Merge commit 'ca5e0414e96886177d883a249edd957d2331db65'
[bpt/guile.git] / module / language / tree-il / cse.scm
1 ;;; Common Subexpression Elimination (CSE) on Tree-IL
2
3 ;; Copyright (C) 2011, 2012, 2013 Free Software Foundation, Inc.
4
5 ;;;; This library is free software; you can redistribute it and/or
6 ;;;; modify it under the terms of the GNU Lesser General Public
7 ;;;; License as published by the Free Software Foundation; either
8 ;;;; version 3 of the License, or (at your option) any later version.
9 ;;;;
10 ;;;; This library is distributed in the hope that it will be useful,
11 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 ;;;; Lesser General Public License for more details.
14 ;;;;
15 ;;;; You should have received a copy of the GNU Lesser General Public
16 ;;;; License along with this library; if not, write to the Free Software
17 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18
19 (define-module (language tree-il cse)
20 #:use-module (language tree-il)
21 #:use-module (language tree-il primitives)
22 #:use-module (language tree-il effects)
23 #:use-module (ice-9 vlist)
24 #:use-module (ice-9 match)
25 #:use-module (srfi srfi-1)
26 #:use-module (srfi srfi-9)
27 #:use-module (srfi srfi-11)
28 #:use-module (srfi srfi-26)
29 #:export (cse))
30
31 ;;;
32 ;;; This pass eliminates common subexpressions in Tree-IL. It works
33 ;;; best locally -- within a function -- so it is meant to be run after
34 ;;; partial evaluation, which usually inlines functions and so opens up
35 ;;; a bigger space for CSE to work.
36 ;;;
37 ;;; The algorithm traverses the tree of expressions, returning two
38 ;;; values: the newly rebuilt tree, and a "database". The database is
39 ;;; the set of expressions that will have been evaluated as part of
40 ;;; evaluating an expression. For example, in:
41 ;;;
42 ;;; (1- (+ (if a b c) (* x y)))
43 ;;;
44 ;;; We can say that when it comes time to evaluate (1- <>), that the
45 ;;; subexpressions +, x, y, and (* x y) must have been evaluated in
46 ;;; values context. We know that a was evaluated in test context, but
47 ;;; we don't know if it was true or false.
48 ;;;
49 ;;; The expressions in the database /dominate/ any subsequent
50 ;;; expression: FOO dominates BAR if evaluation of BAR implies that any
51 ;;; effects associated with FOO have already occured.
52 ;;;
53 ;;; When adding expressions to the database, we record the context in
54 ;;; which they are evaluated. We treat expressions in test context
55 ;;; specially: the presence of such an expression indicates that the
56 ;;; expression is true. In this way we can elide duplicate predicates.
57 ;;;
58 ;;; Duplicate predicates are not common in code that users write, but
59 ;;; can occur quite frequently in macro-generated code.
60 ;;;
61 ;;; For example:
62 ;;;
63 ;;; (and (foo? x) (foo-bar x))
64 ;;; => (if (and (struct? x) (eq? (struct-vtable x) <foo>))
65 ;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
66 ;;; (struct-ref x 1)
67 ;;; (throw 'not-a-foo))
68 ;;; #f))
69 ;;; => (if (and (struct? x) (eq? (struct-vtable x) <foo>))
70 ;;; (struct-ref x 1)
71 ;;; #f)
72 ;;;
73 ;;; A conditional bailout in effect context also has the effect of
74 ;;; adding predicates to the database:
75 ;;;
76 ;;; (begin (foo-bar x) (foo-baz x))
77 ;;; => (begin
78 ;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
79 ;;; (struct-ref x 1)
80 ;;; (throw 'not-a-foo))
81 ;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
82 ;;; (struct-ref x 2)
83 ;;; (throw 'not-a-foo)))
84 ;;; => (begin
85 ;;; (if (and (struct? x) (eq? (struct-vtable x) <foo>))
86 ;;; (struct-ref x 1)
87 ;;; (throw 'not-a-foo))
88 ;;; (struct-ref x 2))
89 ;;;
90 ;;; When removing code, we have to ensure that the semantics of the
91 ;;; source program and the residual program are the same. It's easy to
92 ;;; ensure that they have the same value, because those manipulations
93 ;;; are just algebraic, but the tricky thing is to ensure that the
94 ;;; expressions exhibit the same ordering of effects. For that, we use
95 ;;; the effects analysis of (language tree-il effects). We only
96 ;;; eliminate code if the duplicate code commutes with all of the
97 ;;; dominators on the path from the duplicate to the original.
98 ;;;
99 ;;; The implementation uses vhashes as the fundamental data structure.
100 ;;; This can be seen as a form of global value numbering. This
101 ;;; algorithm currently spends most of its time in vhash-assoc. I'm not
102 ;;; sure whether that is due to our bad hash function in Guile 2.0, an
103 ;;; inefficiency in vhashes, or what. Overall though the complexity
104 ;;; should be linear, or N log N -- whatever vhash-assoc's complexity
105 ;;; is. Walking the dominators is nonlinear, but that only happens when
106 ;;; we've actually found a common subexpression so that should be OK.
107 ;;;
108
109 ;; Logging helpers, as in peval.
110 ;;
111 (define-syntax *logging* (identifier-syntax #f))
112 ;; (define %logging #f)
113 ;; (define-syntax *logging* (identifier-syntax %logging))
114 (define-syntax log
115 (syntax-rules (quote)
116 ((log 'event arg ...)
117 (if (and *logging*
118 (or (eq? *logging* #t)
119 (memq 'event *logging*)))
120 (log* 'event arg ...)))))
121 (define (log* event . args)
122 (let ((pp (module-ref (resolve-interface '(ice-9 pretty-print))
123 'pretty-print)))
124 (pp `(log ,event . ,args))
125 (newline)
126 (values)))
127
128 ;; A pre-pass on the source program to determine the set of assigned
129 ;; lexicals.
130 ;;
131 (define* (build-assigned-var-table exp #:optional (table vlist-null))
132 (tree-il-fold
133 (lambda (exp res)
134 (match exp
135 (($ <lexical-set> src name gensym exp)
136 (vhash-consq gensym #t res))
137 (_ res)))
138 (lambda (exp res) res)
139 table exp))
140
141 (define (boolean-valued-primitive? primitive)
142 (or (negate-primitive primitive)
143 (eq? primitive 'not)
144 (let ((chars (symbol->string primitive)))
145 (eqv? (string-ref chars (1- (string-length chars)))
146 #\?))))
147
148 (define (boolean-valued-expression? x ctx)
149 (match x
150 (($ <primcall> _ (? boolean-valued-primitive?)) #t)
151 (($ <const> _ (? boolean?)) #t)
152 (_ (eq? ctx 'test))))
153
154 (define (singly-valued-expression? x ctx)
155 (match x
156 (($ <const>) #t)
157 (($ <lexical-ref>) #t)
158 (($ <void>) #t)
159 (($ <lexical-ref>) #t)
160 (($ <primitive-ref>) #t)
161 (($ <module-ref>) #t)
162 (($ <toplevel-ref>) #t)
163 (($ <primcall> _ (? singly-valued-primitive?)) #t)
164 (($ <primcall> _ 'values (val)) #t)
165 (($ <lambda>) #t)
166 (_ (eq? ctx 'value))))
167
168 (define* (cse exp)
169 "Eliminate common subexpressions in EXP."
170
171 (define assigned-lexical?
172 (let ((table (build-assigned-var-table exp)))
173 (lambda (sym)
174 (vhash-assq sym table))))
175
176 (define %compute-effects
177 (make-effects-analyzer assigned-lexical?))
178
179 (define (negate exp ctx)
180 (match exp
181 (($ <const> src x)
182 (make-const src (not x)))
183 (($ <void> src)
184 (make-const src #f))
185 (($ <conditional> src test consequent alternate)
186 (make-conditional src test (negate consequent ctx) (negate alternate ctx)))
187 (($ <primcall> _ 'not
188 ((and x (? (cut boolean-valued-expression? <> ctx)))))
189 x)
190 (($ <primcall> src (and pred (? negate-primitive)) args)
191 (make-primcall src (negate-primitive pred) args))
192 (_
193 (make-primcall #f 'not (list exp)))))
194
195
196 (define (hasher n)
197 (lambda (x size) (modulo n size)))
198
199 (define (add-to-db exp effects ctx db)
200 (let ((v (vector exp effects ctx))
201 (h (tree-il-hash exp)))
202 (vhash-cons v h db (hasher h))))
203
204 (define (control-flow-boundary db)
205 (let ((h (hashq 'lambda most-positive-fixnum)))
206 (vhash-cons 'lambda h db (hasher h))))
207
208 (define (find-dominating-expression exp effects ctx db)
209 (define (entry-matches? v1 v2)
210 (match (if (vector? v1) v1 v2)
211 (#(exp* effects* ctx*)
212 (and (tree-il=? exp exp*)
213 (or (not ctx) (eq? ctx* ctx))))
214 (_ #f)))
215
216 (let ((len (vlist-length db))
217 (h (tree-il-hash exp)))
218 (and (vhash-assoc #t db entry-matches? (hasher h))
219 (let lp ((n 0))
220 (and (< n len)
221 (match (vlist-ref db n)
222 (('lambda . h*)
223 ;; We assume that lambdas can escape and thus be
224 ;; called from anywhere. Thus code inside a lambda
225 ;; only has a dominating expression if it does not
226 ;; depend on any effects.
227 (and (not (depends-on-effects? effects &all-effects))
228 (lp (1+ n))))
229 ((#(exp* effects* ctx*) . h*)
230 (log 'walk (unparse-tree-il exp) effects
231 (unparse-tree-il exp*) effects* ctx*)
232 (or (and (= h h*)
233 (or (not ctx) (eq? ctx ctx*))
234 (tree-il=? exp exp*))
235 (and (effects-commute? effects effects*)
236 (lp (1+ n)))))))))))
237
238 ;; Return #t if EXP is dominated by an instance of itself. In that
239 ;; case, we can exclude *type-check* effects, because the first
240 ;; expression already caused them if needed.
241 (define (has-dominating-effect? exp effects db)
242 (or (constant? effects)
243 (and
244 (effect-free?
245 (exclude-effects effects
246 (logior &zero-values
247 &allocation
248 &type-check)))
249 (find-dominating-expression exp effects #f db))))
250
251 (define (find-dominating-test exp effects db)
252 (and
253 (effect-free?
254 (exclude-effects effects (logior &allocation
255 &type-check)))
256 (match exp
257 (($ <const> src val)
258 (if (boolean? val)
259 exp
260 (make-const src (not (not val)))))
261 ;; For (not FOO), try to prove FOO, then negate the result.
262 (($ <primcall> src 'not (exp*))
263 (match (find-dominating-test exp* effects db)
264 (($ <const> _ val)
265 (log 'inferring exp (not val))
266 (make-const src (not val)))
267 (_
268 #f)))
269 (_
270 (cond
271 ((find-dominating-expression exp effects 'test db)
272 ;; We have an EXP fact, so we infer #t.
273 (log 'inferring exp #t)
274 (make-const (tree-il-src exp) #t))
275 ((find-dominating-expression (negate exp 'test) effects 'test db)
276 ;; We have a (not EXP) fact, so we infer #f.
277 (log 'inferring exp #f)
278 (make-const (tree-il-src exp) #f))
279 (else
280 ;; Otherwise we don't know.
281 #f))))))
282
283 (define (add-to-env exp name sym db env)
284 (let* ((v (vector exp name sym (vlist-length db)))
285 (h (tree-il-hash exp)))
286 (vhash-cons v h env (hasher h))))
287
288 (define (augment-env env names syms exps db)
289 (if (null? names)
290 env
291 (let ((name (car names)) (sym (car syms)) (exp (car exps)))
292 (augment-env (if (or (assigned-lexical? sym)
293 (lexical-ref? exp))
294 env
295 (add-to-env exp name sym db env))
296 (cdr names) (cdr syms) (cdr exps) db))))
297
298 (define (find-dominating-lexical exp effects env db)
299 (define (entry-matches? v1 v2)
300 (match (if (vector? v1) v1 v2)
301 (#(exp* name sym db)
302 (tree-il=? exp exp*))
303 (_ #f)))
304
305 (define (unroll db base n)
306 (or (zero? n)
307 (match (vlist-ref db base)
308 (('lambda . h*)
309 ;; See note in find-dominating-expression.
310 (and (not (depends-on-effects? effects &all-effects))
311 (unroll db (1+ base) (1- n))))
312 ((#(exp* effects* ctx*) . h*)
313 (and (effects-commute? effects effects*)
314 (unroll db (1+ base) (1- n)))))))
315
316 (let ((h (tree-il-hash exp)))
317 (and (effect-free? (exclude-effects effects &type-check))
318 (vhash-assoc exp env entry-matches? (hasher h))
319 (let ((env-len (vlist-length env))
320 (db-len (vlist-length db)))
321 (let lp ((n 0) (m 0))
322 (and (< n env-len)
323 (match (vlist-ref env n)
324 ((#(exp* name sym db-len*) . h*)
325 (let ((niter (- (- db-len db-len*) m)))
326 (and (unroll db m niter)
327 (if (and (= h h*) (tree-il=? exp* exp))
328 (make-lexical-ref (tree-il-src exp) name sym)
329 (lp (1+ n) (- db-len db-len*)))))))))))))
330
331 (define (lookup-lexical sym env)
332 (let ((env-len (vlist-length env)))
333 (let lp ((n 0))
334 (and (< n env-len)
335 (match (vlist-ref env n)
336 ((#(exp _ sym* _) . _)
337 (if (eq? sym sym*)
338 exp
339 (lp (1+ n)))))))))
340
341 (define (intersection db+ db-)
342 (vhash-fold-right
343 (lambda (k h out)
344 (if (vhash-assoc k db- equal? (hasher h))
345 (vhash-cons k h out (hasher h))
346 out))
347 vlist-null
348 db+))
349
350 (define (concat db1 db2)
351 (vhash-fold-right (lambda (k h tail)
352 (vhash-cons k h tail (hasher h)))
353 db2 db1))
354
355 (let visit ((exp exp)
356 (db vlist-null) ; dominating expressions: #(exp effects ctx) -> hash
357 (env vlist-null) ; named expressions: #(exp name sym db) -> hash
358 (ctx 'values)) ; test, effect, value, or values
359
360 (define (parallel-visit exps db env ctx)
361 (let lp ((in exps) (out '()) (db* vlist-null))
362 (if (pair? in)
363 (call-with-values (lambda () (visit (car in) db env ctx))
364 (lambda (x db**)
365 (lp (cdr in) (cons x out) (concat db** db*))))
366 (values (reverse out) db*))))
367
368 (define (compute-effects exp)
369 (%compute-effects exp (lambda (sym) (lookup-lexical sym env))))
370
371 (define (bailout? exp)
372 (causes-effects? (compute-effects exp) &definite-bailout))
373
374 (define (return exp db*)
375 (let ((effects (compute-effects exp)))
376 (cond
377 ((and (eq? ctx 'effect)
378 (not (lambda-case? exp))
379 (or (effect-free?
380 (exclude-effects effects
381 (logior &zero-values
382 &allocation)))
383 (has-dominating-effect? exp effects db)))
384 (cond
385 ((void? exp)
386 (values exp db*))
387 (else
388 (log 'elide ctx (unparse-tree-il exp))
389 (values (make-void #f) db*))))
390 ((and (boolean-valued-expression? exp ctx)
391 (find-dominating-test exp effects db))
392 => (lambda (exp)
393 (log 'propagate-test ctx (unparse-tree-il exp))
394 (values exp db*)))
395 ((and (singly-valued-expression? exp ctx)
396 (find-dominating-lexical exp effects env db))
397 => (lambda (exp)
398 (log 'propagate-value ctx (unparse-tree-il exp))
399 (values exp db*)))
400 ((and (constant? effects) (memq ctx '(value values)))
401 ;; Adds nothing to the db.
402 (values exp db*))
403 (else
404 (log 'return ctx effects (unparse-tree-il exp) db*)
405 (values exp
406 (add-to-db exp effects ctx db*))))))
407
408 (log 'visit ctx (unparse-tree-il exp) db env)
409
410 (match exp
411 (($ <const>)
412 (return exp vlist-null))
413 (($ <void>)
414 (return exp vlist-null))
415 (($ <lexical-ref> _ _ gensym)
416 (return exp vlist-null))
417 (($ <lexical-set> src name gensym exp)
418 (let*-values (((exp db*) (visit exp db env 'value)))
419 (return (make-lexical-set src name gensym exp)
420 db*)))
421 (($ <let> src names gensyms vals body)
422 (let*-values (((vals db*) (parallel-visit vals db env 'value))
423 ((body db**) (visit body (concat db* db)
424 (augment-env env names gensyms vals db)
425 ctx)))
426 (return (make-let src names gensyms vals body)
427 (concat db** db*))))
428 (($ <letrec> src in-order? names gensyms vals body)
429 (let*-values (((vals db*) (parallel-visit vals db env 'value))
430 ((body db**) (visit body (concat db* db)
431 (augment-env env names gensyms vals db)
432 ctx)))
433 (return (make-letrec src in-order? names gensyms vals body)
434 (concat db** db*))))
435 (($ <fix> src names gensyms vals body)
436 (let*-values (((vals db*) (parallel-visit vals db env 'value))
437 ((body db**) (visit body (concat db* db) env ctx)))
438 (return (make-fix src names gensyms vals body)
439 (concat db** db*))))
440 (($ <let-values> src producer consumer)
441 (let*-values (((producer db*) (visit producer db env 'values))
442 ((consumer db**) (visit consumer (concat db* db) env ctx)))
443 (return (make-let-values src producer consumer)
444 (concat db** db*))))
445 (($ <toplevel-ref>)
446 (return exp vlist-null))
447 (($ <module-ref>)
448 (return exp vlist-null))
449 (($ <module-set> src mod name public? exp)
450 (let*-values (((exp db*) (visit exp db env 'value)))
451 (return (make-module-set src mod name public? exp)
452 db*)))
453 (($ <toplevel-define> src name exp)
454 (let*-values (((exp db*) (visit exp db env 'value)))
455 (return (make-toplevel-define src name exp)
456 db*)))
457 (($ <toplevel-set> src name exp)
458 (let*-values (((exp db*) (visit exp db env 'value)))
459 (return (make-toplevel-set src name exp)
460 db*)))
461 (($ <primitive-ref>)
462 (return exp vlist-null))
463 (($ <conditional> src test consequent alternate)
464 (let*-values
465 (((test db+) (visit test db env 'test))
466 ((converse db-) (visit (negate test 'test) db env 'test))
467 ((consequent db++) (visit consequent (concat db+ db) env ctx))
468 ((alternate db--) (visit alternate (concat db- db) env ctx)))
469 (match (make-conditional src test consequent alternate)
470 (($ <conditional> _ ($ <const> _ exp))
471 (if exp
472 (return consequent (concat db++ db+))
473 (return alternate (concat db-- db-))))
474 ;; (if FOO A A) => (begin FOO A)
475 (($ <conditional> src _
476 ($ <const> _ a) ($ <const> _ (? (cut equal? a <>))))
477 (visit (make-seq #f test (make-const #f a))
478 db env ctx))
479 ;; (if FOO #t #f) => FOO for boolean-valued FOO.
480 (($ <conditional> src
481 (? (cut boolean-valued-expression? <> ctx))
482 ($ <const> _ #t) ($ <const> _ #f))
483 (return test db+))
484 ;; (if FOO #f #t) => (not FOO)
485 (($ <conditional> src _ ($ <const> _ #f) ($ <const> _ #t))
486 (visit (negate test ctx) db env ctx))
487
488 ;; Allow "and"-like conditions to accumulate in test context.
489 ((and c ($ <conditional> _ _ _ ($ <const> _ #f)))
490 (return c (if (eq? ctx 'test) (concat db++ db+) vlist-null)))
491 ((and c ($ <conditional> _ _ ($ <const> _ #f) _))
492 (return c (if (eq? ctx 'test) (concat db-- db-) vlist-null)))
493
494 ;; Conditional bailouts turn expressions into predicates.
495 ((and c ($ <conditional> _ _ _ (? bailout?)))
496 (return c (concat db++ db+)))
497 ((and c ($ <conditional> _ _ (? bailout?) _))
498 (return c (concat db-- db-)))
499
500 (c
501 (return c (intersection (concat db++ db+) (concat db-- db-)))))))
502 (($ <primcall> src primitive args)
503 (let*-values (((args db*) (parallel-visit args db env 'value)))
504 (return (make-primcall src primitive args) db*)))
505 (($ <call> src proc args)
506 (let*-values (((proc db*) (visit proc db env 'value))
507 ((args db**) (parallel-visit args db env 'value)))
508 (return (make-call src proc args)
509 (concat db** db*))))
510 (($ <lambda> src meta body)
511 (let*-values (((body _) (if body
512 (visit body (control-flow-boundary db)
513 env 'values)
514 (values #f #f))))
515 (return (make-lambda src meta body)
516 vlist-null)))
517 (($ <lambda-case> src req opt rest kw inits gensyms body alt)
518 (let*-values (((inits _) (parallel-visit inits db env 'value))
519 ((body db*) (visit body db env ctx))
520 ((alt _) (if alt
521 (visit alt db env ctx)
522 (values #f #f))))
523 (return (make-lambda-case src req opt rest kw inits gensyms body alt)
524 (if alt vlist-null db*))))
525 (($ <seq> src head tail)
526 (let*-values (((head db*) (visit head db env 'effect)))
527 (cond
528 ((void? head)
529 (visit tail db env ctx))
530 (else
531 (let*-values (((tail db**) (visit tail (concat db* db) env ctx)))
532 (values (make-seq src head tail)
533 (concat db** db*)))))))
534 (($ <prompt> src escape-only? tag body handler)
535 (let*-values (((tag db*) (visit tag db env 'value))
536 ((body _) (visit body (concat db* db) env
537 (if escape-only? ctx 'value)))
538 ((handler _) (visit handler (concat db* db) env 'value)))
539 (return (make-prompt src escape-only? tag body handler)
540 db*)))
541 (($ <abort> src tag args tail)
542 (let*-values (((tag db*) (visit tag db env 'value))
543 ((args db**) (parallel-visit args db env 'value))
544 ((tail db***) (visit tail db env 'value)))
545 (return (make-abort src tag args tail)
546 (concat db* (concat db** db***))))))))