3654
3655 @deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3656 @deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3657 Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3658 @end deffn
3659
3660 Because the same visual appearance of an abstract Unicode character can
3661 be obtained via multiple sequences of Unicode characters, even the
3662 case-insensitive string comparison functions described above may return
3663 @code{#f} when presented with strings containing different
3664 representations of the same character. For example, the Unicode
3665 character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
3666 represented with a single character (U+1E69) or by the character ``LATIN
3667 SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
3668 DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
3669
3670 For this reason, it is often desirable to ensure that the strings
3671 to be compared are using a mutually consistent representation for every
3672 character. The Unicode standard defines two methods of normalizing the
3673 contents of strings: Decomposition, which breaks composite characters
3674 into a set of constituent characters with an ordering defined by the
3675 Unicode Standard; and composition, which performs the converse.
3676
3677 There are two decomposition operations. ``Canonical decomposition''
3678 produces character sequences that share the same visual appearance as
3679 the original characters, while ``compatibility decomposition'' produces
3680 ones whose visual appearances may differ from the originals but which
3681 represent the same abstract character.
3682
3683 These operations are encapsulated in the following set of normalization
3684 forms:
3685
3686 @table @dfn
3687 @item NFD
3688 Characters are decomposed to their canonical forms.
3689
3690 @item NFKD
3691 Characters are decomposed to their compatibility forms.
3692
3693 @item NFC
3694 Characters are decomposed to their canonical forms, then composed.
3695
3696 @item NFKC
3697 Characters are decomposed to their compatibility forms, then composed.
3698
3699 @end table
3700
3701 The functions below put their arguments into one of the forms described
3702 above.
3703
3704 @deffn {Scheme Procedure} string-normalize-nfd s
3705 @deffnx {C Function} scm_string_normalize_nfd (s)
3706 Return the @code{NFD} normalized form of @var{s}.
3707 @end deffn
3708
3709 @deffn {Scheme Procedure} string-normalize-nfkd s
3710 @deffnx {C Function} scm_string_normalize_nfkd (s)
3711 Return the @code{NFKD} normalized form of @var{s}.
3712 @end deffn
3713
3714 @deffn {Scheme Procedure} string-normalize-nfc s
3715 @deffnx {C Function} scm_string_normalize_nfc (s)
3716 Return the @code{NFC} normalized form of @var{s}.
3717 @end deffn
3718
3719 @deffn {Scheme Procedure} string-normalize-nfkc s
3720 @deffnx {C Function} scm_string_normalize_nfkc (s)
3721 Return the @code{NFKC} normalized form of @var{s}.
3722 @end deffn
3723
3724 @node String Searching
3725 @subsubsection String Searching
3726
3727 @deffn {Scheme Procedure} string-index s char_pred [start [end]]
3728 @deffnx {C Function} scm_string_index (s, char_pred, start, end)
3729 Search through the string @var{s} from left to right, returning
3730 the index of the first occurrence of a character which
3731
3732 @itemize @bullet
3733 @item
3734 equals @var{char_pred}, if it is character,
3735
3736 @item
3737 satisfies the predicate @var{char_pred}, if it is a procedure,
3738
3739 @item
3740 is in the set @var{char_pred}, if it is a character set.
3741 @end itemize
3742
3743 Return @code{#f} if no match is found.
3744 @end deffn
3745
3746 @deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3747 @deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3748 Search through the string @var{s} from right to left, returning
3749 the index of the last occurrence of a character which
3750
3751 @itemize @bullet
3752 @item
3753 equals @var{char_pred}, if it is character,
3754
3755 @item
3756 satisfies the predicate @var{char_pred}, if it is a procedure,
3757
3758 @item
3759 is in the set if @var{char_pred} is a character set.
3760 @end itemize
3761
3762 Return @code{#f} if no match is found.
3763 @end deffn
3764
3765 @deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3766 @deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3767 Return the length of the longest common prefix of the two
3768 strings.
3769 @end deffn
3770
3771 @deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3772 @deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3773 Return the length of the longest common prefix of the two
3774 strings, ignoring character case.
3775 @end deffn
3776
3777 @deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3778 @deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3779 Return the length of the longest common suffix of the two
3780 strings.
3781 @end deffn
3782
3783 @deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3784 @deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3785 Return the length of the longest common suffix of the two
3786 strings, ignoring character case.
3787 @end deffn
3788
3789 @deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3790 @deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3791 Is @var{s1} a prefix of @var{s2}?
3792 @end deffn
3793
3794 @deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3795 @deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3796 Is @var{s1} a prefix of @var{s2}, ignoring character case?
3797 @end deffn
3798
3799 @deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3800 @deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3801 Is @var{s1} a suffix of @var{s2}?
3802 @end deffn
3803
3804 @deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3805 @deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3806 Is @var{s1} a suffix of @var{s2}, ignoring character case?
3807 @end deffn
3808
3809 @deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3810 @deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3811 Search through the string @var{s} from right to left, returning
3812 the index of the last occurrence of a character which
3813
3814 @itemize @bullet
3815 @item
3816 equals @var{char_pred}, if it is character,
3817
3818 @item
3819 satisfies the predicate @var{char_pred}, if it is a procedure,
3820
3821 @item
3822 is in the set if @var{char_pred} is a character set.
3823 @end itemize
3824
3825 Return @code{#f} if no match is found.
3826 @end deffn
3827
3828 @deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3829 @deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3830 Search through the string @var{s} from left to right, returning
3831 the index of the first occurrence of a character which
3832
3833 @itemize @bullet
3834 @item
3835 does not equal @var{char_pred}, if it is character,
3836
3837 @item
3838 does not satisfy the predicate @var{char_pred}, if it is a
3839 procedure,
3840
3841 @item
3842 is not in the set if @var{char_pred} is a character set.
3843 @end itemize
3844 @end deffn
3845
3846 @deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3847 @deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3848 Search through the string @var{s} from right to left, returning
3849 the index of the last occurrence of a character which
3850
3851 @itemize @bullet
3852 @item
3853 does not equal @var{char_pred}, if it is character,
3854
3855 @item
3856 does not satisfy the predicate @var{char_pred}, if it is a
3857 procedure,
3858
3859 @item
3860 is not in the set if @var{char_pred} is a character set.
3861 @end itemize
3862 @end deffn
3863
3864 @deffn {Scheme Procedure} string-count s char_pred [start [end]]
3865 @deffnx {C Function} scm_string_count (s, char_pred, start, end)
3866 Return the count of the number of characters in the string
3867 @var{s} which
3868
3869 @itemize @bullet
3870 @item
3871 equals @var{char_pred}, if it is character,
3872
3873 @item
3874 satisfies the predicate @var{char_pred}, if it is a procedure.
3875
3876 @item
3877 is in the set @var{char_pred}, if it is a character set.
3878 @end itemize
3879 @end deffn
3880
3881 @deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3882 @deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3883 Does string @var{s1} contain string @var{s2}? Return the index
3884 in @var{s1} where @var{s2} occurs as a substring, or false.
3885 The optional start/end indices restrict the operation to the
3886 indicated substrings.
3887 @end deffn
3888
3889 @deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3890 @deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3891 Does string @var{s1} contain string @var{s2}? Return the index
3892 in @var{s1} where @var{s2} occurs as a substring, or false.
3893 The optional start/end indices restrict the operation to the
3894 indicated substrings. Character comparison is done
3895 case-insensitively.
3896 @end deffn
3897
3898 @node Alphabetic Case Mapping
3899 @subsubsection Alphabetic Case Mapping
3900
3901 These are procedures for mapping strings to their upper- or lower-case
3902 equivalents, respectively, or for capitalizing strings.
3903
3904 They use the basic case mapping rules for Unicode characters. No
3905 special language or context rules are considered. The resulting strings
3906 are guaranteed to be the same length as the input strings.
3907
3908 @xref{Character Case Mapping, the @code{(ice-9
3909 i18n)} module}, for locale-dependent case conversions.
3910
3911 @deffn {Scheme Procedure} string-upcase str [start [end]]
3912 @deffnx {C Function} scm_substring_upcase (str, start, end)
3913 @deffnx {C Function} scm_string_upcase (str)
3914 Upcase every character in @code{str}.
3915 @end deffn
3916
3917 @deffn {Scheme Procedure} string-upcase! str [start [end]]
3918 @deffnx {C Function} scm_substring_upcase_x (str, start, end)
3919 @deffnx {C Function} scm_string_upcase_x (str)
3920 Destructively upcase every character in @code{str}.
3921
3922 @lisp
3923 (string-upcase! y)
3924 @result{} "ARRDEFG"
3925 y
3926 @result{} "ARRDEFG"
3927 @end lisp
3928 @end deffn
3929
3930 @deffn {Scheme Procedure} string-downcase str [start [end]]
3931 @deffnx {C Function} scm_substring_downcase (str, start, end)
3932 @deffnx {C Function} scm_string_downcase (str)
3933 Downcase every character in @var{str}.
3934 @end deffn
3935
3936 @deffn {Scheme Procedure} string-downcase! str [start [end]]
3937 @deffnx {C Function} scm_substring_downcase_x (str, start, end)
3938 @deffnx {C Function} scm_string_downcase_x (str)
3939 Destructively downcase every character in @var{str}.
3940
3941 @lisp
3942 y
3943 @result{} "ARRDEFG"
3944 (string-downcase! y)
3945 @result{} "arrdefg"
3946 y
3947 @result{} "arrdefg"
3948 @end lisp
3949 @end deffn
3950
3951 @deffn {Scheme Procedure} string-capitalize str
3952 @deffnx {C Function} scm_string_capitalize (str)
3953 Return a freshly allocated string with the characters in
3954 @var{str}, where the first character of every word is
3955 capitalized.
3956 @end deffn
3957
3958 @deffn {Scheme Procedure} string-capitalize! str
3959 @deffnx {C Function} scm_string_capitalize_x (str)
3960 Upcase the first character of every word in @var{str}
3961 destructively and return @var{str}.
3962
3963 @lisp
3964 y @result{} "hello world"
3965 (string-capitalize! y) @result{} "Hello World"
3966 y @result{} "Hello World"
3967 @end lisp
3968 @end deffn
3969
3970 @deffn {Scheme Procedure} string-titlecase str [start [end]]
3971 @deffnx {C Function} scm_string_titlecase (str, start, end)
3972 Titlecase every first character in a word in @var{str}.
3973 @end deffn
3974
3975 @deffn {Scheme Procedure} string-titlecase! str [start [end]]
3976 @deffnx {C Function} scm_string_titlecase_x (str, start, end)
3977 Destructively titlecase every first character in a word in
3978 @var{str}.
3979 @end deffn
3980
3981 @node Reversing and Appending Strings
3982 @subsubsection Reversing and Appending Strings
3983
3984 @deffn {Scheme Procedure} string-reverse str [start [end]]
3985 @deffnx {C Function} scm_string_reverse (str, start, end)
3986 Reverse the string @var{str}. The optional arguments
3987 @var{start} and @var{end} delimit the region of @var{str} to
3988 operate on.
3989 @end deffn
3990
3991 @deffn {Scheme Procedure} string-reverse! str [start [end]]
3992 @deffnx {C Function} scm_string_reverse_x (str, start, end)
3993 Reverse the string @var{str} in-place. The optional arguments
3994 @var{start} and @var{end} delimit the region of @var{str} to
3995 operate on. The return value is unspecified.
3996 @end deffn
3997
3998 @rnindex string-append
3999 @deffn {Scheme Procedure} string-append arg @dots{}
4000 @deffnx {C Function} scm_string_append (args)
4001 Return a newly allocated string whose characters form the
4002 concatenation of the given strings, @var{arg} @enddots{}.
4003
4004 @example
4005 (let ((h "hello "))
4006 (string-append h "world"))
4007 @result{} "hello world"
4008 @end example
4009 @end deffn
4010
4011 @deffn {Scheme Procedure} string-append/shared arg @dots{}
4012 @deffnx {C Function} scm_string_append_shared (args)
4013 Like @code{string-append}, but the result may share memory
4014 with the argument strings.
4015 @end deffn
4016
4017 @deffn {Scheme Procedure} string-concatenate ls
4018 @deffnx {C Function} scm_string_concatenate (ls)
4019 Append the elements (which must be strings) of @var{ls} together into a
4020 single string. Guaranteed to return a freshly allocated string.
4021 @end deffn
4022
4023 @deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
4024 @deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
4025 Without optional arguments, this procedure is equivalent to
4026
4027 @lisp
4028 (string-concatenate (reverse ls))
4029 @end lisp
4030
4031 If the optional argument @var{final_string} is specified, it is
4032 consed onto the beginning to @var{ls} before performing the
4033 list-reverse and string-concatenate operations. If @var{end}
4034 is given, only the characters of @var{final_string} up to index
4035 @var{end} are used.
4036
4037 Guaranteed to return a freshly allocated string.
4038 @end deffn
4039
4040 @deffn {Scheme Procedure} string-concatenate/shared ls
4041 @deffnx {C Function} scm_string_concatenate_shared (ls)
4042 Like @code{string-concatenate}, but the result may share memory
4043 with the strings in the list @var{ls}.
4044 @end deffn
4045
4046 @deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
4047 @deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
4048 Like @code{string-concatenate-reverse}, but the result may
4049 share memory with the strings in the @var{ls} arguments.
4050 @end deffn
4051
4052 @node Mapping Folding and Unfolding
4053 @subsubsection Mapping, Folding, and Unfolding
4054
4055 @deffn {Scheme Procedure} string-map proc s [start [end]]
4056 @deffnx {C Function} scm_string_map (proc, s, start, end)
4057 @var{proc} is a char->char procedure, it is mapped over
4058 @var{s}. The order in which the procedure is applied to the
4059 string elements is not specified.
4060 @end deffn
4061
4062 @deffn {Scheme Procedure} string-map! proc s [start [end]]
4063 @deffnx {C Function} scm_string_map_x (proc, s, start, end)
4064 @var{proc} is a char->char procedure, it is mapped over
4065 @var{s}. The order in which the procedure is applied to the
4066 string elements is not specified. The string @var{s} is
4067 modified in-place, the return value is not specified.
4068 @end deffn
4069
4070 @deffn {Scheme Procedure} string-for-each proc s [start [end]]
4071 @deffnx {C Function} scm_string_for_each (proc, s, start, end)
4072 @var{proc} is mapped over @var{s} in left-to-right order. The
4073 return value is not specified.
4074 @end deffn
4075
4076 @deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
4077 @deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
4078 Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
4079 right.
4080
4081 For example, to change characters to alternately upper and lower case,
4082
4083 @example
4084 (define str (string-copy "studly"))
4085 (string-for-each-index
4086 (lambda (i)
4087 (string-set! str i
4088 ((if (even? i) char-upcase char-downcase)
4089 (string-ref str i))))
4090 str)
4091 str @result{} "StUdLy"
4092 @end example
4093 @end deffn
4094
4095 @deffn {Scheme Procedure} string-fold kons knil s [start [end]]
4096 @deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
4097 Fold @var{kons} over the characters of @var{s}, with @var{knil}
4098 as the terminating element, from left to right. @var{kons}
4099 must expect two arguments: The actual character and the last
4100 result of @var{kons}' application.
4101 @end deffn
4102
4103 @deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
4104 @deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
4105 Fold @var{kons} over the characters of @var{s}, with @var{knil}
4106 as the terminating element, from right to left. @var{kons}
4107 must expect two arguments: The actual character and the last
4108 result of @var{kons}' application.
4109 @end deffn
4110
4111 @deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
4112 @deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
4113 @itemize @bullet
4114 @item @var{g} is used to generate a series of @emph{seed}
4115 values from the initial @var{seed}: @var{seed}, (@var{g}
4116 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4117 @dots{}
4118 @item @var{p} tells us when to stop -- when it returns true
4119 when applied to one of these seed values.
4120 @item @var{f} maps each seed value to the corresponding
4121 character in the result string. These chars are assembled
4122 into the string in a left-to-right order.
4123 @item @var{base} is the optional initial/leftmost portion
4124 of the constructed string; it default to the empty
4125 string.
4126 @item @var{make_final} is applied to the terminal seed
4127 value (on which @var{p} returns true) to produce
4128 the final/rightmost portion of the constructed string.
4129 The default is nothing extra.
4130 @end itemize
4131 @end deffn
4132
4133 @deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
4134 @deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
4135 @itemize @bullet
4136 @item @var{g} is used to generate a series of @emph{seed}
4137 values from the initial @var{seed}: @var{seed}, (@var{g}
4138 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4139 @dots{}
4140 @item @var{p} tells us when to stop -- when it returns true
4141 when applied to one of these seed values.
4142 @item @var{f} maps each seed value to the corresponding
4143 character in the result string. These chars are assembled
4144 into the string in a right-to-left order.
4145 @item @var{base} is the optional initial/rightmost portion
4146 of the constructed string; it default to the empty
4147 string.
4148 @item @var{make_final} is applied to the terminal seed
4149 value (on which @var{p} returns true) to produce
4150 the final/leftmost portion of the constructed string.
4151 It defaults to @code{(lambda (x) )}.
4152 @end itemize
4153 @end deffn
4154
4155 @node Miscellaneous String Operations
4156 @subsubsection Miscellaneous String Operations
4157
4158 @deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
4159 @deffnx {C Function} scm_xsubstring (s, from, to, start, end)
4160 This is the @emph{extended substring} procedure that implements
4161 replicated copying of a substring of some string.
4162
4163 @var{s} is a string, @var{start} and @var{end} are optional
4164 arguments that demarcate a substring of @var{s}, defaulting to
4165 0 and the length of @var{s}. Replicate this substring up and
4166 down index space, in both the positive and negative directions.
4167 @code{xsubstring} returns the substring of this string
4168 beginning at index @var{from}, and ending at @var{to}, which
4169 defaults to @var{from} + (@var{end} - @var{start}).
4170 @end deffn
4171
4172 @deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
4173 @deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
4174 Exactly the same as @code{xsubstring}, but the extracted text
4175 is written into the string @var{target} starting at index
4176 @var{tstart}. The operation is not defined if @code{(eq?
4177 @var{target} @var{s})} or these arguments share storage -- you
4178 cannot copy a string on top of itself.
4179 @end deffn
4180
4181 @deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
4182 @deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
4183 Return the string @var{s1}, but with the characters
4184 @var{start1} @dots{} @var{end1} replaced by the characters
4185 @var{start2} @dots{} @var{end2} from @var{s2}.
4186 @end deffn
4187
4188 @deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
4189 @deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
4190 Split the string @var{s} into a list of substrings, where each
4191 substring is a maximal non-empty contiguous sequence of
4192 characters from the character set @var{token_set}, which
4193 defaults to @code{char-set:graphic}.
4194 If @var{start} or @var{end} indices are provided, they restrict
4195 @code{string-tokenize} to operating on the indicated substring
4196 of @var{s}.
4197 @end deffn
4198
4199 @deffn {Scheme Procedure} string-filter char_pred s [start [end]]
4200 @deffnx {C Function} scm_string_filter (char_pred, s, start, end)
4201 Filter the string @var{s}, retaining only those characters which
4202 satisfy @var{char_pred}.
4203
4204 If @var{char_pred} is a procedure, it is applied to each character as
4205 a predicate, if it is a character, it is tested for equality and if it
4206 is a character set, it is tested for membership.
4207 @end deffn
4208
4209 @deffn {Scheme Procedure} string-delete char_pred s [start [end]]
4210 @deffnx {C Function} scm_string_delete (char_pred, s, start, end)
4211 Delete characters satisfying @var{char_pred} from @var{s}.
4212
4213 If @var{char_pred} is a procedure, it is applied to each character as
4214 a predicate, if it is a character, it is tested for equality and if it
4215 is a character set, it is tested for membership.
4216 @end deffn
4217
4218 @node Representing Strings as Bytes
4219 @subsubsection Representing Strings as Bytes
4220
4221 Out in the cold world outside of Guile, not all strings are treated in
4222 the same way. Out there there are only bytes, and there are many ways
4223 of representing a strings (sequences of characters) as binary data
4224 (sequences of bytes).
4225
4226 As a user, usually you don't have to think about this very much. When
4227 you type on your keyboard, your system encodes your keystrokes as bytes
4228 according to the locale that you have configured on your computer.
4229 Guile uses the locale to decode those bytes back into characters --
4230 hopefully the same characters that you typed in.
4231
4232 All is not so clear when dealing with a system with multiple users, such
4233 as a web server. Your web server might get a request from one user for
4234 data encoded in the ISO-8859-1 character set, and then another request
4235 from a different user for UTF-8 data.
4236
4237 @cindex iconv
4238 @cindex character encoding
4239 Guile provides an @dfn{iconv} module for converting between strings and
4240 sequences of bytes. @xref{Bytevectors}, for more on how Guile
4241 represents raw byte sequences. This module gets its name from the
4242 common @sc{unix} command of the same name.
4243
4244 Note that often it is sufficient to just read and write strings from
4245 ports instead of using these functions. To do this, specify the port
4246 encoding using @code{set-port-encoding!}. @xref{Ports}, for more on
4247 ports and character encodings.
4248
4249 Unlike the rest of the procedures in this section, you have to load the
4250 @code{iconv} module before having access to these procedures:
4251
4252 @example
4253 (use-modules (ice-9 iconv))
4254 @end example
4255
4256 @deffn {Scheme Procedure} string->bytevector string encoding [conversion-strategy]
4257 Encode @var{string} as a sequence of bytes.
4258
4259 The string will be encoded in the character set specified by the
4260 @var{encoding} string. If the string has characters that cannot be
4261 represented in the encoding, by default this procedure raises an
4262 @code{encoding-error}. Pass a @var{conversion-strategy} argument to
4263 specify other behaviors.
4264
4265 The return value is a bytevector. @xref{Bytevectors}, for more on
4266 bytevectors. @xref{Ports}, for more on character encodings and
4267 conversion strategies.
4268 @end deffn
4269
4270 @deffn {Scheme Procedure} bytevector->string bytevector encoding [conversion-strategy]
4271 Decode @var{bytevector} into a string.
4272
4273 The bytes will be decoded from the character set by the @var{encoding}
4274 string. If the bytes do not form a valid encoding, by default this
4275 procedure raises an @code{decoding-error}. As with
4276 @code{string->bytevector}, pass the optional @var{conversion-strategy}
4277 argument to modify this behavior. @xref{Ports}, for more on character
4278 encodings and conversion strategies.
4279 @end deffn
4280
4281 @deffn {Scheme Procedure} call-with-output-encoded-string encoding proc [conversion-strategy]
4282 Like @code{call-with-output-string}, but instead of returning a string,
4283 returns a encoding of the string according to @var{encoding}, as a
4284 bytevector. This procedure can be more efficient than collecting a
4285 string and then converting it via @code{string->bytevector}.
4286 @end deffn
4287
4288 @node Conversion to/from C
4289 @subsubsection Conversion to/from C
4290
4291 When creating a Scheme string from a C string or when converting a
4292 Scheme string to a C string, the concept of character encoding becomes
4293 important.
4294
4295 In C, a string is just a sequence of bytes, and the character encoding
4296 describes the relation between these bytes and the actual characters
4297 that make up the string. For Scheme strings, character encoding is not
4298 an issue (most of the time), since in Scheme you usually treat strings
4299 as character sequences, not byte sequences.
4300
4301 Converting to C and converting from C each have their own challenges.
4302
4303 When converting from C to Scheme, it is important that the sequence of
4304 bytes in the C string be valid with respect to its encoding. ASCII
4305 strings, for example, can't have any bytes greater than 127. An ASCII
4306 byte greater than 127 is considered @emph{ill-formed} and cannot be
4307 converted into a Scheme character.
4308
4309 Problems can occur in the reverse operation as well. Not all character
4310 encodings can hold all possible Scheme characters. Some encodings, like
4311 ASCII for example, can only describe a small subset of all possible
4312 characters. So, when converting to C, one must first decide what to do
4313 with Scheme characters that can't be represented in the C string.
4314
4315 Converting a Scheme string to a C string will often allocate fresh
4316 memory to hold the result. You must take care that this memory is
4317 properly freed eventually. In many cases, this can be achieved by
4318 using @code{scm_dynwind_free} inside an appropriate dynwind context,
4319 @xref{Dynamic Wind}.
4320
4321 @deftypefn {C Function} SCM scm_from_locale_string (const char *str)
4322 @deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
4323 Creates a new Scheme string that has the same contents as @var{str} when
4324 interpreted in the character encoding of the current locale.
4325
4326 For @code{scm_from_locale_string}, @var{str} must be null-terminated.
4327
4328 For @code{scm_from_locale_stringn}, @var{len} specifies the length of
4329 @var{str} in bytes, and @var{str} does not need to be null-terminated.
4330 If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
4331 null-terminated and the real length will be found with @code{strlen}.
4332
4333 If the C string is ill-formed, an error will be raised.
4334
4335 Note that these functions should @emph{not} be used to convert C string
4336 constants, because there is no guarantee that the current locale will
4337 match that of the execution character set, used for string and character
4338 constants. Most modern C compilers use UTF-8 by default, so to convert
4339 C string constants we recommend @code{scm_from_utf8_string}.
4340 @end deftypefn
4341
4342 @deftypefn {C Function} SCM scm_take_locale_string (char *str)
4343 @deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
4344 Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
4345 respectively, but also frees @var{str} with @code{free} eventually.
4346 Thus, you can use this function when you would free @var{str} anyway
4347 immediately after creating the Scheme string. In certain cases, Guile
4348 can then use @var{str} directly as its internal representation.
4349 @end deftypefn
4350
4351 @deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
4352 @deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
4353 Returns a C string with the same contents as @var{str} in the character
4354 encoding of the current locale. The C string must be freed with
4355 @code{free} eventually, maybe by using @code{scm_dynwind_free},
4356 @xref{Dynamic Wind}.
4357
4358 For @code{scm_to_locale_string}, the returned string is
4359 null-terminated and an error is signalled when @var{str} contains
4360 @code{#\nul} characters.
4361
4362 For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
4363 @var{str} might contain @code{#\nul} characters and the length of the
4364 returned string in bytes is stored in @code{*@var{lenp}}. The
4365 returned string will not be null-terminated in this case. If
4366 @var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
4367 @code{scm_to_locale_string}.
4368
4369 If a character in @var{str} cannot be represented in the character
4370 encoding of the current locale, the default port conversion strategy is
4371 used. @xref{Ports}, for more on conversion strategies.
4372
4373 If the conversion strategy is @code{error}, an error will be raised. If
4374 it is @code{substitute}, a replacement character, such as a question
4375 mark, will be inserted in its place. If it is @code{escape}, a hex
4376 escape will be inserted in its place.
4377 @end deftypefn
4378
4379 @deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
4380 Puts @var{str} as a C string in the current locale encoding into the
4381 memory pointed to by @var{buf}. The buffer at @var{buf} has room for
4382 @var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
4383 more than that. No terminating @code{'\0'} will be stored.
4384
4385 The return value of @code{scm_to_locale_stringbuf} is the number of
4386 bytes that are needed for all of @var{str}, regardless of whether
4387 @var{buf} was large enough to hold them. Thus, when the return value
4388 is larger than @var{max_len}, only @var{max_len} bytes have been
4389 stored and you probably need to try again with a larger buffer.
4390 @end deftypefn
4391
4392 For most situations, string conversion should occur using the current
4393 locale, such as with the functions above. But there may be cases where
4394 one wants to convert strings from a character encoding other than the
4395 locale's character encoding. For these cases, the lower-level functions
4396 @code{scm_to_stringn} and @code{scm_from_stringn} are provided. These
4397 functions should seldom be necessary if one is properly using locales.
4398
4399 @deftp {C Type} scm_t_string_failed_conversion_handler
4400 This is an enumerated type that can take one of three values:
4401 @code{SCM_FAILED_CONVERSION_ERROR},
4402 @code{SCM_FAILED_CONVERSION_QUESTION_MARK}, and
4403 @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}. They are used to indicate
4404 a strategy for handling characters that cannot be converted to or from a
4405 given character encoding. @code{SCM_FAILED_CONVERSION_ERROR} indicates
4406 that a conversion should throw an error if some characters cannot be
4407 converted. @code{SCM_FAILED_CONVERSION_QUESTION_MARK} indicates that a
4408 conversion should replace unconvertable characters with the question
4409 mark character. And, @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}
4410 requests that a conversion should replace an unconvertable character
4411 with an escape sequence.
4412
4413 While all three strategies apply when converting Scheme strings to C,
4414 only @code{SCM_FAILED_CONVERSION_ERROR} and
4415 @code{SCM_FAILED_CONVERSION_QUESTION_MARK} can be used when converting C
4416 strings to Scheme.
4417 @end deftp
4418
4419 @deftypefn {C Function} char *scm_to_stringn (SCM str, size_t *lenp, const char *encoding, scm_t_string_failed_conversion_handler handler)
4420 This function returns a newly allocated C string from the Guile string
4421 @var{str}. The length of the returned string in bytes will be returned in
4422 @var{lenp}. The character encoding of the C string is passed as the ASCII,
4423 null-terminated C string @var{encoding}. The @var{handler} parameter
4424 gives a strategy for dealing with characters that cannot be converted
4425 into @var{encoding}.
4426
4427 If @var{lenp} is @code{NULL}, this function will return a null-terminated C
4428 string. It will throw an error if the string contains a null
4429 character.
4430
4431 The Scheme interface to this function is @code{string->bytevector}, from the
4432 @code{ice-9 iconv} module. @xref{Representing Strings as Bytes}.
4433 @end deftypefn
4434
4435 @deftypefn {C Function} SCM scm_from_stringn (const char *str, size_t len, const char *encoding, scm_t_string_failed_conversion_handler handler)
4436 This function returns a scheme string from the C string @var{str}. The
4437 length in bytes of the C string is input as @var{len}. The encoding of the C
4438 string is passed as the ASCII, null-terminated C string @code{encoding}.
4439 The @var{handler} parameters suggests a strategy for dealing with
4440 unconvertable characters.
4441
4442 The Scheme interface to this function is @code{bytevector->string}.
4443 @xref{Representing Strings as Bytes}.
4444 @end deftypefn
4445
4446 The following conversion functions are provided as a convenience for the
4447 most commonly used encodings.
4448
4449 @deftypefn {C Function} SCM scm_from_latin1_string (const char *str)
4450 @deftypefnx {C Function} SCM scm_from_utf8_string (const char *str)
4451 @deftypefnx {C Function} SCM scm_from_utf32_string (const scm_t_wchar *str)
4452 Return a scheme string from the null-terminated C string @var{str},
4453 which is ISO-8859-1-, UTF-8-, or UTF-32-encoded. These functions should
4454 be used to convert hard-coded C string constants into Scheme strings.
4455 @end deftypefn
4456
4457 @deftypefn {C Function} SCM scm_from_latin1_stringn (const char *str, size_t len)
4458 @deftypefnx {C Function} SCM scm_from_utf8_stringn (const char *str, size_t len)
4459 @deftypefnx {C Function} SCM scm_from_utf32_stringn (const scm_t_wchar *str, size_t len)
4460 Return a scheme string from C string @var{str}, which is ISO-8859-1-,
4461 UTF-8-, or UTF-32-encoded, of length @var{len}. @var{len} is the number
4462 of bytes pointed to by @var{str} for @code{scm_from_latin1_stringn} and
4463 @code{scm_from_utf8_stringn}; it is the number of elements (code points)
4464 in @var{str} in the case of @code{scm_from_utf32_stringn}.
4465 @end deftypefn
4466
4467 @deftypefn {C function} char *scm_to_latin1_stringn (SCM str, size_t *lenp)
4468 @deftypefnx {C function} char *scm_to_utf8_stringn (SCM str, size_t *lenp)
4469 @deftypefnx {C function} scm_t_wchar *scm_to_utf32_stringn (SCM str, size_t *lenp)
4470 Return a newly allocated, ISO-8859-1-, UTF-8-, or UTF-32-encoded C string
4471 from Scheme string @var{str}. An error is thrown when @var{str}
4472 cannot be converted to the specified encoding. If @var{lenp} is
4473 @code{NULL}, the returned C string will be null terminated, and an error
4474 will be thrown if the C string would otherwise contain null
4475 characters. If @var{lenp} is not @code{NULL}, the string is not null terminated,
4476 and the length of the returned string is returned in @var{lenp}. The length
4477 returned is the number of bytes for @code{scm_to_latin1_stringn} and
4478 @code{scm_to_utf8_stringn}; it is the number of elements (code points)
4479 for @code{scm_to_utf32_stringn}.
4480 @end deftypefn
4481
4482 It is not often the case, but sometimes when you are dealing with the
4483 implementation details of a port, you need to encode and decode strings
4484 according to the encoding and conversion strategy of the port. There
4485 are some convenience functions for that purpose as well.
4486
4487 @deftypefn {C Function} SCM scm_from_port_string (const char *str, SCM port)
4488 @deftypefnx {C Function} SCM scm_from_port_stringn (const char *str, size_t len, SCM port)
4489 @deftypefnx {C Function} char* scm_to_port_string (SCM str, SCM port)
4490 @deftypefnx {C Function} char* scm_to_port_stringn (SCM str, size_t *lenp, SCM port)
4491 Like @code{scm_from_stringn} and friends, except they take their
4492 encoding and conversion strategy from a given port object.
4493 @end deftypefn
4494
4495 @node String Internals
4496 @subsubsection String Internals
4497
4498 Guile stores each string in memory as a contiguous array of Unicode code
4499 points along with an associated set of attributes. If all of the code
4500 points of a string have an integer range between 0 and 255 inclusive,
4501 the code point array is stored as one byte per code point: it is stored
4502 as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
4503 string has an integer value greater that 255, the code point array is
4504 stored as four bytes per code point: it is stored as a UTF-32 string.
4505
4506 Conversion between the one-byte-per-code-point and
4507 four-bytes-per-code-point representations happens automatically as
4508 necessary.
4509
4510 No API is provided to set the internal representation of strings;
4511 however, there are pair of procedures available to query it. These are
4512 debugging procedures. Using them in production code is discouraged,
4513 since the details of Guile's internal representation of strings may
4514 change from release to release.
4515
4516 @deffn {Scheme Procedure} string-bytes-per-char str
4517 @deffnx {C Function} scm_string_bytes_per_char (str)
4518 Return the number of bytes used to encode a Unicode code point in string
4519 @var{str}. The result is one or four.
4520 @end deffn
4521
4522 @deffn {Scheme Procedure} %string-dump str
4523 @deffnx {C Function} scm_sys_string_dump (str)
4524 Returns an association list containing debugging information for
4525 @var{str}. The association list has the following entries.
4526 @table @code
4527
4528 @item string
4529 The string itself.
4530
4531 @item start
4532 The start index of the string into its stringbuf
4533
4534 @item length
4535 The length of the string
4536
4537 @item shared
4538 If this string is a substring, it returns its
4539 parent string. Otherwise, it returns @code{#f}
4540
4541 @item read-only
4542 @code{#t} if the string is read-only
4543
4544 @item stringbuf-chars
4545 A new string containing this string's stringbuf's characters
4546
4547 @item stringbuf-length
4548 The number of characters in this stringbuf
4549
4550 @item stringbuf-shared
4551 @code{#t} if this stringbuf is shared
4552
4553 @item stringbuf-wide
4554 @code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
4555 or @code{#f} if they are stored in an 8-bit buffer
4556 @end table
4557 @end deffn
4558
4559
4560 @node Bytevectors
4561 @subsection Bytevectors
4562
4563 @cindex bytevector
4564 @cindex R6RS
4565
4566 A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevectors)}
4567 module provides the programming interface specified by the
4568 @uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
4569 Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
4570 interpret their contents in a number of ways: bytevector contents can be
4571 accessed as signed or unsigned integer of various sizes and endianness,
4572 as IEEE-754 floating point numbers, or as strings. It is a useful tool
4573 to encode and decode binary data.
4574
4575 The R6RS (Section 4.3.4) specifies an external representation for
4576 bytevectors, whereby the octets (integers in the range 0--255) contained
4577 in the bytevector are represented as a list prefixed by @code{#vu8}:
4578
4579 @lisp
4580 #vu8(1 53 204)
4581 @end lisp
4582
4583 denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
4584 string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
4585 they do not need to be quoted:
4586
4587 @lisp
4588 #vu8(1 53 204)
4589 @result{} #vu8(1 53 204)
4590 @end lisp
4591
4592 Bytevectors can be used with the binary input/output primitives of the
4593 R6RS (@pxref{R6RS I/O Ports}).
4594
4595 @menu
4596 * Bytevector Endianness:: Dealing with byte order.
4597 * Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
4598 * Bytevectors as Integers:: Interpreting bytes as integers.
4599 * Bytevectors and Integer Lists:: Converting to/from an integer list.
4600 * Bytevectors as Floats:: Interpreting bytes as real numbers.
4601 * Bytevectors as Strings:: Interpreting bytes as Unicode strings.
4602 * Bytevectors as Arrays:: Guile extension to the bytevector API.
4603 * Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
4604 @end menu
4605
4606 @node Bytevector Endianness
4607 @subsubsection Endianness
4608
4609 @cindex endianness
4610 @cindex byte order
4611 @cindex word order
4612
4613 Some of the following procedures take an @var{endianness} parameter.
4614 The @dfn{endianness} is defined as the order of bytes in multi-byte
4615 numbers: numbers encoded in @dfn{big endian} have their most
4616 significant bytes written first, whereas numbers encoded in
4617 @dfn{little endian} have their least significant bytes
4618 first@footnote{Big-endian and little-endian are the most common
4619 ``endiannesses'', but others do exist. For instance, the GNU MP
4620 library allows @dfn{word order} to be specified independently of
4621 @dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
4622 Multiple Precision Arithmetic Library Manual}).}.
4623
4624 Little-endian is the native endianness of the IA32 architecture and
4625 its derivatives, while big-endian is native to SPARC and PowerPC,
4626 among others. The @code{native-endianness} procedure returns the
4627 native endianness of the machine it runs on.
4628
4629 @deffn {Scheme Procedure} native-endianness
4630 @deffnx {C Function} scm_native_endianness ()
4631 Return a value denoting the native endianness of the host machine.
4632 @end deffn
4633
4634 @deffn {Scheme Macro} endianness symbol
4635 Return an object denoting the endianness specified by @var{symbol}. If
4636 @var{symbol} is neither @code{big} nor @code{little} then an error is
4637 raised at expand-time.
4638 @end deffn
4639
4640 @defvr {C Variable} scm_endianness_big
4641 @defvrx {C Variable} scm_endianness_little
4642 The objects denoting big- and little-endianness, respectively.
4643 @end defvr
4644
4645
4646 @node Bytevector Manipulation
4647 @subsubsection Manipulating Bytevectors
4648
4649 Bytevectors can be created, copied, and analyzed with the following
4650 procedures and C functions.
4651
4652 @deffn {Scheme Procedure} make-bytevector len [fill]
4653 @deffnx {C Function} scm_make_bytevector (len, fill)
4654 @deffnx {C Function} scm_c_make_bytevector (size_t len)
4655 Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
4656 is given, fill it with @var{fill}; @var{fill} must be in the range
4657 [-128,255].
4658 @end deffn
4659
4660 @deffn {Scheme Procedure} bytevector? obj
4661 @deffnx {C Function} scm_bytevector_p (obj)
4662 Return true if @var{obj} is a bytevector.
4663 @end deffn
4664
4665 @deftypefn {C Function} int scm_is_bytevector (SCM obj)
4666 Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
4667 @end deftypefn
4668
4669 @deffn {Scheme Procedure} bytevector-length bv
4670 @deffnx {C Function} scm_bytevector_length (bv)
4671 Return the length in bytes of bytevector @var{bv}.
4672 @end deffn
4673
4674 @deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
4675 Likewise, return the length in bytes of bytevector @var{bv}.
4676 @end deftypefn
4677
4678 @deffn {Scheme Procedure} bytevector=? bv1 bv2
4679 @deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
4680 Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
4681 length and contents.
4682 @end deffn
4683
4684 @deffn {Scheme Procedure} bytevector-fill! bv fill
4685 @deffnx {C Function} scm_bytevector_fill_x (bv, fill)
4686 Fill bytevector @var{bv} with @var{fill}, a byte.
4687 @end deffn
4688
4689 @deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
4690 @deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
4691 Copy @var{len} bytes from @var{source} into @var{target}, starting
4692 reading from @var{source-start} (a positive index within @var{source})
4693 and start writing at @var{target-start}. It is permitted for the
4694 @var{source} and @var{target} regions to overlap.
4695 @end deffn
4696
4697 @deffn {Scheme Procedure} bytevector-copy bv
4698 @deffnx {C Function} scm_bytevector_copy (bv)
4699 Return a newly allocated copy of @var{bv}.
4700 @end deffn
4701
4702 @deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
4703 Return the byte at @var{index} in bytevector @var{bv}.
4704 @end deftypefn
4705
4706 @deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
4707 Set the byte at @var{index} in @var{bv} to @var{value}.
4708 @end deftypefn
4709
4710 Low-level C macros are available. They do not perform any
4711 type-checking; as such they should be used with care.
4712
4713 @deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
4714 Return the length in bytes of bytevector @var{bv}.
4715 @end deftypefn
4716
4717 @deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
4718 Return a pointer to the contents of bytevector @var{bv}.
4719 @end deftypefn
4720
4721
4722 @node Bytevectors as Integers
4723 @subsubsection Interpreting Bytevector Contents as Integers
4724
4725 The contents of a bytevector can be interpreted as a sequence of
4726 integers of any given size, sign, and endianness.
4727
4728 @lisp
4729 (let ((bv (make-bytevector 4)))
4730 (bytevector-u8-set! bv 0 #x12)
4731 (bytevector-u8-set! bv 1 #x34)
4732 (bytevector-u8-set! bv 2 #x56)
4733 (bytevector-u8-set! bv 3 #x78)
4734
4735 (map (lambda (number)
4736 (number->string number 16))
4737 (list (bytevector-u8-ref bv 0)
4738 (bytevector-u16-ref bv 0 (endianness big))
4739 (bytevector-u32-ref bv 0 (endianness little)))))
4740
4741 @result{} ("12" "1234" "78563412")
4742 @end lisp
4743
4744 The most generic procedures to interpret bytevector contents as integers
4745 are described below.
4746
4747 @deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
4748 @deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4749 Return the @var{size}-byte long unsigned integer at index @var{index} in
4750 @var{bv}, decoded according to @var{endianness}.
4751 @end deffn
4752
4753 @deffn {Scheme Procedure} bytevector-sint-ref bv index endianness size
4754 @deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4755 Return the @var{size}-byte long signed integer at index @var{index} in
4756 @var{bv}, decoded according to @var{endianness}.
4757 @end deffn
4758
4759 @deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
4760 @deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4761 Set the @var{size}-byte long unsigned integer at @var{index} to
4762 @var{value}, encoded according to @var{endianness}.
4763 @end deffn
4764
4765 @deffn {Scheme Procedure} bytevector-sint-set! bv index value endianness size
4766 @deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4767 Set the @var{size}-byte long signed integer at @var{index} to
4768 @var{value}, encoded according to @var{endianness}.
4769 @end deffn
4770
4771 The following procedures are similar to the ones above, but specialized
4772 to a given integer size:
4773
4774 @deffn {Scheme Procedure} bytevector-u8-ref bv index
4775 @deffnx {Scheme Procedure} bytevector-s8-ref bv index
4776 @deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4777 @deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4778 @deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4779 @deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4780 @deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4781 @deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4782 @deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4783 @deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4784 @deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4785 @deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4786 @deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4787 @deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4788 @deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4789 @deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4790 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4791 16, 32 or 64) from @var{bv} at @var{index}, decoded according to
4792 @var{endianness}.
4793 @end deffn
4794
4795 @deffn {Scheme Procedure} bytevector-u8-set! bv index value
4796 @deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4797 @deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4798 @deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4799 @deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4800 @deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4801 @deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4802 @deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4803 @deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4804 @deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4805 @deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4806 @deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4807 @deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4808 @deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4809 @deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4810 @deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4811 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4812 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4813 @var{endianness}.
4814 @end deffn
4815
4816 Finally, a variant specialized for the host's endianness is available
4817 for each of these functions (with the exception of the @code{u8}
4818 accessors, for obvious reasons):
4819
4820 @deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4821 @deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4822 @deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4823 @deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4824 @deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4825 @deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4826 @deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4827 @deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4828 @deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4829 @deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4830 @deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4831 @deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4832 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4833 16, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4834 host's native endianness.
4835 @end deffn
4836
4837 @deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4838 @deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4839 @deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4840 @deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4841 @deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4842 @deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4843 @deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4844 @deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4845 @deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4846 @deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4847 @deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4848 @deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4849 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4850 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4851 host's native endianness.
4852 @end deffn
4853
4854
4855 @node Bytevectors and Integer Lists
4856 @subsubsection Converting Bytevectors to/from Integer Lists
4857
4858 Bytevector contents can readily be converted to/from lists of signed or
4859 unsigned integers:
4860
4861 @lisp
4862 (bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4863 (endianness little) 2)
4864 @result{} (-1 -1)
4865 @end lisp
4866
4867 @deffn {Scheme Procedure} bytevector->u8-list bv
4868 @deffnx {C Function} scm_bytevector_to_u8_list (bv)
4869 Return a newly allocated list of unsigned 8-bit integers from the
4870 contents of @var{bv}.
4871 @end deffn
4872
4873 @deffn {Scheme Procedure} u8-list->bytevector lst
4874 @deffnx {C Function} scm_u8_list_to_bytevector (lst)
4875 Return a newly allocated bytevector consisting of the unsigned 8-bit
4876 integers listed in @var{lst}.
4877 @end deffn
4878
4879 @deffn {Scheme Procedure} bytevector->uint-list bv endianness size
4880 @deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4881 Return a list of unsigned integers of @var{size} bytes representing the
4882 contents of @var{bv}, decoded according to @var{endianness}.
4883 @end deffn
4884
4885 @deffn {Scheme Procedure} bytevector->sint-list bv endianness size
4886 @deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4887 Return a list of signed integers of @var{size} bytes representing the
4888 contents of @var{bv}, decoded according to @var{endianness}.
4889 @end deffn
4890
4891 @deffn {Scheme Procedure} uint-list->bytevector lst endianness size
4892 @deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4893 Return a new bytevector containing the unsigned integers listed in
4894 @var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4895 @end deffn
4896
4897 @deffn {Scheme Procedure} sint-list->bytevector lst endianness size
4898 @deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4899 Return a new bytevector containing the signed integers listed in
4900 @var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4901 @end deffn
4902
4903 @node Bytevectors as Floats
4904 @subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4905
4906 @cindex IEEE-754 floating point numbers
4907
4908 Bytevector contents can also be accessed as IEEE-754 single- or
4909 double-precision floating point numbers (respectively 32 and 64-bit
4910 long) using the procedures described here.
4911
4912 @deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4913 @deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4914 @deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4915 @deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4916 Return the IEEE-754 single-precision floating point number from @var{bv}
4917 at @var{index} according to @var{endianness}.
4918 @end deffn
4919
4920 @deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4921 @deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4922 @deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4923 @deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4924 Store real number @var{value} in @var{bv} at @var{index} according to
4925 @var{endianness}.
4926 @end deffn
4927
4928 Specialized procedures are also available:
4929
4930 @deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4931 @deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4932 @deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4933 @deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4934 Return the IEEE-754 single-precision floating point number from @var{bv}
4935 at @var{index} according to the host's native endianness.
4936 @end deffn
4937
4938 @deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4939 @deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4940 @deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4941 @deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4942 Store real number @var{value} in @var{bv} at @var{index} according to
4943 the host's native endianness.
4944 @end deffn
4945
4946
4947 @node Bytevectors as Strings
4948 @subsubsection Interpreting Bytevector Contents as Unicode Strings
4949
4950 @cindex Unicode string encoding
4951
4952 Bytevector contents can also be interpreted as Unicode strings encoded
4953 in one of the most commonly available encoding formats.
4954 @xref{Representing Strings as Bytes}, for a more generic interface.
4955
4956 @lisp
4957 (utf8->string (u8-list->bytevector '(99 97 102 101)))
4958 @result{} "cafe"
4959
4960 (string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4961 @result{} #vu8(99 97 102 195 169)
4962 @end lisp
4963
4964 @deffn {Scheme Procedure} string->utf8 str
4965 @deffnx {Scheme Procedure} string->utf16 str [endianness]
4966 @deffnx {Scheme Procedure} string->utf32 str [endianness]
4967 @deffnx {C Function} scm_string_to_utf8 (str)
4968 @deffnx {C Function} scm_string_to_utf16 (str, endianness)
4969 @deffnx {C Function} scm_string_to_utf32 (str, endianness)
4970 Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
4971 UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
4972 @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4973 it defaults to big endian.
4974 @end deffn
4975
4976 @deffn {Scheme Procedure} utf8->string utf
4977 @deffnx {Scheme Procedure} utf16->string utf [endianness]
4978 @deffnx {Scheme Procedure} utf32->string utf [endianness]
4979 @deffnx {C Function} scm_utf8_to_string (utf)
4980 @deffnx {C Function} scm_utf16_to_string (utf, endianness)
4981 @deffnx {C Function} scm_utf32_to_string (utf, endianness)
4982 Return a newly allocated string that contains from the UTF-8-, UTF-16-,
4983 or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
4984 @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4985 it defaults to big endian.
4986 @end deffn
4987
4988 @node Bytevectors as Arrays
4989 @subsubsection Accessing Bytevectors with the Array API
4990
4991 As an extension to the R6RS, Guile allows bytevectors to be manipulated
4992 with the @dfn{array} procedures (@pxref{Arrays}). When using these
4993 APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4994
4995 @example
4996 (define bv #vu8(0 1 2 3))
4997
4998 (array? bv)
4999 @result{} #t
5000
5001 (array-rank bv)
5002 @result{} 1
5003
5004 (array-ref bv 2)
5005 @result{} 2
5006
5007 ;; Note the different argument order on array-set!.
5008 (array-set! bv 77 2)
5009 (array-ref bv 2)
5010 @result{} 77
5011
5012 (array-type bv)
5013 @result{} vu8
5014 @end example
5015
5016
5017 @node Bytevectors as Uniform Vectors
5018 @subsubsection Accessing Bytevectors with the SRFI-4 API
5019
5020 Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
5021 Bytevectors}, for more information.
5022
5023
5024 @node Symbols
5025 @subsection Symbols
5026 @tpindex Symbols
5027
5028 Symbols in Scheme are widely used in three ways: as items of discrete
5029 data, as lookup keys for alists and hash tables, and to denote variable
5030 references.
5031
5032 A @dfn{symbol} is similar to a string in that it is defined by a
5033 sequence of characters. The sequence of characters is known as the
5034 symbol's @dfn{name}. In the usual case --- that is, where the symbol's
5035 name doesn't include any characters that could be confused with other
5036 elements of Scheme syntax --- a symbol is written in a Scheme program by
5037 writing the sequence of characters that make up the name, @emph{without}
5038 any quotation marks or other special syntax. For example, the symbol
5039 whose name is ``multiply-by-2'' is written, simply:
5040
5041 @lisp
5042 multiply-by-2
5043 @end lisp
5044
5045 Notice how this differs from a @emph{string} with contents
5046 ``multiply-by-2'', which is written with double quotation marks, like
5047 this:
5048
5049 @lisp
5050 "multiply-by-2"
5051 @end lisp
5052
5053 Looking beyond how they are written, symbols are different from strings
5054 in two important respects.
5055
5056 The first important difference is uniqueness. If the same-looking
5057 string is read twice from two different places in a program, the result
5058 is two @emph{different} string objects whose contents just happen to be
5059 the same. If, on the other hand, the same-looking symbol is read twice
5060 from two different places in a program, the result is the @emph{same}
5061 symbol object both times.
5062
5063 Given two read symbols, you can use @code{eq?} to test whether they are
5064 the same (that is, have the same name). @code{eq?} is the most
5065 efficient comparison operator in Scheme, and comparing two symbols like
5066 this is as fast as comparing, for example, two numbers. Given two
5067 strings, on the other hand, you must use @code{equal?} or
5068 @code{string=?}, which are much slower comparison operators, to
5069 determine whether the strings have the same contents.
5070
5071 @lisp
5072 (define sym1 (quote hello))
5073 (define sym2 (quote hello))
5074 (eq? sym1 sym2) @result{} #t
5075
5076 (define str1 "hello")
5077 (define str2 "hello")
5078 (eq? str1 str2) @result{} #f
5079 (equal? str1 str2) @result{} #t
5080 @end lisp
5081
5082 The second important difference is that symbols, unlike strings, are not
5083 self-evaluating. This is why we need the @code{(quote @dots{})}s in the
5084 example above: @code{(quote hello)} evaluates to the symbol named
5085 "hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
5086 symbol named "hello" and evaluated as a variable reference @dots{} about
5087 which more below (@pxref{Symbol Variables}).
5088
5089 @menu
5090 * Symbol Data:: Symbols as discrete data.
5091 * Symbol Keys:: Symbols as lookup keys.
5092 * Symbol Variables:: Symbols as denoting variables.
5093 * Symbol Primitives:: Operations related to symbols.
5094 * Symbol Props:: Function slots and property lists.
5095 * Symbol Read Syntax:: Extended read syntax for symbols.
5096 * Symbol Uninterned:: Uninterned symbols.
5097 @end menu
5098
5099
5100 @node Symbol Data
5101 @subsubsection Symbols as Discrete Data
5102
5103 Numbers and symbols are similar to the extent that they both lend
5104 themselves to @code{eq?} comparison. But symbols are more descriptive
5105 than numbers, because a symbol's name can be used directly to describe
5106 the concept for which that symbol stands.
5107
5108 For example, imagine that you need to represent some colours in a
5109 computer program. Using numbers, you would have to choose arbitrarily
5110 some mapping between numbers and colours, and then take care to use that
5111 mapping consistently:
5112
5113 @lisp
5114 ;; 1=red, 2=green, 3=purple
5115
5116 (if (eq? (colour-of car) 1)
5117 ...)
5118 @end lisp
5119
5120 @noindent
5121 You can make the mapping more explicit and the code more readable by
5122 defining constants:
5123
5124 @lisp
5125 (define red 1)
5126 (define green 2)
5127 (define purple 3)
5128
5129 (if (eq? (colour-of car) red)
5130 ...)
5131 @end lisp
5132
5133 @noindent
5134 But the simplest and clearest approach is not to use numbers at all, but
5135 symbols whose names specify the colours that they refer to:
5136
5137 @lisp
5138 (if (eq? (colour-of car) 'red)
5139 ...)
5140 @end lisp
5141
5142 The descriptive advantages of symbols over numbers increase as the set
5143 of concepts that you want to describe grows. Suppose that a car object
5144 can have other properties as well, such as whether it has or uses:
5145
5146 @itemize @bullet
5147 @item
5148 automatic or manual transmission
5149 @item
5150 leaded or unleaded fuel
5151 @item
5152 power steering (or not).
5153 @end itemize
5154
5155 @noindent
5156 Then a car's combined property set could be naturally represented and
5157 manipulated as a list of symbols:
5158
5159 @lisp
5160 (properties-of car1)
5161 @result{}
5162 (red manual unleaded power-steering)
5163
5164 (if (memq 'power-steering (properties-of car1))
5165 (display "Unfit people can drive this car.\n")
5166 (display "You'll need strong arms to drive this car!\n"))
5167 @print{}
5168 Unfit people can drive this car.
5169 @end lisp
5170
5171 Remember, the fundamental property of symbols that we are relying on
5172 here is that an occurrence of @code{'red} in one part of a program is an
5173 @emph{indistinguishable} symbol from an occurrence of @code{'red} in
5174 another part of a program; this means that symbols can usefully be
5175 compared using @code{eq?}. At the same time, symbols have naturally
5176 descriptive names. This combination of efficiency and descriptive power
5177 makes them ideal for use as discrete data.
5178
5179
5180 @node Symbol Keys
5181 @subsubsection Symbols as Lookup Keys
5182
5183 Given their efficiency and descriptive power, it is natural to use
5184 symbols as the keys in an association list or hash table.
5185
5186 To illustrate this, consider a more structured representation of the car
5187 properties example from the preceding subsection. Rather than
5188 mixing all the properties up together in a flat list, we could use an
5189 association list like this:
5190
5191 @lisp
5192 (define car1-properties '((colour . red)
5193 (transmission . manual)
5194 (fuel . unleaded)
5195 (steering . power-assisted)))
5196 @end lisp
5197
5198 Notice how this structure is more explicit and extensible than the flat
5199 list. For example it makes clear that @code{manual} refers to the
5200 transmission rather than, say, the windows or the locking of the car.
5201 It also allows further properties to use the same symbols among their
5202 possible values without becoming ambiguous:
5203
5204 @lisp
5205 (define car1-properties '((colour . red)
5206 (transmission . manual)
5207 (fuel . unleaded)
5208 (steering . power-assisted)
5209 (seat-colour . red)
5210 (locking . manual)))
5211 @end lisp
5212
5213 With a representation like this, it is easy to use the efficient
5214 @code{assq-XXX} family of procedures (@pxref{Association Lists}) to
5215 extract or change individual pieces of information:
5216
5217 @lisp
5218 (assq-ref car1-properties 'fuel) @result{} unleaded
5219 (assq-ref car1-properties 'transmission) @result{} manual
5220
5221 (assq-set! car1-properties 'seat-colour 'black)
5222 @result{}
5223 ((colour . red)
5224 (transmission . manual)
5225 (fuel . unleaded)
5226 (steering . power-assisted)
5227 (seat-colour . black)
5228 (locking . manual)))
5229 @end lisp
5230
5231 Hash tables also have keys, and exactly the same arguments apply to the
5232 use of symbols in hash tables as in association lists. The hash value
5233 that Guile uses to decide where to add a symbol-keyed entry to a hash
5234 table can be obtained by calling the @code{symbol-hash} procedure:
5235
5236 @deffn {Scheme Procedure} symbol-hash symbol
5237 @deffnx {C Function} scm_symbol_hash (symbol)
5238 Return a hash value for @var{symbol}.
5239 @end deffn
5240
5241 See @ref{Hash Tables} for information about hash tables in general, and
5242 for why you might choose to use a hash table rather than an association
5243 list.
5244
5245
5246 @node Symbol Variables
5247 @subsubsection Symbols as Denoting Variables
5248
5249 When an unquoted symbol in a Scheme program is evaluated, it is
5250 interpreted as a variable reference, and the result of the evaluation is
5251 the appropriate variable's value.
5252
5253 For example, when the expression @code{(string-length "abcd")} is read
5254 and evaluated, the sequence of characters @code{string-length} is read
5255 as the symbol whose name is "string-length". This symbol is associated
5256 with a variable whose value is the procedure that implements string
5257 length calculation. Therefore evaluation of the @code{string-length}
5258 symbol results in that procedure.
5259
5260 The details of the connection between an unquoted symbol and the
5261 variable to which it refers are explained elsewhere. See @ref{Binding
5262 Constructs}, for how associations between symbols and variables are
5263 created, and @ref{Modules}, for how those associations are affected by
5264 Guile's module system.
5265
5266
5267 @node Symbol Primitives
5268 @subsubsection Operations Related to Symbols
5269
5270 Given any Scheme value, you can determine whether it is a symbol using
5271 the @code{symbol?} primitive:
5272
5273 @rnindex symbol?
5274 @deffn {Scheme Procedure} symbol? obj
5275 @deffnx {C Function} scm_symbol_p (obj)
5276 Return @code{#t} if @var{obj} is a symbol, otherwise return
5277 @code{#f}.
5278 @end deffn
5279
5280 @deftypefn {C Function} int scm_is_symbol (SCM val)
5281 Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5282 @end deftypefn
5283
5284 Once you know that you have a symbol, you can obtain its name as a
5285 string by calling @code{symbol->string}. Note that Guile differs by
5286 default from R5RS on the details of @code{symbol->string} as regards
5287 case-sensitivity:
5288
5289 @rnindex symbol->string
5290 @deffn {Scheme Procedure} symbol->string s
5291 @deffnx {C Function} scm_symbol_to_string (s)
5292 Return the name of symbol @var{s} as a string. By default, Guile reads
5293 symbols case-sensitively, so the string returned will have the same case
5294 variation as the sequence of characters that caused @var{s} to be
5295 created.
5296
5297 If Guile is set to read symbols case-insensitively (as specified by
5298 R5RS), and @var{s} comes into being as part of a literal expression
5299 (@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5300 by a call to the @code{read} or @code{string-ci->symbol} procedures,
5301 Guile converts any alphabetic characters in the symbol's name to
5302 lower case before creating the symbol object, so the string returned
5303 here will be in lower case.
5304
5305 If @var{s} was created by @code{string->symbol}, the case of characters
5306 in the string returned will be the same as that in the string that was
5307 passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5308 setting at the time @var{s} was created.
5309
5310 It is an error to apply mutation procedures like @code{string-set!} to
5311 strings returned by this procedure.
5312 @end deffn
5313
5314 Most symbols are created by writing them literally in code. However it
5315 is also possible to create symbols programmatically using the following
5316 procedures:
5317
5318 @deffn {Scheme Procedure} symbol char@dots{}
5319 @rnindex symbol
5320 Return a newly allocated symbol made from the given character arguments.
5321
5322 @example
5323 (symbol #\x #\y #\z) @result{} xyz
5324 @end example
5325 @end deffn
5326
5327 @deffn {Scheme Procedure} list->symbol lst
5328 @rnindex list->symbol
5329 Return a newly allocated symbol made from a list of characters.
5330
5331 @example
5332 (list->symbol '(#\a #\b #\c)) @result{} abc
5333 @end example
5334 @end deffn
5335
5336 @rnindex symbol-append
5337 @deffn {Scheme Procedure} symbol-append arg @dots{}
5338 Return a newly allocated symbol whose characters form the
5339 concatenation of the given symbols, @var{arg} @enddots{}.
5340
5341 @example
5342 (let ((h 'hello))
5343 (symbol-append h 'world))
5344 @result{} helloworld
5345 @end example
5346 @end deffn
5347
5348 @rnindex string->symbol
5349 @deffn {Scheme Procedure} string->symbol string
5350 @deffnx {C Function} scm_string_to_symbol (string)
5351 Return the symbol whose name is @var{string}. This procedure can create
5352 symbols with names containing special characters or letters in the
5353 non-standard case, but it is usually a bad idea to create such symbols
5354 because in some implementations of Scheme they cannot be read as
5355 themselves.
5356 @end deffn
5357
5358 @deffn {Scheme Procedure} string-ci->symbol str
5359 @deffnx {C Function} scm_string_ci_to_symbol (str)
5360 Return the symbol whose name is @var{str}. If Guile is currently
5361 reading symbols case-insensitively, @var{str} is converted to lowercase
5362 before the returned symbol is looked up or created.
5363 @end deffn
5364
5365 The following examples illustrate Guile's detailed behaviour as regards
5366 the case-sensitivity of symbols:
5367
5368 @lisp
5369 (read-enable 'case-insensitive) ; R5RS compliant behaviour
5370
5371 (symbol->string 'flying-fish) @result{} "flying-fish"
5372 (symbol->string 'Martin) @result{} "martin"
5373 (symbol->string
5374 (string->symbol "Malvina")) @result{} "Malvina"
5375
5376 (eq? 'mISSISSIppi 'mississippi) @result{} #t
5377 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5378 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5379 (eq? 'LolliPop
5380 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5381 (string=? "K. Harper, M.D."
5382 (symbol->string
5383 (string->symbol "K. Harper, M.D."))) @result{} #t
5384
5385 (read-disable 'case-insensitive) ; Guile default behaviour
5386
5387 (symbol->string 'flying-fish) @result{} "flying-fish"
5388 (symbol->string 'Martin) @result{} "Martin"
5389 (symbol->string
5390 (string->symbol "Malvina")) @result{} "Malvina"
5391
5392 (eq? 'mISSISSIppi 'mississippi) @result{} #f
5393 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5394 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5395 (eq? 'LolliPop
5396 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5397 (string=? "K. Harper, M.D."
5398 (symbol->string
5399 (string->symbol "K. Harper, M.D."))) @result{} #t
5400 @end lisp
5401
5402 From C, there are lower level functions that construct a Scheme symbol
5403 from a C string in the current locale encoding.
5404
5405 When you want to do more from C, you should convert between symbols
5406 and strings using @code{scm_symbol_to_string} and
5407 @code{scm_string_to_symbol} and work with the strings.
5408
5409 @deftypefn {C Function} SCM scm_from_latin1_symbol (const char *name)
5410 @deftypefnx {C Function} SCM scm_from_utf8_symbol (const char *name)
5411 Construct and return a Scheme symbol whose name is specified by the
5412 null-terminated C string @var{name}. These are appropriate when
5413 the C string is hard-coded in the source code.
5414 @end deftypefn
5415
5416 @deftypefn {C Function} SCM scm_from_locale_symbol (const char *name)
5417 @deftypefnx {C Function} SCM scm_from_locale_symboln (const char *name, size_t len)
5418 Construct and return a Scheme symbol whose name is specified by
5419 @var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5420 terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
5421 specified explicitly by @var{len}.
5422
5423 Note that these functions should @emph{not} be used when @var{name} is a
5424 C string constant, because there is no guarantee that the current locale
5425 will match that of the execution character set, used for string and
5426 character constants. Most modern C compilers use UTF-8 by default, so
5427 in such cases we recommend @code{scm_from_utf8_symbol}.
5428 @end deftypefn
5429
5430 @deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5431 @deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5432 Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5433 respectively, but also frees @var{str} with @code{free} eventually.
5434 Thus, you can use this function when you would free @var{str} anyway
5435 immediately after creating the Scheme string. In certain cases, Guile
5436 can then use @var{str} directly as its internal representation.
5437 @end deftypefn
5438
5439 The size of a symbol can also be obtained from C:
5440
5441 @deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5442 Return the number of characters in @var{sym}.
5443 @end deftypefn
5444
5445 Finally, some applications, especially those that generate new Scheme
5446 code dynamically, need to generate symbols for use in the generated
5447 code. The @code{gensym} primitive meets this need:
5448
5449 @deffn {Scheme Procedure} gensym [prefix]
5450 @deffnx {C Function} scm_gensym (prefix)
5451 Create a new symbol with a name constructed from a prefix and a counter
5452 value. The string @var{prefix} can be specified as an optional
5453 argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5454 at each call. There is no provision for resetting the counter.
5455 @end deffn
5456
5457 The symbols generated by @code{gensym} are @emph{likely} to be unique,
5458 since their names begin with a space and it is only otherwise possible
5459 to generate such symbols if a programmer goes out of their way to do
5460 so. Uniqueness can be guaranteed by instead using uninterned symbols
5461 (@pxref{Symbol Uninterned}), though they can't be usefully written out
5462 and read back in.
5463
5464
5465 @node Symbol Props
5466 @subsubsection Function Slots and Property Lists
5467
5468 In traditional Lisp dialects, symbols are often understood as having
5469 three kinds of value at once:
5470
5471 @itemize @bullet
5472 @item
5473 a @dfn{variable} value, which is used when the symbol appears in
5474 code in a variable reference context
5475
5476 @item
5477 a @dfn{function} value, which is used when the symbol appears in
5478 code in a function name position (i.e.@: as the first element in an
5479 unquoted list)
5480
5481 @item
5482 a @dfn{property list} value, which is used when the symbol is given as
5483 the first argument to Lisp's @code{put} or @code{get} functions.
5484 @end itemize
5485
5486 Although Scheme (as one of its simplifications with respect to Lisp)
5487 does away with the distinction between variable and function namespaces,
5488 Guile currently retains some elements of the traditional structure in
5489 case they turn out to be useful when implementing translators for other
5490 languages, in particular Emacs Lisp.
5491
5492 Specifically, Guile symbols have two extra slots, one for a symbol's
5493 property list, and one for its ``function value.'' The following procedures
5494 are provided to access these slots.
5495
5496 @deffn {Scheme Procedure} symbol-fref symbol
5497 @deffnx {C Function} scm_symbol_fref (symbol)
5498 Return the contents of @var{symbol}'s @dfn{function slot}.
5499 @end deffn
5500
5501 @deffn {Scheme Procedure} symbol-fset! symbol value
5502 @deffnx {C Function} scm_symbol_fset_x (symbol, value)
5503 Set the contents of @var{symbol}'s function slot to @var{value}.
5504 @end deffn
5505
5506 @deffn {Scheme Procedure} symbol-pref symbol
5507 @deffnx {C Function} scm_symbol_pref (symbol)
5508 Return the @dfn{property list} currently associated with @var{symbol}.
5509 @end deffn
5510
5511 @deffn {Scheme Procedure} symbol-pset! symbol value
5512 @deffnx {C Function} scm_symbol_pset_x (symbol, value)
5513 Set @var{symbol}'s property list to @var{value}.
5514 @end deffn
5515
5516 @deffn {Scheme Procedure} symbol-property sym prop
5517 From @var{sym}'s property list, return the value for property
5518 @var{prop}. The assumption is that @var{sym}'s property list is an
5519 association list whose keys are distinguished from each other using
5520 @code{equal?}; @var{prop} should be one of the keys in that list. If
5521 the property list has no entry for @var{prop}, @code{symbol-property}
5522 returns @code{#f}.
5523 @end deffn
5524
5525 @deffn {Scheme Procedure} set-symbol-property! sym prop val
5526 In @var{sym}'s property list, set the value for property @var{prop} to
5527 @var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5528 none already exists. For the structure of the property list, see
5529 @code{symbol-property}.
5530 @end deffn
5531
5532 @deffn {Scheme Procedure} symbol-property-remove! sym prop
5533 From @var{sym}'s property list, remove the entry for property
5534 @var{prop}, if there is one. For the structure of the property list,
5535 see @code{symbol-property}.
5536 @end deffn
5537
5538 Support for these extra slots may be removed in a future release, and it
5539 is probably better to avoid using them. For a more modern and Schemely
5540 approach to properties, see @ref{Object Properties}.
5541
5542
5543 @node Symbol Read Syntax
5544 @subsubsection Extended Read Syntax for Symbols
5545
5546 The read syntax for a symbol is a sequence of letters, digits, and
5547 @dfn{extended alphabetic characters}, beginning with a character that
5548 cannot begin a number. In addition, the special cases of @code{+},
5549 @code{-}, and @code{...} are read as symbols even though numbers can
5550 begin with @code{+}, @code{-} or @code{.}.
5551
5552 Extended alphabetic characters may be used within identifiers as if
5553 they were letters. The set of extended alphabetic characters is:
5554
5555 @example
5556 ! $ % & * + - . / : < = > ? @@ ^ _ ~
5557 @end example
5558
5559 In addition to the standard read syntax defined above (which is taken
5560 from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5561 Scheme})), Guile provides an extended symbol read syntax that allows the
5562 inclusion of unusual characters such as space characters, newlines and
5563 parentheses. If (for whatever reason) you need to write a symbol
5564 containing characters not mentioned above, you can do so as follows.
5565
5566 @itemize @bullet
5567 @item
5568 Begin the symbol with the characters @code{#@{},
5569
5570 @item
5571 write the characters of the symbol and
5572
5573 @item
5574 finish the symbol with the characters @code{@}#}.
5575 @end itemize
5576
5577 Here are a few examples of this form of read syntax. The first symbol
5578 needs to use extended syntax because it contains a space character, the
5579 second because it contains a line break, and the last because it looks
5580 like a number.
5581
5582 @lisp
5583 #@{foo bar@}#
5584
5585 #@{what
5586 ever@}#
5587
5588 #@{4242@}#
5589 @end lisp
5590
5591 Although Guile provides this extended read syntax for symbols,
5592 widespread usage of it is discouraged because it is not portable and not
5593 very readable.
5594
5595 Alternatively, if you enable the @code{r7rs-symbols} read option (see
5596 @pxref{Scheme Read}), you can write arbitrary symbols using the same
5597 notation used for strings, except delimited by vertical bars instead of
5598 double quotes.
5599
5600 @example
5601 |foo bar|
5602 |\x3BB; is a greek lambda|
5603 |\| is a vertical bar|
5604 @end example
5605
5606 @node Symbol Uninterned
5607 @subsubsection Uninterned Symbols
5608
5609 What makes symbols useful is that they are automatically kept unique.
5610 There are no two symbols that are distinct objects but have the same
5611 name. But of course, there is no rule without exception. In addition
5612 to the normal symbols that have been discussed up to now, you can also
5613 create special @dfn{uninterned} symbols that behave slightly
5614 differently.
5615
5616 To understand what is different about them and why they might be useful,
5617 we look at how normal symbols are actually kept unique.
5618
5619 Whenever Guile wants to find the symbol with a specific name, for
5620 example during @code{read} or when executing @code{string->symbol}, it
5621 first looks into a table of all existing symbols to find out whether a
5622 symbol with the given name already exists. When this is the case, Guile
5623 just returns that symbol. When not, a new symbol with the name is
5624 created and entered into the table so that it can be found later.
5625
5626 Sometimes you might want to create a symbol that is guaranteed `fresh',
5627 i.e.@: a symbol that did not exist previously. You might also want to
5628 somehow guarantee that no one else will ever unintentionally stumble
5629 across your symbol in the future. These properties of a symbol are
5630 often needed when generating code during macro expansion. When
5631 introducing new temporary variables, you want to guarantee that they
5632 don't conflict with variables in other people's code.
5633
5634 The simplest way to arrange for this is to create a new symbol but
5635 not enter it into the global table of all symbols. That way, no one
5636 will ever get access to your symbol by chance. Symbols that are not in
5637 the table are called @dfn{uninterned}. Of course, symbols that
5638 @emph{are} in the table are called @dfn{interned}.
5639
5640 You create new uninterned symbols with the function @code{make-symbol}.
5641 You can test whether a symbol is interned or not with
5642 @code{symbol-interned?}.
5643
5644 Uninterned symbols break the rule that the name of a symbol uniquely
5645 identifies the symbol object. Because of this, they can not be written
5646 out and read back in like interned symbols. Currently, Guile has no
5647 support for reading uninterned symbols. Note that the function
5648 @code{gensym} does not return uninterned symbols for this reason.
5649
5650 @deffn {Scheme Procedure} make-symbol name
5651 @deffnx {C Function} scm_make_symbol (name)
5652 Return a new uninterned symbol with the name @var{name}. The returned
5653 symbol is guaranteed to be unique and future calls to
5654 @code{string->symbol} will not return it.
5655 @end deffn
5656
5657 @deffn {Scheme Procedure} symbol-interned? symbol
5658 @deffnx {C Function} scm_symbol_interned_p (symbol)
5659 Return @code{#t} if @var{symbol} is interned, otherwise return
5660 @code{#f}.
5661 @end deffn
5662
5663 For example:
5664
5665 @lisp
5666 (define foo-1 (string->symbol "foo"))
5667 (define foo-2 (string->symbol "foo"))
5668 (define foo-3 (make-symbol "foo"))
5669 (define foo-4 (make-symbol "foo"))
5670
5671 (eq? foo-1 foo-2)
5672 @result{} #t
5673 ; Two interned symbols with the same name are the same object,
5674
5675 (eq? foo-1 foo-3)
5676 @result{} #f
5677 ; but a call to make-symbol with the same name returns a
5678 ; distinct object.
5679
5680 (eq? foo-3 foo-4)
5681 @result{} #f
5682 ; A call to make-symbol always returns a new object, even for
5683 ; the same name.
5684
5685 foo-3
5686 @result{} #<uninterned-symbol foo 8085290>
5687 ; Uninterned symbols print differently from interned symbols,
5688
5689 (symbol? foo-3)
5690 @result{} #t
5691 ; but they are still symbols,
5692
5693 (symbol-interned? foo-3)
5694 @result{} #f
5695 ; just not interned.
5696 @end lisp
5697
5698
5699 @node Keywords
5700 @subsection Keywords
5701 @tpindex Keywords
5702
5703 Keywords are self-evaluating objects with a convenient read syntax that
5704 makes them easy to type.
5705
5706 Guile's keyword support conforms to R5RS, and adds a (switchable) read
5707 syntax extension to permit keywords to begin with @code{:} as well as
5708 @code{#:}, or to end with @code{:}.
5709
5710 @menu
5711 * Why Use Keywords?:: Motivation for keyword usage.
5712 * Coding With Keywords:: How to use keywords.
5713 * Keyword Read Syntax:: Read syntax for keywords.
5714 * Keyword Procedures:: Procedures for dealing with keywords.
5715 @end menu
5716
5717 @node Why Use Keywords?
5718 @subsubsection Why Use Keywords?
5719
5720 Keywords are useful in contexts where a program or procedure wants to be
5721 able to accept a large number of optional arguments without making its
5722 interface unmanageable.
5723
5724 To illustrate this, consider a hypothetical @code{make-window}
5725 procedure, which creates a new window on the screen for drawing into
5726 using some graphical toolkit. There are many parameters that the caller
5727 might like to specify, but which could also be sensibly defaulted, for
5728 example:
5729
5730 @itemize @bullet
5731 @item
5732 color depth -- Default: the color depth for the screen
5733
5734 @item
5735 background color -- Default: white
5736
5737 @item
5738 width -- Default: 600
5739
5740 @item
5741 height -- Default: 400
5742 @end itemize
5743
5744 If @code{make-window} did not use keywords, the caller would have to
5745 pass in a value for each possible argument, remembering the correct
5746 argument order and using a special value to indicate the default value
5747 for that argument:
5748
5749 @lisp
5750 (make-window 'default ;; Color depth
5751 'default ;; Background color
5752 800 ;; Width
5753 100 ;; Height
5754 @dots{}) ;; More make-window arguments
5755 @end lisp
5756
5757 With keywords, on the other hand, defaulted arguments are omitted, and
5758 non-default arguments are clearly tagged by the appropriate keyword. As
5759 a result, the invocation becomes much clearer:
5760
5761 @lisp
5762 (make-window #:width 800 #:height 100)
5763 @end lisp
5764
5765 On the other hand, for a simpler procedure with few arguments, the use
5766 of keywords would be a hindrance rather than a help. The primitive
5767 procedure @code{cons}, for example, would not be improved if it had to
5768 be invoked as
5769
5770 @lisp
5771 (cons #:car x #:cdr y)
5772 @end lisp
5773
5774 So the decision whether to use keywords or not is purely pragmatic: use
5775 them if they will clarify the procedure invocation at point of call.
5776
5777 @node Coding With Keywords
5778 @subsubsection Coding With Keywords
5779
5780 If a procedure wants to support keywords, it should take a rest argument
5781 and then use whatever means is convenient to extract keywords and their
5782 corresponding arguments from the contents of that rest argument.
5783
5784 The following example illustrates the principle: the code for
5785 @code{make-window} uses a helper procedure called
5786 @code{get-keyword-value} to extract individual keyword arguments from
5787 the rest argument.
5788
5789 @lisp
5790 (define (get-keyword-value args keyword default)
5791 (let ((kv (memq keyword args)))
5792 (if (and kv (>= (length kv) 2))
5793 (cadr kv)
5794 default)))
5795
5796 (define (make-window . args)
5797 (let ((depth (get-keyword-value args #:depth screen-depth))
5798 (bg (get-keyword-value args #:bg "white"))
5799 (width (get-keyword-value args #:width 800))
5800 (height (get-keyword-value args #:height 100))
5801 @dots{})
5802 @dots{}))
5803 @end lisp
5804
5805 But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5806 optargs)} module provides a set of powerful macros that you can use to
5807 implement keyword-supporting procedures like this:
5808
5809 @lisp
5810 (use-modules (ice-9 optargs))
5811
5812 (define (make-window . args)
5813 (let-keywords args #f ((depth screen-depth)
5814 (bg "white")
5815 (width 800)
5816 (height 100))
5817 ...))
5818 @end lisp
5819
5820 @noindent
5821 Or, even more economically, like this:
5822
5823 @lisp
5824 (use-modules (ice-9 optargs))
5825
5826 (define* (make-window #:key (depth screen-depth)
5827 (bg "white")
5828 (width 800)
5829 (height 100))
5830 ...)
5831 @end lisp
5832
5833 For further details on @code{let-keywords}, @code{define*} and other
5834 facilities provided by the @code{(ice-9 optargs)} module, see
5835 @ref{Optional Arguments}.
5836
5837 To handle keyword arguments from procedures implemented in C,
5838 use @code{scm_c_bind_keyword_arguments} (@pxref{Keyword Procedures}).
5839
5840 @node Keyword Read Syntax
5841 @subsubsection Keyword Read Syntax
5842
5843 Guile, by default, only recognizes a keyword syntax that is compatible
5844 with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5845 same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5846 external representation of the keyword named @code{NAME}. Keyword
5847 objects print using this syntax as well, so values containing keyword
5848 objects can be read back into Guile. When used in an expression,
5849 keywords are self-quoting objects.
5850
5851 If the @code{keyword} read option is set to @code{'prefix}, Guile also
5852 recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5853 of the form @code{:NAME} are read as symbols, as required by R5RS.
5854
5855 @cindex SRFI-88 keyword syntax
5856
5857 If the @code{keyword} read option is set to @code{'postfix}, Guile
5858 recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5859 Otherwise, tokens of this form are read as symbols.
5860
5861 To enable and disable the alternative non-R5RS keyword syntax, you use
5862 the @code{read-set!} procedure documented @ref{Scheme Read}. Note that
5863 the @code{prefix} and @code{postfix} syntax are mutually exclusive.
5864
5865 @lisp
5866 (read-set! keywords 'prefix)
5867
5868 #:type
5869 @result{}
5870 #:type
5871
5872 :type
5873 @result{}
5874 #:type
5875
5876 (read-set! keywords 'postfix)
5877
5878 type:
5879 @result{}
5880 #:type
5881
5882 :type
5883 @result{}
5884 :type
5885
5886 (read-set! keywords #f)
5887
5888 #:type
5889 @result{}
5890 #:type
5891
5892 :type
5893 @print{}
5894 ERROR: In expression :type:
5895 ERROR: Unbound variable: :type
5896 ABORT: (unbound-variable)
5897 @end lisp
5898
5899 @node Keyword Procedures
5900 @subsubsection Keyword Procedures
5901
5902 @deffn {Scheme Procedure} keyword? obj
5903 @deffnx {C Function} scm_keyword_p (obj)
5904 Return @code{#t} if the argument @var{obj} is a keyword, else
5905 @code{#f}.
5906 @end deffn
5907
5908 @deffn {Scheme Procedure} keyword->symbol keyword
5909 @deffnx {C Function} scm_keyword_to_symbol (keyword)
5910 Return the symbol with the same name as @var{keyword}.
5911 @end deffn
5912
5913 @deffn {Scheme Procedure} symbol->keyword symbol
5914 @deffnx {C Function} scm_symbol_to_keyword (symbol)
5915 Return the keyword with the same name as @var{symbol}.
5916 @end deffn
5917
5918 @deftypefn {C Function} int scm_is_keyword (SCM obj)
5919 Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
5920 @end deftypefn
5921
5922 @deftypefn {C Function} SCM scm_from_locale_keyword (const char *name)
5923 @deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *name, size_t len)
5924 Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5925 (@var{name}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5926 (@var{name}, @var{len}))}, respectively.
5927
5928 Note that these functions should @emph{not} be used when @var{name} is a
5929 C string constant, because there is no guarantee that the current locale
5930 will match that of the execution character set, used for string and
5931 character constants. Most modern C compilers use UTF-8 by default, so
5932 in such cases we recommend @code{scm_from_utf8_keyword}.
5933 @end deftypefn
5934
5935 @deftypefn {C Function} SCM scm_from_latin1_keyword (const char *name)
5936 @deftypefnx {C Function} SCM scm_from_utf8_keyword (const char *name)
5937 Equivalent to @code{scm_symbol_to_keyword (scm_from_latin1_symbol
5938 (@var{name}))} and @code{scm_symbol_to_keyword (scm_from_utf8_symbol
5939 (@var{name}))}, respectively.
5940 @end deftypefn
5941
5942 @deftypefn {C Function} void scm_c_bind_keyword_arguments (const char *subr, @
5943 SCM rest, scm_t_keyword_arguments_flags flags, @
5944 SCM keyword1, SCM *argp1, @
5945 @dots{}, @
5946 SCM keywordN, SCM *argpN, @
5947 @nicode{SCM_UNDEFINED})
5948
5949 Extract the specified keyword arguments from @var{rest}, which is not
5950 modified. If the keyword argument @var{keyword1} is present in
5951 @var{rest} with an associated value, that value is stored in the
5952 variable pointed to by @var{argp1}, otherwise the variable is left
5953 unchanged. Similarly for the other keywords and argument pointers up to
5954 @var{keywordN} and @var{argpN}. The argument list to
5955 @code{scm_c_bind_keyword_arguments} must be terminated by
5956 @code{SCM_UNDEFINED}.
5957
5958 Note that since the variables pointed to by @var{argp1} through
5959 @var{argpN} are left unchanged if the associated keyword argument is not
5960 present, they should be initialized to their default values before
5961 calling @code{scm_c_bind_keyword_arguments}. Alternatively, you can
5962 initialize them to @code{SCM_UNDEFINED} before the call, and then use
5963 @code{SCM_UNBNDP} after the call to see which ones were provided.
5964
5965 If an unrecognized keyword argument is present in @var{rest} and
5966 @var{flags} does not contain @code{SCM_ALLOW_OTHER_KEYS}, or if
5967 non-keyword arguments are present and @var{flags} does not contain
5968 @code{SCM_ALLOW_NON_KEYWORD_ARGUMENTS}, an exception is raised.
5969 @var{subr} should be the name of the procedure receiving the keyword
5970 arguments, for purposes of error reporting.
5971
5972 For example:
5973
5974 @example
5975 SCM k_delimiter;
5976 SCM k_grammar;
5977 SCM sym_infix;
5978
5979 SCM my_string_join (SCM strings, SCM rest)
5980 @{
5981 SCM delimiter = SCM_UNDEFINED;
5982 SCM grammar = sym_infix;
5983
5984 scm_c_bind_keyword_arguments ("my-string-join", rest, 0,
5985 k_delimiter, &delimiter,
5986 k_grammar, &grammar,
5987 SCM_UNDEFINED);
5988
5989 if (SCM_UNBNDP (delimiter))
5990 delimiter = scm_from_utf8_string (" ");
5991
5992 return scm_string_join (strings, delimiter, grammar);
5993 @}
5994
5995 void my_init ()
5996 @{
5997 k_delimiter = scm_from_utf8_keyword ("delimiter");
5998 k_grammar = scm_from_utf8_keyword ("grammar");
5999 sym_infix = scm_from_utf8_symbol ("infix");
6000 scm_c_define_gsubr ("my-string-join", 1, 0, 1, my_string_join);
6001 @}
6002 @end example
6003 @end deftypefn
6004
6005
6006 @node Other Types
6007 @subsection ``Functionality-Centric'' Data Types
6008
6009 Procedures and macros are documented in their own sections: see
6010 @ref{Procedures} and @ref{Macros}.
6011
6012 Variable objects are documented as part of the description of Guile's
6013 module system: see @ref{Variables}.
6014
6015 Asyncs, dynamic roots and fluids are described in the section on
6016 scheduling: see @ref{Scheduling}.
6017
6018 Hooks are documented in the section on general utility functions: see
6019 @ref{Hooks}.
6020
6021 Ports are described in the section on I/O: see @ref{Input and Output}.
6022
6023 Regular expressions are described in their own section: see @ref{Regular
6024 Expressions}.
6025
6026 @c Local Variables:
6027 @c TeX-master: "guile.texi"
6028 @c End: