(String Predicates): For string-any and string-every,
[bpt/guile.git] / doc / ref / api-data.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004
4 @c Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @page
8 @node Simple Data Types
9 @section Simple Generic Data Types
10
11 This chapter describes those of Guile's simple data types which are
12 primarily used for their role as items of generic data. By
13 @dfn{simple} we mean data types that are not primarily used as
14 containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
15 For the documentation of such @dfn{compound} data types, see
16 @ref{Compound Data Types}.
17
18 @c One of the great strengths of Scheme is that there is no straightforward
19 @c distinction between ``data'' and ``functionality''. For example,
20 @c Guile's support for dynamic linking could be described:
21
22 @c @itemize @bullet
23 @c @item
24 @c either in a ``data-centric'' way, as the behaviour and properties of the
25 @c ``dynamically linked object'' data type, and the operations that may be
26 @c applied to instances of this type
27
28 @c @item
29 @c or in a ``functionality-centric'' way, as the set of procedures that
30 @c constitute Guile's support for dynamic linking, in the context of the
31 @c module system.
32 @c @end itemize
33
34 @c The contents of this chapter are, therefore, a matter of judgment. By
35 @c @dfn{generic}, we mean to select those data types whose typical use as
36 @c @emph{data} in a wide variety of programming contexts is more important
37 @c than their use in the implementation of a particular piece of
38 @c @emph{functionality}. The last section of this chapter provides
39 @c references for all the data types that are documented not here but in a
40 @c ``functionality-centric'' way elsewhere in the manual.
41
42 @menu
43 * Booleans:: True/false values.
44 * Numbers:: Numerical data types.
45 * Characters:: Single characters.
46 * Character Sets:: Sets of characters.
47 * Strings:: Sequences of characters.
48 * Regular Expressions:: Pattern matching and substitution.
49 * Symbols:: Symbols.
50 * Keywords:: Self-quoting, customizable display keywords.
51 * Other Types:: "Functionality-centric" data types.
52 @end menu
53
54
55 @node Booleans
56 @subsection Booleans
57 @tpindex Booleans
58
59 The two boolean values are @code{#t} for true and @code{#f} for false.
60
61 Boolean values are returned by predicate procedures, such as the general
62 equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
63 (@pxref{Equality}) and numerical and string comparison operators like
64 @code{string=?} (@pxref{String Comparison}) and @code{<=}
65 (@pxref{Comparison}).
66
67 @lisp
68 (<= 3 8)
69 @result{} #t
70
71 (<= 3 -3)
72 @result{} #f
73
74 (equal? "house" "houses")
75 @result{} #f
76
77 (eq? #f #f)
78 @result{}
79 #t
80 @end lisp
81
82 In test condition contexts like @code{if} and @code{cond} (@pxref{if
83 cond case}), where a group of subexpressions will be evaluated only if a
84 @var{condition} expression evaluates to ``true'', ``true'' means any
85 value at all except @code{#f}.
86
87 @lisp
88 (if #t "yes" "no")
89 @result{} "yes"
90
91 (if 0 "yes" "no")
92 @result{} "yes"
93
94 (if #f "yes" "no")
95 @result{} "no"
96 @end lisp
97
98 A result of this asymmetry is that typical Scheme source code more often
99 uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
100 represent an @code{if} or @code{cond} false value, whereas @code{#t} is
101 not necessary to represent an @code{if} or @code{cond} true value.
102
103 It is important to note that @code{#f} is @strong{not} equivalent to any
104 other Scheme value. In particular, @code{#f} is not the same as the
105 number 0 (like in C and C++), and not the same as the ``empty list''
106 (like in some Lisp dialects).
107
108 In C, the two Scheme boolean values are available as the two constants
109 @code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
110 Care must be taken with the false value @code{SCM_BOOL_F}: it is not
111 false when used in C conditionals. In order to test for it, use
112 @code{scm_is_false} or @code{scm_is_true}.
113
114 @rnindex not
115 @deffn {Scheme Procedure} not x
116 @deffnx {C Function} scm_not (x)
117 Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
118 @end deffn
119
120 @rnindex boolean?
121 @deffn {Scheme Procedure} boolean? obj
122 @deffnx {C Function} scm_boolean_p (obj)
123 Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
124 return @code{#f}.
125 @end deffn
126
127 @deftypevr {C Macro} SCM SCM_BOOL_T
128 The @code{SCM} representation of the Scheme object @code{#t}.
129 @end deftypevr
130
131 @deftypevr {C Macro} SCM SCM_BOOL_F
132 The @code{SCM} representation of the Scheme object @code{#f}.
133 @end deftypevr
134
135 @deftypefn {C Function} int scm_is_true (SCM obj)
136 Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
137 @end deftypefn
138
139 @deftypefn {C Function} int scm_is_false (SCM obj)
140 Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
141 @end deftypefn
142
143 @deftypefn {C Function} int scm_is_bool (SCM obj)
144 Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
145 return @code{0}.
146 @end deftypefn
147
148 @deftypefn {C Function} SCM scm_from_bool (int val)
149 Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
150 @end deftypefn
151
152 @deftypefn {C Function} int scm_to_bool (SCM val)
153 Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
154 when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
155
156 You should probably use @code{scm_is_true} instead of this function
157 when you just want to test a @code{SCM} value for trueness.
158 @end deftypefn
159
160 @node Numbers
161 @subsection Numerical data types
162 @tpindex Numbers
163
164 Guile supports a rich ``tower'' of numerical types --- integer,
165 rational, real and complex --- and provides an extensive set of
166 mathematical and scientific functions for operating on numerical
167 data. This section of the manual documents those types and functions.
168
169 You may also find it illuminating to read R5RS's presentation of numbers
170 in Scheme, which is particularly clear and accessible: see
171 @ref{Numbers,,,r5rs,R5RS}.
172
173 @menu
174 * Numerical Tower:: Scheme's numerical "tower".
175 * Integers:: Whole numbers.
176 * Reals and Rationals:: Real and rational numbers.
177 * Complex Numbers:: Complex numbers.
178 * Exactness:: Exactness and inexactness.
179 * Number Syntax:: Read syntax for numerical data.
180 * Integer Operations:: Operations on integer values.
181 * Comparison:: Comparison predicates.
182 * Conversion:: Converting numbers to and from strings.
183 * Complex:: Complex number operations.
184 * Arithmetic:: Arithmetic functions.
185 * Scientific:: Scientific functions.
186 * Primitive Numerics:: Primitive numeric functions.
187 * Bitwise Operations:: Logical AND, OR, NOT, and so on.
188 * Random:: Random number generation.
189 @end menu
190
191
192 @node Numerical Tower
193 @subsubsection Scheme's Numerical ``Tower''
194 @rnindex number?
195
196 Scheme's numerical ``tower'' consists of the following categories of
197 numbers:
198
199 @table @dfn
200 @item integers
201 Whole numbers, positive or negative; e.g.@: --5, 0, 18.
202
203 @item rationals
204 The set of numbers that can be expressed as @math{@var{p}/@var{q}}
205 where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
206 pi (an irrational number) doesn't. These include integers
207 (@math{@var{n}/1}).
208
209 @item real numbers
210 The set of numbers that describes all possible positions along a
211 one-dimensional line. This includes rationals as well as irrational
212 numbers.
213
214 @item complex numbers
215 The set of numbers that describes all possible positions in a two
216 dimensional space. This includes real as well as imaginary numbers
217 (@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
218 @var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
219 @minus{}1.)
220 @end table
221
222 It is called a tower because each category ``sits on'' the one that
223 follows it, in the sense that every integer is also a rational, every
224 rational is also real, and every real number is also a complex number
225 (but with zero imaginary part).
226
227 In addition to the classification into integers, rationals, reals and
228 complex numbers, Scheme also distinguishes between whether a number is
229 represented exactly or not. For example, the result of
230 @m{2\sin(\pi/4),sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)} but Guile
231 can neither represent @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
232 Instead, it stores an inexact approximation, using the C type
233 @code{double}.
234
235 Guile can represent exact rationals of any magnitude, inexact
236 rationals that fit into a C @code{double}, and inexact complex numbers
237 with @code{double} real and imaginary parts.
238
239 The @code{number?} predicate may be applied to any Scheme value to
240 discover whether the value is any of the supported numerical types.
241
242 @deffn {Scheme Procedure} number? obj
243 @deffnx {C Function} scm_number_p (obj)
244 Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
245 @end deffn
246
247 For example:
248
249 @lisp
250 (number? 3)
251 @result{} #t
252
253 (number? "hello there!")
254 @result{} #f
255
256 (define pi 3.141592654)
257 (number? pi)
258 @result{} #t
259 @end lisp
260
261 @deftypefn {C Function} int scm_is_number (SCM obj)
262 This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
263 @end deftypefn
264
265 The next few subsections document each of Guile's numerical data types
266 in detail.
267
268 @node Integers
269 @subsubsection Integers
270
271 @tpindex Integer numbers
272
273 @rnindex integer?
274
275 Integers are whole numbers, that is numbers with no fractional part,
276 such as 2, 83, and @minus{}3789.
277
278 Integers in Guile can be arbitrarily big, as shown by the following
279 example.
280
281 @lisp
282 (define (factorial n)
283 (let loop ((n n) (product 1))
284 (if (= n 0)
285 product
286 (loop (- n 1) (* product n)))))
287
288 (factorial 3)
289 @result{} 6
290
291 (factorial 20)
292 @result{} 2432902008176640000
293
294 (- (factorial 45))
295 @result{} -119622220865480194561963161495657715064383733760000000000
296 @end lisp
297
298 Readers whose background is in programming languages where integers are
299 limited by the need to fit into just 4 or 8 bytes of memory may find
300 this surprising, or suspect that Guile's representation of integers is
301 inefficient. In fact, Guile achieves a near optimal balance of
302 convenience and efficiency by using the host computer's native
303 representation of integers where possible, and a more general
304 representation where the required number does not fit in the native
305 form. Conversion between these two representations is automatic and
306 completely invisible to the Scheme level programmer.
307
308 The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
309 inexact integers. They are explained in detail in the next section,
310 together with reals and rationals.
311
312 C has a host of different integer types, and Guile offers a host of
313 functions to convert between them and the @code{SCM} representation.
314 For example, a C @code{int} can be handled with @code{scm_to_int} and
315 @code{scm_from_int}. Guile also defines a few C integer types of its
316 own, to help with differences between systems.
317
318 C integer types that are not covered can be handled with the generic
319 @code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
320 signed types, or with @code{scm_to_unsigned_integer} and
321 @code{scm_from_unsigned_integer} for unsigned types.
322
323 Scheme integers can be exact and inexact. For example, a number
324 written as @code{3.0} with an explicit decimal-point is inexact, but
325 it is also an integer. The functions @code{integer?} and
326 @code{scm_is_integer} report true for such a number, but the functions
327 @code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
328 allow exact integers and thus report false. Likewise, the conversion
329 functions like @code{scm_to_signed_integer} only accept exact
330 integers.
331
332 The motivation for this behavior is that the inexactness of a number
333 should not be lost silently. If you want to allow inexact integers,
334 you can explicitely insert a call to @code{inexact->exact} or to its C
335 equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
336 be converted by this call into exact integers; inexact non-integers
337 will become exact fractions.)
338
339 @deffn {Scheme Procedure} integer? x
340 @deffnx {C Function} scm_integer_p (x)
341 Return @code{#t} if @var{x} is an exactor inexact integer number, else
342 @code{#f}.
343
344 @lisp
345 (integer? 487)
346 @result{} #t
347
348 (integer? 3.0)
349 @result{} #t
350
351 (integer? -3.4)
352 @result{} #f
353
354 (integer? +inf.0)
355 @result{} #t
356 @end lisp
357 @end deffn
358
359 @deftypefn {C Function} int scm_is_integer (SCM x)
360 This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
361 @end deftypefn
362
363 @defvr {C Type} scm_t_int8
364 @defvrx {C Type} scm_t_uint8
365 @defvrx {C Type} scm_t_int16
366 @defvrx {C Type} scm_t_uint16
367 @defvrx {C Type} scm_t_int32
368 @defvrx {C Type} scm_t_uint32
369 @defvrx {C Type} scm_t_int64
370 @defvrx {C Type} scm_t_uint64
371 @defvrx {C Type} scm_t_intmax
372 @defvrx {C Type} scm_t_uintmax
373 The C types are equivalent to the corresponding ISO C types but are
374 defined on all platforms, with the exception of @code{scm_t_int64} and
375 @code{scm_t_uint64}, which are only defined when a 64-bit type is
376 available. For example, @code{scm_t_int8} is equivalent to
377 @code{int8_t}.
378
379 You can regard these definitions as a stop-gap measure until all
380 platforms provide these types. If you know that all the platforms
381 that you are interested in already provide these types, it is better
382 to use them directly instead of the types provided by Guile.
383 @end defvr
384
385 @deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
386 @deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
387 Return @code{1} when @var{x} represents an exact integer that is
388 between @var{min} and @var{max}, inclusive.
389
390 These functions can be used to check whether a @code{SCM} value will
391 fit into a given range, such as the range of a given C integer type.
392 If you just want to convert a @code{SCM} value to a given C integer
393 type, use one of the conversion functions directly.
394 @end deftypefn
395
396 @deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
397 @deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
398 When @var{x} represents an exact integer that is between @var{min} and
399 @var{max} inclusive, return that integer. Else signal an error,
400 either a `wrong-type' error when @var{x} is not an exact integer, or
401 an `out-of-range' error when it doesn't fit the given range.
402 @end deftypefn
403
404 @deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
405 @deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
406 Return the @code{SCM} value that represents the integer @var{x}. This
407 function will always succeed and will always return an exact number.
408 @end deftypefn
409
410 @deftypefn {C Function} char scm_to_char (SCM x)
411 @deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
412 @deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
413 @deftypefnx {C Function} short scm_to_short (SCM x)
414 @deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
415 @deftypefnx {C Function} int scm_to_int (SCM x)
416 @deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
417 @deftypefnx {C Function} long scm_to_long (SCM x)
418 @deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
419 @deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
420 @deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
421 @deftypefnx {C Function} size_t scm_to_size_t (SCM x)
422 @deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
423 @deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
424 @deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
425 @deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
426 @deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
427 @deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
428 @deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
429 @deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
430 @deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
431 @deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
432 @deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
433 When @var{x} represents an exact integer that fits into the indicated
434 C type, return that integer. Else signal an error, either a
435 `wrong-type' error when @var{x} is not an exact integer, or an
436 `out-of-range' error when it doesn't fit the given range.
437
438 The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
439 @code{scm_to_int64}, and @code{scm_to_uint64} are only available when
440 the corresponding types are.
441 @end deftypefn
442
443 @deftypefn {C Function} SCM scm_from_char (char x)
444 @deftypefnx {C Function} SCM scm_from_schar (signed char x)
445 @deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
446 @deftypefnx {C Function} SCM scm_from_short (short x)
447 @deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
448 @deftypefnx {C Function} SCM scm_from_int (int x)
449 @deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
450 @deftypefnx {C Function} SCM scm_from_long (long x)
451 @deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
452 @deftypefnx {C Function} SCM scm_from_long_long (long long x)
453 @deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
454 @deftypefnx {C Function} SCM scm_from_size_t (size_t x)
455 @deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
456 @deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
457 @deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
458 @deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
459 @deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
460 @deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
461 @deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
462 @deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
463 @deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
464 @deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
465 @deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
466 Return the @code{SCM} value that represents the integer @var{x}.
467 These functions will always succeed and will always return an exact
468 number.
469 @end deftypefn
470
471 @deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
472 Assign @var{val} to the multiple precision integer @var{rop}.
473 @var{val} must be an exact integer, otherwise an error will be
474 signalled. @var{rop} must have been initialized with @code{mpz_init}
475 before this function is called. When @var{rop} is no longer needed
476 the occupied space must be freed with @code{mpz_clear}.
477 @xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
478 @end deftypefn
479
480 @deftypefn {C Function} SCM scm_from_mpz_t (mpz_t val)
481 Return the @code{SCM} value that represents @var{val}.
482 @end deftypefn
483
484 @node Reals and Rationals
485 @subsubsection Real and Rational Numbers
486 @tpindex Real numbers
487 @tpindex Rational numbers
488
489 @rnindex real?
490 @rnindex rational?
491
492 Mathematically, the real numbers are the set of numbers that describe
493 all possible points along a continuous, infinite, one-dimensional line.
494 The rational numbers are the set of all numbers that can be written as
495 fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
496 All rational numbers are also real, but there are real numbers that
497 are not rational, for example the square root of 2, and pi.
498
499 Guile can represent both exact and inexact rational numbers, but it
500 can not represent irrational numbers. Exact rationals are represented
501 by storing the numerator and denominator as two exact integers.
502 Inexact rationals are stored as floating point numbers using the C
503 type @code{double}.
504
505 Exact rationals are written as a fraction of integers. There must be
506 no whitespace around the slash:
507
508 @lisp
509 1/2
510 -22/7
511 @end lisp
512
513 Even though the actual encoding of inexact rationals is in binary, it
514 may be helpful to think of it as a decimal number with a limited
515 number of significant figures and a decimal point somewhere, since
516 this corresponds to the standard notation for non-whole numbers. For
517 example:
518
519 @lisp
520 0.34
521 -0.00000142857931198
522 -5648394822220000000000.0
523 4.0
524 @end lisp
525
526 The limited precision of Guile's encoding means that any ``real'' number
527 in Guile can be written in a rational form, by multiplying and then dividing
528 by sufficient powers of 10 (or in fact, 2). For example,
529 @samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
530 100000000000000000. In Guile's current incarnation, therefore, the
531 @code{rational?} and @code{real?} predicates are equivalent.
532
533
534 Dividing by an exact zero leads to a error message, as one might
535 expect. However, dividing by an inexact zero does not produce an
536 error. Instead, the result of the division is either plus or minus
537 infinity, depending on the sign of the divided number.
538
539 The infinities are written @samp{+inf.0} and @samp{-inf.0},
540 respectivly. This syntax is also recognized by @code{read} as an
541 extension to the usual Scheme syntax.
542
543 Dividing zero by zero yields something that is not a number at all:
544 @samp{+nan.0}. This is the special `not a number' value.
545
546 On platforms that follow @acronym{IEEE} 754 for their floating point
547 arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
548 are implemented using the corresponding @acronym{IEEE} 754 values.
549 They behave in arithmetic operations like @acronym{IEEE} 754 describes
550 it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
551
552 The infinities are inexact integers and are considered to be both even
553 and odd. While @samp{+nan.0} is not @code{=} to itself, it is
554 @code{eqv?} to itself.
555
556 To test for the special values, use the functions @code{inf?} and
557 @code{nan?}.
558
559 @deffn {Scheme Procedure} real? obj
560 @deffnx {C Function} scm_real_p (obj)
561 Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
562 that the sets of integer and rational values form subsets of the set
563 of real numbers, so the predicate will also be fulfilled if @var{obj}
564 is an integer number or a rational number.
565 @end deffn
566
567 @deffn {Scheme Procedure} rational? x
568 @deffnx {C Function} scm_rational_p (x)
569 Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
570 Note that the set of integer values forms a subset of the set of
571 rational numbers, i. e. the predicate will also be fulfilled if
572 @var{x} is an integer number.
573
574 Since Guile can not represent irrational numbers, every number
575 satisfying @code{real?} also satisfies @code{rational?} in Guile.
576 @end deffn
577
578 @deffn {Scheme Procedure} rationalize x eps
579 @deffnx {C Function} scm_rationalize (x, eps)
580 Returns the @emph{simplest} rational number differing
581 from @var{x} by no more than @var{eps}.
582
583 As required by @acronym{R5RS}, @code{rationalize} only returns an
584 exact result when both its arguments are exact. Thus, you might need
585 to use @code{inexact->exact} on the arguments.
586
587 @lisp
588 (rationalize (inexact->exact 1.2) 1/100)
589 @result{} 6/5
590 @end lisp
591
592 @end deffn
593
594 @deffn {Scheme Procedure} inf? x
595 @deffnx {C Function} scm_inf_p (x)
596 Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
597 @code{#f} otherwise.
598 @end deffn
599
600 @deffn {Scheme Procedure} nan? x
601 @deffnx {C Function} scm_nan_p (x)
602 Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
603 @end deffn
604
605 @deffn {Scheme Procedure} nan
606 @deffnx {C Function} scm_nan ()
607 Return NaN.
608 @end deffn
609
610 @deffn {Scheme Procedure} inf
611 @deffnx {C Function} scm_inf ()
612 Return Inf.
613 @end deffn
614
615 @deffn {Scheme Procedure} numerator x
616 @deffnx {C Function} scm_numerator (x)
617 Return the numerator of the rational number @var{x}.
618 @end deffn
619
620 @deffn {Scheme Procedure} denominator x
621 @deffnx {C Function} scm_denominator (x)
622 Return the denominator of the rational number @var{x}.
623 @end deffn
624
625 @deftypefn {C Function} int scm_is_real (SCM val)
626 @deftypefnx {C Function} int scm_is_rational (SCM val)
627 Equivalent to @code{scm_is_true (scm_real_p (val))} and
628 @code{scm_is_true (scm_rational_p (val))}, respectively.
629 @end deftypefn
630
631 @deftypefn {C Function} double scm_to_double (SCM val)
632 Returns the number closest to @var{val} that is representable as a
633 @code{double}. Returns infinity for a @var{val} that is too large in
634 magnitude. The argument @var{val} must be a real number.
635 @end deftypefn
636
637 @deftypefn {C Function} SCM scm_from_double (double val)
638 Return the @code{SCM} value that representats @var{val}. The returned
639 value is inexact according to the predicate @code{inexact?}, but it
640 will be exactly equal to @var{val}.
641 @end deftypefn
642
643 @node Complex Numbers
644 @subsubsection Complex Numbers
645 @tpindex Complex numbers
646
647 @rnindex complex?
648
649 Complex numbers are the set of numbers that describe all possible points
650 in a two-dimensional space. The two coordinates of a particular point
651 in this space are known as the @dfn{real} and @dfn{imaginary} parts of
652 the complex number that describes that point.
653
654 In Guile, complex numbers are written in rectangular form as the sum of
655 their real and imaginary parts, using the symbol @code{i} to indicate
656 the imaginary part.
657
658 @lisp
659 3+4i
660 @result{}
661 3.0+4.0i
662
663 (* 3-8i 2.3+0.3i)
664 @result{}
665 9.3-17.5i
666 @end lisp
667
668 Guile represents a complex number with a non-zero imaginary part as a
669 pair of inexact rationals, so the real and imaginary parts of a
670 complex number have the same properties of inexactness and limited
671 precision as single inexact rational numbers. Guile can not represent
672 exact complex numbers with non-zero imaginary parts.
673
674 @deffn {Scheme Procedure} complex? z
675 @deffnx {C Function} scm_complex_p (z)
676 Return @code{#t} if @var{x} is a complex number, @code{#f}
677 otherwise. Note that the sets of real, rational and integer
678 values form subsets of the set of complex numbers, i. e. the
679 predicate will also be fulfilled if @var{x} is a real,
680 rational or integer number.
681 @end deffn
682
683 @deftypefn {C Function} int scm_is_complex (SCM val)
684 Equivalent to @code{scm_is_true (scm_complex_p (val))}.
685 @end deftypefn
686
687 @node Exactness
688 @subsubsection Exact and Inexact Numbers
689 @tpindex Exact numbers
690 @tpindex Inexact numbers
691
692 @rnindex exact?
693 @rnindex inexact?
694 @rnindex exact->inexact
695 @rnindex inexact->exact
696
697 R5RS requires that a calculation involving inexact numbers always
698 produces an inexact result. To meet this requirement, Guile
699 distinguishes between an exact integer value such as @samp{5} and the
700 corresponding inexact real value which, to the limited precision
701 available, has no fractional part, and is printed as @samp{5.0}. Guile
702 will only convert the latter value to the former when forced to do so by
703 an invocation of the @code{inexact->exact} procedure.
704
705 @deffn {Scheme Procedure} exact? z
706 @deffnx {C Function} scm_exact_p (z)
707 Return @code{#t} if the number @var{z} is exact, @code{#f}
708 otherwise.
709
710 @lisp
711 (exact? 2)
712 @result{} #t
713
714 (exact? 0.5)
715 @result{} #f
716
717 (exact? (/ 2))
718 @result{} #t
719 @end lisp
720
721 @end deffn
722
723 @deffn {Scheme Procedure} inexact? z
724 @deffnx {C Function} scm_inexact_p (z)
725 Return @code{#t} if the number @var{z} is inexact, @code{#f}
726 else.
727 @end deffn
728
729 @deffn {Scheme Procedure} inexact->exact z
730 @deffnx {C Function} scm_inexact_to_exact (z)
731 Return an exact number that is numerically closest to @var{z}, when
732 there is one. For inexact rationals, Guile returns the exact rational
733 that is numerically equal to the inexact rational. Inexact complex
734 numbers with a non-zero imaginary part can not be made exact.
735
736 @lisp
737 (inexact->exact 0.5)
738 @result{} 1/2
739 @end lisp
740
741 The following happens because 12/10 is not exactly representable as a
742 @code{double} (on most platforms). However, when reading a decimal
743 number that has been marked exact with the ``#e'' prefix, Guile is
744 able to represent it correctly.
745
746 @lisp
747 (inexact->exact 1.2)
748 @result{} 5404319552844595/4503599627370496
749
750 #e1.2
751 @result{} 6/5
752 @end lisp
753
754 @end deffn
755
756 @c begin (texi-doc-string "guile" "exact->inexact")
757 @deffn {Scheme Procedure} exact->inexact z
758 @deffnx {C Function} scm_exact_to_inexact (z)
759 Convert the number @var{z} to its inexact representation.
760 @end deffn
761
762
763 @node Number Syntax
764 @subsubsection Read Syntax for Numerical Data
765
766 The read syntax for integers is a string of digits, optionally
767 preceded by a minus or plus character, a code indicating the
768 base in which the integer is encoded, and a code indicating whether
769 the number is exact or inexact. The supported base codes are:
770
771 @table @code
772 @item #b
773 @itemx #B
774 the integer is written in binary (base 2)
775
776 @item #o
777 @itemx #O
778 the integer is written in octal (base 8)
779
780 @item #d
781 @itemx #D
782 the integer is written in decimal (base 10)
783
784 @item #x
785 @itemx #X
786 the integer is written in hexadecimal (base 16)
787 @end table
788
789 If the base code is omitted, the integer is assumed to be decimal. The
790 following examples show how these base codes are used.
791
792 @lisp
793 -13
794 @result{} -13
795
796 #d-13
797 @result{} -13
798
799 #x-13
800 @result{} -19
801
802 #b+1101
803 @result{} 13
804
805 #o377
806 @result{} 255
807 @end lisp
808
809 The codes for indicating exactness (which can, incidentally, be applied
810 to all numerical values) are:
811
812 @table @code
813 @item #e
814 @itemx #E
815 the number is exact
816
817 @item #i
818 @itemx #I
819 the number is inexact.
820 @end table
821
822 If the exactness indicator is omitted, the number is exact unless it
823 contains a radix point. Since Guile can not represent exact complex
824 numbers, an error is signalled when asking for them.
825
826 @lisp
827 (exact? 1.2)
828 @result{} #f
829
830 (exact? #e1.2)
831 @result{} #t
832
833 (exact? #e+1i)
834 ERROR: Wrong type argument
835 @end lisp
836
837 Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
838 plus and minus infinity, respectively. The value must be written
839 exactly as shown, that is, they always must have a sign and exactly
840 one zero digit after the decimal point. It also understands
841 @samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
842 The sign is ignored for `not-a-number' and the value is always printed
843 as @samp{+nan.0}.
844
845 @node Integer Operations
846 @subsubsection Operations on Integer Values
847 @rnindex odd?
848 @rnindex even?
849 @rnindex quotient
850 @rnindex remainder
851 @rnindex modulo
852 @rnindex gcd
853 @rnindex lcm
854
855 @deffn {Scheme Procedure} odd? n
856 @deffnx {C Function} scm_odd_p (n)
857 Return @code{#t} if @var{n} is an odd number, @code{#f}
858 otherwise.
859 @end deffn
860
861 @deffn {Scheme Procedure} even? n
862 @deffnx {C Function} scm_even_p (n)
863 Return @code{#t} if @var{n} is an even number, @code{#f}
864 otherwise.
865 @end deffn
866
867 @c begin (texi-doc-string "guile" "quotient")
868 @c begin (texi-doc-string "guile" "remainder")
869 @deffn {Scheme Procedure} quotient n d
870 @deffnx {Scheme Procedure} remainder n d
871 @deffnx {C Function} scm_quotient (n, d)
872 @deffnx {C Function} scm_remainder (n, d)
873 Return the quotient or remainder from @var{n} divided by @var{d}. The
874 quotient is rounded towards zero, and the remainder will have the same
875 sign as @var{n}. In all cases quotient and remainder satisfy
876 @math{@var{n} = @var{q}*@var{d} + @var{r}}.
877
878 @lisp
879 (remainder 13 4) @result{} 1
880 (remainder -13 4) @result{} -1
881 @end lisp
882 @end deffn
883
884 @c begin (texi-doc-string "guile" "modulo")
885 @deffn {Scheme Procedure} modulo n d
886 @deffnx {C Function} scm_modulo (n, d)
887 Return the remainder from @var{n} divided by @var{d}, with the same
888 sign as @var{d}.
889
890 @lisp
891 (modulo 13 4) @result{} 1
892 (modulo -13 4) @result{} 3
893 (modulo 13 -4) @result{} -3
894 (modulo -13 -4) @result{} -1
895 @end lisp
896 @end deffn
897
898 @c begin (texi-doc-string "guile" "gcd")
899 @deffn {Scheme Procedure} gcd
900 @deffnx {C Function} scm_gcd (x, y)
901 Return the greatest common divisor of all arguments.
902 If called without arguments, 0 is returned.
903
904 The C function @code{scm_gcd} always takes two arguments, while the
905 Scheme function can take an arbitrary number.
906 @end deffn
907
908 @c begin (texi-doc-string "guile" "lcm")
909 @deffn {Scheme Procedure} lcm
910 @deffnx {C Function} scm_lcm (x, y)
911 Return the least common multiple of the arguments.
912 If called without arguments, 1 is returned.
913
914 The C function @code{scm_lcm} always takes two arguments, while the
915 Scheme function can take an arbitrary number.
916 @end deffn
917
918 @deffn {Scheme Procedure} modulo-expt n k m
919 @deffnx {C Function} scm_modulo_expt (n, k, m)
920 Return @var{n} raised to the integer exponent
921 @var{k}, modulo @var{m}.
922
923 @lisp
924 (modulo-expt 2 3 5)
925 @result{} 3
926 @end lisp
927 @end deffn
928
929 @node Comparison
930 @subsubsection Comparison Predicates
931 @rnindex zero?
932 @rnindex positive?
933 @rnindex negative?
934
935 The C comparison functions below always takes two arguments, while the
936 Scheme functions can take an arbitrary number. Also keep in mind that
937 the C functions return one of the Scheme boolean values
938 @code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
939 is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
940 y))} when testing the two Scheme numbers @code{x} and @code{y} for
941 equality, for example.
942
943 @c begin (texi-doc-string "guile" "=")
944 @deffn {Scheme Procedure} =
945 @deffnx {C Function} scm_num_eq_p (x, y)
946 Return @code{#t} if all parameters are numerically equal.
947 @end deffn
948
949 @c begin (texi-doc-string "guile" "<")
950 @deffn {Scheme Procedure} <
951 @deffnx {C Function} scm_less_p (x, y)
952 Return @code{#t} if the list of parameters is monotonically
953 increasing.
954 @end deffn
955
956 @c begin (texi-doc-string "guile" ">")
957 @deffn {Scheme Procedure} >
958 @deffnx {C Function} scm_gr_p (x, y)
959 Return @code{#t} if the list of parameters is monotonically
960 decreasing.
961 @end deffn
962
963 @c begin (texi-doc-string "guile" "<=")
964 @deffn {Scheme Procedure} <=
965 @deffnx {C Function} scm_leq_p (x, y)
966 Return @code{#t} if the list of parameters is monotonically
967 non-decreasing.
968 @end deffn
969
970 @c begin (texi-doc-string "guile" ">=")
971 @deffn {Scheme Procedure} >=
972 @deffnx {C Function} scm_geq_p (x, y)
973 Return @code{#t} if the list of parameters is monotonically
974 non-increasing.
975 @end deffn
976
977 @c begin (texi-doc-string "guile" "zero?")
978 @deffn {Scheme Procedure} zero? z
979 @deffnx {C Function} scm_zero_p (z)
980 Return @code{#t} if @var{z} is an exact or inexact number equal to
981 zero.
982 @end deffn
983
984 @c begin (texi-doc-string "guile" "positive?")
985 @deffn {Scheme Procedure} positive? x
986 @deffnx {C Function} scm_positive_p (x)
987 Return @code{#t} if @var{x} is an exact or inexact number greater than
988 zero.
989 @end deffn
990
991 @c begin (texi-doc-string "guile" "negative?")
992 @deffn {Scheme Procedure} negative? x
993 @deffnx {C Function} scm_negative_p (x)
994 Return @code{#t} if @var{x} is an exact or inexact number less than
995 zero.
996 @end deffn
997
998
999 @node Conversion
1000 @subsubsection Converting Numbers To and From Strings
1001 @rnindex number->string
1002 @rnindex string->number
1003
1004 @deffn {Scheme Procedure} number->string n [radix]
1005 @deffnx {C Function} scm_number_to_string (n, radix)
1006 Return a string holding the external representation of the
1007 number @var{n} in the given @var{radix}. If @var{n} is
1008 inexact, a radix of 10 will be used.
1009 @end deffn
1010
1011 @deffn {Scheme Procedure} string->number string [radix]
1012 @deffnx {C Function} scm_string_to_number (string, radix)
1013 Return a number of the maximally precise representation
1014 expressed by the given @var{string}. @var{radix} must be an
1015 exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1016 is a default radix that may be overridden by an explicit radix
1017 prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
1018 supplied, then the default radix is 10. If string is not a
1019 syntactically valid notation for a number, then
1020 @code{string->number} returns @code{#f}.
1021 @end deffn
1022
1023
1024 @node Complex
1025 @subsubsection Complex Number Operations
1026 @rnindex make-rectangular
1027 @rnindex make-polar
1028 @rnindex real-part
1029 @rnindex imag-part
1030 @rnindex magnitude
1031 @rnindex angle
1032
1033 @deffn {Scheme Procedure} make-rectangular real imaginary
1034 @deffnx {C Function} scm_make_rectangular (real, imaginary)
1035 Return a complex number constructed of the given @var{real} and
1036 @var{imaginary} parts.
1037 @end deffn
1038
1039 @deffn {Scheme Procedure} make-polar x y
1040 @deffnx {C Function} scm_make_polar (x, y)
1041 Return the complex number @var{x} * e^(i * @var{y}).
1042 @end deffn
1043
1044 @c begin (texi-doc-string "guile" "real-part")
1045 @deffn {Scheme Procedure} real-part z
1046 @deffnx {C Function} scm_real_part (z)
1047 Return the real part of the number @var{z}.
1048 @end deffn
1049
1050 @c begin (texi-doc-string "guile" "imag-part")
1051 @deffn {Scheme Procedure} imag-part z
1052 @deffnx {C Function} scm_imag_part (z)
1053 Return the imaginary part of the number @var{z}.
1054 @end deffn
1055
1056 @c begin (texi-doc-string "guile" "magnitude")
1057 @deffn {Scheme Procedure} magnitude z
1058 @deffnx {C Function} scm_magnitude (z)
1059 Return the magnitude of the number @var{z}. This is the same as
1060 @code{abs} for real arguments, but also allows complex numbers.
1061 @end deffn
1062
1063 @c begin (texi-doc-string "guile" "angle")
1064 @deffn {Scheme Procedure} angle z
1065 @deffnx {C Function} scm_angle (z)
1066 Return the angle of the complex number @var{z}.
1067 @end deffn
1068
1069 @deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1070 @deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1071 Like @code{scm_make_rectangular} or @code{scm_make_polar},
1072 respectively, but these functions take @code{double}s as their
1073 arguments.
1074 @end deftypefn
1075
1076 @deftypefn {C Function} double scm_c_real_part (z)
1077 @deftypefnx {C Function} double scm_c_imag_part (z)
1078 Returns the real or imaginary part of @var{z} as a @code{double}.
1079 @end deftypefn
1080
1081 @deftypefn {C Function} double scm_c_magnitude (z)
1082 @deftypefnx {C Function} double scm_c_angle (z)
1083 Returns the magnitude or angle of @var{z} as a @code{double}.
1084 @end deftypefn
1085
1086
1087 @node Arithmetic
1088 @subsubsection Arithmetic Functions
1089 @rnindex max
1090 @rnindex min
1091 @rnindex +
1092 @rnindex *
1093 @rnindex -
1094 @rnindex /
1095 @rnindex abs
1096 @rnindex floor
1097 @rnindex ceiling
1098 @rnindex truncate
1099 @rnindex round
1100
1101 The C arithmetic functions below always takes two arguments, while the
1102 Scheme functions can take an arbitrary number. When you need to
1103 invoke them with just one argument, for example to compute the
1104 equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1105 one: @code{scm_difference (x, SCM_UNDEFINED)}.
1106
1107 @c begin (texi-doc-string "guile" "+")
1108 @deffn {Scheme Procedure} + z1 @dots{}
1109 @deffnx {C Function} scm_sum (z1, z2)
1110 Return the sum of all parameter values. Return 0 if called without any
1111 parameters.
1112 @end deffn
1113
1114 @c begin (texi-doc-string "guile" "-")
1115 @deffn {Scheme Procedure} - z1 z2 @dots{}
1116 @deffnx {C Function} scm_difference (z1, z2)
1117 If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1118 the sum of all but the first argument are subtracted from the first
1119 argument.
1120 @end deffn
1121
1122 @c begin (texi-doc-string "guile" "*")
1123 @deffn {Scheme Procedure} * z1 @dots{}
1124 @deffnx {C Function} scm_product (z1, z2)
1125 Return the product of all arguments. If called without arguments, 1 is
1126 returned.
1127 @end deffn
1128
1129 @c begin (texi-doc-string "guile" "/")
1130 @deffn {Scheme Procedure} / z1 z2 @dots{}
1131 @deffnx {C Function} scm_divide (z1, z2)
1132 Divide the first argument by the product of the remaining arguments. If
1133 called with one argument @var{z1}, 1/@var{z1} is returned.
1134 @end deffn
1135
1136 @c begin (texi-doc-string "guile" "abs")
1137 @deffn {Scheme Procedure} abs x
1138 @deffnx {C Function} scm_abs (x)
1139 Return the absolute value of @var{x}.
1140
1141 @var{x} must be a number with zero imaginary part. To calculate the
1142 magnitude of a complex number, use @code{magnitude} instead.
1143 @end deffn
1144
1145 @c begin (texi-doc-string "guile" "max")
1146 @deffn {Scheme Procedure} max x1 x2 @dots{}
1147 @deffnx {C Function} scm_max (x1, x2)
1148 Return the maximum of all parameter values.
1149 @end deffn
1150
1151 @c begin (texi-doc-string "guile" "min")
1152 @deffn {Scheme Procedure} min x1 x2 @dots{}
1153 @deffnx {C Function} scm_min (x1, x2)
1154 Return the minimum of all parameter values.
1155 @end deffn
1156
1157 @c begin (texi-doc-string "guile" "truncate")
1158 @deffn {Scheme Procedure} truncate
1159 @deffnx {C Function} scm_truncate_number (x)
1160 Round the inexact number @var{x} towards zero.
1161 @end deffn
1162
1163 @c begin (texi-doc-string "guile" "round")
1164 @deffn {Scheme Procedure} round x
1165 @deffnx {C Function} scm_round_number (x)
1166 Round the inexact number @var{x} to the nearest integer. When exactly
1167 halfway between two integers, round to the even one.
1168 @end deffn
1169
1170 @c begin (texi-doc-string "guile" "floor")
1171 @deffn {Scheme Procedure} floor x
1172 @deffnx {C Function} scm_floor (x)
1173 Round the number @var{x} towards minus infinity.
1174 @end deffn
1175
1176 @c begin (texi-doc-string "guile" "ceiling")
1177 @deffn {Scheme Procedure} ceiling x
1178 @deffnx {C Function} scm_ceiling (x)
1179 Round the number @var{x} towards infinity.
1180 @end deffn
1181
1182 @deftypefn {C Function} double scm_c_truncate (double x)
1183 @deftypefnx {C Function} double scm_c_round (double x)
1184 Like @code{scm_truncate_number} or @code{scm_round_number},
1185 respectively, but these functions take and return @code{double}
1186 values.
1187 @end deftypefn
1188
1189 @node Scientific
1190 @subsubsection Scientific Functions
1191
1192 The following procedures accept any kind of number as arguments,
1193 including complex numbers.
1194
1195 @rnindex sqrt
1196 @c begin (texi-doc-string "guile" "sqrt")
1197 @deffn {Scheme Procedure} sqrt z
1198 Return the square root of @var{z}.
1199 @end deffn
1200
1201 @rnindex expt
1202 @c begin (texi-doc-string "guile" "expt")
1203 @deffn {Scheme Procedure} expt z1 z2
1204 Return @var{z1} raised to the power of @var{z2}.
1205 @end deffn
1206
1207 @rnindex sin
1208 @c begin (texi-doc-string "guile" "sin")
1209 @deffn {Scheme Procedure} sin z
1210 Return the sine of @var{z}.
1211 @end deffn
1212
1213 @rnindex cos
1214 @c begin (texi-doc-string "guile" "cos")
1215 @deffn {Scheme Procedure} cos z
1216 Return the cosine of @var{z}.
1217 @end deffn
1218
1219 @rnindex tan
1220 @c begin (texi-doc-string "guile" "tan")
1221 @deffn {Scheme Procedure} tan z
1222 Return the tangent of @var{z}.
1223 @end deffn
1224
1225 @rnindex asin
1226 @c begin (texi-doc-string "guile" "asin")
1227 @deffn {Scheme Procedure} asin z
1228 Return the arcsine of @var{z}.
1229 @end deffn
1230
1231 @rnindex acos
1232 @c begin (texi-doc-string "guile" "acos")
1233 @deffn {Scheme Procedure} acos z
1234 Return the arccosine of @var{z}.
1235 @end deffn
1236
1237 @rnindex atan
1238 @c begin (texi-doc-string "guile" "atan")
1239 @deffn {Scheme Procedure} atan z
1240 @deffnx {Scheme Procedure} atan y x
1241 Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1242 @end deffn
1243
1244 @rnindex exp
1245 @c begin (texi-doc-string "guile" "exp")
1246 @deffn {Scheme Procedure} exp z
1247 Return e to the power of @var{z}, where e is the base of natural
1248 logarithms (2.71828@dots{}).
1249 @end deffn
1250
1251 @rnindex log
1252 @c begin (texi-doc-string "guile" "log")
1253 @deffn {Scheme Procedure} log z
1254 Return the natural logarithm of @var{z}.
1255 @end deffn
1256
1257 @c begin (texi-doc-string "guile" "log10")
1258 @deffn {Scheme Procedure} log10 z
1259 Return the base 10 logarithm of @var{z}.
1260 @end deffn
1261
1262 @c begin (texi-doc-string "guile" "sinh")
1263 @deffn {Scheme Procedure} sinh z
1264 Return the hyperbolic sine of @var{z}.
1265 @end deffn
1266
1267 @c begin (texi-doc-string "guile" "cosh")
1268 @deffn {Scheme Procedure} cosh z
1269 Return the hyperbolic cosine of @var{z}.
1270 @end deffn
1271
1272 @c begin (texi-doc-string "guile" "tanh")
1273 @deffn {Scheme Procedure} tanh z
1274 Return the hyperbolic tangent of @var{z}.
1275 @end deffn
1276
1277 @c begin (texi-doc-string "guile" "asinh")
1278 @deffn {Scheme Procedure} asinh z
1279 Return the hyperbolic arcsine of @var{z}.
1280 @end deffn
1281
1282 @c begin (texi-doc-string "guile" "acosh")
1283 @deffn {Scheme Procedure} acosh z
1284 Return the hyperbolic arccosine of @var{z}.
1285 @end deffn
1286
1287 @c begin (texi-doc-string "guile" "atanh")
1288 @deffn {Scheme Procedure} atanh z
1289 Return the hyperbolic arctangent of @var{z}.
1290 @end deffn
1291
1292
1293 @node Primitive Numerics
1294 @subsubsection Primitive Numeric Functions
1295
1296 Many of Guile's numeric procedures which accept any kind of numbers as
1297 arguments, including complex numbers, are implemented as Scheme
1298 procedures that use the following real number-based primitives. These
1299 primitives signal an error if they are called with complex arguments.
1300
1301 @c begin (texi-doc-string "guile" "$abs")
1302 @deffn {Scheme Procedure} $abs x
1303 Return the absolute value of @var{x}.
1304 @end deffn
1305
1306 @c begin (texi-doc-string "guile" "$sqrt")
1307 @deffn {Scheme Procedure} $sqrt x
1308 Return the square root of @var{x}.
1309 @end deffn
1310
1311 @deffn {Scheme Procedure} $expt x y
1312 @deffnx {C Function} scm_sys_expt (x, y)
1313 Return @var{x} raised to the power of @var{y}. This
1314 procedure does not accept complex arguments.
1315 @end deffn
1316
1317 @c begin (texi-doc-string "guile" "$sin")
1318 @deffn {Scheme Procedure} $sin x
1319 Return the sine of @var{x}.
1320 @end deffn
1321
1322 @c begin (texi-doc-string "guile" "$cos")
1323 @deffn {Scheme Procedure} $cos x
1324 Return the cosine of @var{x}.
1325 @end deffn
1326
1327 @c begin (texi-doc-string "guile" "$tan")
1328 @deffn {Scheme Procedure} $tan x
1329 Return the tangent of @var{x}.
1330 @end deffn
1331
1332 @c begin (texi-doc-string "guile" "$asin")
1333 @deffn {Scheme Procedure} $asin x
1334 Return the arcsine of @var{x}.
1335 @end deffn
1336
1337 @c begin (texi-doc-string "guile" "$acos")
1338 @deffn {Scheme Procedure} $acos x
1339 Return the arccosine of @var{x}.
1340 @end deffn
1341
1342 @c begin (texi-doc-string "guile" "$atan")
1343 @deffn {Scheme Procedure} $atan x
1344 Return the arctangent of @var{x} in the range @minus{}@math{PI/2} to
1345 @math{PI/2}.
1346 @end deffn
1347
1348 @deffn {Scheme Procedure} $atan2 x y
1349 @deffnx {C Function} scm_sys_atan2 (x, y)
1350 Return the arc tangent of the two arguments @var{x} and
1351 @var{y}. This is similar to calculating the arc tangent of
1352 @var{x} / @var{y}, except that the signs of both arguments
1353 are used to determine the quadrant of the result. This
1354 procedure does not accept complex arguments.
1355 @end deffn
1356
1357 @c begin (texi-doc-string "guile" "$exp")
1358 @deffn {Scheme Procedure} $exp x
1359 Return e to the power of @var{x}, where e is the base of natural
1360 logarithms (2.71828@dots{}).
1361 @end deffn
1362
1363 @c begin (texi-doc-string "guile" "$log")
1364 @deffn {Scheme Procedure} $log x
1365 Return the natural logarithm of @var{x}.
1366 @end deffn
1367
1368 @c begin (texi-doc-string "guile" "$sinh")
1369 @deffn {Scheme Procedure} $sinh x
1370 Return the hyperbolic sine of @var{x}.
1371 @end deffn
1372
1373 @c begin (texi-doc-string "guile" "$cosh")
1374 @deffn {Scheme Procedure} $cosh x
1375 Return the hyperbolic cosine of @var{x}.
1376 @end deffn
1377
1378 @c begin (texi-doc-string "guile" "$tanh")
1379 @deffn {Scheme Procedure} $tanh x
1380 Return the hyperbolic tangent of @var{x}.
1381 @end deffn
1382
1383 @c begin (texi-doc-string "guile" "$asinh")
1384 @deffn {Scheme Procedure} $asinh x
1385 Return the hyperbolic arcsine of @var{x}.
1386 @end deffn
1387
1388 @c begin (texi-doc-string "guile" "$acosh")
1389 @deffn {Scheme Procedure} $acosh x
1390 Return the hyperbolic arccosine of @var{x}.
1391 @end deffn
1392
1393 @c begin (texi-doc-string "guile" "$atanh")
1394 @deffn {Scheme Procedure} $atanh x
1395 Return the hyperbolic arctangent of @var{x}.
1396 @end deffn
1397
1398 C functions for the above are provided by the standard mathematics
1399 library. Naturally these expect and return @code{double} arguments
1400 (@pxref{Mathematics,,, libc, GNU C Library Reference Manual}).
1401
1402 @multitable {xx} {Scheme Procedure} {C Function}
1403 @item @tab Scheme Procedure @tab C Function
1404
1405 @item @tab @code{$abs} @tab @code{fabs}
1406 @item @tab @code{$sqrt} @tab @code{sqrt}
1407 @item @tab @code{$sin} @tab @code{sin}
1408 @item @tab @code{$cos} @tab @code{cos}
1409 @item @tab @code{$tan} @tab @code{tan}
1410 @item @tab @code{$asin} @tab @code{asin}
1411 @item @tab @code{$acos} @tab @code{acos}
1412 @item @tab @code{$atan} @tab @code{atan}
1413 @item @tab @code{$atan2} @tab @code{atan2}
1414 @item @tab @code{$exp} @tab @code{exp}
1415 @item @tab @code{$expt} @tab @code{pow}
1416 @item @tab @code{$log} @tab @code{log}
1417 @item @tab @code{$sinh} @tab @code{sinh}
1418 @item @tab @code{$cosh} @tab @code{cosh}
1419 @item @tab @code{$tanh} @tab @code{tanh}
1420 @item @tab @code{$asinh} @tab @code{asinh}
1421 @item @tab @code{$acosh} @tab @code{acosh}
1422 @item @tab @code{$atanh} @tab @code{atanh}
1423 @end multitable
1424
1425 @code{asinh}, @code{acosh} and @code{atanh} are C99 standard but might
1426 not be available on older systems. Guile provides the following
1427 equivalents (on all systems).
1428
1429 @deftypefn {C Function} double scm_asinh (double x)
1430 @deftypefnx {C Function} double scm_acosh (double x)
1431 @deftypefnx {C Function} double scm_atanh (double x)
1432 Return the hyperbolic arcsine, arccosine or arctangent of @var{x}
1433 respectively.
1434 @end deftypefn
1435
1436
1437 @node Bitwise Operations
1438 @subsubsection Bitwise Operations
1439
1440 For the following bitwise functions, negative numbers are treated as
1441 infinite precision twos-complements. For instance @math{-6} is bits
1442 @math{@dots{}111010}, with infinitely many ones on the left. It can
1443 be seen that adding 6 (binary 110) to such a bit pattern gives all
1444 zeros.
1445
1446 @deffn {Scheme Procedure} logand n1 n2 @dots{}
1447 @deffnx {C Function} scm_logand (n1, n2)
1448 Return the bitwise @sc{and} of the integer arguments.
1449
1450 @lisp
1451 (logand) @result{} -1
1452 (logand 7) @result{} 7
1453 (logand #b111 #b011 #b001) @result{} 1
1454 @end lisp
1455 @end deffn
1456
1457 @deffn {Scheme Procedure} logior n1 n2 @dots{}
1458 @deffnx {C Function} scm_logior (n1, n2)
1459 Return the bitwise @sc{or} of the integer arguments.
1460
1461 @lisp
1462 (logior) @result{} 0
1463 (logior 7) @result{} 7
1464 (logior #b000 #b001 #b011) @result{} 3
1465 @end lisp
1466 @end deffn
1467
1468 @deffn {Scheme Procedure} logxor n1 n2 @dots{}
1469 @deffnx {C Function} scm_loxor (n1, n2)
1470 Return the bitwise @sc{xor} of the integer arguments. A bit is
1471 set in the result if it is set in an odd number of arguments.
1472
1473 @lisp
1474 (logxor) @result{} 0
1475 (logxor 7) @result{} 7
1476 (logxor #b000 #b001 #b011) @result{} 2
1477 (logxor #b000 #b001 #b011 #b011) @result{} 1
1478 @end lisp
1479 @end deffn
1480
1481 @deffn {Scheme Procedure} lognot n
1482 @deffnx {C Function} scm_lognot (n)
1483 Return the integer which is the ones-complement of the integer
1484 argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1485
1486 @lisp
1487 (number->string (lognot #b10000000) 2)
1488 @result{} "-10000001"
1489 (number->string (lognot #b0) 2)
1490 @result{} "-1"
1491 @end lisp
1492 @end deffn
1493
1494 @deffn {Scheme Procedure} logtest j k
1495 @deffnx {C Function} scm_logtest (j, k)
1496 @lisp
1497 (logtest j k) @equiv{} (not (zero? (logand j k)))
1498
1499 (logtest #b0100 #b1011) @result{} #f
1500 (logtest #b0100 #b0111) @result{} #t
1501 @end lisp
1502 @end deffn
1503
1504 @deffn {Scheme Procedure} logbit? index j
1505 @deffnx {C Function} scm_logbit_p (index, j)
1506 @lisp
1507 (logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)
1508
1509 (logbit? 0 #b1101) @result{} #t
1510 (logbit? 1 #b1101) @result{} #f
1511 (logbit? 2 #b1101) @result{} #t
1512 (logbit? 3 #b1101) @result{} #t
1513 (logbit? 4 #b1101) @result{} #f
1514 @end lisp
1515 @end deffn
1516
1517 @deffn {Scheme Procedure} ash n cnt
1518 @deffnx {C Function} scm_ash (n, cnt)
1519 Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1520 @var{cnt} is negative. This is an ``arithmetic'' shift.
1521
1522 This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1523 when @var{cnt} is negative it's a division, rounded towards negative
1524 infinity. (Note that this is not the same rounding as @code{quotient}
1525 does.)
1526
1527 With @var{n} viewed as an infinite precision twos complement,
1528 @code{ash} means a left shift introducing zero bits, or a right shift
1529 dropping bits.
1530
1531 @lisp
1532 (number->string (ash #b1 3) 2) @result{} "1000"
1533 (number->string (ash #b1010 -1) 2) @result{} "101"
1534
1535 ;; -23 is bits ...11101001, -6 is bits ...111010
1536 (ash -23 -2) @result{} -6
1537 @end lisp
1538 @end deffn
1539
1540 @deffn {Scheme Procedure} logcount n
1541 @deffnx {C Function} scm_logcount (n)
1542 Return the number of bits in integer @var{n}. If integer is
1543 positive, the 1-bits in its binary representation are counted.
1544 If negative, the 0-bits in its two's-complement binary
1545 representation are counted. If 0, 0 is returned.
1546
1547 @lisp
1548 (logcount #b10101010)
1549 @result{} 4
1550 (logcount 0)
1551 @result{} 0
1552 (logcount -2)
1553 @result{} 1
1554 @end lisp
1555 @end deffn
1556
1557 @deffn {Scheme Procedure} integer-length n
1558 @deffnx {C Function} scm_integer_length (n)
1559 Return the number of bits necessary to represent @var{n}.
1560
1561 For positive @var{n} this is how many bits to the most significant one
1562 bit. For negative @var{n} it's how many bits to the most significant
1563 zero bit in twos complement form.
1564
1565 @lisp
1566 (integer-length #b10101010) @result{} 8
1567 (integer-length #b1111) @result{} 4
1568 (integer-length 0) @result{} 0
1569 (integer-length -1) @result{} 0
1570 (integer-length -256) @result{} 8
1571 (integer-length -257) @result{} 9
1572 @end lisp
1573 @end deffn
1574
1575 @deffn {Scheme Procedure} integer-expt n k
1576 @deffnx {C Function} scm_integer_expt (n, k)
1577 Return @var{n} raised to the exact integer exponent
1578 @var{k}.
1579
1580 @lisp
1581 (integer-expt 2 5)
1582 @result{} 32
1583 (integer-expt -3 3)
1584 @result{} -27
1585 @end lisp
1586 @end deffn
1587
1588 @deffn {Scheme Procedure} bit-extract n start end
1589 @deffnx {C Function} scm_bit_extract (n, start, end)
1590 Return the integer composed of the @var{start} (inclusive)
1591 through @var{end} (exclusive) bits of @var{n}. The
1592 @var{start}th bit becomes the 0-th bit in the result.
1593
1594 @lisp
1595 (number->string (bit-extract #b1101101010 0 4) 2)
1596 @result{} "1010"
1597 (number->string (bit-extract #b1101101010 4 9) 2)
1598 @result{} "10110"
1599 @end lisp
1600 @end deffn
1601
1602
1603 @node Random
1604 @subsubsection Random Number Generation
1605
1606 Pseudo-random numbers are generated from a random state object, which
1607 can be created with @code{seed->random-state}. The @var{state}
1608 parameter to the various functions below is optional, it defaults to
1609 the state object in the @code{*random-state*} variable.
1610
1611 @deffn {Scheme Procedure} copy-random-state [state]
1612 @deffnx {C Function} scm_copy_random_state (state)
1613 Return a copy of the random state @var{state}.
1614 @end deffn
1615
1616 @deffn {Scheme Procedure} random n [state]
1617 @deffnx {C Function} scm_random (n, state)
1618 Return a number in [0, @var{n}).
1619
1620 Accepts a positive integer or real n and returns a
1621 number of the same type between zero (inclusive) and
1622 @var{n} (exclusive). The values returned have a uniform
1623 distribution.
1624 @end deffn
1625
1626 @deffn {Scheme Procedure} random:exp [state]
1627 @deffnx {C Function} scm_random_exp (state)
1628 Return an inexact real in an exponential distribution with mean
1629 1. For an exponential distribution with mean @var{u} use @code{(*
1630 @var{u} (random:exp))}.
1631 @end deffn
1632
1633 @deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1634 @deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1635 Fills @var{vect} with inexact real random numbers the sum of whose
1636 squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1637 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1638 the coordinates are uniformly distributed over the surface of the unit
1639 n-sphere.
1640 @end deffn
1641
1642 @deffn {Scheme Procedure} random:normal [state]
1643 @deffnx {C Function} scm_random_normal (state)
1644 Return an inexact real in a normal distribution. The distribution
1645 used has mean 0 and standard deviation 1. For a normal distribution
1646 with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1647 (* @var{d} (random:normal)))}.
1648 @end deffn
1649
1650 @deffn {Scheme Procedure} random:normal-vector! vect [state]
1651 @deffnx {C Function} scm_random_normal_vector_x (vect, state)
1652 Fills @var{vect} with inexact real random numbers that are
1653 independent and standard normally distributed
1654 (i.e., with mean 0 and variance 1).
1655 @end deffn
1656
1657 @deffn {Scheme Procedure} random:solid-sphere! vect [state]
1658 @deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1659 Fills @var{vect} with inexact real random numbers the sum of whose
1660 squares is less than 1.0. Thinking of @var{vect} as coordinates in
1661 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1662 the coordinates are uniformly distributed within the unit
1663 @var{n}-sphere. The sum of the squares of the numbers is returned.
1664 @c FIXME: What does this mean, particularly the n-sphere part?
1665 @end deffn
1666
1667 @deffn {Scheme Procedure} random:uniform [state]
1668 @deffnx {C Function} scm_random_uniform (state)
1669 Return a uniformly distributed inexact real random number in
1670 [0,1).
1671 @end deffn
1672
1673 @deffn {Scheme Procedure} seed->random-state seed
1674 @deffnx {C Function} scm_seed_to_random_state (seed)
1675 Return a new random state using @var{seed}.
1676 @end deffn
1677
1678 @defvar *random-state*
1679 The global random state used by the above functions when the
1680 @var{state} parameter is not given.
1681 @end defvar
1682
1683
1684 @node Characters
1685 @subsection Characters
1686 @tpindex Characters
1687
1688 In Scheme, a character literal is written as @code{#\@var{name}} where
1689 @var{name} is the name of the character that you want. Printable
1690 characters have their usual single character name; for example,
1691 @code{#\a} is a lower case @code{a}.
1692
1693 Most of the ``control characters'' (those below codepoint 32) in the
1694 @acronym{ASCII} character set, as well as the space, may be referred
1695 to by longer names: for example, @code{#\tab}, @code{#\esc},
1696 @code{#\stx}, and so on. The following table describes the
1697 @acronym{ASCII} names for each character.
1698
1699 @multitable @columnfractions .25 .25 .25 .25
1700 @item 0 = @code{#\nul}
1701 @tab 1 = @code{#\soh}
1702 @tab 2 = @code{#\stx}
1703 @tab 3 = @code{#\etx}
1704 @item 4 = @code{#\eot}
1705 @tab 5 = @code{#\enq}
1706 @tab 6 = @code{#\ack}
1707 @tab 7 = @code{#\bel}
1708 @item 8 = @code{#\bs}
1709 @tab 9 = @code{#\ht}
1710 @tab 10 = @code{#\nl}
1711 @tab 11 = @code{#\vt}
1712 @item 12 = @code{#\np}
1713 @tab 13 = @code{#\cr}
1714 @tab 14 = @code{#\so}
1715 @tab 15 = @code{#\si}
1716 @item 16 = @code{#\dle}
1717 @tab 17 = @code{#\dc1}
1718 @tab 18 = @code{#\dc2}
1719 @tab 19 = @code{#\dc3}
1720 @item 20 = @code{#\dc4}
1721 @tab 21 = @code{#\nak}
1722 @tab 22 = @code{#\syn}
1723 @tab 23 = @code{#\etb}
1724 @item 24 = @code{#\can}
1725 @tab 25 = @code{#\em}
1726 @tab 26 = @code{#\sub}
1727 @tab 27 = @code{#\esc}
1728 @item 28 = @code{#\fs}
1729 @tab 29 = @code{#\gs}
1730 @tab 30 = @code{#\rs}
1731 @tab 31 = @code{#\us}
1732 @item 32 = @code{#\sp}
1733 @end multitable
1734
1735 The ``delete'' character (octal 177) may be referred to with the name
1736 @code{#\del}.
1737
1738 Several characters have more than one name:
1739
1740 @multitable {@code{#\backspace}} {Original}
1741 @item Alias @tab Original
1742 @item @code{#\space} @tab @code{#\sp}
1743 @item @code{#\newline} @tab @code{#\nl}
1744 @item @code{#\tab} @tab @code{#\ht}
1745 @item @code{#\backspace} @tab @code{#\bs}
1746 @item @code{#\return} @tab @code{#\cr}
1747 @item @code{#\page} @tab @code{#\np}
1748 @item @code{#\null} @tab @code{#\nul}
1749 @end multitable
1750
1751 @rnindex char?
1752 @deffn {Scheme Procedure} char? x
1753 @deffnx {C Function} scm_char_p (x)
1754 Return @code{#t} iff @var{x} is a character, else @code{#f}.
1755 @end deffn
1756
1757 @rnindex char=?
1758 @deffn {Scheme Procedure} char=? x y
1759 Return @code{#t} iff @var{x} is the same character as @var{y}, else @code{#f}.
1760 @end deffn
1761
1762 @rnindex char<?
1763 @deffn {Scheme Procedure} char<? x y
1764 Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence,
1765 else @code{#f}.
1766 @end deffn
1767
1768 @rnindex char<=?
1769 @deffn {Scheme Procedure} char<=? x y
1770 Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1771 @acronym{ASCII} sequence, else @code{#f}.
1772 @end deffn
1773
1774 @rnindex char>?
1775 @deffn {Scheme Procedure} char>? x y
1776 Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1777 sequence, else @code{#f}.
1778 @end deffn
1779
1780 @rnindex char>=?
1781 @deffn {Scheme Procedure} char>=? x y
1782 Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1783 @acronym{ASCII} sequence, else @code{#f}.
1784 @end deffn
1785
1786 @rnindex char-ci=?
1787 @deffn {Scheme Procedure} char-ci=? x y
1788 Return @code{#t} iff @var{x} is the same character as @var{y} ignoring
1789 case, else @code{#f}.
1790 @end deffn
1791
1792 @rnindex char-ci<?
1793 @deffn {Scheme Procedure} char-ci<? x y
1794 Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence
1795 ignoring case, else @code{#f}.
1796 @end deffn
1797
1798 @rnindex char-ci<=?
1799 @deffn {Scheme Procedure} char-ci<=? x y
1800 Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1801 @acronym{ASCII} sequence ignoring case, else @code{#f}.
1802 @end deffn
1803
1804 @rnindex char-ci>?
1805 @deffn {Scheme Procedure} char-ci>? x y
1806 Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1807 sequence ignoring case, else @code{#f}.
1808 @end deffn
1809
1810 @rnindex char-ci>=?
1811 @deffn {Scheme Procedure} char-ci>=? x y
1812 Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1813 @acronym{ASCII} sequence ignoring case, else @code{#f}.
1814 @end deffn
1815
1816 @rnindex char-alphabetic?
1817 @deffn {Scheme Procedure} char-alphabetic? chr
1818 @deffnx {C Function} scm_char_alphabetic_p (chr)
1819 Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
1820 @end deffn
1821
1822 @rnindex char-numeric?
1823 @deffn {Scheme Procedure} char-numeric? chr
1824 @deffnx {C Function} scm_char_numeric_p (chr)
1825 Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
1826 @end deffn
1827
1828 @rnindex char-whitespace?
1829 @deffn {Scheme Procedure} char-whitespace? chr
1830 @deffnx {C Function} scm_char_whitespace_p (chr)
1831 Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
1832 @end deffn
1833
1834 @rnindex char-upper-case?
1835 @deffn {Scheme Procedure} char-upper-case? chr
1836 @deffnx {C Function} scm_char_upper_case_p (chr)
1837 Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
1838 @end deffn
1839
1840 @rnindex char-lower-case?
1841 @deffn {Scheme Procedure} char-lower-case? chr
1842 @deffnx {C Function} scm_char_lower_case_p (chr)
1843 Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
1844 @end deffn
1845
1846 @deffn {Scheme Procedure} char-is-both? chr
1847 @deffnx {C Function} scm_char_is_both_p (chr)
1848 Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
1849 @code{#f}.
1850 @end deffn
1851
1852 @rnindex char->integer
1853 @deffn {Scheme Procedure} char->integer chr
1854 @deffnx {C Function} scm_char_to_integer (chr)
1855 Return the number corresponding to ordinal position of @var{chr} in the
1856 @acronym{ASCII} sequence.
1857 @end deffn
1858
1859 @rnindex integer->char
1860 @deffn {Scheme Procedure} integer->char n
1861 @deffnx {C Function} scm_integer_to_char (n)
1862 Return the character at position @var{n} in the @acronym{ASCII} sequence.
1863 @end deffn
1864
1865 @rnindex char-upcase
1866 @deffn {Scheme Procedure} char-upcase chr
1867 @deffnx {C Function} scm_char_upcase (chr)
1868 Return the uppercase character version of @var{chr}.
1869 @end deffn
1870
1871 @rnindex char-downcase
1872 @deffn {Scheme Procedure} char-downcase chr
1873 @deffnx {C Function} scm_char_downcase (chr)
1874 Return the lowercase character version of @var{chr}.
1875 @end deffn
1876
1877 @node Character Sets
1878 @subsection Character Sets
1879
1880 The features described in this section correspond directly to SRFI-14.
1881
1882 The data type @dfn{charset} implements sets of characters
1883 (@pxref{Characters}). Because the internal representation of
1884 character sets is not visible to the user, a lot of procedures for
1885 handling them are provided.
1886
1887 Character sets can be created, extended, tested for the membership of a
1888 characters and be compared to other character sets.
1889
1890 The Guile implementation of character sets currently deals only with
1891 8-bit characters. In the future, when Guile gets support for
1892 international character sets, this will change, but the functions
1893 provided here will always then be able to efficiently cope with very
1894 large character sets.
1895
1896 @menu
1897 * Character Set Predicates/Comparison::
1898 * Iterating Over Character Sets:: Enumerate charset elements.
1899 * Creating Character Sets:: Making new charsets.
1900 * Querying Character Sets:: Test charsets for membership etc.
1901 * Character-Set Algebra:: Calculating new charsets.
1902 * Standard Character Sets:: Variables containing predefined charsets.
1903 @end menu
1904
1905 @node Character Set Predicates/Comparison
1906 @subsubsection Character Set Predicates/Comparison
1907
1908 Use these procedures for testing whether an object is a character set,
1909 or whether several character sets are equal or subsets of each other.
1910 @code{char-set-hash} can be used for calculating a hash value, maybe for
1911 usage in fast lookup procedures.
1912
1913 @deffn {Scheme Procedure} char-set? obj
1914 @deffnx {C Function} scm_char_set_p (obj)
1915 Return @code{#t} if @var{obj} is a character set, @code{#f}
1916 otherwise.
1917 @end deffn
1918
1919 @deffn {Scheme Procedure} char-set= . char_sets
1920 @deffnx {C Function} scm_char_set_eq (char_sets)
1921 Return @code{#t} if all given character sets are equal.
1922 @end deffn
1923
1924 @deffn {Scheme Procedure} char-set<= . char_sets
1925 @deffnx {C Function} scm_char_set_leq (char_sets)
1926 Return @code{#t} if every character set @var{cs}i is a subset
1927 of character set @var{cs}i+1.
1928 @end deffn
1929
1930 @deffn {Scheme Procedure} char-set-hash cs [bound]
1931 @deffnx {C Function} scm_char_set_hash (cs, bound)
1932 Compute a hash value for the character set @var{cs}. If
1933 @var{bound} is given and non-zero, it restricts the
1934 returned value to the range 0 @dots{} @var{bound - 1}.
1935 @end deffn
1936
1937 @c ===================================================================
1938
1939 @node Iterating Over Character Sets
1940 @subsubsection Iterating Over Character Sets
1941
1942 Character set cursors are a means for iterating over the members of a
1943 character sets. After creating a character set cursor with
1944 @code{char-set-cursor}, a cursor can be dereferenced with
1945 @code{char-set-ref}, advanced to the next member with
1946 @code{char-set-cursor-next}. Whether a cursor has passed past the last
1947 element of the set can be checked with @code{end-of-char-set?}.
1948
1949 Additionally, mapping and (un-)folding procedures for character sets are
1950 provided.
1951
1952 @deffn {Scheme Procedure} char-set-cursor cs
1953 @deffnx {C Function} scm_char_set_cursor (cs)
1954 Return a cursor into the character set @var{cs}.
1955 @end deffn
1956
1957 @deffn {Scheme Procedure} char-set-ref cs cursor
1958 @deffnx {C Function} scm_char_set_ref (cs, cursor)
1959 Return the character at the current cursor position
1960 @var{cursor} in the character set @var{cs}. It is an error to
1961 pass a cursor for which @code{end-of-char-set?} returns true.
1962 @end deffn
1963
1964 @deffn {Scheme Procedure} char-set-cursor-next cs cursor
1965 @deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
1966 Advance the character set cursor @var{cursor} to the next
1967 character in the character set @var{cs}. It is an error if the
1968 cursor given satisfies @code{end-of-char-set?}.
1969 @end deffn
1970
1971 @deffn {Scheme Procedure} end-of-char-set? cursor
1972 @deffnx {C Function} scm_end_of_char_set_p (cursor)
1973 Return @code{#t} if @var{cursor} has reached the end of a
1974 character set, @code{#f} otherwise.
1975 @end deffn
1976
1977 @deffn {Scheme Procedure} char-set-fold kons knil cs
1978 @deffnx {C Function} scm_char_set_fold (kons, knil, cs)
1979 Fold the procedure @var{kons} over the character set @var{cs},
1980 initializing it with @var{knil}.
1981 @end deffn
1982
1983 @deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
1984 @deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
1985 This is a fundamental constructor for character sets.
1986 @itemize @bullet
1987 @item @var{g} is used to generate a series of ``seed'' values
1988 from the initial seed: @var{seed}, (@var{g} @var{seed}),
1989 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
1990 @item @var{p} tells us when to stop -- when it returns true
1991 when applied to one of the seed values.
1992 @item @var{f} maps each seed value to a character. These
1993 characters are added to the base character set @var{base_cs} to
1994 form the result; @var{base_cs} defaults to the empty set.
1995 @end itemize
1996 @end deffn
1997
1998 @deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
1999 @deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2000 This is a fundamental constructor for character sets.
2001 @itemize @bullet
2002 @item @var{g} is used to generate a series of ``seed'' values
2003 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2004 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2005 @item @var{p} tells us when to stop -- when it returns true
2006 when applied to one of the seed values.
2007 @item @var{f} maps each seed value to a character. These
2008 characters are added to the base character set @var{base_cs} to
2009 form the result; @var{base_cs} defaults to the empty set.
2010 @end itemize
2011 @end deffn
2012
2013 @deffn {Scheme Procedure} char-set-for-each proc cs
2014 @deffnx {C Function} scm_char_set_for_each (proc, cs)
2015 Apply @var{proc} to every character in the character set
2016 @var{cs}. The return value is not specified.
2017 @end deffn
2018
2019 @deffn {Scheme Procedure} char-set-map proc cs
2020 @deffnx {C Function} scm_char_set_map (proc, cs)
2021 Map the procedure @var{proc} over every character in @var{cs}.
2022 @var{proc} must be a character -> character procedure.
2023 @end deffn
2024
2025 @c ===================================================================
2026
2027 @node Creating Character Sets
2028 @subsubsection Creating Character Sets
2029
2030 New character sets are produced with these procedures.
2031
2032 @deffn {Scheme Procedure} char-set-copy cs
2033 @deffnx {C Function} scm_char_set_copy (cs)
2034 Return a newly allocated character set containing all
2035 characters in @var{cs}.
2036 @end deffn
2037
2038 @deffn {Scheme Procedure} char-set . rest
2039 @deffnx {C Function} scm_char_set (rest)
2040 Return a character set containing all given characters.
2041 @end deffn
2042
2043 @deffn {Scheme Procedure} list->char-set list [base_cs]
2044 @deffnx {C Function} scm_list_to_char_set (list, base_cs)
2045 Convert the character list @var{list} to a character set. If
2046 the character set @var{base_cs} is given, the character in this
2047 set are also included in the result.
2048 @end deffn
2049
2050 @deffn {Scheme Procedure} list->char-set! list base_cs
2051 @deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2052 Convert the character list @var{list} to a character set. The
2053 characters are added to @var{base_cs} and @var{base_cs} is
2054 returned.
2055 @end deffn
2056
2057 @deffn {Scheme Procedure} string->char-set str [base_cs]
2058 @deffnx {C Function} scm_string_to_char_set (str, base_cs)
2059 Convert the string @var{str} to a character set. If the
2060 character set @var{base_cs} is given, the characters in this
2061 set are also included in the result.
2062 @end deffn
2063
2064 @deffn {Scheme Procedure} string->char-set! str base_cs
2065 @deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2066 Convert the string @var{str} to a character set. The
2067 characters from the string are added to @var{base_cs}, and
2068 @var{base_cs} is returned.
2069 @end deffn
2070
2071 @deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2072 @deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2073 Return a character set containing every character from @var{cs}
2074 so that it satisfies @var{pred}. If provided, the characters
2075 from @var{base_cs} are added to the result.
2076 @end deffn
2077
2078 @deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2079 @deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2080 Return a character set containing every character from @var{cs}
2081 so that it satisfies @var{pred}. The characters are added to
2082 @var{base_cs} and @var{base_cs} is returned.
2083 @end deffn
2084
2085 @deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2086 @deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2087 Return a character set containing all characters whose
2088 character codes lie in the half-open range
2089 [@var{lower},@var{upper}).
2090
2091 If @var{error} is a true value, an error is signalled if the
2092 specified range contains characters which are not contained in
2093 the implemented character range. If @var{error} is @code{#f},
2094 these characters are silently left out of the resultung
2095 character set.
2096
2097 The characters in @var{base_cs} are added to the result, if
2098 given.
2099 @end deffn
2100
2101 @deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2102 @deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2103 Return a character set containing all characters whose
2104 character codes lie in the half-open range
2105 [@var{lower},@var{upper}).
2106
2107 If @var{error} is a true value, an error is signalled if the
2108 specified range contains characters which are not contained in
2109 the implemented character range. If @var{error} is @code{#f},
2110 these characters are silently left out of the resultung
2111 character set.
2112
2113 The characters are added to @var{base_cs} and @var{base_cs} is
2114 returned.
2115 @end deffn
2116
2117 @deffn {Scheme Procedure} ->char-set x
2118 @deffnx {C Function} scm_to_char_set (x)
2119 Coerces x into a char-set. @var{x} may be a string, character or char-set. A string is converted to the set of its constituent characters; a character is converted to a singleton set; a char-set is returned as-is.
2120 @end deffn
2121
2122 @c ===================================================================
2123
2124 @node Querying Character Sets
2125 @subsubsection Querying Character Sets
2126
2127 Access the elements and other information of a character set with these
2128 procedures.
2129
2130 @deffn {Scheme Procedure} char-set-size cs
2131 @deffnx {C Function} scm_char_set_size (cs)
2132 Return the number of elements in character set @var{cs}.
2133 @end deffn
2134
2135 @deffn {Scheme Procedure} char-set-count pred cs
2136 @deffnx {C Function} scm_char_set_count (pred, cs)
2137 Return the number of the elements int the character set
2138 @var{cs} which satisfy the predicate @var{pred}.
2139 @end deffn
2140
2141 @deffn {Scheme Procedure} char-set->list cs
2142 @deffnx {C Function} scm_char_set_to_list (cs)
2143 Return a list containing the elements of the character set
2144 @var{cs}.
2145 @end deffn
2146
2147 @deffn {Scheme Procedure} char-set->string cs
2148 @deffnx {C Function} scm_char_set_to_string (cs)
2149 Return a string containing the elements of the character set
2150 @var{cs}. The order in which the characters are placed in the
2151 string is not defined.
2152 @end deffn
2153
2154 @deffn {Scheme Procedure} char-set-contains? cs ch
2155 @deffnx {C Function} scm_char_set_contains_p (cs, ch)
2156 Return @code{#t} iff the character @var{ch} is contained in the
2157 character set @var{cs}.
2158 @end deffn
2159
2160 @deffn {Scheme Procedure} char-set-every pred cs
2161 @deffnx {C Function} scm_char_set_every (pred, cs)
2162 Return a true value if every character in the character set
2163 @var{cs} satisfies the predicate @var{pred}.
2164 @end deffn
2165
2166 @deffn {Scheme Procedure} char-set-any pred cs
2167 @deffnx {C Function} scm_char_set_any (pred, cs)
2168 Return a true value if any character in the character set
2169 @var{cs} satisfies the predicate @var{pred}.
2170 @end deffn
2171
2172 @c ===================================================================
2173
2174 @node Character-Set Algebra
2175 @subsubsection Character-Set Algebra
2176
2177 Character sets can be manipulated with the common set algebra operation,
2178 such as union, complement, intersection etc. All of these procedures
2179 provide side-effecting variants, which modify their character set
2180 argument(s).
2181
2182 @deffn {Scheme Procedure} char-set-adjoin cs . rest
2183 @deffnx {C Function} scm_char_set_adjoin (cs, rest)
2184 Add all character arguments to the first argument, which must
2185 be a character set.
2186 @end deffn
2187
2188 @deffn {Scheme Procedure} char-set-delete cs . rest
2189 @deffnx {C Function} scm_char_set_delete (cs, rest)
2190 Delete all character arguments from the first argument, which
2191 must be a character set.
2192 @end deffn
2193
2194 @deffn {Scheme Procedure} char-set-adjoin! cs . rest
2195 @deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
2196 Add all character arguments to the first argument, which must
2197 be a character set.
2198 @end deffn
2199
2200 @deffn {Scheme Procedure} char-set-delete! cs . rest
2201 @deffnx {C Function} scm_char_set_delete_x (cs, rest)
2202 Delete all character arguments from the first argument, which
2203 must be a character set.
2204 @end deffn
2205
2206 @deffn {Scheme Procedure} char-set-complement cs
2207 @deffnx {C Function} scm_char_set_complement (cs)
2208 Return the complement of the character set @var{cs}.
2209 @end deffn
2210
2211 @deffn {Scheme Procedure} char-set-union . rest
2212 @deffnx {C Function} scm_char_set_union (rest)
2213 Return the union of all argument character sets.
2214 @end deffn
2215
2216 @deffn {Scheme Procedure} char-set-intersection . rest
2217 @deffnx {C Function} scm_char_set_intersection (rest)
2218 Return the intersection of all argument character sets.
2219 @end deffn
2220
2221 @deffn {Scheme Procedure} char-set-difference cs1 . rest
2222 @deffnx {C Function} scm_char_set_difference (cs1, rest)
2223 Return the difference of all argument character sets.
2224 @end deffn
2225
2226 @deffn {Scheme Procedure} char-set-xor . rest
2227 @deffnx {C Function} scm_char_set_xor (rest)
2228 Return the exclusive-or of all argument character sets.
2229 @end deffn
2230
2231 @deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
2232 @deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
2233 Return the difference and the intersection of all argument
2234 character sets.
2235 @end deffn
2236
2237 @deffn {Scheme Procedure} char-set-complement! cs
2238 @deffnx {C Function} scm_char_set_complement_x (cs)
2239 Return the complement of the character set @var{cs}.
2240 @end deffn
2241
2242 @deffn {Scheme Procedure} char-set-union! cs1 . rest
2243 @deffnx {C Function} scm_char_set_union_x (cs1, rest)
2244 Return the union of all argument character sets.
2245 @end deffn
2246
2247 @deffn {Scheme Procedure} char-set-intersection! cs1 . rest
2248 @deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
2249 Return the intersection of all argument character sets.
2250 @end deffn
2251
2252 @deffn {Scheme Procedure} char-set-difference! cs1 . rest
2253 @deffnx {C Function} scm_char_set_difference_x (cs1, rest)
2254 Return the difference of all argument character sets.
2255 @end deffn
2256
2257 @deffn {Scheme Procedure} char-set-xor! cs1 . rest
2258 @deffnx {C Function} scm_char_set_xor_x (cs1, rest)
2259 Return the exclusive-or of all argument character sets.
2260 @end deffn
2261
2262 @deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
2263 @deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
2264 Return the difference and the intersection of all argument
2265 character sets.
2266 @end deffn
2267
2268 @c ===================================================================
2269
2270 @node Standard Character Sets
2271 @subsubsection Standard Character Sets
2272
2273 In order to make the use of the character set data type and procedures
2274 useful, several predefined character set variables exist.
2275
2276 @defvr {Scheme Variable} char-set:lower-case
2277 @defvrx {C Variable} scm_char_set_lower_case
2278 All lower-case characters.
2279 @end defvr
2280
2281 @defvr {Scheme Variable} char-set:upper-case
2282 @defvrx {C Variable} scm_char_set_upper_case
2283 All upper-case characters.
2284 @end defvr
2285
2286 @defvr {Scheme Variable} char-set:title-case
2287 @defvrx {C Variable} scm_char_set_title_case
2288 This is empty, because ASCII has no titlecase characters.
2289 @end defvr
2290
2291 @defvr {Scheme Variable} char-set:letter
2292 @defvrx {C Variable} scm_char_set_letter
2293 All letters, e.g. the union of @code{char-set:lower-case} and
2294 @code{char-set:upper-case}.
2295 @end defvr
2296
2297 @defvr {Scheme Variable} char-set:digit
2298 @defvrx {C Variable} scm_char_set_digit
2299 All digits.
2300 @end defvr
2301
2302 @defvr {Scheme Variable} char-set:letter+digit
2303 @defvrx {C Variable} scm_char_set_letter_and_digit
2304 The union of @code{char-set:letter} and @code{char-set:digit}.
2305 @end defvr
2306
2307 @defvr {Scheme Variable} char-set:graphic
2308 @defvrx {C Variable} scm_char_set_graphic
2309 All characters which would put ink on the paper.
2310 @end defvr
2311
2312 @defvr {Scheme Variable} char-set:printing
2313 @defvrx {C Variable} scm_char_set_printing
2314 The union of @code{char-set:graphic} and @code{char-set:whitespace}.
2315 @end defvr
2316
2317 @defvr {Scheme Variable} char-set:whitespace
2318 @defvrx {C Variable} scm_char_set_whitespace
2319 All whitespace characters.
2320 @end defvr
2321
2322 @defvr {Scheme Variable} char-set:blank
2323 @defvrx {C Variable} scm_char_set_blank
2324 All horizontal whitespace characters, that is @code{#\space} and
2325 @code{#\tab}.
2326 @end defvr
2327
2328 @defvr {Scheme Variable} char-set:iso-control
2329 @defvrx {C Variable} scm_char_set_iso_control
2330 The ISO control characters with the codes 0--31 and 127.
2331 @end defvr
2332
2333 @defvr {Scheme Variable} char-set:punctuation
2334 @defvrx {C Variable} scm_char_set_punctuation
2335 The characters @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
2336 @end defvr
2337
2338 @defvr {Scheme Variable} char-set:symbol
2339 @defvrx {C Variable} scm_char_set_symbol
2340 The characters @code{$+<=>^`|~}.
2341 @end defvr
2342
2343 @defvr {Scheme Variable} char-set:hex-digit
2344 @defvrx {C Variable} scm_char_set_hex_digit
2345 The hexadecimal digits @code{0123456789abcdefABCDEF}.
2346 @end defvr
2347
2348 @defvr {Scheme Variable} char-set:ascii
2349 @defvrx {C Variable} scm_char_set_ascii
2350 All ASCII characters.
2351 @end defvr
2352
2353 @defvr {Scheme Variable} char-set:empty
2354 @defvrx {C Variable} scm_char_set_empty
2355 The empty character set.
2356 @end defvr
2357
2358 @defvr {Scheme Variable} char-set:full
2359 @defvrx {C Variable} scm_char_set_full
2360 This character set contains all possible characters.
2361 @end defvr
2362
2363 @node Strings
2364 @subsection Strings
2365 @tpindex Strings
2366
2367 Strings are fixed-length sequences of characters. They can be created
2368 by calling constructor procedures, but they can also literally get
2369 entered at the @acronym{REPL} or in Scheme source files.
2370
2371 @c Guile provides a rich set of string processing procedures, because text
2372 @c handling is very important when Guile is used as a scripting language.
2373
2374 Strings always carry the information about how many characters they are
2375 composed of with them, so there is no special end-of-string character,
2376 like in C. That means that Scheme strings can contain any character,
2377 even the @samp{#\nul} character @samp{\0}.
2378
2379 To use strings efficiently, you need to know a bit about how Guile
2380 implements them. In Guile, a string consists of two parts, a head and
2381 the actual memory where the characters are stored. When a string (or
2382 a substring of it) is copied, only a new head gets created, the memory
2383 is usually not copied. The two heads start out pointing to the same
2384 memory.
2385
2386 When one of these two strings is modified, as with @code{string-set!},
2387 their common memory does get copied so that each string has its own
2388 memory and modifying one does not accidently modify the other as well.
2389 Thus, Guile's strings are `copy on write'; the actual copying of their
2390 memory is delayed until one string is written to.
2391
2392 This implementation makes functions like @code{substring} very
2393 efficient in the common case that no modifications are done to the
2394 involved strings.
2395
2396 If you do know that your strings are getting modified right away, you
2397 can use @code{substring/copy} instead of @code{substring}. This
2398 function performs the copy immediately at the time of creation. This
2399 is more efficient, especially in a multi-threaded program. Also,
2400 @code{substring/copy} can avoid the problem that a short substring
2401 holds on to the memory of a very large original string that could
2402 otherwise be recycled.
2403
2404 If you want to avoid the copy altogether, so that modifications of one
2405 string show up in the other, you can use @code{substring/shared}. The
2406 strings created by this procedure are called @dfn{mutation sharing
2407 substrings} since the substring and the original string share
2408 modifications to each other.
2409
2410 If you want to prevent modifications, use @code{substring/read-only}.
2411
2412 Guile provides all procedures of SRFI-13 and a few more.
2413
2414 @menu
2415 * String Syntax:: Read syntax for strings.
2416 * String Predicates:: Testing strings for certain properties.
2417 * String Constructors:: Creating new string objects.
2418 * List/String Conversion:: Converting from/to lists of characters.
2419 * String Selection:: Select portions from strings.
2420 * String Modification:: Modify parts or whole strings.
2421 * String Comparison:: Lexicographic ordering predicates.
2422 * String Searching:: Searching in strings.
2423 * Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2424 * Reversing and Appending Strings:: Appending strings to form a new string.
2425 * Mapping Folding and Unfolding:: Iterating over strings.
2426 * Miscellaneous String Operations:: Replicating, insertion, parsing, ...
2427 * Conversion to/from C::
2428 @end menu
2429
2430 @node String Syntax
2431 @subsubsection String Read Syntax
2432
2433 @c In the following @code is used to get a good font in TeX etc, but
2434 @c is omitted for Info format, so as not to risk any confusion over
2435 @c whether surrounding ` ' quotes are part of the escape or are
2436 @c special in a string (they're not).
2437
2438 The read syntax for strings is an arbitrarily long sequence of
2439 characters enclosed in double quotes (@nicode{"}).
2440
2441 Backslash is an escape character and can be used to insert the
2442 following special characters. @nicode{\"} and @nicode{\\} are R5RS
2443 standard, the rest are Guile extensions, notice they follow C string
2444 syntax.
2445
2446 @table @asis
2447 @item @nicode{\\}
2448 Backslash character.
2449
2450 @item @nicode{\"}
2451 Double quote character (an unescaped @nicode{"} is otherwise the end
2452 of the string).
2453
2454 @item @nicode{\0}
2455 NUL character (ASCII 0).
2456
2457 @item @nicode{\a}
2458 Bell character (ASCII 7).
2459
2460 @item @nicode{\f}
2461 Formfeed character (ASCII 12).
2462
2463 @item @nicode{\n}
2464 Newline character (ASCII 10).
2465
2466 @item @nicode{\r}
2467 Carriage return character (ASCII 13).
2468
2469 @item @nicode{\t}
2470 Tab character (ASCII 9).
2471
2472 @item @nicode{\v}
2473 Vertical tab character (ASCII 11).
2474
2475 @item @nicode{\xHH}
2476 Character code given by two hexadecimal digits. For example
2477 @nicode{\x7f} for an ASCII DEL (127).
2478 @end table
2479
2480 @noindent
2481 The following are examples of string literals:
2482
2483 @lisp
2484 "foo"
2485 "bar plonk"
2486 "Hello World"
2487 "\"Hi\", he said."
2488 @end lisp
2489
2490
2491 @node String Predicates
2492 @subsubsection String Predicates
2493
2494 The following procedures can be used to check whether a given string
2495 fulfills some specified property.
2496
2497 @rnindex string?
2498 @deffn {Scheme Procedure} string? obj
2499 @deffnx {C Function} scm_string_p (obj)
2500 Return @code{#t} if @var{obj} is a string, else @code{#f}.
2501 @end deffn
2502
2503 @deftypefn {C Function} int scm_is_string (SCM obj)
2504 Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
2505 @end deftypefn
2506
2507 @deffn {Scheme Procedure} string-null? str
2508 @deffnx {C Function} scm_string_null_p (str)
2509 Return @code{#t} if @var{str}'s length is zero, and
2510 @code{#f} otherwise.
2511 @lisp
2512 (string-null? "") @result{} #t
2513 y @result{} "foo"
2514 (string-null? y) @result{} #f
2515 @end lisp
2516 @end deffn
2517
2518 @deffn {Scheme Procedure} string-any char_pred s [start [end]]
2519 @deffnx {C Function} scm_string_any (char_pred, s, start, end)
2520 Check if @var{char_pred} is true for any character in string @var{s}.
2521
2522 @var{char_pred} can be a character to check for any equal to that, or
2523 a character set (@pxref{Character Sets}) to check for any in that set,
2524 or a predicate procedure to call.
2525
2526 For a procedure, calls @code{(@var{char_pred} c)} are made
2527 successively on the characters from @var{start} to @var{end}. If
2528 @var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
2529 stops and that return value is the return from @code{string-any}. The
2530 call on the last character (ie.@: at @math{@var{end}-1}), if that
2531 point is reached, is a tail call.
2532
2533 If there are no characters in @var{s} (ie.@: @var{start} equals
2534 @var{end}) then the return is @code{#f}.
2535 @end deffn
2536
2537 @deffn {Scheme Procedure} string-every char_pred s [start [end]]
2538 @deffnx {C Function} scm_string_every (char_pred, s, start, end)
2539 Check if @var{char_pred} is true for every character in string
2540 @var{s}.
2541
2542 @var{char_pred} can be a character to check for every character equal
2543 to that, or a character set (@pxref{Character Sets}) to check for
2544 every character being in that set, or a predicate procedure to call.
2545
2546 For a procedure, calls @code{(@var{char_pred} c)} are made
2547 successively on the characters from @var{start} to @var{end}. If
2548 @var{char_pred} returns @code{#f}, @code{string-every} stops and
2549 returns @code{#f}. The call on the last character (ie.@: at
2550 @math{@var{end}-1}), if that point is reached, is a tail call and the
2551 return from that call is the return from @code{string-every}.
2552
2553 If there are no characters in @var{s} (ie.@: @var{start} equals
2554 @var{end}) then the return is @code{#t}.
2555 @end deffn
2556
2557 @node String Constructors
2558 @subsubsection String Constructors
2559
2560 The string constructor procedures create new string objects, possibly
2561 initializing them with some specified character data. See also
2562 @xref{String Selection}, for ways to create strings from existing
2563 strings.
2564
2565 @c FIXME::martin: list->string belongs into `List/String Conversion'
2566
2567 @rnindex string
2568 @rnindex list->string
2569 @deffn {Scheme Procedure} string . chrs
2570 @deffnx {Scheme Procedure} list->string chrs
2571 @deffnx {C Function} scm_string (chrs)
2572 Return a newly allocated string composed of the arguments,
2573 @var{chrs}.
2574 @end deffn
2575
2576 @rnindex make-string
2577 @deffn {Scheme Procedure} make-string k [chr]
2578 @deffnx {C Function} scm_make_string (k, chr)
2579 Return a newly allocated string of
2580 length @var{k}. If @var{chr} is given, then all elements of
2581 the string are initialized to @var{chr}, otherwise the contents
2582 of the @var{string} are unspecified.
2583 @end deffn
2584
2585 @deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
2586 Like @code{scm_make_string}, but expects the length as a
2587 @code{size_t}.
2588 @end deftypefn
2589
2590 @deffn {Scheme Procedure} string-tabulate proc len
2591 @deffnx {C Function} scm_string_tabulate (proc, len)
2592 @var{proc} is an integer->char procedure. Construct a string
2593 of size @var{len} by applying @var{proc} to each index to
2594 produce the corresponding string element. The order in which
2595 @var{proc} is applied to the indices is not specified.
2596 @end deffn
2597
2598 @deffn {Scheme Procedure} reverse-list->string chrs
2599 @deffnx {C Function} scm_reverse_list_to_string (chrs)
2600 An efficient implementation of @code{(compose string->list
2601 reverse)}:
2602
2603 @smalllisp
2604 (reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
2605 @end smalllisp
2606 @end deffn
2607
2608 @deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
2609 @deffnx {C Function} scm_string_join (ls, delimiter, grammar)
2610 Append the string in the string list @var{ls}, using the string
2611 @var{delim} as a delimiter between the elements of @var{ls}.
2612 @var{grammar} is a symbol which specifies how the delimiter is
2613 placed between the strings, and defaults to the symbol
2614 @code{infix}.
2615
2616 @table @code
2617 @item infix
2618 Insert the separator between list elements. An empty string
2619 will produce an empty list.
2620 @item string-infix
2621 Like @code{infix}, but will raise an error if given the empty
2622 list.
2623 @item suffix
2624 Insert the separator after every list element.
2625 @item prefix
2626 Insert the separator before each list element.
2627 @end table
2628 @end deffn
2629
2630 @node List/String Conversion
2631 @subsubsection List/String conversion
2632
2633 When processing strings, it is often convenient to first convert them
2634 into a list representation by using the procedure @code{string->list},
2635 work with the resulting list, and then convert it back into a string.
2636 These procedures are useful for similar tasks.
2637
2638 @rnindex string->list
2639 @deffn {Scheme Procedure} string->list str [start [end]]
2640 @deffnx {C Function} scm_substring_to_list (str, start, end)
2641 @deffnx {C Function} scm_string_to_list (str)
2642 Convert the string @var{str} into a list of characters.
2643 @end deffn
2644
2645 @deffn {Scheme Procedure} string-split str chr
2646 @deffnx {C Function} scm_string_split (str, chr)
2647 Split the string @var{str} into the a list of the substrings delimited
2648 by appearances of the character @var{chr}. Note that an empty substring
2649 between separator characters will result in an empty string in the
2650 result list.
2651
2652 @lisp
2653 (string-split "root:x:0:0:root:/root:/bin/bash" #\:)
2654 @result{}
2655 ("root" "x" "0" "0" "root" "/root" "/bin/bash")
2656
2657 (string-split "::" #\:)
2658 @result{}
2659 ("" "" "")
2660
2661 (string-split "" #\:)
2662 @result{}
2663 ("")
2664 @end lisp
2665 @end deffn
2666
2667
2668 @node String Selection
2669 @subsubsection String Selection
2670
2671 Portions of strings can be extracted by these procedures.
2672 @code{string-ref} delivers individual characters whereas
2673 @code{substring} can be used to extract substrings from longer strings.
2674
2675 @rnindex string-length
2676 @deffn {Scheme Procedure} string-length string
2677 @deffnx {C Function} scm_string_length (string)
2678 Return the number of characters in @var{string}.
2679 @end deffn
2680
2681 @deftypefn {C Function} size_t scm_c_string_length (SCM str)
2682 Return the number of characters in @var{str} as a @code{size_t}.
2683 @end deftypefn
2684
2685 @rnindex string-ref
2686 @deffn {Scheme Procedure} string-ref str k
2687 @deffnx {C Function} scm_string_ref (str, k)
2688 Return character @var{k} of @var{str} using zero-origin
2689 indexing. @var{k} must be a valid index of @var{str}.
2690 @end deffn
2691
2692 @deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
2693 Return character @var{k} of @var{str} using zero-origin
2694 indexing. @var{k} must be a valid index of @var{str}.
2695 @end deftypefn
2696
2697 @rnindex string-copy
2698 @deffn {Scheme Procedure} string-copy str [start [end]]
2699 @deffnx {C Function} scm_substring_copy (str, start, end)
2700 @deffnx {C Function} scm_string_copy (str)
2701 Return a copy of the given string @var{str}.
2702
2703 The returned string shares storage with @var{str} initially, but it is
2704 copied as soon as one of the two strings is modified.
2705 @end deffn
2706
2707 @rnindex substring
2708 @deffn {Scheme Procedure} substring str start [end]
2709 @deffnx {C Function} scm_substring (str, start, end)
2710 Return a new string formed from the characters
2711 of @var{str} beginning with index @var{start} (inclusive) and
2712 ending with index @var{end} (exclusive).
2713 @var{str} must be a string, @var{start} and @var{end} must be
2714 exact integers satisfying:
2715
2716 0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
2717
2718 The returned string shares storage with @var{str} initially, but it is
2719 copied as soon as one of the two strings is modified.
2720 @end deffn
2721
2722 @deffn {Scheme Procedure} substring/shared str start [end]
2723 @deffnx {C Function} scm_substring_shared (str, start, end)
2724 Like @code{substring}, but the strings continue to share their storage
2725 even if they are modified. Thus, modifications to @var{str} show up
2726 in the new string, and vice versa.
2727 @end deffn
2728
2729 @deffn {Scheme Procedure} substring/copy str start [end]
2730 @deffnx {C Function} scm_substring_copy (str, start, end)
2731 Like @code{substring}, but the storage for the new string is copied
2732 immediately.
2733 @end deffn
2734
2735 @deffn {Scheme Procedure} substring/read-only str start [end]
2736 @deffnx {C Function} scm_substring_read_only (str, start, end)
2737 Like @code{substring}, but the resulting string can not be modified.
2738 @end deffn
2739
2740 @deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
2741 @deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
2742 @deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
2743 @deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
2744 Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
2745 @end deftypefn
2746
2747 @deffn {Scheme Procedure} string-take s n
2748 @deffnx {C Function} scm_string_take (s, n)
2749 Return the @var{n} first characters of @var{s}.
2750 @end deffn
2751
2752 @deffn {Scheme Procedure} string-drop s n
2753 @deffnx {C Function} scm_string_drop (s, n)
2754 Return all but the first @var{n} characters of @var{s}.
2755 @end deffn
2756
2757 @deffn {Scheme Procedure} string-take-right s n
2758 @deffnx {C Function} scm_string_take_right (s, n)
2759 Return the @var{n} last characters of @var{s}.
2760 @end deffn
2761
2762 @deffn {Scheme Procedure} string-drop-right s n
2763 @deffnx {C Function} scm_string_drop_right (s, n)
2764 Return all but the last @var{n} characters of @var{s}.
2765 @end deffn
2766
2767 @deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
2768 @deffnx {C Function} scm_string_pad (s, len, chr, start, end)
2769 Take that characters from @var{start} to @var{end} from the
2770 string @var{s} and return a new string, right-padded by the
2771 character @var{chr} to length @var{len}. If the resulting
2772 string is longer than @var{len}, it is truncated on the right.
2773 @end deffn
2774
2775 @deffn {Scheme Procedure} string-pad-right s len [chr [start [end]]]
2776 @deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
2777 Take that characters from @var{start} to @var{end} from the
2778 string @var{s} and return a new string, left-padded by the
2779 character @var{chr} to length @var{len}. If the resulting
2780 string is longer than @var{len}, it is truncated on the left.
2781 @end deffn
2782
2783 @deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
2784 @deffnx {C Function} scm_string_trim (s, char_pred, start, end)
2785 Trim @var{s} by skipping over all characters on the left
2786 that satisfy the parameter @var{char_pred}:
2787
2788 @itemize @bullet
2789 @item
2790 if it is the character @var{ch}, characters equal to
2791 @var{ch} are trimmed,
2792
2793 @item
2794 if it is a procedure @var{pred} characters that
2795 satisfy @var{pred} are trimmed,
2796
2797 @item
2798 if it is a character set, characters in that set are trimmed.
2799 @end itemize
2800
2801 If called without a @var{char_pred} argument, all whitespace is
2802 trimmed.
2803 @end deffn
2804
2805 @deffn {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
2806 @deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
2807 Trim @var{s} by skipping over all characters on the rightt
2808 that satisfy the parameter @var{char_pred}:
2809
2810 @itemize @bullet
2811 @item
2812 if it is the character @var{ch}, characters equal to @var{ch}
2813 are trimmed,
2814
2815 @item
2816 if it is a procedure @var{pred} characters that satisfy
2817 @var{pred} are trimmed,
2818
2819 @item
2820 if it is a character sets, all characters in that set are
2821 trimmed.
2822 @end itemize
2823
2824 If called without a @var{char_pred} argument, all whitespace is
2825 trimmed.
2826 @end deffn
2827
2828 @deffn {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
2829 @deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
2830 Trim @var{s} by skipping over all characters on both sides of
2831 the string that satisfy the parameter @var{char_pred}:
2832
2833 @itemize @bullet
2834 @item
2835 if it is the character @var{ch}, characters equal to @var{ch}
2836 are trimmed,
2837
2838 @item
2839 if it is a procedure @var{pred} characters that satisfy
2840 @var{pred} are trimmed,
2841
2842 @item
2843 if it is a character set, the characters in the set are
2844 trimmed.
2845 @end itemize
2846
2847 If called without a @var{char_pred} argument, all whitespace is
2848 trimmed.
2849 @end deffn
2850
2851 @node String Modification
2852 @subsubsection String Modification
2853
2854 These procedures are for modifying strings in-place. This means that the
2855 result of the operation is not a new string; instead, the original string's
2856 memory representation is modified.
2857
2858 @rnindex string-set!
2859 @deffn {Scheme Procedure} string-set! str k chr
2860 @deffnx {C Function} scm_string_set_x (str, k, chr)
2861 Store @var{chr} in element @var{k} of @var{str} and return
2862 an unspecified value. @var{k} must be a valid index of
2863 @var{str}.
2864 @end deffn
2865
2866 @deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
2867 Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
2868 @end deftypefn
2869
2870 @rnindex string-fill!
2871 @deffn {Scheme Procedure} string-fill! str chr [start [end]]
2872 @deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
2873 @deffnx {C Function} scm_string_fill_x (str, chr)
2874 Stores @var{chr} in every element of the given @var{str} and
2875 returns an unspecified value.
2876 @end deffn
2877
2878 @deffn {Scheme Procedure} substring-fill! str start end fill
2879 @deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
2880 Change every character in @var{str} between @var{start} and
2881 @var{end} to @var{fill}.
2882
2883 @lisp
2884 (define y "abcdefg")
2885 (substring-fill! y 1 3 #\r)
2886 y
2887 @result{} "arrdefg"
2888 @end lisp
2889 @end deffn
2890
2891 @deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
2892 @deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
2893 Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
2894 into @var{str2} beginning at position @var{start2}.
2895 @var{str1} and @var{str2} can be the same string.
2896 @end deffn
2897
2898 @deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
2899 @deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
2900 Copy the sequence of characters from index range [@var{start},
2901 @var{end}) in string @var{s} to string @var{target}, beginning
2902 at index @var{tstart}. The characters are copied left-to-right
2903 or right-to-left as needed -- the copy is guaranteed to work,
2904 even if @var{target} and @var{s} are the same string. It is an
2905 error if the copy operation runs off the end of the target
2906 string.
2907 @end deffn
2908
2909
2910 @node String Comparison
2911 @subsubsection String Comparison
2912
2913 The procedures in this section are similar to the character ordering
2914 predicates (@pxref{Characters}), but are defined on character sequences.
2915
2916 The first set is specified in R5RS and has names that end in @code{?}.
2917 The second set is specified in SRFI-13 and the names have no ending
2918 @code{?}. The predicates ending in @code{-ci} ignore the character case
2919 when comparing strings.
2920
2921 @rnindex string=?
2922 @deffn {Scheme Procedure} string=? s1 s2
2923 Lexicographic equality predicate; return @code{#t} if the two
2924 strings are the same length and contain the same characters in
2925 the same positions, otherwise return @code{#f}.
2926
2927 The procedure @code{string-ci=?} treats upper and lower case
2928 letters as though they were the same character, but
2929 @code{string=?} treats upper and lower case as distinct
2930 characters.
2931 @end deffn
2932
2933 @rnindex string<?
2934 @deffn {Scheme Procedure} string<? s1 s2
2935 Lexicographic ordering predicate; return @code{#t} if @var{s1}
2936 is lexicographically less than @var{s2}.
2937 @end deffn
2938
2939 @rnindex string<=?
2940 @deffn {Scheme Procedure} string<=? s1 s2
2941 Lexicographic ordering predicate; return @code{#t} if @var{s1}
2942 is lexicographically less than or equal to @var{s2}.
2943 @end deffn
2944
2945 @rnindex string>?
2946 @deffn {Scheme Procedure} string>? s1 s2
2947 Lexicographic ordering predicate; return @code{#t} if @var{s1}
2948 is lexicographically greater than @var{s2}.
2949 @end deffn
2950
2951 @rnindex string>=?
2952 @deffn {Scheme Procedure} string>=? s1 s2
2953 Lexicographic ordering predicate; return @code{#t} if @var{s1}
2954 is lexicographically greater than or equal to @var{s2}.
2955 @end deffn
2956
2957 @rnindex string-ci=?
2958 @deffn {Scheme Procedure} string-ci=? s1 s2
2959 Case-insensitive string equality predicate; return @code{#t} if
2960 the two strings are the same length and their component
2961 characters match (ignoring case) at each position; otherwise
2962 return @code{#f}.
2963 @end deffn
2964
2965 @rnindex string-ci<?
2966 @deffn {Scheme Procedure} string-ci<? s1 s2
2967 Case insensitive lexicographic ordering predicate; return
2968 @code{#t} if @var{s1} is lexicographically less than @var{s2}
2969 regardless of case.
2970 @end deffn
2971
2972 @rnindex string<=?
2973 @deffn {Scheme Procedure} string-ci<=? s1 s2
2974 Case insensitive lexicographic ordering predicate; return
2975 @code{#t} if @var{s1} is lexicographically less than or equal
2976 to @var{s2} regardless of case.
2977 @end deffn
2978
2979 @rnindex string-ci>?
2980 @deffn {Scheme Procedure} string-ci>? s1 s2
2981 Case insensitive lexicographic ordering predicate; return
2982 @code{#t} if @var{s1} is lexicographically greater than
2983 @var{s2} regardless of case.
2984 @end deffn
2985
2986 @rnindex string-ci>=?
2987 @deffn {Scheme Procedure} string-ci>=? s1 s2
2988 Case insensitive lexicographic ordering predicate; return
2989 @code{#t} if @var{s1} is lexicographically greater than or
2990 equal to @var{s2} regardless of case.
2991 @end deffn
2992
2993 @deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
2994 @deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
2995 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
2996 mismatch index, depending upon whether @var{s1} is less than,
2997 equal to, or greater than @var{s2}. The mismatch index is the
2998 largest index @var{i} such that for every 0 <= @var{j} <
2999 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3000 @var{i} is the first position that does not match.
3001 @end deffn
3002
3003 @deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3004 @deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3005 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3006 mismatch index, depending upon whether @var{s1} is less than,
3007 equal to, or greater than @var{s2}. The mismatch index is the
3008 largest index @var{i} such that for every 0 <= @var{j} <
3009 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3010 @var{i} is the first position that does not match. The
3011 character comparison is done case-insensitively.
3012 @end deffn
3013
3014 @deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3015 @deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3016 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3017 value otherwise.
3018 @end deffn
3019
3020 @deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3021 @deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3022 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3023 value otherwise.
3024 @end deffn
3025
3026 @deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3027 @deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3028 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3029 true value otherwise.
3030 @end deffn
3031
3032 @deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3033 @deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3034 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3035 true value otherwise.
3036 @end deffn
3037
3038 @deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3039 @deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3040 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3041 value otherwise.
3042 @end deffn
3043
3044 @deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3045 @deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3046 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3047 otherwise.
3048 @end deffn
3049
3050 @deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3051 @deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3052 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3053 value otherwise. The character comparison is done
3054 case-insensitively.
3055 @end deffn
3056
3057 @deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3058 @deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3059 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3060 value otherwise. The character comparison is done
3061 case-insensitively.
3062 @end deffn
3063
3064 @deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3065 @deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3066 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3067 true value otherwise. The character comparison is done
3068 case-insensitively.
3069 @end deffn
3070
3071 @deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3072 @deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3073 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3074 true value otherwise. The character comparison is done
3075 case-insensitively.
3076 @end deffn
3077
3078 @deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3079 @deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3080 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3081 value otherwise. The character comparison is done
3082 case-insensitively.
3083 @end deffn
3084
3085 @deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3086 @deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3087 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3088 otherwise. The character comparison is done
3089 case-insensitively.
3090 @end deffn
3091
3092 @deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3093 @deffnx {C Function} scm_substring_hash (s, bound, start, end)
3094 Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3095 @end deffn
3096
3097 @deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3098 @deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3099 Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3100 @end deffn
3101
3102 @node String Searching
3103 @subsubsection String Searching
3104
3105 @deffn {Scheme Procedure} string-index s char_pred [start [end]]
3106 @deffnx {C Function} scm_string_index (s, char_pred, start, end)
3107 Search through the string @var{s} from left to right, returning
3108 the index of the first occurence of a character which
3109
3110 @itemize @bullet
3111 @item
3112 equals @var{char_pred}, if it is character,
3113
3114 @item
3115 satisifies the predicate @var{char_pred}, if it is a procedure,
3116
3117 @item
3118 is in the set @var{char_pred}, if it is a character set.
3119 @end itemize
3120 @end deffn
3121
3122 @deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3123 @deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3124 Search through the string @var{s} from right to left, returning
3125 the index of the last occurence of a character which
3126
3127 @itemize @bullet
3128 @item
3129 equals @var{char_pred}, if it is character,
3130
3131 @item
3132 satisifies the predicate @var{char_pred}, if it is a procedure,
3133
3134 @item
3135 is in the set if @var{char_pred} is a character set.
3136 @end itemize
3137 @end deffn
3138
3139 @deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3140 @deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3141 Return the length of the longest common prefix of the two
3142 strings.
3143 @end deffn
3144
3145 @deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3146 @deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3147 Return the length of the longest common prefix of the two
3148 strings, ignoring character case.
3149 @end deffn
3150
3151 @deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3152 @deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3153 Return the length of the longest common suffix of the two
3154 strings.
3155 @end deffn
3156
3157 @deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3158 @deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3159 Return the length of the longest common suffix of the two
3160 strings, ignoring character case.
3161 @end deffn
3162
3163 @deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3164 @deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3165 Is @var{s1} a prefix of @var{s2}?
3166 @end deffn
3167
3168 @deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3169 @deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3170 Is @var{s1} a prefix of @var{s2}, ignoring character case?
3171 @end deffn
3172
3173 @deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3174 @deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3175 Is @var{s1} a suffix of @var{s2}?
3176 @end deffn
3177
3178 @deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3179 @deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3180 Is @var{s1} a suffix of @var{s2}, ignoring character case?
3181 @end deffn
3182
3183 @deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3184 @deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3185 Search through the string @var{s} from right to left, returning
3186 the index of the last occurence of a character which
3187
3188 @itemize @bullet
3189 @item
3190 equals @var{char_pred}, if it is character,
3191
3192 @item
3193 satisifies the predicate @var{char_pred}, if it is a procedure,
3194
3195 @item
3196 is in the set if @var{char_pred} is a character set.
3197 @end itemize
3198 @end deffn
3199
3200 @deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3201 @deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3202 Search through the string @var{s} from left to right, returning
3203 the index of the first occurence of a character which
3204
3205 @itemize @bullet
3206 @item
3207 does not equal @var{char_pred}, if it is character,
3208
3209 @item
3210 does not satisify the predicate @var{char_pred}, if it is a
3211 procedure,
3212
3213 @item
3214 is not in the set if @var{char_pred} is a character set.
3215 @end itemize
3216 @end deffn
3217
3218 @deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3219 @deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3220 Search through the string @var{s} from right to left, returning
3221 the index of the last occurence of a character which
3222
3223 @itemize @bullet
3224 @item
3225 does not equal @var{char_pred}, if it is character,
3226
3227 @item
3228 does not satisfy the predicate @var{char_pred}, if it is a
3229 procedure,
3230
3231 @item
3232 is not in the set if @var{char_pred} is a character set.
3233 @end itemize
3234 @end deffn
3235
3236 @deffn {Scheme Procedure} string-count s char_pred [start [end]]
3237 @deffnx {C Function} scm_string_count (s, char_pred, start, end)
3238 Return the count of the number of characters in the string
3239 @var{s} which
3240
3241 @itemize @bullet
3242 @item
3243 equals @var{char_pred}, if it is character,
3244
3245 @item
3246 satisifies the predicate @var{char_pred}, if it is a procedure.
3247
3248 @item
3249 is in the set @var{char_pred}, if it is a character set.
3250 @end itemize
3251 @end deffn
3252
3253 @deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3254 @deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3255 Does string @var{s1} contain string @var{s2}? Return the index
3256 in @var{s1} where @var{s2} occurs as a substring, or false.
3257 The optional start/end indices restrict the operation to the
3258 indicated substrings.
3259 @end deffn
3260
3261 @deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3262 @deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3263 Does string @var{s1} contain string @var{s2}? Return the index
3264 in @var{s1} where @var{s2} occurs as a substring, or false.
3265 The optional start/end indices restrict the operation to the
3266 indicated substrings. Character comparison is done
3267 case-insensitively.
3268 @end deffn
3269
3270 @node Alphabetic Case Mapping
3271 @subsubsection Alphabetic Case Mapping
3272
3273 These are procedures for mapping strings to their upper- or lower-case
3274 equivalents, respectively, or for capitalizing strings.
3275
3276 @deffn {Scheme Procedure} string-upcase str [start [end]]
3277 @deffnx {C Function} scm_substring_upcase (str, start, end)
3278 @deffnx {C Function} scm_string_upcase (str)
3279 Upcase every character in @code{str}.
3280 @end deffn
3281
3282 @deffn {Scheme Procedure} string-upcase! str [start [end]]
3283 @deffnx {C Function} scm_substring_upcase_x (str, start, end)
3284 @deffnx {C Function} scm_string_upcase_x (str)
3285 Destructively upcase every character in @code{str}.
3286
3287 @lisp
3288 (string-upcase! y)
3289 @result{} "ARRDEFG"
3290 y
3291 @result{} "ARRDEFG"
3292 @end lisp
3293 @end deffn
3294
3295 @deffn {Scheme Procedure} string-downcase str [start [end]]
3296 @deffnx {C Function} scm_substring_downcase (str, start, end)
3297 @deffnx {C Function} scm_string_downcase (str)
3298 Downcase every character in @var{str}.
3299 @end deffn
3300
3301 @deffn {Scheme Procedure} string-downcase! str [start [end]]
3302 @deffnx {C Function} scm_substring_downcase_x (str, start, end)
3303 @deffnx {C Function} scm_string_downcase_x (str)
3304 Destructively downcase every character in @var{str}.
3305
3306 @lisp
3307 y
3308 @result{} "ARRDEFG"
3309 (string-downcase! y)
3310 @result{} "arrdefg"
3311 y
3312 @result{} "arrdefg"
3313 @end lisp
3314 @end deffn
3315
3316 @deffn {Scheme Procedure} string-capitalize str
3317 @deffnx {C Function} scm_string_capitalize (str)
3318 Return a freshly allocated string with the characters in
3319 @var{str}, where the first character of every word is
3320 capitalized.
3321 @end deffn
3322
3323 @deffn {Scheme Procedure} string-capitalize! str
3324 @deffnx {C Function} scm_string_capitalize_x (str)
3325 Upcase the first character of every word in @var{str}
3326 destructively and return @var{str}.
3327
3328 @lisp
3329 y @result{} "hello world"
3330 (string-capitalize! y) @result{} "Hello World"
3331 y @result{} "Hello World"
3332 @end lisp
3333 @end deffn
3334
3335 @deffn {Scheme Procedure} string-titlecase str [start [end]]
3336 @deffnx {C Function} scm_string_titlecase (str, start, end)
3337 Titlecase every first character in a word in @var{str}.
3338 @end deffn
3339
3340 @deffn {Scheme Procedure} string-titlecase! str [start [end]]
3341 @deffnx {C Function} scm_string_titlecase_x (str, start, end)
3342 Destructively titlecase every first character in a word in
3343 @var{str}.
3344 @end deffn
3345
3346 @node Reversing and Appending Strings
3347 @subsubsection Reversing and Appending Strings
3348
3349 @deffn {Scheme Procedure} string-reverse str [start [end]]
3350 @deffnx {C Function} scm_string_reverse (str, start, end)
3351 Reverse the string @var{str}. The optional arguments
3352 @var{start} and @var{end} delimit the region of @var{str} to
3353 operate on.
3354 @end deffn
3355
3356 @deffn {Scheme Procedure} string-reverse! str [start [end]]
3357 @deffnx {C Function} scm_string_reverse_x (str, start, end)
3358 Reverse the string @var{str} in-place. The optional arguments
3359 @var{start} and @var{end} delimit the region of @var{str} to
3360 operate on. The return value is unspecified.
3361 @end deffn
3362
3363 @rnindex string-append
3364 @deffn {Scheme Procedure} string-append . args
3365 @deffnx {C Function} scm_string_append (args)
3366 Return a newly allocated string whose characters form the
3367 concatenation of the given strings, @var{args}.
3368
3369 @example
3370 (let ((h "hello "))
3371 (string-append h "world"))
3372 @result{} "hello world"
3373 @end example
3374 @end deffn
3375
3376 @deffn {Scheme Procedure} string-append/shared . ls
3377 @deffnx {C Function} scm_string_append_shared (ls)
3378 Like @code{string-append}, but the result may share memory
3379 with the argument strings.
3380 @end deffn
3381
3382 @deffn {Scheme Procedure} string-concatenate ls
3383 @deffnx {C Function} scm_string_concatenate (ls)
3384 Append the elements of @var{ls} (which must be strings)
3385 together into a single string. Guaranteed to return a freshly
3386 allocated string.
3387 @end deffn
3388
3389 @deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3390 @deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3391 Without optional arguments, this procedure is equivalent to
3392
3393 @smalllisp
3394 (string-concatenate (reverse ls))
3395 @end smalllisp
3396
3397 If the optional argument @var{final_string} is specified, it is
3398 consed onto the beginning to @var{ls} before performing the
3399 list-reverse and string-concatenate operations. If @var{end}
3400 is given, only the characters of @var{final_string} up to index
3401 @var{end} are used.
3402
3403 Guaranteed to return a freshly allocated string.
3404 @end deffn
3405
3406 @deffn {Scheme Procedure} string-concatenate/shared ls
3407 @deffnx {C Function} scm_string_concatenate_shared (ls)
3408 Like @code{string-concatenate}, but the result may share memory
3409 with the strings in the list @var{ls}.
3410 @end deffn
3411
3412 @deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3413 @deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3414 Like @code{string-concatenate-reverse}, but the result may
3415 share memory with the the strings in the @var{ls} arguments.
3416 @end deffn
3417
3418 @node Mapping Folding and Unfolding
3419 @subsubsection Mapping, Folding, and Unfolding
3420
3421 @deffn {Scheme Procedure} string-map proc s [start [end]]
3422 @deffnx {C Function} scm_string_map (proc, s, start, end)
3423 @var{proc} is a char->char procedure, it is mapped over
3424 @var{s}. The order in which the procedure is applied to the
3425 string elements is not specified.
3426 @end deffn
3427
3428 @deffn {Scheme Procedure} string-map! proc s [start [end]]
3429 @deffnx {C Function} scm_string_map_x (proc, s, start, end)
3430 @var{proc} is a char->char procedure, it is mapped over
3431 @var{s}. The order in which the procedure is applied to the
3432 string elements is not specified. The string @var{s} is
3433 modified in-place, the return value is not specified.
3434 @end deffn
3435
3436 @deffn {Scheme Procedure} string-for-each proc s [start [end]]
3437 @deffnx {C Function} scm_string_for_each (proc, s, start, end)
3438 @var{proc} is mapped over @var{s} in left-to-right order. The
3439 return value is not specified.
3440 @end deffn
3441
3442 @deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
3443 @deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
3444 @var{proc} is mapped over @var{s} in left-to-right order. The
3445 return value is not specified.
3446 @end deffn
3447
3448 @deffn {Scheme Procedure} string-fold kons knil s [start [end]]
3449 @deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
3450 Fold @var{kons} over the characters of @var{s}, with @var{knil}
3451 as the terminating element, from left to right. @var{kons}
3452 must expect two arguments: The actual character and the last
3453 result of @var{kons}' application.
3454 @end deffn
3455
3456 @deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
3457 @deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
3458 Fold @var{kons} over the characters of @var{s}, with @var{knil}
3459 as the terminating element, from right to left. @var{kons}
3460 must expect two arguments: The actual character and the last
3461 result of @var{kons}' application.
3462 @end deffn
3463
3464 @deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
3465 @deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
3466 @itemize @bullet
3467 @item @var{g} is used to generate a series of @emph{seed}
3468 values from the initial @var{seed}: @var{seed}, (@var{g}
3469 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3470 @dots{}
3471 @item @var{p} tells us when to stop -- when it returns true
3472 when applied to one of these seed values.
3473 @item @var{f} maps each seed value to the corresponding
3474 character in the result string. These chars are assembled
3475 into the string in a left-to-right order.
3476 @item @var{base} is the optional initial/leftmost portion
3477 of the constructed string; it default to the empty
3478 string.
3479 @item @var{make_final} is applied to the terminal seed
3480 value (on which @var{p} returns true) to produce
3481 the final/rightmost portion of the constructed string.
3482 It defaults to @code{(lambda (x) )}.
3483 @end itemize
3484 @end deffn
3485
3486 @deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
3487 @deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
3488 @itemize @bullet
3489 @item @var{g} is used to generate a series of @emph{seed}
3490 values from the initial @var{seed}: @var{seed}, (@var{g}
3491 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3492 @dots{}
3493 @item @var{p} tells us when to stop -- when it returns true
3494 when applied to one of these seed values.
3495 @item @var{f} maps each seed value to the corresponding
3496 character in the result string. These chars are assembled
3497 into the string in a right-to-left order.
3498 @item @var{base} is the optional initial/rightmost portion
3499 of the constructed string; it default to the empty
3500 string.
3501 @item @var{make_final} is applied to the terminal seed
3502 value (on which @var{p} returns true) to produce
3503 the final/leftmost portion of the constructed string.
3504 It defaults to @code{(lambda (x) )}.
3505 @end itemize
3506 @end deffn
3507
3508 @node Miscellaneous String Operations
3509 @subsubsection Miscellaneous String Operations
3510
3511 @deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
3512 @deffnx {C Function} scm_xsubstring (s, from, to, start, end)
3513 This is the @emph{extended substring} procedure that implements
3514 replicated copying of a substring of some string.
3515
3516 @var{s} is a string, @var{start} and @var{end} are optional
3517 arguments that demarcate a substring of @var{s}, defaulting to
3518 0 and the length of @var{s}. Replicate this substring up and
3519 down index space, in both the positive and negative directions.
3520 @code{xsubstring} returns the substring of this string
3521 beginning at index @var{from}, and ending at @var{to}, which
3522 defaults to @var{from} + (@var{end} - @var{start}).
3523 @end deffn
3524
3525 @deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
3526 @deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
3527 Exactly the same as @code{xsubstring}, but the extracted text
3528 is written into the string @var{target} starting at index
3529 @var{tstart}. The operation is not defined if @code{(eq?
3530 @var{target} @var{s})} or these arguments share storage -- you
3531 cannot copy a string on top of itself.
3532 @end deffn
3533
3534 @deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
3535 @deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
3536 Return the string @var{s1}, but with the characters
3537 @var{start1} @dots{} @var{end1} replaced by the characters
3538 @var{start2} @dots{} @var{end2} from @var{s2}.
3539 @end deffn
3540
3541 @deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
3542 @deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
3543 Split the string @var{s} into a list of substrings, where each
3544 substring is a maximal non-empty contiguous sequence of
3545 characters from the character set @var{token_set}, which
3546 defaults to @code{char-set:graphic}.
3547 If @var{start} or @var{end} indices are provided, they restrict
3548 @code{string-tokenize} to operating on the indicated substring
3549 of @var{s}.
3550 @end deffn
3551
3552 @deffn {Scheme Procedure} string-filter s char_pred [start [end]]
3553 @deffnx {C Function} scm_string_filter (s, char_pred, start, end)
3554 Filter the string @var{s}, retaining only those characters that
3555 satisfy the @var{char_pred} argument. If the argument is a
3556 procedure, it is applied to each character as a predicate, if
3557 it is a character, it is tested for equality and if it is a
3558 character set, it is tested for membership.
3559 @end deffn
3560
3561 @deffn {Scheme Procedure} string-delete s char_pred [start [end]]
3562 @deffnx {C Function} scm_string_delete (s, char_pred, start, end)
3563 Filter the string @var{s}, retaining only those characters that
3564 do not satisfy the @var{char_pred} argument. If the argument
3565 is a procedure, it is applied to each character as a predicate,
3566 if it is a character, it is tested for equality and if it is a
3567 character set, it is tested for membership.
3568 @end deffn
3569
3570 @node Conversion to/from C
3571 @subsubsection Conversion to/from C
3572
3573 When creating a Scheme string from a C string or when converting a
3574 Scheme string to a C string, the concept of character encoding becomes
3575 important.
3576
3577 In C, a string is just a sequence of bytes, and the character encoding
3578 describes the relation between these bytes and the actual characters
3579 that make up the string. For Scheme strings, character encoding is
3580 not an issue (most of the time), since in Scheme you never get to see
3581 the bytes, only the characters.
3582
3583 Well, ideally, anyway. Right now, Guile simply equates Scheme
3584 characters and bytes, ignoring the possibility of multi-byte encodings
3585 completely. This will change in the future, where Guile will use
3586 Unicode codepoints as its characters and UTF-8 or some other encoding
3587 as its internal encoding. When you exclusively use the functions
3588 listed in this section, you are `future-proof'.
3589
3590 Converting a Scheme string to a C string will often allocate fresh
3591 memory to hold the result. You must take care that this memory is
3592 properly freed eventually. In many cases, this can be achieved by
3593 using @code{scm_frame_free} inside an appropriate frame,
3594 @xref{Frames}.
3595
3596 @deftypefn {C Function} SCM scm_from_locale_string (const char *str)
3597 @deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
3598 Creates a new Scheme string that has the same contents as @var{str}
3599 when interpreted in the current locale character encoding.
3600
3601 For @code{scm_from_locale_string}, @var{str} must be null-terminated.
3602
3603 For @code{scm_from_locale_stringn}, @var{len} specifies the length of
3604 @var{str} in bytes, and @var{str} does not need to be null-terminated.
3605 If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
3606 null-terminated and the real length will be found with @code{strlen}.
3607 @end deftypefn
3608
3609 @deftypefn {C Function} SCM scm_take_locale_string (char *str)
3610 @deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
3611 Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
3612 respectively, but also frees @var{str} with @code{free} eventually.
3613 Thus, you can use this function when you would free @var{str} anyway
3614 immediately after creating the Scheme string. In certain cases, Guile
3615 can then use @var{str} directly as its internal representation.
3616 @end deftypefn
3617
3618 @deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
3619 @deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
3620 Returns a C string in the current locale encoding with the same
3621 contents as @var{str}. The C string must be freed with @code{free}
3622 eventually, maybe by using @code{scm_frame_free}, @xref{Frames}.
3623
3624 For @code{scm_to_locale_string}, the returned string is
3625 null-terminated and an error is signalled when @var{str} contains
3626 @code{#\nul} characters.
3627
3628 For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
3629 @var{str} might contain @code{#\nul} characters and the length of the
3630 returned string in bytes is stored in @code{*@var{lenp}}. The
3631 returned string will not be null-terminated in this case. If
3632 @var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
3633 @code{scm_to_locale_string}.
3634 @end deftypefn
3635
3636 @deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
3637 Puts @var{str} as a C string in the current locale encoding into the
3638 memory pointed to by @var{buf}. The buffer at @var{buf} has room for
3639 @var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
3640 more than that. No terminating @code{'\0'} will be stored.
3641
3642 The return value of @code{scm_to_locale_stringbuf} is the number of
3643 bytes that are needed for all of @var{str}, regardless of whether
3644 @var{buf} was large enough to hold them. Thus, when the return value
3645 is larger than @var{max_len}, only @var{max_len} bytes have been
3646 stored and you probably need to try again with a larger buffer.
3647 @end deftypefn
3648
3649 @node Regular Expressions
3650 @subsection Regular Expressions
3651 @tpindex Regular expressions
3652
3653 @cindex regular expressions
3654 @cindex regex
3655 @cindex emacs regexp
3656
3657 A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
3658 describes a whole class of strings. A full description of regular
3659 expressions and their syntax is beyond the scope of this manual;
3660 an introduction can be found in the Emacs manual (@pxref{Regexps,
3661 , Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
3662 in many general Unix reference books.
3663
3664 If your system does not include a POSIX regular expression library,
3665 and you have not linked Guile with a third-party regexp library such
3666 as Rx, these functions will not be available. You can tell whether
3667 your Guile installation includes regular expression support by
3668 checking whether @code{(provided? 'regex)} returns true.
3669
3670 The following regexp and string matching features are provided by the
3671 @code{(ice-9 regex)} module. Before using the described functions,
3672 you should load this module by executing @code{(use-modules (ice-9
3673 regex))}.
3674
3675 @menu
3676 * Regexp Functions:: Functions that create and match regexps.
3677 * Match Structures:: Finding what was matched by a regexp.
3678 * Backslash Escapes:: Removing the special meaning of regexp
3679 meta-characters.
3680 @end menu
3681
3682
3683 @node Regexp Functions
3684 @subsubsection Regexp Functions
3685
3686 By default, Guile supports POSIX extended regular expressions.
3687 That means that the characters @samp{(}, @samp{)}, @samp{+} and
3688 @samp{?} are special, and must be escaped if you wish to match the
3689 literal characters.
3690
3691 This regular expression interface was modeled after that
3692 implemented by SCSH, the Scheme Shell. It is intended to be
3693 upwardly compatible with SCSH regular expressions.
3694
3695 @deffn {Scheme Procedure} string-match pattern str [start]
3696 Compile the string @var{pattern} into a regular expression and compare
3697 it with @var{str}. The optional numeric argument @var{start} specifies
3698 the position of @var{str} at which to begin matching.
3699
3700 @code{string-match} returns a @dfn{match structure} which
3701 describes what, if anything, was matched by the regular
3702 expression. @xref{Match Structures}. If @var{str} does not match
3703 @var{pattern} at all, @code{string-match} returns @code{#f}.
3704 @end deffn
3705
3706 Two examples of a match follow. In the first example, the pattern
3707 matches the four digits in the match string. In the second, the pattern
3708 matches nothing.
3709
3710 @example
3711 (string-match "[0-9][0-9][0-9][0-9]" "blah2002")
3712 @result{} #("blah2002" (4 . 8))
3713
3714 (string-match "[A-Za-z]" "123456")
3715 @result{} #f
3716 @end example
3717
3718 Each time @code{string-match} is called, it must compile its
3719 @var{pattern} argument into a regular expression structure. This
3720 operation is expensive, which makes @code{string-match} inefficient if
3721 the same regular expression is used several times (for example, in a
3722 loop). For better performance, you can compile a regular expression in
3723 advance and then match strings against the compiled regexp.
3724
3725 @deffn {Scheme Procedure} make-regexp pat flag@dots{}
3726 @deffnx {C Function} scm_make_regexp (pat, flaglst)
3727 Compile the regular expression described by @var{pat}, and
3728 return the compiled regexp structure. If @var{pat} does not
3729 describe a legal regular expression, @code{make-regexp} throws
3730 a @code{regular-expression-syntax} error.
3731
3732 The @var{flag} arguments change the behavior of the compiled
3733 regular expression. The following values may be supplied:
3734
3735 @defvar regexp/icase
3736 Consider uppercase and lowercase letters to be the same when
3737 matching.
3738 @end defvar
3739
3740 @defvar regexp/newline
3741 If a newline appears in the target string, then permit the
3742 @samp{^} and @samp{$} operators to match immediately after or
3743 immediately before the newline, respectively. Also, the
3744 @samp{.} and @samp{[^...]} operators will never match a newline
3745 character. The intent of this flag is to treat the target
3746 string as a buffer containing many lines of text, and the
3747 regular expression as a pattern that may match a single one of
3748 those lines.
3749 @end defvar
3750
3751 @defvar regexp/basic
3752 Compile a basic (``obsolete'') regexp instead of the extended
3753 (``modern'') regexps that are the default. Basic regexps do
3754 not consider @samp{|}, @samp{+} or @samp{?} to be special
3755 characters, and require the @samp{@{...@}} and @samp{(...)}
3756 metacharacters to be backslash-escaped (@pxref{Backslash
3757 Escapes}). There are several other differences between basic
3758 and extended regular expressions, but these are the most
3759 significant.
3760 @end defvar
3761
3762 @defvar regexp/extended
3763 Compile an extended regular expression rather than a basic
3764 regexp. This is the default behavior; this flag will not
3765 usually be needed. If a call to @code{make-regexp} includes
3766 both @code{regexp/basic} and @code{regexp/extended} flags, the
3767 one which comes last will override the earlier one.
3768 @end defvar
3769 @end deffn
3770
3771 @deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
3772 @deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
3773 Match the compiled regular expression @var{rx} against
3774 @code{str}. If the optional integer @var{start} argument is
3775 provided, begin matching from that position in the string.
3776 Return a match structure describing the results of the match,
3777 or @code{#f} if no match could be found.
3778
3779 The @var{flags} arguments change the matching behavior.
3780 The following flags may be supplied:
3781
3782 @defvar regexp/notbol
3783 Operator @samp{^} always fails (unless @code{regexp/newline}
3784 is used). Use this when the beginning of the string should
3785 not be considered the beginning of a line.
3786 @end defvar
3787
3788 @defvar regexp/noteol
3789 Operator @samp{$} always fails (unless @code{regexp/newline}
3790 is used). Use this when the end of the string should not be
3791 considered the end of a line.
3792 @end defvar
3793 @end deffn
3794
3795 @lisp
3796 ;; Regexp to match uppercase letters
3797 (define r (make-regexp "[A-Z]*"))
3798
3799 ;; Regexp to match letters, ignoring case
3800 (define ri (make-regexp "[A-Z]*" regexp/icase))
3801
3802 ;; Search for bob using regexp r
3803 (match:substring (regexp-exec r "bob"))
3804 @result{} "" ; no match
3805
3806 ;; Search for bob using regexp ri
3807 (match:substring (regexp-exec ri "Bob"))
3808 @result{} "Bob" ; matched case insensitive
3809 @end lisp
3810
3811 @deffn {Scheme Procedure} regexp? obj
3812 @deffnx {C Function} scm_regexp_p (obj)
3813 Return @code{#t} if @var{obj} is a compiled regular expression,
3814 or @code{#f} otherwise.
3815 @end deffn
3816
3817 @sp 1
3818 Regular expressions are commonly used to find patterns in one string
3819 and replace them with the contents of another string. The following
3820 functions are convenient ways to do this.
3821
3822 @c begin (scm-doc-string "regex.scm" "regexp-substitute")
3823 @deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
3824 Write to @var{port} selected parts of the match structure @var{match}.
3825 Or if @var{port} is @code{#f} then form a string from those parts and
3826 return that.
3827
3828 Each @var{item} specifies a part to be written, and may be one of the
3829 following,
3830
3831 @itemize @bullet
3832 @item
3833 A string. String arguments are written out verbatim.
3834
3835 @item
3836 An integer. The submatch with that number is written
3837 (@code{match:substring}). Zero is the entire match.
3838
3839 @item
3840 The symbol @samp{pre}. The portion of the matched string preceding
3841 the regexp match is written (@code{match:prefix}).
3842
3843 @item
3844 The symbol @samp{post}. The portion of the matched string following
3845 the regexp match is written (@code{match:suffix}).
3846 @end itemize
3847
3848 For example, changing a match and retaining the text before and after,
3849
3850 @example
3851 (regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
3852 'pre "37" 'post)
3853 @result{} "number 37 is good"
3854 @end example
3855
3856 Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
3857 re-ordering and hyphenating the fields.
3858
3859 @lisp
3860 (define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
3861 (define s "Date 20020429 12am.")
3862 (regexp-substitute #f (string-match date-regex s)
3863 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
3864 @result{} "Date 04-29-2002 12am. (20020429)"
3865 @end lisp
3866 @end deffn
3867
3868
3869 @c begin (scm-doc-string "regex.scm" "regexp-substitute")
3870 @deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
3871 @cindex search and replace
3872 Write to @var{port} selected parts of matches of @var{regexp} in
3873 @var{target}. If @var{port} is @code{#f} then form a string from
3874 those parts and return that. @var{regexp} can be a string or a
3875 compiled regex.
3876
3877 This is similar to @code{regexp-substitute}, but allows global
3878 substitutions on @var{target}. Each @var{item} behaves as per
3879 @code{regexp-substitute}, with the following differences,
3880
3881 @itemize @bullet
3882 @item
3883 A function. Called as @code{(@var{item} match)} with the match
3884 structure for the @var{regexp} match, it should return a string to be
3885 written to @var{port}.
3886
3887 @item
3888 The symbol @samp{post}. This doesn't output anything, but instead
3889 causes @code{regexp-substitute/global} to recurse on the unmatched
3890 portion of @var{target}.
3891
3892 This @emph{must} be supplied to perform a global search and replace on
3893 @var{target}; without it @code{regexp-substitute/global} returns after
3894 a single match and output.
3895 @end itemize
3896
3897 For example, to collapse runs of tabs and spaces to a single hyphen
3898 each,
3899
3900 @example
3901 (regexp-substitute/global #f "[ \t]+" "this is the text"
3902 'pre "-" 'post)
3903 @result{} "this-is-the-text"
3904 @end example
3905
3906 Or using a function to reverse the letters in each word,
3907
3908 @example
3909 (regexp-substitute/global #f "[a-z]+" "to do and not-do"
3910 'pre (lambda (m) (string-reverse (match:substring m))) 'post)
3911 @result{} "ot od dna ton-od"
3912 @end example
3913
3914 Without the @code{post} symbol, just one regexp match is made. For
3915 example the following is the date example from
3916 @code{regexp-substitute} above, without the need for the separate
3917 @code{string-match} call.
3918
3919 @lisp
3920 (define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
3921 (define s "Date 20020429 12am.")
3922 (regexp-substitute/global #f date-regex s
3923 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
3924
3925 @result{} "Date 04-29-2002 12am. (20020429)"
3926 @end lisp
3927 @end deffn
3928
3929
3930 @node Match Structures
3931 @subsubsection Match Structures
3932
3933 @cindex match structures
3934
3935 A @dfn{match structure} is the object returned by @code{string-match} and
3936 @code{regexp-exec}. It describes which portion of a string, if any,
3937 matched the given regular expression. Match structures include: a
3938 reference to the string that was checked for matches; the starting and
3939 ending positions of the regexp match; and, if the regexp included any
3940 parenthesized subexpressions, the starting and ending positions of each
3941 submatch.
3942
3943 In each of the regexp match functions described below, the @code{match}
3944 argument must be a match structure returned by a previous call to
3945 @code{string-match} or @code{regexp-exec}. Most of these functions
3946 return some information about the original target string that was
3947 matched against a regular expression; we will call that string
3948 @var{target} for easy reference.
3949
3950 @c begin (scm-doc-string "regex.scm" "regexp-match?")
3951 @deffn {Scheme Procedure} regexp-match? obj
3952 Return @code{#t} if @var{obj} is a match structure returned by a
3953 previous call to @code{regexp-exec}, or @code{#f} otherwise.
3954 @end deffn
3955
3956 @c begin (scm-doc-string "regex.scm" "match:substring")
3957 @deffn {Scheme Procedure} match:substring match [n]
3958 Return the portion of @var{target} matched by subexpression number
3959 @var{n}. Submatch 0 (the default) represents the entire regexp match.
3960 If the regular expression as a whole matched, but the subexpression
3961 number @var{n} did not match, return @code{#f}.
3962 @end deffn
3963
3964 @lisp
3965 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
3966 (match:substring s)
3967 @result{} "2002"
3968
3969 ;; match starting at offset 6 in the string
3970 (match:substring
3971 (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
3972 @result{} "7654"
3973 @end lisp
3974
3975 @c begin (scm-doc-string "regex.scm" "match:start")
3976 @deffn {Scheme Procedure} match:start match [n]
3977 Return the starting position of submatch number @var{n}.
3978 @end deffn
3979
3980 In the following example, the result is 4, since the match starts at
3981 character index 4:
3982
3983 @lisp
3984 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
3985 (match:start s)
3986 @result{} 4
3987 @end lisp
3988
3989 @c begin (scm-doc-string "regex.scm" "match:end")
3990 @deffn {Scheme Procedure} match:end match [n]
3991 Return the ending position of submatch number @var{n}.
3992 @end deffn
3993
3994 In the following example, the result is 8, since the match runs between
3995 characters 4 and 8 (i.e. the ``2002'').
3996
3997 @lisp
3998 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
3999 (match:end s)
4000 @result{} 8
4001 @end lisp
4002
4003 @c begin (scm-doc-string "regex.scm" "match:prefix")
4004 @deffn {Scheme Procedure} match:prefix match
4005 Return the unmatched portion of @var{target} preceding the regexp match.
4006
4007 @lisp
4008 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4009 (match:prefix s)
4010 @result{} "blah"
4011 @end lisp
4012 @end deffn
4013
4014 @c begin (scm-doc-string "regex.scm" "match:suffix")
4015 @deffn {Scheme Procedure} match:suffix match
4016 Return the unmatched portion of @var{target} following the regexp match.
4017 @end deffn
4018
4019 @lisp
4020 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4021 (match:suffix s)
4022 @result{} "foo"
4023 @end lisp
4024
4025 @c begin (scm-doc-string "regex.scm" "match:count")
4026 @deffn {Scheme Procedure} match:count match
4027 Return the number of parenthesized subexpressions from @var{match}.
4028 Note that the entire regular expression match itself counts as a
4029 subexpression, and failed submatches are included in the count.
4030 @end deffn
4031
4032 @c begin (scm-doc-string "regex.scm" "match:string")
4033 @deffn {Scheme Procedure} match:string match
4034 Return the original @var{target} string.
4035 @end deffn
4036
4037 @lisp
4038 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4039 (match:string s)
4040 @result{} "blah2002foo"
4041 @end lisp
4042
4043
4044 @node Backslash Escapes
4045 @subsubsection Backslash Escapes
4046
4047 Sometimes you will want a regexp to match characters like @samp{*} or
4048 @samp{$} exactly. For example, to check whether a particular string
4049 represents a menu entry from an Info node, it would be useful to match
4050 it against a regexp like @samp{^* [^:]*::}. However, this won't work;
4051 because the asterisk is a metacharacter, it won't match the @samp{*} at
4052 the beginning of the string. In this case, we want to make the first
4053 asterisk un-magic.
4054
4055 You can do this by preceding the metacharacter with a backslash
4056 character @samp{\}. (This is also called @dfn{quoting} the
4057 metacharacter, and is known as a @dfn{backslash escape}.) When Guile
4058 sees a backslash in a regular expression, it considers the following
4059 glyph to be an ordinary character, no matter what special meaning it
4060 would ordinarily have. Therefore, we can make the above example work by
4061 changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
4062 the regular expression engine to match only a single asterisk in the
4063 target string.
4064
4065 Since the backslash is itself a metacharacter, you may force a regexp to
4066 match a backslash in the target string by preceding the backslash with
4067 itself. For example, to find variable references in a @TeX{} program,
4068 you might want to find occurrences of the string @samp{\let\} followed
4069 by any number of alphabetic characters. The regular expression
4070 @samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
4071 regexp each match a single backslash in the target string.
4072
4073 @c begin (scm-doc-string "regex.scm" "regexp-quote")
4074 @deffn {Scheme Procedure} regexp-quote str
4075 Quote each special character found in @var{str} with a backslash, and
4076 return the resulting string.
4077 @end deffn
4078
4079 @strong{Very important:} Using backslash escapes in Guile source code
4080 (as in Emacs Lisp or C) can be tricky, because the backslash character
4081 has special meaning for the Guile reader. For example, if Guile
4082 encounters the character sequence @samp{\n} in the middle of a string
4083 while processing Scheme code, it replaces those characters with a
4084 newline character. Similarly, the character sequence @samp{\t} is
4085 replaced by a horizontal tab. Several of these @dfn{escape sequences}
4086 are processed by the Guile reader before your code is executed.
4087 Unrecognized escape sequences are ignored: if the characters @samp{\*}
4088 appear in a string, they will be translated to the single character
4089 @samp{*}.
4090
4091 This translation is obviously undesirable for regular expressions, since
4092 we want to be able to include backslashes in a string in order to
4093 escape regexp metacharacters. Therefore, to make sure that a backslash
4094 is preserved in a string in your Guile program, you must use @emph{two}
4095 consecutive backslashes:
4096
4097 @lisp
4098 (define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
4099 @end lisp
4100
4101 The string in this example is preprocessed by the Guile reader before
4102 any code is executed. The resulting argument to @code{make-regexp} is
4103 the string @samp{^\* [^:]*}, which is what we really want.
4104
4105 This also means that in order to write a regular expression that matches
4106 a single backslash character, the regular expression string in the
4107 source code must include @emph{four} backslashes. Each consecutive pair
4108 of backslashes gets translated by the Guile reader to a single
4109 backslash, and the resulting double-backslash is interpreted by the
4110 regexp engine as matching a single backslash character. Hence:
4111
4112 @lisp
4113 (define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
4114 @end lisp
4115
4116 The reason for the unwieldiness of this syntax is historical. Both
4117 regular expression pattern matchers and Unix string processing systems
4118 have traditionally used backslashes with the special meanings
4119 described above. The POSIX regular expression specification and ANSI C
4120 standard both require these semantics. Attempting to abandon either
4121 convention would cause other kinds of compatibility problems, possibly
4122 more severe ones. Therefore, without extending the Scheme reader to
4123 support strings with different quoting conventions (an ungainly and
4124 confusing extension when implemented in other languages), we must adhere
4125 to this cumbersome escape syntax.
4126
4127
4128 @node Symbols
4129 @subsection Symbols
4130 @tpindex Symbols
4131
4132 Symbols in Scheme are widely used in three ways: as items of discrete
4133 data, as lookup keys for alists and hash tables, and to denote variable
4134 references.
4135
4136 A @dfn{symbol} is similar to a string in that it is defined by a
4137 sequence of characters. The sequence of characters is known as the
4138 symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4139 name doesn't include any characters that could be confused with other
4140 elements of Scheme syntax --- a symbol is written in a Scheme program by
4141 writing the sequence of characters that make up the name, @emph{without}
4142 any quotation marks or other special syntax. For example, the symbol
4143 whose name is ``multiply-by-2'' is written, simply:
4144
4145 @lisp
4146 multiply-by-2
4147 @end lisp
4148
4149 Notice how this differs from a @emph{string} with contents
4150 ``multiply-by-2'', which is written with double quotation marks, like
4151 this:
4152
4153 @lisp
4154 "multiply-by-2"
4155 @end lisp
4156
4157 Looking beyond how they are written, symbols are different from strings
4158 in two important respects.
4159
4160 The first important difference is uniqueness. If the same-looking
4161 string is read twice from two different places in a program, the result
4162 is two @emph{different} string objects whose contents just happen to be
4163 the same. If, on the other hand, the same-looking symbol is read twice
4164 from two different places in a program, the result is the @emph{same}
4165 symbol object both times.
4166
4167 Given two read symbols, you can use @code{eq?} to test whether they are
4168 the same (that is, have the same name). @code{eq?} is the most
4169 efficient comparison operator in Scheme, and comparing two symbols like
4170 this is as fast as comparing, for example, two numbers. Given two
4171 strings, on the other hand, you must use @code{equal?} or
4172 @code{string=?}, which are much slower comparison operators, to
4173 determine whether the strings have the same contents.
4174
4175 @lisp
4176 (define sym1 (quote hello))
4177 (define sym2 (quote hello))
4178 (eq? sym1 sym2) @result{} #t
4179
4180 (define str1 "hello")
4181 (define str2 "hello")
4182 (eq? str1 str2) @result{} #f
4183 (equal? str1 str2) @result{} #t
4184 @end lisp
4185
4186 The second important difference is that symbols, unlike strings, are not
4187 self-evaluating. This is why we need the @code{(quote @dots{})}s in the
4188 example above: @code{(quote hello)} evaluates to the symbol named
4189 "hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
4190 symbol named "hello" and evaluated as a variable reference @dots{} about
4191 which more below (@pxref{Symbol Variables}).
4192
4193 @menu
4194 * Symbol Data:: Symbols as discrete data.
4195 * Symbol Keys:: Symbols as lookup keys.
4196 * Symbol Variables:: Symbols as denoting variables.
4197 * Symbol Primitives:: Operations related to symbols.
4198 * Symbol Props:: Function slots and property lists.
4199 * Symbol Read Syntax:: Extended read syntax for symbols.
4200 * Symbol Uninterned:: Uninterned symbols.
4201 @end menu
4202
4203
4204 @node Symbol Data
4205 @subsubsection Symbols as Discrete Data
4206
4207 Numbers and symbols are similar to the extent that they both lend
4208 themselves to @code{eq?} comparison. But symbols are more descriptive
4209 than numbers, because a symbol's name can be used directly to describe
4210 the concept for which that symbol stands.
4211
4212 For example, imagine that you need to represent some colours in a
4213 computer program. Using numbers, you would have to choose arbitrarily
4214 some mapping between numbers and colours, and then take care to use that
4215 mapping consistently:
4216
4217 @lisp
4218 ;; 1=red, 2=green, 3=purple
4219
4220 (if (eq? (colour-of car) 1)
4221 ...)
4222 @end lisp
4223
4224 @noindent
4225 You can make the mapping more explicit and the code more readable by
4226 defining constants:
4227
4228 @lisp
4229 (define red 1)
4230 (define green 2)
4231 (define purple 3)
4232
4233 (if (eq? (colour-of car) red)
4234 ...)
4235 @end lisp
4236
4237 @noindent
4238 But the simplest and clearest approach is not to use numbers at all, but
4239 symbols whose names specify the colours that they refer to:
4240
4241 @lisp
4242 (if (eq? (colour-of car) 'red)
4243 ...)
4244 @end lisp
4245
4246 The descriptive advantages of symbols over numbers increase as the set
4247 of concepts that you want to describe grows. Suppose that a car object
4248 can have other properties as well, such as whether it has or uses:
4249
4250 @itemize @bullet
4251 @item
4252 automatic or manual transmission
4253 @item
4254 leaded or unleaded fuel
4255 @item
4256 power steering (or not).
4257 @end itemize
4258
4259 @noindent
4260 Then a car's combined property set could be naturally represented and
4261 manipulated as a list of symbols:
4262
4263 @lisp
4264 (properties-of car1)
4265 @result{}
4266 (red manual unleaded power-steering)
4267
4268 (if (memq 'power-steering (properties-of car1))
4269 (display "Unfit people can drive this car.\n")
4270 (display "You'll need strong arms to drive this car!\n"))
4271 @print{}
4272 Unfit people can drive this car.
4273 @end lisp
4274
4275 Remember, the fundamental property of symbols that we are relying on
4276 here is that an occurrence of @code{'red} in one part of a program is an
4277 @emph{indistinguishable} symbol from an occurrence of @code{'red} in
4278 another part of a program; this means that symbols can usefully be
4279 compared using @code{eq?}. At the same time, symbols have naturally
4280 descriptive names. This combination of efficiency and descriptive power
4281 makes them ideal for use as discrete data.
4282
4283
4284 @node Symbol Keys
4285 @subsubsection Symbols as Lookup Keys
4286
4287 Given their efficiency and descriptive power, it is natural to use
4288 symbols as the keys in an association list or hash table.
4289
4290 To illustrate this, consider a more structured representation of the car
4291 properties example from the preceding subsection. Rather than
4292 mixing all the properties up together in a flat list, we could use an
4293 association list like this:
4294
4295 @lisp
4296 (define car1-properties '((colour . red)
4297 (transmission . manual)
4298 (fuel . unleaded)
4299 (steering . power-assisted)))
4300 @end lisp
4301
4302 Notice how this structure is more explicit and extensible than the flat
4303 list. For example it makes clear that @code{manual} refers to the
4304 transmission rather than, say, the windows or the locking of the car.
4305 It also allows further properties to use the same symbols among their
4306 possible values without becoming ambiguous:
4307
4308 @lisp
4309 (define car1-properties '((colour . red)
4310 (transmission . manual)
4311 (fuel . unleaded)
4312 (steering . power-assisted)
4313 (seat-colour . red)
4314 (locking . manual)))
4315 @end lisp
4316
4317 With a representation like this, it is easy to use the efficient
4318 @code{assq-XXX} family of procedures (@pxref{Association Lists}) to
4319 extract or change individual pieces of information:
4320
4321 @lisp
4322 (assq-ref car1-properties 'fuel) @result{} unleaded
4323 (assq-ref car1-properties 'transmission) @result{} manual
4324
4325 (assq-set! car1-properties 'seat-colour 'black)
4326 @result{}
4327 ((colour . red)
4328 (transmission . manual)
4329 (fuel . unleaded)
4330 (steering . power-assisted)
4331 (seat-colour . black)
4332 (locking . manual)))
4333 @end lisp
4334
4335 Hash tables also have keys, and exactly the same arguments apply to the
4336 use of symbols in hash tables as in association lists. The hash value
4337 that Guile uses to decide where to add a symbol-keyed entry to a hash
4338 table can be obtained by calling the @code{symbol-hash} procedure:
4339
4340 @deffn {Scheme Procedure} symbol-hash symbol
4341 @deffnx {C Function} scm_symbol_hash (symbol)
4342 Return a hash value for @var{symbol}.
4343 @end deffn
4344
4345 See @ref{Hash Tables} for information about hash tables in general, and
4346 for why you might choose to use a hash table rather than an association
4347 list.
4348
4349
4350 @node Symbol Variables
4351 @subsubsection Symbols as Denoting Variables
4352
4353 When an unquoted symbol in a Scheme program is evaluated, it is
4354 interpreted as a variable reference, and the result of the evaluation is
4355 the appropriate variable's value.
4356
4357 For example, when the expression @code{(string-length "abcd")} is read
4358 and evaluated, the sequence of characters @code{string-length} is read
4359 as the symbol whose name is "string-length". This symbol is associated
4360 with a variable whose value is the procedure that implements string
4361 length calculation. Therefore evaluation of the @code{string-length}
4362 symbol results in that procedure.
4363
4364 The details of the connection between an unquoted symbol and the
4365 variable to which it refers are explained elsewhere. See @ref{Binding
4366 Constructs}, for how associations between symbols and variables are
4367 created, and @ref{Modules}, for how those associations are affected by
4368 Guile's module system.
4369
4370
4371 @node Symbol Primitives
4372 @subsubsection Operations Related to Symbols
4373
4374 Given any Scheme value, you can determine whether it is a symbol using
4375 the @code{symbol?} primitive:
4376
4377 @rnindex symbol?
4378 @deffn {Scheme Procedure} symbol? obj
4379 @deffnx {C Function} scm_symbol_p (obj)
4380 Return @code{#t} if @var{obj} is a symbol, otherwise return
4381 @code{#f}.
4382 @end deffn
4383
4384 @deftypefn {C Function} int scm_is_symbol (SCM val)
4385 Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
4386 @end deftypefn
4387
4388 Once you know that you have a symbol, you can obtain its name as a
4389 string by calling @code{symbol->string}. Note that Guile differs by
4390 default from R5RS on the details of @code{symbol->string} as regards
4391 case-sensitivity:
4392
4393 @rnindex symbol->string
4394 @deffn {Scheme Procedure} symbol->string s
4395 @deffnx {C Function} scm_symbol_to_string (s)
4396 Return the name of symbol @var{s} as a string. By default, Guile reads
4397 symbols case-sensitively, so the string returned will have the same case
4398 variation as the sequence of characters that caused @var{s} to be
4399 created.
4400
4401 If Guile is set to read symbols case-insensitively (as specified by
4402 R5RS), and @var{s} comes into being as part of a literal expression
4403 (@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
4404 by a call to the @code{read} or @code{string-ci->symbol} procedures,
4405 Guile converts any alphabetic characters in the symbol's name to
4406 lower case before creating the symbol object, so the string returned
4407 here will be in lower case.
4408
4409 If @var{s} was created by @code{string->symbol}, the case of characters
4410 in the string returned will be the same as that in the string that was
4411 passed to @code{string->symbol}, regardless of Guile's case-sensitivity
4412 setting at the time @var{s} was created.
4413
4414 It is an error to apply mutation procedures like @code{string-set!} to
4415 strings returned by this procedure.
4416 @end deffn
4417
4418 Most symbols are created by writing them literally in code. However it
4419 is also possible to create symbols programmatically using the following
4420 @code{string->symbol} and @code{string-ci->symbol} procedures:
4421
4422 @rnindex string->symbol
4423 @deffn {Scheme Procedure} string->symbol string
4424 @deffnx {C Function} scm_string_to_symbol (string)
4425 Return the symbol whose name is @var{string}. This procedure can create
4426 symbols with names containing special characters or letters in the
4427 non-standard case, but it is usually a bad idea to create such symbols
4428 because in some implementations of Scheme they cannot be read as
4429 themselves.
4430 @end deffn
4431
4432 @deffn {Scheme Procedure} string-ci->symbol str
4433 @deffnx {C Function} scm_string_ci_to_symbol (str)
4434 Return the symbol whose name is @var{str}. If Guile is currently
4435 reading symbols case-insensitively, @var{str} is converted to lowercase
4436 before the returned symbol is looked up or created.
4437 @end deffn
4438
4439 The following examples illustrate Guile's detailed behaviour as regards
4440 the case-sensitivity of symbols:
4441
4442 @lisp
4443 (read-enable 'case-insensitive) ; R5RS compliant behaviour
4444
4445 (symbol->string 'flying-fish) @result{} "flying-fish"
4446 (symbol->string 'Martin) @result{} "martin"
4447 (symbol->string
4448 (string->symbol "Malvina")) @result{} "Malvina"
4449
4450 (eq? 'mISSISSIppi 'mississippi) @result{} #t
4451 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
4452 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
4453 (eq? 'LolliPop
4454 (string->symbol (symbol->string 'LolliPop))) @result{} #t
4455 (string=? "K. Harper, M.D."
4456 (symbol->string
4457 (string->symbol "K. Harper, M.D."))) @result{} #t
4458
4459 (read-disable 'case-insensitive) ; Guile default behaviour
4460
4461 (symbol->string 'flying-fish) @result{} "flying-fish"
4462 (symbol->string 'Martin) @result{} "Martin"
4463 (symbol->string
4464 (string->symbol "Malvina")) @result{} "Malvina"
4465
4466 (eq? 'mISSISSIppi 'mississippi) @result{} #f
4467 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
4468 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
4469 (eq? 'LolliPop
4470 (string->symbol (symbol->string 'LolliPop))) @result{} #t
4471 (string=? "K. Harper, M.D."
4472 (symbol->string
4473 (string->symbol "K. Harper, M.D."))) @result{} #t
4474 @end lisp
4475
4476 From C, there are lower level functions that construct a Scheme symbol
4477 from a C string in the current locale encoding.
4478
4479 When you want to do more from C, you should convert between symbols
4480 and strings using @code{scm_symbol_to_string} and
4481 @code{scm_string_to_symbol} and work with the strings.
4482
4483 @deffn {C Function} scm_from_locale_symbol (const char *name)
4484 @deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
4485 Construct and return a Scheme symbol whose name is specified by
4486 @var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
4487 terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
4488 specified explicitly by @var{len}.
4489 @end deffn
4490
4491 Finally, some applications, especially those that generate new Scheme
4492 code dynamically, need to generate symbols for use in the generated
4493 code. The @code{gensym} primitive meets this need:
4494
4495 @deffn {Scheme Procedure} gensym [prefix]
4496 @deffnx {C Function} scm_gensym (prefix)
4497 Create a new symbol with a name constructed from a prefix and a counter
4498 value. The string @var{prefix} can be specified as an optional
4499 argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
4500 at each call. There is no provision for resetting the counter.
4501 @end deffn
4502
4503 The symbols generated by @code{gensym} are @emph{likely} to be unique,
4504 since their names begin with a space and it is only otherwise possible
4505 to generate such symbols if a programmer goes out of their way to do
4506 so. Uniqueness can be guaranteed by instead using uninterned symbols
4507 (@pxref{Symbol Uninterned}), though they can't be usefully written out
4508 and read back in.
4509
4510
4511 @node Symbol Props
4512 @subsubsection Function Slots and Property Lists
4513
4514 In traditional Lisp dialects, symbols are often understood as having
4515 three kinds of value at once:
4516
4517 @itemize @bullet
4518 @item
4519 a @dfn{variable} value, which is used when the symbol appears in
4520 code in a variable reference context
4521
4522 @item
4523 a @dfn{function} value, which is used when the symbol appears in
4524 code in a function name position (i.e. as the first element in an
4525 unquoted list)
4526
4527 @item
4528 a @dfn{property list} value, which is used when the symbol is given as
4529 the first argument to Lisp's @code{put} or @code{get} functions.
4530 @end itemize
4531
4532 Although Scheme (as one of its simplifications with respect to Lisp)
4533 does away with the distinction between variable and function namespaces,
4534 Guile currently retains some elements of the traditional structure in
4535 case they turn out to be useful when implementing translators for other
4536 languages, in particular Emacs Lisp.
4537
4538 Specifically, Guile symbols have two extra slots. for a symbol's
4539 property list, and for its ``function value.'' The following procedures
4540 are provided to access these slots.
4541
4542 @deffn {Scheme Procedure} symbol-fref symbol
4543 @deffnx {C Function} scm_symbol_fref (symbol)
4544 Return the contents of @var{symbol}'s @dfn{function slot}.
4545 @end deffn
4546
4547 @deffn {Scheme Procedure} symbol-fset! symbol value
4548 @deffnx {C Function} scm_symbol_fset_x (symbol, value)
4549 Set the contents of @var{symbol}'s function slot to @var{value}.
4550 @end deffn
4551
4552 @deffn {Scheme Procedure} symbol-pref symbol
4553 @deffnx {C Function} scm_symbol_pref (symbol)
4554 Return the @dfn{property list} currently associated with @var{symbol}.
4555 @end deffn
4556
4557 @deffn {Scheme Procedure} symbol-pset! symbol value
4558 @deffnx {C Function} scm_symbol_pset_x (symbol, value)
4559 Set @var{symbol}'s property list to @var{value}.
4560 @end deffn
4561
4562 @deffn {Scheme Procedure} symbol-property sym prop
4563 From @var{sym}'s property list, return the value for property
4564 @var{prop}. The assumption is that @var{sym}'s property list is an
4565 association list whose keys are distinguished from each other using
4566 @code{equal?}; @var{prop} should be one of the keys in that list. If
4567 the property list has no entry for @var{prop}, @code{symbol-property}
4568 returns @code{#f}.
4569 @end deffn
4570
4571 @deffn {Scheme Procedure} set-symbol-property! sym prop val
4572 In @var{sym}'s property list, set the value for property @var{prop} to
4573 @var{val}, or add a new entry for @var{prop}, with value @var{val}, if
4574 none already exists. For the structure of the property list, see
4575 @code{symbol-property}.
4576 @end deffn
4577
4578 @deffn {Scheme Procedure} symbol-property-remove! sym prop
4579 From @var{sym}'s property list, remove the entry for property
4580 @var{prop}, if there is one. For the structure of the property list,
4581 see @code{symbol-property}.
4582 @end deffn
4583
4584 Support for these extra slots may be removed in a future release, and it
4585 is probably better to avoid using them. (In release 1.6, Guile itself
4586 uses the property list slot sparingly, and the function slot not at
4587 all.) For a more modern and Schemely approach to properties, see
4588 @ref{Object Properties}.
4589
4590
4591 @node Symbol Read Syntax
4592 @subsubsection Extended Read Syntax for Symbols
4593
4594 The read syntax for a symbol is a sequence of letters, digits, and
4595 @dfn{extended alphabetic characters}, beginning with a character that
4596 cannot begin a number. In addition, the special cases of @code{+},
4597 @code{-}, and @code{...} are read as symbols even though numbers can
4598 begin with @code{+}, @code{-} or @code{.}.
4599
4600 Extended alphabetic characters may be used within identifiers as if
4601 they were letters. The set of extended alphabetic characters is:
4602
4603 @example
4604 ! $ % & * + - . / : < = > ? @@ ^ _ ~
4605 @end example
4606
4607 In addition to the standard read syntax defined above (which is taken
4608 from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
4609 Scheme})), Guile provides an extended symbol read syntax that allows the
4610 inclusion of unusual characters such as space characters, newlines and
4611 parentheses. If (for whatever reason) you need to write a symbol
4612 containing characters not mentioned above, you can do so as follows.
4613
4614 @itemize @bullet
4615 @item
4616 Begin the symbol with the characters @code{#@{},
4617
4618 @item
4619 write the characters of the symbol and
4620
4621 @item
4622 finish the symbol with the characters @code{@}#}.
4623 @end itemize
4624
4625 Here are a few examples of this form of read syntax. The first symbol
4626 needs to use extended syntax because it contains a space character, the
4627 second because it contains a line break, and the last because it looks
4628 like a number.
4629
4630 @lisp
4631 #@{foo bar@}#
4632
4633 #@{what
4634 ever@}#
4635
4636 #@{4242@}#
4637 @end lisp
4638
4639 Although Guile provides this extended read syntax for symbols,
4640 widespread usage of it is discouraged because it is not portable and not
4641 very readable.
4642
4643
4644 @node Symbol Uninterned
4645 @subsubsection Uninterned Symbols
4646
4647 What makes symbols useful is that they are automatically kept unique.
4648 There are no two symbols that are distinct objects but have the same
4649 name. But of course, there is no rule without exception. In addition
4650 to the normal symbols that have been discussed up to now, you can also
4651 create special @dfn{uninterned} symbols that behave slightly
4652 differently.
4653
4654 To understand what is different about them and why they might be useful,
4655 we look at how normal symbols are actually kept unique.
4656
4657 Whenever Guile wants to find the symbol with a specific name, for
4658 example during @code{read} or when executing @code{string->symbol}, it
4659 first looks into a table of all existing symbols to find out whether a
4660 symbol with the given name already exists. When this is the case, Guile
4661 just returns that symbol. When not, a new symbol with the name is
4662 created and entered into the table so that it can be found later.
4663
4664 Sometimes you might want to create a symbol that is guaranteed `fresh',
4665 i.e. a symbol that did not exist previously. You might also want to
4666 somehow guarantee that no one else will ever unintentionally stumble
4667 across your symbol in the future. These properties of a symbol are
4668 often needed when generating code during macro expansion. When
4669 introducing new temporary variables, you want to guarantee that they
4670 don't conflict with variables in other people's code.
4671
4672 The simplest way to arrange for this is to create a new symbol but
4673 not enter it into the global table of all symbols. That way, no one
4674 will ever get access to your symbol by chance. Symbols that are not in
4675 the table are called @dfn{uninterned}. Of course, symbols that
4676 @emph{are} in the table are called @dfn{interned}.
4677
4678 You create new uninterned symbols with the function @code{make-symbol}.
4679 You can test whether a symbol is interned or not with
4680 @code{symbol-interned?}.
4681
4682 Uninterned symbols break the rule that the name of a symbol uniquely
4683 identifies the symbol object. Because of this, they can not be written
4684 out and read back in like interned symbols. Currently, Guile has no
4685 support for reading uninterned symbols. Note that the function
4686 @code{gensym} does not return uninterned symbols for this reason.
4687
4688 @deffn {Scheme Procedure} make-symbol name
4689 @deffnx {C Function} scm_make_symbol (name)
4690 Return a new uninterned symbol with the name @var{name}. The returned
4691 symbol is guaranteed to be unique and future calls to
4692 @code{string->symbol} will not return it.
4693 @end deffn
4694
4695 @deffn {Scheme Procedure} symbol-interned? symbol
4696 @deffnx {C Function} scm_symbol_interned_p (symbol)
4697 Return @code{#t} if @var{symbol} is interned, otherwise return
4698 @code{#f}.
4699 @end deffn
4700
4701 For example:
4702
4703 @lisp
4704 (define foo-1 (string->symbol "foo"))
4705 (define foo-2 (string->symbol "foo"))
4706 (define foo-3 (make-symbol "foo"))
4707 (define foo-4 (make-symbol "foo"))
4708
4709 (eq? foo-1 foo-2)
4710 @result{} #t
4711 ; Two interned symbols with the same name are the same object,
4712
4713 (eq? foo-1 foo-3)
4714 @result{} #f
4715 ; but a call to make-symbol with the same name returns a
4716 ; distinct object.
4717
4718 (eq? foo-3 foo-4)
4719 @result{} #f
4720 ; A call to make-symbol always returns a new object, even for
4721 ; the same name.
4722
4723 foo-3
4724 @result{} #<uninterned-symbol foo 8085290>
4725 ; Uninterned symbols print differently from interned symbols,
4726
4727 (symbol? foo-3)
4728 @result{} #t
4729 ; but they are still symbols,
4730
4731 (symbol-interned? foo-3)
4732 @result{} #f
4733 ; just not interned.
4734 @end lisp
4735
4736
4737 @node Keywords
4738 @subsection Keywords
4739 @tpindex Keywords
4740
4741 Keywords are self-evaluating objects with a convenient read syntax that
4742 makes them easy to type.
4743
4744 Guile's keyword support conforms to R5RS, and adds a (switchable) read
4745 syntax extension to permit keywords to begin with @code{:} as well as
4746 @code{#:}.
4747
4748 @menu
4749 * Why Use Keywords?:: Motivation for keyword usage.
4750 * Coding With Keywords:: How to use keywords.
4751 * Keyword Read Syntax:: Read syntax for keywords.
4752 * Keyword Procedures:: Procedures for dealing with keywords.
4753 @end menu
4754
4755 @node Why Use Keywords?
4756 @subsubsection Why Use Keywords?
4757
4758 Keywords are useful in contexts where a program or procedure wants to be
4759 able to accept a large number of optional arguments without making its
4760 interface unmanageable.
4761
4762 To illustrate this, consider a hypothetical @code{make-window}
4763 procedure, which creates a new window on the screen for drawing into
4764 using some graphical toolkit. There are many parameters that the caller
4765 might like to specify, but which could also be sensibly defaulted, for
4766 example:
4767
4768 @itemize @bullet
4769 @item
4770 color depth -- Default: the color depth for the screen
4771
4772 @item
4773 background color -- Default: white
4774
4775 @item
4776 width -- Default: 600
4777
4778 @item
4779 height -- Default: 400
4780 @end itemize
4781
4782 If @code{make-window} did not use keywords, the caller would have to
4783 pass in a value for each possible argument, remembering the correct
4784 argument order and using a special value to indicate the default value
4785 for that argument:
4786
4787 @lisp
4788 (make-window 'default ;; Color depth
4789 'default ;; Background color
4790 800 ;; Width
4791 100 ;; Height
4792 @dots{}) ;; More make-window arguments
4793 @end lisp
4794
4795 With keywords, on the other hand, defaulted arguments are omitted, and
4796 non-default arguments are clearly tagged by the appropriate keyword. As
4797 a result, the invocation becomes much clearer:
4798
4799 @lisp
4800 (make-window #:width 800 #:height 100)
4801 @end lisp
4802
4803 On the other hand, for a simpler procedure with few arguments, the use
4804 of keywords would be a hindrance rather than a help. The primitive
4805 procedure @code{cons}, for example, would not be improved if it had to
4806 be invoked as
4807
4808 @lisp
4809 (cons #:car x #:cdr y)
4810 @end lisp
4811
4812 So the decision whether to use keywords or not is purely pragmatic: use
4813 them if they will clarify the procedure invocation at point of call.
4814
4815 @node Coding With Keywords
4816 @subsubsection Coding With Keywords
4817
4818 If a procedure wants to support keywords, it should take a rest argument
4819 and then use whatever means is convenient to extract keywords and their
4820 corresponding arguments from the contents of that rest argument.
4821
4822 The following example illustrates the principle: the code for
4823 @code{make-window} uses a helper procedure called
4824 @code{get-keyword-value} to extract individual keyword arguments from
4825 the rest argument.
4826
4827 @lisp
4828 (define (get-keyword-value args keyword default)
4829 (let ((kv (memq keyword args)))
4830 (if (and kv (>= (length kv) 2))
4831 (cadr kv)
4832 default)))
4833
4834 (define (make-window . args)
4835 (let ((depth (get-keyword-value args #:depth screen-depth))
4836 (bg (get-keyword-value args #:bg "white"))
4837 (width (get-keyword-value args #:width 800))
4838 (height (get-keyword-value args #:height 100))
4839 @dots{})
4840 @dots{}))
4841 @end lisp
4842
4843 But you don't need to write @code{get-keyword-value}. The @code{(ice-9
4844 optargs)} module provides a set of powerful macros that you can use to
4845 implement keyword-supporting procedures like this:
4846
4847 @lisp
4848 (use-modules (ice-9 optargs))
4849
4850 (define (make-window . args)
4851 (let-keywords args #f ((depth screen-depth)
4852 (bg "white")
4853 (width 800)
4854 (height 100))
4855 ...))
4856 @end lisp
4857
4858 @noindent
4859 Or, even more economically, like this:
4860
4861 @lisp
4862 (use-modules (ice-9 optargs))
4863
4864 (define* (make-window #:key (depth screen-depth)
4865 (bg "white")
4866 (width 800)
4867 (height 100))
4868 ...)
4869 @end lisp
4870
4871 For further details on @code{let-keywords}, @code{define*} and other
4872 facilities provided by the @code{(ice-9 optargs)} module, see
4873 @ref{Optional Arguments}.
4874
4875
4876 @node Keyword Read Syntax
4877 @subsubsection Keyword Read Syntax
4878
4879 Guile, by default, only recognizes a keyword syntax that is compatible
4880 with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
4881 same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
4882 external representation of the keyword named @code{NAME}. Keyword
4883 objects print using this syntax as well, so values containing keyword
4884 objects can be read back into Guile. When used in an expression,
4885 keywords are self-quoting objects.
4886
4887 If the @code{keyword} read option is set to @code{'prefix}, Guile also
4888 recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
4889 of the form @code{:NAME} are read as symbols, as required by R5RS.
4890
4891 To enable and disable the alternative non-R5RS keyword syntax, you use
4892 the @code{read-set!} procedure documented in @ref{User level options
4893 interfaces} and @ref{Reader options}.
4894
4895 @smalllisp
4896 (read-set! keywords 'prefix)
4897
4898 #:type
4899 @result{}
4900 #:type
4901
4902 :type
4903 @result{}
4904 #:type
4905
4906 (read-set! keywords #f)
4907
4908 #:type
4909 @result{}
4910 #:type
4911
4912 :type
4913 @print{}
4914 ERROR: In expression :type:
4915 ERROR: Unbound variable: :type
4916 ABORT: (unbound-variable)
4917 @end smalllisp
4918
4919 @node Keyword Procedures
4920 @subsubsection Keyword Procedures
4921
4922 @deffn {Scheme Procedure} keyword? obj
4923 @deffnx {C Function} scm_keyword_p (obj)
4924 Return @code{#t} if the argument @var{obj} is a keyword, else
4925 @code{#f}.
4926 @end deffn
4927
4928 @deffn {Scheme Procedure} keyword->symbol keyword
4929 @deffnx {C Function} scm_keyword_to_symbol (keyword)
4930 Return the symbol with the same name as @var{keyword}.
4931 @end deffn
4932
4933 @deffn {Scheme Procedure} symbol->keyword symbol
4934 @deffnx {C Function} scm_symbol_to_keyword (symbol)
4935 Return the keyword with the same name as @var{symbol}.
4936 @end deffn
4937
4938 @deftypefn {C Function} int scm_is_keyword (SCM obj)
4939 Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
4940 @end deftypefn
4941
4942 @deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
4943 @deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
4944 Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
4945 (@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
4946 (@var{str}, @var{len}))}, respectively.
4947 @end deftypefn
4948
4949 @node Other Types
4950 @subsection ``Functionality-Centric'' Data Types
4951
4952 Procedures and macros are documented in their own chapter: see
4953 @ref{Procedures and Macros}.
4954
4955 Variable objects are documented as part of the description of Guile's
4956 module system: see @ref{Variables}.
4957
4958 Asyncs, dynamic roots and fluids are described in the chapter on
4959 scheduling: see @ref{Scheduling}.
4960
4961 Hooks are documented in the chapter on general utility functions: see
4962 @ref{Hooks}.
4963
4964 Ports are described in the chapter on I/O: see @ref{Input and Output}.
4965
4966
4967 @c Local Variables:
4968 @c TeX-master: "guile.texi"
4969 @c End: