Compare source/compiled file timestamps with nano-second resolution.
[bpt/guile.git] / module / ice-9 / boot-9.scm
1 ;;; -*- mode: scheme; coding: utf-8; -*-
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 3 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;; Before compiling, make sure any symbols are resolved in the (guile)
37 ;; module, the primary location of those symbols, rather than in
38 ;; (guile-user), the default module that we compile in.
39
40 (eval-when (compile)
41 (set-current-module (resolve-module '(guile))))
42
43 \f
44
45 ;;; {Error handling}
46 ;;;
47
48 ;; Define delimited continuation operators, and implement catch and throw in
49 ;; terms of them.
50
51 (define make-prompt-tag
52 (lambda* (#:optional (stem "prompt"))
53 (gensym stem)))
54
55 (define default-prompt-tag
56 ;; not sure if we should expose this to the user as a fluid
57 (let ((%default-prompt-tag (make-prompt-tag)))
58 (lambda ()
59 %default-prompt-tag)))
60
61 (define (call-with-prompt tag thunk handler)
62 (@prompt tag (thunk) handler))
63 (define (abort-to-prompt tag . args)
64 (@abort tag args))
65
66
67 ;; Define catch and with-throw-handler, using some common helper routines and a
68 ;; shared fluid. Hide the helpers in a lexical contour.
69
70 (define with-throw-handler #f)
71 (let ()
72 ;; Ideally we'd like to be able to give these default values for all threads,
73 ;; even threads not created by Guile; but alack, that does not currently seem
74 ;; possible. So wrap the getters in thunks.
75 (define %running-exception-handlers (make-fluid))
76 (define %exception-handler (make-fluid))
77
78 (define (running-exception-handlers)
79 (or (fluid-ref %running-exception-handlers)
80 (begin
81 (fluid-set! %running-exception-handlers '())
82 '())))
83 (define (exception-handler)
84 (or (fluid-ref %exception-handler)
85 (begin
86 (fluid-set! %exception-handler default-exception-handler)
87 default-exception-handler)))
88
89 (define (default-exception-handler k . args)
90 (cond
91 ((eq? k 'quit)
92 (primitive-exit (cond
93 ((not (pair? args)) 0)
94 ((integer? (car args)) (car args))
95 ((not (car args)) 1)
96 (else 0))))
97 (else
98 (format (current-error-port) "guile: uncaught throw to ~a: ~a\n" k args)
99 (primitive-exit 1))))
100
101 (define (default-throw-handler prompt-tag catch-k)
102 (let ((prev (exception-handler)))
103 (lambda (thrown-k . args)
104 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
105 (apply abort-to-prompt prompt-tag thrown-k args)
106 (apply prev thrown-k args)))))
107
108 (define (custom-throw-handler prompt-tag catch-k pre)
109 (let ((prev (exception-handler)))
110 (lambda (thrown-k . args)
111 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
112 (let ((running (running-exception-handlers)))
113 (with-fluids ((%running-exception-handlers (cons pre running)))
114 (if (not (memq pre running))
115 (apply pre thrown-k args))
116 ;; fall through
117 (if prompt-tag
118 (apply abort-to-prompt prompt-tag thrown-k args)
119 (apply prev thrown-k args))))
120 (apply prev thrown-k args)))))
121
122 (set! catch
123 (lambda* (k thunk handler #:optional pre-unwind-handler)
124 "Invoke @var{thunk} in the dynamic context of @var{handler} for
125 exceptions matching @var{key}. If thunk throws to the symbol
126 @var{key}, then @var{handler} is invoked this way:
127 @lisp
128 (handler key args ...)
129 @end lisp
130
131 @var{key} is a symbol or @code{#t}.
132
133 @var{thunk} takes no arguments. If @var{thunk} returns
134 normally, that is the return value of @code{catch}.
135
136 Handler is invoked outside the scope of its own @code{catch}.
137 If @var{handler} again throws to the same key, a new handler
138 from further up the call chain is invoked.
139
140 If the key is @code{#t}, then a throw to @emph{any} symbol will
141 match this call to @code{catch}.
142
143 If a @var{pre-unwind-handler} is given and @var{thunk} throws
144 an exception that matches @var{key}, Guile calls the
145 @var{pre-unwind-handler} before unwinding the dynamic state and
146 invoking the main @var{handler}. @var{pre-unwind-handler} should
147 be a procedure with the same signature as @var{handler}, that
148 is @code{(lambda (key . args))}. It is typically used to save
149 the stack at the point where the exception occurred, but can also
150 query other parts of the dynamic state at that point, such as
151 fluid values.
152
153 A @var{pre-unwind-handler} can exit either normally or non-locally.
154 If it exits normally, Guile unwinds the stack and dynamic context
155 and then calls the normal (third argument) handler. If it exits
156 non-locally, that exit determines the continuation."
157 (if (not (or (symbol? k) (eqv? k #t)))
158 (scm-error "catch" 'wrong-type-arg
159 "Wrong type argument in position ~a: ~a"
160 (list 1 k) (list k)))
161 (let ((tag (make-prompt-tag "catch")))
162 (call-with-prompt
163 tag
164 (lambda ()
165 (with-fluids
166 ((%exception-handler
167 (if pre-unwind-handler
168 (custom-throw-handler tag k pre-unwind-handler)
169 (default-throw-handler tag k))))
170 (thunk)))
171 (lambda (cont k . args)
172 (apply handler k args))))))
173
174 (set! with-throw-handler
175 (lambda (k thunk pre-unwind-handler)
176 "Add @var{handler} to the dynamic context as a throw handler
177 for key @var{key}, then invoke @var{thunk}."
178 (if (not (or (symbol? k) (eqv? k #t)))
179 (scm-error "with-throw-handler" 'wrong-type-arg
180 "Wrong type argument in position ~a: ~a"
181 (list 1 k) (list k)))
182 (with-fluids ((%exception-handler
183 (custom-throw-handler #f k pre-unwind-handler)))
184 (thunk))))
185
186 (set! throw
187 (lambda (key . args)
188 "Invoke the catch form matching @var{key}, passing @var{args} to the
189 @var{handler}.
190
191 @var{key} is a symbol. It will match catches of the same symbol or of @code{#t}.
192
193 If there is no handler at all, Guile prints an error and then exits."
194 (if (not (symbol? key))
195 ((exception-handler) 'wrong-type-arg "throw"
196 "Wrong type argument in position ~a: ~a" (list 1 key) (list key))
197 (apply (exception-handler) key args)))))
198
199
200 \f
201
202 ;;; {R4RS compliance}
203 ;;;
204
205 (primitive-load-path "ice-9/r4rs")
206
207 \f
208
209 ;;; {Simple Debugging Tools}
210 ;;;
211
212 ;; peek takes any number of arguments, writes them to the
213 ;; current ouput port, and returns the last argument.
214 ;; It is handy to wrap around an expression to look at
215 ;; a value each time is evaluated, e.g.:
216 ;;
217 ;; (+ 10 (troublesome-fn))
218 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
219 ;;
220
221 (define (peek . stuff)
222 (newline)
223 (display ";;; ")
224 (write stuff)
225 (newline)
226 (car (last-pair stuff)))
227
228 (define pk peek)
229
230
231 (define (warn . stuff)
232 (with-output-to-port (current-error-port)
233 (lambda ()
234 (newline)
235 (display ";;; WARNING ")
236 (display stuff)
237 (newline)
238 (car (last-pair stuff)))))
239
240 \f
241
242 ;;; {Features}
243 ;;;
244
245 (define (provide sym)
246 (if (not (memq sym *features*))
247 (set! *features* (cons sym *features*))))
248
249 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
250 ;; provided? also checks to see if the module is available. We should do that
251 ;; too, but don't.
252
253 (define (provided? feature)
254 (and (memq feature *features*) #t))
255
256 \f
257
258 ;;; {Structs}
259 ;;;
260
261 (define (make-struct/no-tail vtable . args)
262 (apply make-struct vtable 0 args))
263
264 \f
265
266 ;;; {and-map and or-map}
267 ;;;
268 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
269 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
270 ;;;
271
272 ;; and-map f l
273 ;;
274 ;; Apply f to successive elements of l until exhaustion or f returns #f.
275 ;; If returning early, return #f. Otherwise, return the last value returned
276 ;; by f. If f has never been called because l is empty, return #t.
277 ;;
278 (define (and-map f lst)
279 (let loop ((result #t)
280 (l lst))
281 (and result
282 (or (and (null? l)
283 result)
284 (loop (f (car l)) (cdr l))))))
285
286 ;; or-map f l
287 ;;
288 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
289 ;; If returning early, return the return value of f.
290 ;;
291 (define (or-map f lst)
292 (let loop ((result #f)
293 (l lst))
294 (or result
295 (and (not (null? l))
296 (loop (f (car l)) (cdr l))))))
297
298 \f
299
300 ;; let format alias simple-format until the more complete version is loaded
301
302 (define format simple-format)
303
304 ;; this is scheme wrapping the C code so the final pred call is a tail call,
305 ;; per SRFI-13 spec
306 (define string-any
307 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
308 (if (and (procedure? char_pred)
309 (> end start)
310 (<= end (string-length s))) ;; let c-code handle range error
311 (or (string-any-c-code char_pred s start (1- end))
312 (char_pred (string-ref s (1- end))))
313 (string-any-c-code char_pred s start end))))
314
315 ;; this is scheme wrapping the C code so the final pred call is a tail call,
316 ;; per SRFI-13 spec
317 (define string-every
318 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
319 (if (and (procedure? char_pred)
320 (> end start)
321 (<= end (string-length s))) ;; let c-code handle range error
322 (and (string-every-c-code char_pred s start (1- end))
323 (char_pred (string-ref s (1- end))))
324 (string-every-c-code char_pred s start end))))
325
326 ;; A variant of string-fill! that we keep for compatability
327 ;;
328 (define (substring-fill! str start end fill)
329 (string-fill! str fill start end))
330
331 \f
332
333 ;; Define a minimal stub of the module API for psyntax, before modules
334 ;; have booted.
335 (define (module-name x)
336 '(guile))
337 (define (module-define! module sym val)
338 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
339 (if v
340 (variable-set! v val)
341 (hashq-set! (%get-pre-modules-obarray) sym
342 (make-variable val)))))
343 (define (module-ref module sym)
344 (let ((v (module-variable module sym)))
345 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
346 (define (resolve-module . args)
347 #f)
348
349 ;; API provided by psyntax
350 (define syntax-violation #f)
351 (define datum->syntax #f)
352 (define syntax->datum #f)
353 (define syntax-source #f)
354 (define identifier? #f)
355 (define generate-temporaries #f)
356 (define bound-identifier=? #f)
357 (define free-identifier=? #f)
358
359 ;; $sc-dispatch is an implementation detail of psyntax. It is used by
360 ;; expanded macros, to dispatch an input against a set of patterns.
361 (define $sc-dispatch #f)
362
363 ;; Load it up!
364 (primitive-load-path "ice-9/psyntax-pp")
365 ;; The binding for `macroexpand' has now been overridden, making psyntax the
366 ;; expander now.
367
368 (define-syntax and
369 (syntax-rules ()
370 ((_) #t)
371 ((_ x) x)
372 ((_ x y ...) (if x (and y ...) #f))))
373
374 (define-syntax or
375 (syntax-rules ()
376 ((_) #f)
377 ((_ x) x)
378 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
379
380 ;; The "maybe-more" bits are something of a hack, so that we can support
381 ;; SRFI-61. Rewrites into a standalone syntax-case macro would be
382 ;; appreciated.
383 (define-syntax cond
384 (syntax-rules (=> else)
385 ((_ "maybe-more" test consequent)
386 (if test consequent))
387
388 ((_ "maybe-more" test consequent clause ...)
389 (if test consequent (cond clause ...)))
390
391 ((_ (else else1 else2 ...))
392 (begin else1 else2 ...))
393
394 ((_ (test => receiver) more-clause ...)
395 (let ((t test))
396 (cond "maybe-more" t (receiver t) more-clause ...)))
397
398 ((_ (generator guard => receiver) more-clause ...)
399 (call-with-values (lambda () generator)
400 (lambda t
401 (cond "maybe-more"
402 (apply guard t) (apply receiver t) more-clause ...))))
403
404 ((_ (test => receiver ...) more-clause ...)
405 (syntax-violation 'cond "wrong number of receiver expressions"
406 '(test => receiver ...)))
407 ((_ (generator guard => receiver ...) more-clause ...)
408 (syntax-violation 'cond "wrong number of receiver expressions"
409 '(generator guard => receiver ...)))
410
411 ((_ (test) more-clause ...)
412 (let ((t test))
413 (cond "maybe-more" t t more-clause ...)))
414
415 ((_ (test body1 body2 ...) more-clause ...)
416 (cond "maybe-more"
417 test (begin body1 body2 ...) more-clause ...))))
418
419 (define-syntax case
420 (syntax-rules (else)
421 ((case (key ...)
422 clauses ...)
423 (let ((atom-key (key ...)))
424 (case atom-key clauses ...)))
425 ((case key
426 (else result1 result2 ...))
427 (begin result1 result2 ...))
428 ((case key
429 ((atoms ...) result1 result2 ...))
430 (if (memv key '(atoms ...))
431 (begin result1 result2 ...)))
432 ((case key
433 ((atoms ...) result1 result2 ...)
434 clause clauses ...)
435 (if (memv key '(atoms ...))
436 (begin result1 result2 ...)
437 (case key clause clauses ...)))))
438
439 (define-syntax do
440 (syntax-rules ()
441 ((do ((var init step ...) ...)
442 (test expr ...)
443 command ...)
444 (letrec
445 ((loop
446 (lambda (var ...)
447 (if test
448 (begin
449 (if #f #f)
450 expr ...)
451 (begin
452 command
453 ...
454 (loop (do "step" var step ...)
455 ...))))))
456 (loop init ...)))
457 ((do "step" x)
458 x)
459 ((do "step" x y)
460 y)))
461
462 (define-syntax delay
463 (syntax-rules ()
464 ((_ exp) (make-promise (lambda () exp)))))
465
466 (include-from-path "ice-9/quasisyntax")
467
468 (define-syntax current-source-location
469 (lambda (x)
470 (syntax-case x ()
471 ((_)
472 (with-syntax ((s (datum->syntax x (syntax-source x))))
473 #''s)))))
474
475
476 \f
477
478 ;;; {Defmacros}
479 ;;;
480
481 (define-syntax define-macro
482 (lambda (x)
483 "Define a defmacro."
484 (syntax-case x ()
485 ((_ (macro . args) doc body1 body ...)
486 (string? (syntax->datum #'doc))
487 #'(define-macro macro doc (lambda args body1 body ...)))
488 ((_ (macro . args) body ...)
489 #'(define-macro macro #f (lambda args body ...)))
490 ((_ macro doc transformer)
491 (or (string? (syntax->datum #'doc))
492 (not (syntax->datum #'doc)))
493 #'(define-syntax macro
494 (lambda (y)
495 doc
496 #((macro-type . defmacro)
497 (defmacro-args args))
498 (syntax-case y ()
499 ((_ . args)
500 (let ((v (syntax->datum #'args)))
501 (datum->syntax y (apply transformer v)))))))))))
502
503 (define-syntax defmacro
504 (lambda (x)
505 "Define a defmacro, with the old lispy defun syntax."
506 (syntax-case x ()
507 ((_ macro args doc body1 body ...)
508 (string? (syntax->datum #'doc))
509 #'(define-macro macro doc (lambda args body1 body ...)))
510 ((_ macro args body ...)
511 #'(define-macro macro #f (lambda args body ...))))))
512
513 (provide 'defmacro)
514
515 \f
516
517 ;;; {Deprecation}
518 ;;;
519
520 (define-syntax begin-deprecated
521 (lambda (x)
522 (syntax-case x ()
523 ((_ form form* ...)
524 (if (include-deprecated-features)
525 #'(begin form form* ...)
526 #'(begin))))))
527
528 \f
529
530 ;;; {Trivial Functions}
531 ;;;
532
533 (define (identity x) x)
534 (define (and=> value procedure) (and value (procedure value)))
535 (define call/cc call-with-current-continuation)
536
537 (define-syntax false-if-exception
538 (syntax-rules ()
539 ((_ expr)
540 (catch #t
541 (lambda () expr)
542 (lambda (k . args) #f)))))
543
544 \f
545
546 ;;; {General Properties}
547 ;;;
548
549 ;; Properties are a lispy way to associate random info with random objects.
550 ;; Traditionally properties are implemented as an alist or a plist actually
551 ;; pertaining to the object in question.
552 ;;
553 ;; These "object properties" have the advantage that they can be associated with
554 ;; any object, even if the object has no plist. Object properties are good when
555 ;; you are extending pre-existing objects in unexpected ways. They also present
556 ;; a pleasing, uniform procedure-with-setter interface. But if you have a data
557 ;; type that always has properties, it's often still best to store those
558 ;; properties within the object itself.
559
560 (define (make-object-property)
561 (let ((prop (primitive-make-property #f)))
562 (make-procedure-with-setter
563 (lambda (obj) (primitive-property-ref prop obj))
564 (lambda (obj val) (primitive-property-set! prop obj val)))))
565
566 \f
567
568 ;;; {Symbol Properties}
569 ;;;
570
571 ;;; Symbol properties are something you see in old Lisp code. In most current
572 ;;; Guile code, symbols are not used as a data structure -- they are used as
573 ;;; keys into other data structures.
574
575 (define (symbol-property sym prop)
576 (let ((pair (assoc prop (symbol-pref sym))))
577 (and pair (cdr pair))))
578
579 (define (set-symbol-property! sym prop val)
580 (let ((pair (assoc prop (symbol-pref sym))))
581 (if pair
582 (set-cdr! pair val)
583 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
584
585 (define (symbol-property-remove! sym prop)
586 (let ((pair (assoc prop (symbol-pref sym))))
587 (if pair
588 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
589
590 \f
591
592 ;;; {Arrays}
593 ;;;
594
595 (define (array-shape a)
596 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
597 (array-dimensions a)))
598
599 \f
600
601 ;;; {Keywords}
602 ;;;
603
604 ;;; It's much better if you can use lambda* / define*, of course.
605
606 (define (kw-arg-ref args kw)
607 (let ((rem (member kw args)))
608 (and rem (pair? (cdr rem)) (cadr rem))))
609
610 \f
611
612 ;;; {Structs}
613 ;;;
614
615 (define (struct-layout s)
616 (struct-ref (struct-vtable s) vtable-index-layout))
617
618 \f
619
620 ;;; {Records}
621 ;;;
622
623 ;; Printing records: by default, records are printed as
624 ;;
625 ;; #<type-name field1: val1 field2: val2 ...>
626 ;;
627 ;; You can change that by giving a custom printing function to
628 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
629 ;; will be called like
630 ;;
631 ;; (<printer> object port)
632 ;;
633 ;; It should print OBJECT to PORT.
634
635 (define (inherit-print-state old-port new-port)
636 (if (get-print-state old-port)
637 (port-with-print-state new-port (get-print-state old-port))
638 new-port))
639
640 ;; 0: type-name, 1: fields, 2: constructor
641 (define record-type-vtable
642 ;; FIXME: This should just call make-vtable, not make-vtable-vtable; but for
643 ;; that we need to expose the bare vtable-vtable to Scheme.
644 (make-vtable-vtable "prprpw" 0
645 (lambda (s p)
646 (cond ((eq? s record-type-vtable)
647 (display "#<record-type-vtable>" p))
648 (else
649 (display "#<record-type " p)
650 (display (record-type-name s) p)
651 (display ">" p))))))
652
653 (define (record-type? obj)
654 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
655
656 (define* (make-record-type type-name fields #:optional printer)
657 ;; Pre-generate constructors for nfields < 20.
658 (define-syntax make-constructor
659 (lambda (x)
660 (define *max-static-argument-count* 20)
661 (define (make-formals n)
662 (let lp ((i 0))
663 (if (< i n)
664 (cons (datum->syntax
665 x
666 (string->symbol
667 (string (integer->char (+ (char->integer #\a) i)))))
668 (lp (1+ i)))
669 '())))
670 (syntax-case x ()
671 ((_ rtd exp) (not (identifier? #'exp))
672 #'(let ((n exp))
673 (make-constructor rtd n)))
674 ((_ rtd nfields)
675 #`(case nfields
676 #,@(let lp ((n 0))
677 (if (< n *max-static-argument-count*)
678 (cons (with-syntax (((formal ...) (make-formals n))
679 (n n))
680 #'((n)
681 (lambda (formal ...)
682 (make-struct rtd 0 formal ...))))
683 (lp (1+ n)))
684 '()))
685 (else
686 (lambda args
687 (if (= (length args) nfields)
688 (apply make-struct rtd 0 args)
689 (scm-error 'wrong-number-of-args
690 (format #f "make-~a" type-name)
691 "Wrong number of arguments" '() #f)))))))))
692
693 (define (default-record-printer s p)
694 (display "#<" p)
695 (display (record-type-name (record-type-descriptor s)) p)
696 (let loop ((fields (record-type-fields (record-type-descriptor s)))
697 (off 0))
698 (cond
699 ((not (null? fields))
700 (display " " p)
701 (display (car fields) p)
702 (display ": " p)
703 (display (struct-ref s off) p)
704 (loop (cdr fields) (+ 1 off)))))
705 (display ">" p))
706
707 (let ((rtd (make-struct record-type-vtable 0
708 (make-struct-layout
709 (apply string-append
710 (map (lambda (f) "pw") fields)))
711 (or printer default-record-printer)
712 type-name
713 (copy-tree fields))))
714 (struct-set! rtd (+ vtable-offset-user 2)
715 (make-constructor rtd (length fields)))
716 ;; Temporary solution: Associate a name to the record type descriptor
717 ;; so that the object system can create a wrapper class for it.
718 (set-struct-vtable-name! rtd (if (symbol? type-name)
719 type-name
720 (string->symbol type-name)))
721 rtd))
722
723 (define (record-type-name obj)
724 (if (record-type? obj)
725 (struct-ref obj vtable-offset-user)
726 (error 'not-a-record-type obj)))
727
728 (define (record-type-fields obj)
729 (if (record-type? obj)
730 (struct-ref obj (+ 1 vtable-offset-user))
731 (error 'not-a-record-type obj)))
732
733 (define* (record-constructor rtd #:optional field-names)
734 (if (not field-names)
735 (struct-ref rtd (+ 2 vtable-offset-user))
736 (primitive-eval
737 `(lambda ,field-names
738 (make-struct ',rtd 0 ,@(map (lambda (f)
739 (if (memq f field-names)
740 f
741 #f))
742 (record-type-fields rtd)))))))
743
744 (define (record-predicate rtd)
745 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
746
747 (define (%record-type-error rtd obj) ;; private helper
748 (or (eq? rtd (record-type-descriptor obj))
749 (scm-error 'wrong-type-arg "%record-type-check"
750 "Wrong type record (want `~S'): ~S"
751 (list (record-type-name rtd) obj)
752 #f)))
753
754 (define (record-accessor rtd field-name)
755 (let ((pos (list-index (record-type-fields rtd) field-name)))
756 (if (not pos)
757 (error 'no-such-field field-name))
758 (lambda (obj)
759 (if (eq? (struct-vtable obj) rtd)
760 (struct-ref obj pos)
761 (%record-type-error rtd obj)))))
762
763 (define (record-modifier rtd field-name)
764 (let ((pos (list-index (record-type-fields rtd) field-name)))
765 (if (not pos)
766 (error 'no-such-field field-name))
767 (lambda (obj val)
768 (if (eq? (struct-vtable obj) rtd)
769 (struct-set! obj pos val)
770 (%record-type-error rtd obj)))))
771
772 (define (record? obj)
773 (and (struct? obj) (record-type? (struct-vtable obj))))
774
775 (define (record-type-descriptor obj)
776 (if (struct? obj)
777 (struct-vtable obj)
778 (error 'not-a-record obj)))
779
780 (provide 'record)
781
782 \f
783
784 ;;; {Booleans}
785 ;;;
786
787 (define (->bool x) (not (not x)))
788
789 \f
790
791 ;;; {Symbols}
792 ;;;
793
794 (define (symbol-append . args)
795 (string->symbol (apply string-append (map symbol->string args))))
796
797 (define (list->symbol . args)
798 (string->symbol (apply list->string args)))
799
800 (define (symbol . args)
801 (string->symbol (apply string args)))
802
803 \f
804
805 ;;; {Lists}
806 ;;;
807
808 (define (list-index l k)
809 (let loop ((n 0)
810 (l l))
811 (and (not (null? l))
812 (if (eq? (car l) k)
813 n
814 (loop (+ n 1) (cdr l))))))
815
816 \f
817
818 (if (provided? 'posix)
819 (primitive-load-path "ice-9/posix"))
820
821 (if (provided? 'socket)
822 (primitive-load-path "ice-9/networking"))
823
824 ;; For reference, Emacs file-exists-p uses stat in this same way.
825 (define file-exists?
826 (if (provided? 'posix)
827 (lambda (str)
828 (->bool (stat str #f)))
829 (lambda (str)
830 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
831 (lambda args #f))))
832 (if port (begin (close-port port) #t)
833 #f)))))
834
835 (define file-is-directory?
836 (if (provided? 'posix)
837 (lambda (str)
838 (eq? (stat:type (stat str)) 'directory))
839 (lambda (str)
840 (let ((port (catch 'system-error
841 (lambda () (open-file (string-append str "/.")
842 OPEN_READ))
843 (lambda args #f))))
844 (if port (begin (close-port port) #t)
845 #f)))))
846
847 (define (system-error-errno args)
848 (if (eq? (car args) 'system-error)
849 (car (list-ref args 4))
850 #f))
851
852 \f
853
854 ;;; {Error Handling}
855 ;;;
856
857 (define error
858 (case-lambda
859 (()
860 (scm-error 'misc-error #f "?" #f #f))
861 ((message . args)
862 (let ((msg (string-join (cons "~A" (make-list (length args) "~S")))))
863 (scm-error 'misc-error #f msg (cons message args) #f)))))
864
865 \f
866
867 ;;; {Time Structures}
868 ;;;
869
870 (define (tm:sec obj) (vector-ref obj 0))
871 (define (tm:min obj) (vector-ref obj 1))
872 (define (tm:hour obj) (vector-ref obj 2))
873 (define (tm:mday obj) (vector-ref obj 3))
874 (define (tm:mon obj) (vector-ref obj 4))
875 (define (tm:year obj) (vector-ref obj 5))
876 (define (tm:wday obj) (vector-ref obj 6))
877 (define (tm:yday obj) (vector-ref obj 7))
878 (define (tm:isdst obj) (vector-ref obj 8))
879 (define (tm:gmtoff obj) (vector-ref obj 9))
880 (define (tm:zone obj) (vector-ref obj 10))
881
882 (define (set-tm:sec obj val) (vector-set! obj 0 val))
883 (define (set-tm:min obj val) (vector-set! obj 1 val))
884 (define (set-tm:hour obj val) (vector-set! obj 2 val))
885 (define (set-tm:mday obj val) (vector-set! obj 3 val))
886 (define (set-tm:mon obj val) (vector-set! obj 4 val))
887 (define (set-tm:year obj val) (vector-set! obj 5 val))
888 (define (set-tm:wday obj val) (vector-set! obj 6 val))
889 (define (set-tm:yday obj val) (vector-set! obj 7 val))
890 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
891 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
892 (define (set-tm:zone obj val) (vector-set! obj 10 val))
893
894 (define (tms:clock obj) (vector-ref obj 0))
895 (define (tms:utime obj) (vector-ref obj 1))
896 (define (tms:stime obj) (vector-ref obj 2))
897 (define (tms:cutime obj) (vector-ref obj 3))
898 (define (tms:cstime obj) (vector-ref obj 4))
899
900 \f
901
902 ;;; {File Descriptors and Ports}
903 ;;;
904
905 (define file-position ftell)
906 (define* (file-set-position port offset #:optional (whence SEEK_SET))
907 (seek port offset whence))
908
909 (define (move->fdes fd/port fd)
910 (cond ((integer? fd/port)
911 (dup->fdes fd/port fd)
912 (close fd/port)
913 fd)
914 (else
915 (primitive-move->fdes fd/port fd)
916 (set-port-revealed! fd/port 1)
917 fd/port)))
918
919 (define (release-port-handle port)
920 (let ((revealed (port-revealed port)))
921 (if (> revealed 0)
922 (set-port-revealed! port (- revealed 1)))))
923
924 (define dup->port
925 (case-lambda
926 ((port/fd mode)
927 (fdopen (dup->fdes port/fd) mode))
928 ((port/fd mode new-fd)
929 (let ((port (fdopen (dup->fdes port/fd new-fd) mode)))
930 (set-port-revealed! port 1)
931 port))))
932
933 (define dup->inport
934 (case-lambda
935 ((port/fd)
936 (dup->port port/fd "r"))
937 ((port/fd new-fd)
938 (dup->port port/fd "r" new-fd))))
939
940 (define dup->outport
941 (case-lambda
942 ((port/fd)
943 (dup->port port/fd "w"))
944 ((port/fd new-fd)
945 (dup->port port/fd "w" new-fd))))
946
947 (define dup
948 (case-lambda
949 ((port/fd)
950 (if (integer? port/fd)
951 (dup->fdes port/fd)
952 (dup->port port/fd (port-mode port/fd))))
953 ((port/fd new-fd)
954 (if (integer? port/fd)
955 (dup->fdes port/fd new-fd)
956 (dup->port port/fd (port-mode port/fd) new-fd)))))
957
958 (define (duplicate-port port modes)
959 (dup->port port modes))
960
961 (define (fdes->inport fdes)
962 (let loop ((rest-ports (fdes->ports fdes)))
963 (cond ((null? rest-ports)
964 (let ((result (fdopen fdes "r")))
965 (set-port-revealed! result 1)
966 result))
967 ((input-port? (car rest-ports))
968 (set-port-revealed! (car rest-ports)
969 (+ (port-revealed (car rest-ports)) 1))
970 (car rest-ports))
971 (else
972 (loop (cdr rest-ports))))))
973
974 (define (fdes->outport fdes)
975 (let loop ((rest-ports (fdes->ports fdes)))
976 (cond ((null? rest-ports)
977 (let ((result (fdopen fdes "w")))
978 (set-port-revealed! result 1)
979 result))
980 ((output-port? (car rest-ports))
981 (set-port-revealed! (car rest-ports)
982 (+ (port-revealed (car rest-ports)) 1))
983 (car rest-ports))
984 (else
985 (loop (cdr rest-ports))))))
986
987 (define (port->fdes port)
988 (set-port-revealed! port (+ (port-revealed port) 1))
989 (fileno port))
990
991 (define (setenv name value)
992 (if value
993 (putenv (string-append name "=" value))
994 (putenv name)))
995
996 (define (unsetenv name)
997 "Remove the entry for NAME from the environment."
998 (putenv name))
999
1000 \f
1001
1002 ;;; {Load Paths}
1003 ;;;
1004
1005 (define (in-vicinity vicinity file)
1006 (let ((tail (let ((len (string-length vicinity)))
1007 (if (zero? len)
1008 #f
1009 (string-ref vicinity (- len 1))))))
1010 (string-append vicinity
1011 (if (or (not tail)
1012 (eq? tail #\/))
1013 ""
1014 "/")
1015 file)))
1016
1017 \f
1018
1019 ;;; {Help for scm_shell}
1020 ;;;
1021 ;;; The argument-processing code used by Guile-based shells generates
1022 ;;; Scheme code based on the argument list. This page contains help
1023 ;;; functions for the code it generates.
1024 ;;;
1025
1026 (define (command-line) (program-arguments))
1027
1028 ;; This is mostly for the internal use of the code generated by
1029 ;; scm_compile_shell_switches.
1030
1031 (define (turn-on-debugging)
1032 (debug-enable 'debug)
1033 (debug-enable 'backtrace)
1034 (read-enable 'positions))
1035
1036 (define (load-user-init)
1037 (let* ((home (or (getenv "HOME")
1038 (false-if-exception (passwd:dir (getpwuid (getuid))))
1039 "/")) ;; fallback for cygwin etc.
1040 (init-file (in-vicinity home ".guile")))
1041 (if (file-exists? init-file)
1042 (primitive-load init-file))))
1043
1044 \f
1045
1046 ;;; {The interpreter stack}
1047 ;;;
1048
1049 ;; %stacks defined in stacks.c
1050 (define (%start-stack tag thunk)
1051 (let ((prompt-tag (make-prompt-tag "start-stack")))
1052 (call-with-prompt
1053 prompt-tag
1054 (lambda ()
1055 (with-fluids ((%stacks (acons tag prompt-tag
1056 (or (fluid-ref %stacks) '()))))
1057 (thunk)))
1058 (lambda (k . args)
1059 (%start-stack tag (lambda () (apply k args)))))))
1060 (define-syntax start-stack
1061 (syntax-rules ()
1062 ((_ tag exp)
1063 (%start-stack tag (lambda () exp)))))
1064
1065 \f
1066
1067 ;;; {Loading by paths}
1068 ;;;
1069
1070 ;;; Load a Scheme source file named NAME, searching for it in the
1071 ;;; directories listed in %load-path, and applying each of the file
1072 ;;; name extensions listed in %load-extensions.
1073 (define (load-from-path name)
1074 (start-stack 'load-stack
1075 (primitive-load-path name)))
1076
1077 (define %load-verbosely #f)
1078 (define (assert-load-verbosity v) (set! %load-verbosely v))
1079
1080 (define (%load-announce file)
1081 (if %load-verbosely
1082 (with-output-to-port (current-error-port)
1083 (lambda ()
1084 (display ";;; ")
1085 (display "loading ")
1086 (display file)
1087 (newline)
1088 (force-output)))))
1089
1090 (set! %load-hook %load-announce)
1091
1092 (define* (load name #:optional reader)
1093 ;; Returns the .go file corresponding to `name'. Does not search load
1094 ;; paths, only the fallback path. If the .go file is missing or out of
1095 ;; date, and autocompilation is enabled, will try autocompilation, just
1096 ;; as primitive-load-path does internally. primitive-load is
1097 ;; unaffected. Returns #f if autocompilation failed or was disabled.
1098 ;;
1099 ;; NB: Unless we need to compile the file, this function should not cause
1100 ;; (system base compile) to be loaded up. For that reason compiled-file-name
1101 ;; partially duplicates functionality from (system base compile).
1102 (define (compiled-file-name canon-path)
1103 (and %compile-fallback-path
1104 (string-append
1105 %compile-fallback-path
1106 ;; no need for '/' separator here, canon-path is absolute
1107 canon-path
1108 (cond ((or (null? %load-compiled-extensions)
1109 (string-null? (car %load-compiled-extensions)))
1110 (warn "invalid %load-compiled-extensions"
1111 %load-compiled-extensions)
1112 ".go")
1113 (else (car %load-compiled-extensions))))))
1114 (define (fresh-compiled-file-name go-path)
1115 (catch #t
1116 (lambda ()
1117 (let* ((scmstat (stat name))
1118 (gostat (stat go-path #f)))
1119 (if (and gostat
1120 (or (> (stat:mtime gostat) (stat:mtime scmstat))
1121 (and (= (stat:mtime gostat) (stat:mtime scmstat))
1122 (>= (stat:mtimensec gostat)
1123 (stat:mtimensec scmstat)))))
1124 go-path
1125 (begin
1126 (if gostat
1127 (format (current-error-port)
1128 ";;; note: source file ~a\n;;; newer than compiled ~a\n"
1129 name go-path))
1130 (cond
1131 (%load-should-autocompile
1132 (%warn-autocompilation-enabled)
1133 (format (current-error-port) ";;; compiling ~a\n" name)
1134 ;; This use of @ is (ironically?) boot-safe, as modules have
1135 ;; not been booted yet, so the resolve-module call in psyntax
1136 ;; doesn't try to load a module, and compile-file will be
1137 ;; treated as a function, not a macro.
1138 (let ((cfn ((@ (system base compile) compile-file) name
1139 #:env (current-module))))
1140 (format (current-error-port) ";;; compiled ~a\n" cfn)
1141 cfn))
1142 (else #f))))))
1143 (lambda (k . args)
1144 (format (current-error-port)
1145 ";;; WARNING: compilation of ~a failed:\n;;; key ~a, throw_args ~s\n"
1146 name k args)
1147 #f)))
1148 (with-fluids ((current-reader reader))
1149 (let ((cfn (and=> (and=> (false-if-exception (canonicalize-path name))
1150 compiled-file-name)
1151 fresh-compiled-file-name)))
1152 (if cfn
1153 (load-compiled cfn)
1154 (start-stack 'load-stack
1155 (primitive-load name))))))
1156
1157 \f
1158
1159 ;;; {Reader Extensions}
1160 ;;;
1161 ;;; Reader code for various "#c" forms.
1162 ;;;
1163
1164 (define read-eval? (make-fluid))
1165 (fluid-set! read-eval? #f)
1166 (read-hash-extend #\.
1167 (lambda (c port)
1168 (if (fluid-ref read-eval?)
1169 (eval (read port) (interaction-environment))
1170 (error
1171 "#. read expansion found and read-eval? is #f."))))
1172
1173 \f
1174
1175 ;;; {Low Level Modules}
1176 ;;;
1177 ;;; These are the low level data structures for modules.
1178 ;;;
1179 ;;; Every module object is of the type 'module-type', which is a record
1180 ;;; consisting of the following members:
1181 ;;;
1182 ;;; - eval-closure: the function that defines for its module the strategy that
1183 ;;; shall be followed when looking up symbols in the module.
1184 ;;;
1185 ;;; An eval-closure is a function taking two arguments: the symbol to be
1186 ;;; looked up and a boolean value telling whether a binding for the symbol
1187 ;;; should be created if it does not exist yet. If the symbol lookup
1188 ;;; succeeded (either because an existing binding was found or because a new
1189 ;;; binding was created), a variable object representing the binding is
1190 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1191 ;;; closure does not take the module to be searched as an argument: During
1192 ;;; construction of the eval-closure, the eval-closure has to store the
1193 ;;; module it belongs to in its environment. This means, that any
1194 ;;; eval-closure can belong to only one module.
1195 ;;;
1196 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1197 ;;; special cases of eval-closures are to be distinguished: During startup
1198 ;;; the module system is not yet activated. In this phase, no modules are
1199 ;;; defined and all bindings are automatically stored by the system in the
1200 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1201 ;;; functions which require an eval-closure as their argument need to be
1202 ;;; passed the value #f.
1203 ;;;
1204 ;;; The other two special cases of eval-closures are the
1205 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1206 ;;; behave equally for the case that no new binding is to be created. The
1207 ;;; difference between the two comes in, when the boolean argument to the
1208 ;;; eval-closure indicates that a new binding shall be created if it is not
1209 ;;; found.
1210 ;;;
1211 ;;; Given that no new binding shall be created, both standard eval-closures
1212 ;;; define the following standard strategy of searching bindings in the
1213 ;;; module: First, the module's obarray is searched for the symbol. Second,
1214 ;;; if no binding for the symbol was found in the module's obarray, the
1215 ;;; module's binder procedure is exececuted. If this procedure did not
1216 ;;; return a binding for the symbol, the modules referenced in the module's
1217 ;;; uses list are recursively searched for a binding of the symbol. If the
1218 ;;; binding can not be found in these modules also, the symbol lookup has
1219 ;;; failed.
1220 ;;;
1221 ;;; If a new binding shall be created, the standard-interface-eval-closure
1222 ;;; immediately returns indicating failure. That is, it does not even try
1223 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1224 ;;; first search the obarray, and if no binding was found there, would
1225 ;;; create a new binding in the obarray, therefore not calling the binder
1226 ;;; procedure or searching the modules in the uses list.
1227 ;;;
1228 ;;; The explanation of the following members obarray, binder and uses
1229 ;;; assumes that the symbol lookup follows the strategy that is defined in
1230 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1231 ;;;
1232 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1233 ;;; hash table, the definitions are found that are local to the module (that
1234 ;;; is, not imported from other modules). When looking up bindings in the
1235 ;;; module, this hash table is searched first.
1236 ;;;
1237 ;;; - binder: either #f or a function taking a module and a symbol argument.
1238 ;;; If it is a function it is called after the obarray has been
1239 ;;; unsuccessfully searched for a binding. It then can provide bindings
1240 ;;; that would otherwise not be found locally in the module.
1241 ;;;
1242 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1243 ;;; These modules are the third place queried for bindings after the obarray
1244 ;;; has been unsuccessfully searched and the binder function did not deliver
1245 ;;; a result either.
1246 ;;;
1247 ;;; - transformer: either #f or a function taking a scheme expression as
1248 ;;; delivered by read. If it is a function, it will be called to perform
1249 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1250 ;;; expression. The output of the transformer function will then be passed
1251 ;;; to Guile's internal memoizer. This means that the output must be valid
1252 ;;; scheme code. The only exception is, that the output may make use of the
1253 ;;; syntax extensions provided to identify the modules that a binding
1254 ;;; belongs to.
1255 ;;;
1256 ;;; - name: the name of the module. This is used for all kinds of printing
1257 ;;; outputs. In certain places the module name also serves as a way of
1258 ;;; identification. When adding a module to the uses list of another
1259 ;;; module, it is made sure that the new uses list will not contain two
1260 ;;; modules of the same name.
1261 ;;;
1262 ;;; - kind: classification of the kind of module. The value is (currently?)
1263 ;;; only used for printing. It has no influence on how a module is treated.
1264 ;;; Currently the following values are used when setting the module kind:
1265 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1266 ;;; is set, it defaults to 'module.
1267 ;;;
1268 ;;; - duplicates-handlers: a list of procedures that get called to make a
1269 ;;; choice between two duplicate bindings when name clashes occur. See the
1270 ;;; `duplicate-handlers' global variable below.
1271 ;;;
1272 ;;; - observers: a list of procedures that get called when the module is
1273 ;;; modified.
1274 ;;;
1275 ;;; - weak-observers: a weak-key hash table of procedures that get called
1276 ;;; when the module is modified. See `module-observe-weak' for details.
1277 ;;;
1278 ;;; In addition, the module may (must?) contain a binding for
1279 ;;; `%module-public-interface'. This variable should be bound to a module
1280 ;;; representing the exported interface of a module. See the
1281 ;;; `module-public-interface' and `module-export!' procedures.
1282 ;;;
1283 ;;; !!! warning: The interface to lazy binder procedures is going
1284 ;;; to be changed in an incompatible way to permit all the basic
1285 ;;; module ops to be virtualized.
1286 ;;;
1287 ;;; (make-module size use-list lazy-binding-proc) => module
1288 ;;; module-{obarray,uses,binder}[|-set!]
1289 ;;; (module? obj) => [#t|#f]
1290 ;;; (module-locally-bound? module symbol) => [#t|#f]
1291 ;;; (module-bound? module symbol) => [#t|#f]
1292 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1293 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1294 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1295 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1296 ;;; (module-symbol-binding module symbol opt-value)
1297 ;;; => [ <obj> | opt-value | an error occurs ]
1298 ;;; (module-make-local-var! module symbol) => #<variable...>
1299 ;;; (module-add! module symbol var) => unspecified
1300 ;;; (module-remove! module symbol) => unspecified
1301 ;;; (module-for-each proc module) => unspecified
1302 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1303 ;;; (set-current-module module) => unspecified
1304 ;;; (current-module) => #<module...>
1305 ;;;
1306 ;;;
1307
1308 \f
1309
1310 ;;; {Printing Modules}
1311 ;;;
1312
1313 ;; This is how modules are printed. You can re-define it.
1314 (define (%print-module mod port)
1315 (display "#<" port)
1316 (display (or (module-kind mod) "module") port)
1317 (display " " port)
1318 (display (module-name mod) port)
1319 (display " " port)
1320 (display (number->string (object-address mod) 16) port)
1321 (display ">" port))
1322
1323 (letrec-syntax
1324 ;; Locally extend the syntax to allow record accessors to be defined at
1325 ;; compile-time. Cache the rtd locally to the constructor, the getters and
1326 ;; the setters, in order to allow for redefinition of the record type; not
1327 ;; relevant in the case of modules, but perhaps if we make this public, it
1328 ;; could matter.
1329
1330 ((define-record-type
1331 (lambda (x)
1332 (define (make-id scope . fragments)
1333 (datum->syntax #'scope
1334 (apply symbol-append
1335 (map (lambda (x)
1336 (if (symbol? x) x (syntax->datum x)))
1337 fragments))))
1338
1339 (define (getter rtd type-name field slot)
1340 #`(define #,(make-id rtd type-name '- field)
1341 (let ((rtd #,rtd))
1342 (lambda (#,type-name)
1343 (if (eq? (struct-vtable #,type-name) rtd)
1344 (struct-ref #,type-name #,slot)
1345 (%record-type-error rtd #,type-name))))))
1346
1347 (define (setter rtd type-name field slot)
1348 #`(define #,(make-id rtd 'set- type-name '- field '!)
1349 (let ((rtd #,rtd))
1350 (lambda (#,type-name val)
1351 (if (eq? (struct-vtable #,type-name) rtd)
1352 (struct-set! #,type-name #,slot val)
1353 (%record-type-error rtd #,type-name))))))
1354
1355 (define (accessors rtd type-name fields n exp)
1356 (syntax-case fields ()
1357 (() exp)
1358 (((field #:no-accessors) field* ...) (identifier? #'field)
1359 (accessors rtd type-name #'(field* ...) (1+ n)
1360 exp))
1361 (((field #:no-setter) field* ...) (identifier? #'field)
1362 (accessors rtd type-name #'(field* ...) (1+ n)
1363 #`(begin #,exp
1364 #,(getter rtd type-name #'field n))))
1365 (((field #:no-getter) field* ...) (identifier? #'field)
1366 (accessors rtd type-name #'(field* ...) (1+ n)
1367 #`(begin #,exp
1368 #,(setter rtd type-name #'field n))))
1369 ((field field* ...) (identifier? #'field)
1370 (accessors rtd type-name #'(field* ...) (1+ n)
1371 #`(begin #,exp
1372 #,(getter rtd type-name #'field n)
1373 #,(setter rtd type-name #'field n))))))
1374
1375 (define (predicate rtd type-name fields exp)
1376 (accessors
1377 rtd type-name fields 0
1378 #`(begin
1379 #,exp
1380 (define (#,(make-id rtd type-name '?) obj)
1381 (and (struct? obj) (eq? (struct-vtable obj) #,rtd))))))
1382
1383 (define (field-list fields)
1384 (syntax-case fields ()
1385 (() '())
1386 (((f . opts) . rest) (identifier? #'f)
1387 (cons #'f (field-list #'rest)))
1388 ((f . rest) (identifier? #'f)
1389 (cons #'f (field-list #'rest)))))
1390
1391 (define (constructor rtd type-name fields exp)
1392 (let ((ctor (make-id rtd type-name '-constructor))
1393 (args (field-list fields)))
1394 (predicate rtd type-name fields
1395 #`(begin #,exp
1396 (define #,ctor
1397 (let ((rtd #,rtd))
1398 (lambda #,args
1399 (make-struct rtd 0 #,@args))))
1400 (struct-set! #,rtd (+ vtable-offset-user 2)
1401 #,ctor)))))
1402
1403 (define (type type-name printer fields)
1404 (define (make-layout)
1405 (let lp ((fields fields) (slots '()))
1406 (syntax-case fields ()
1407 (() (datum->syntax #'here
1408 (make-struct-layout
1409 (apply string-append slots))))
1410 ((_ . rest) (lp #'rest (cons "pw" slots))))))
1411
1412 (let ((rtd (make-id type-name type-name '-type)))
1413 (constructor rtd type-name fields
1414 #`(begin
1415 (define #,rtd
1416 (make-struct record-type-vtable 0
1417 '#,(make-layout)
1418 #,printer
1419 '#,type-name
1420 '#,(field-list fields)))
1421 (set-struct-vtable-name! #,rtd '#,type-name)))))
1422
1423 (syntax-case x ()
1424 ((_ type-name printer (field ...))
1425 (type #'type-name #'printer #'(field ...)))))))
1426
1427 ;; module-type
1428 ;;
1429 ;; A module is characterized by an obarray in which local symbols
1430 ;; are interned, a list of modules, "uses", from which non-local
1431 ;; bindings can be inherited, and an optional lazy-binder which
1432 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1433 ;; bindings that would otherwise not be found locally in the module.
1434 ;;
1435 ;; NOTE: If you change the set of fields or their order, you also need to
1436 ;; change the constants in libguile/modules.h.
1437 ;;
1438 ;; NOTE: The getter `module-eval-closure' is used in libguile/modules.c.
1439 ;; NOTE: The getter `module-transfomer' is defined libguile/modules.c.
1440 ;; NOTE: The getter `module-name' is defined later, due to boot reasons.
1441 ;; NOTE: The getter `module-public-interface' is used in libguile/modules.c.
1442 ;;
1443 (define-record-type module
1444 (lambda (obj port) (%print-module obj port))
1445 (obarray
1446 uses
1447 binder
1448 eval-closure
1449 (transformer #:no-getter)
1450 (name #:no-getter)
1451 kind
1452 duplicates-handlers
1453 (import-obarray #:no-setter)
1454 observers
1455 (weak-observers #:no-setter)
1456 version
1457 submodules
1458 submodule-binder
1459 public-interface
1460 filename)))
1461
1462
1463 ;; make-module &opt size uses binder
1464 ;;
1465 ;; Create a new module, perhaps with a particular size of obarray,
1466 ;; initial uses list, or binding procedure.
1467 ;;
1468 (define* (make-module #:optional (size 31) (uses '()) (binder #f))
1469 (define %default-import-size
1470 ;; Typical number of imported bindings actually used by a module.
1471 600)
1472
1473 (if (not (integer? size))
1474 (error "Illegal size to make-module." size))
1475 (if (not (and (list? uses)
1476 (and-map module? uses)))
1477 (error "Incorrect use list." uses))
1478 (if (and binder (not (procedure? binder)))
1479 (error
1480 "Lazy-binder expected to be a procedure or #f." binder))
1481
1482 (let ((module (module-constructor (make-hash-table size)
1483 uses binder #f macroexpand
1484 #f #f #f
1485 (make-hash-table %default-import-size)
1486 '()
1487 (make-weak-key-hash-table 31) #f
1488 (make-hash-table 7) #f #f #f)))
1489
1490 ;; We can't pass this as an argument to module-constructor,
1491 ;; because we need it to close over a pointer to the module
1492 ;; itself.
1493 (set-module-eval-closure! module (standard-eval-closure module))
1494
1495 module))
1496
1497
1498 \f
1499
1500 ;;; {Observer protocol}
1501 ;;;
1502
1503 (define (module-observe module proc)
1504 (set-module-observers! module (cons proc (module-observers module)))
1505 (cons module proc))
1506
1507 (define* (module-observe-weak module observer-id #:optional (proc observer-id))
1508 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1509 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1510 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1511 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1512 ;; for instance).
1513
1514 ;; The two-argument version is kept for backward compatibility: when called
1515 ;; with two arguments, the observer gets unregistered when closure PROC
1516 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1517 (hashq-set! (module-weak-observers module) observer-id proc))
1518
1519 (define (module-unobserve token)
1520 (let ((module (car token))
1521 (id (cdr token)))
1522 (if (integer? id)
1523 (hash-remove! (module-weak-observers module) id)
1524 (set-module-observers! module (delq1! id (module-observers module)))))
1525 *unspecified*)
1526
1527 (define module-defer-observers #f)
1528 (define module-defer-observers-mutex (make-mutex 'recursive))
1529 (define module-defer-observers-table (make-hash-table))
1530
1531 (define (module-modified m)
1532 (if module-defer-observers
1533 (hash-set! module-defer-observers-table m #t)
1534 (module-call-observers m)))
1535
1536 ;;; This function can be used to delay calls to observers so that they
1537 ;;; can be called once only in the face of massive updating of modules.
1538 ;;;
1539 (define (call-with-deferred-observers thunk)
1540 (dynamic-wind
1541 (lambda ()
1542 (lock-mutex module-defer-observers-mutex)
1543 (set! module-defer-observers #t))
1544 thunk
1545 (lambda ()
1546 (set! module-defer-observers #f)
1547 (hash-for-each (lambda (m dummy)
1548 (module-call-observers m))
1549 module-defer-observers-table)
1550 (hash-clear! module-defer-observers-table)
1551 (unlock-mutex module-defer-observers-mutex))))
1552
1553 (define (module-call-observers m)
1554 (for-each (lambda (proc) (proc m)) (module-observers m))
1555
1556 ;; We assume that weak observers don't (un)register themselves as they are
1557 ;; called since this would preclude proper iteration over the hash table
1558 ;; elements.
1559 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1560
1561 \f
1562
1563 ;;; {Module Searching in General}
1564 ;;;
1565 ;;; We sometimes want to look for properties of a symbol
1566 ;;; just within the obarray of one module. If the property
1567 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1568 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1569 ;;;
1570 ;;;
1571 ;;; Other times, we want to test for a symbol property in the obarray
1572 ;;; of M and, if it is not found there, try each of the modules in the
1573 ;;; uses list of M. This is the normal way of testing for some
1574 ;;; property, so we state these properties without qualification as
1575 ;;; in: ``The symbol 'fnord is interned in module M because it is
1576 ;;; interned locally in module M2 which is a member of the uses list
1577 ;;; of M.''
1578 ;;;
1579
1580 ;; module-search fn m
1581 ;;
1582 ;; return the first non-#f result of FN applied to M and then to
1583 ;; the modules in the uses of m, and so on recursively. If all applications
1584 ;; return #f, then so does this function.
1585 ;;
1586 (define (module-search fn m v)
1587 (define (loop pos)
1588 (and (pair? pos)
1589 (or (module-search fn (car pos) v)
1590 (loop (cdr pos)))))
1591 (or (fn m v)
1592 (loop (module-uses m))))
1593
1594
1595 ;;; {Is a symbol bound in a module?}
1596 ;;;
1597 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1598 ;;; of S in M has been set to some well-defined value.
1599 ;;;
1600
1601 ;; module-locally-bound? module symbol
1602 ;;
1603 ;; Is a symbol bound (interned and defined) locally in a given module?
1604 ;;
1605 (define (module-locally-bound? m v)
1606 (let ((var (module-local-variable m v)))
1607 (and var
1608 (variable-bound? var))))
1609
1610 ;; module-bound? module symbol
1611 ;;
1612 ;; Is a symbol bound (interned and defined) anywhere in a given module
1613 ;; or its uses?
1614 ;;
1615 (define (module-bound? m v)
1616 (let ((var (module-variable m v)))
1617 (and var
1618 (variable-bound? var))))
1619
1620 ;;; {Is a symbol interned in a module?}
1621 ;;;
1622 ;;; Symbol S in Module M is interned if S occurs in
1623 ;;; of S in M has been set to some well-defined value.
1624 ;;;
1625 ;;; It is possible to intern a symbol in a module without providing
1626 ;;; an initial binding for the corresponding variable. This is done
1627 ;;; with:
1628 ;;; (module-add! module symbol (make-undefined-variable))
1629 ;;;
1630 ;;; In that case, the symbol is interned in the module, but not
1631 ;;; bound there. The unbound symbol shadows any binding for that
1632 ;;; symbol that might otherwise be inherited from a member of the uses list.
1633 ;;;
1634
1635 (define (module-obarray-get-handle ob key)
1636 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1637
1638 (define (module-obarray-ref ob key)
1639 ((if (symbol? key) hashq-ref hash-ref) ob key))
1640
1641 (define (module-obarray-set! ob key val)
1642 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1643
1644 (define (module-obarray-remove! ob key)
1645 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1646
1647 ;; module-symbol-locally-interned? module symbol
1648 ;;
1649 ;; is a symbol interned (not neccessarily defined) locally in a given module
1650 ;; or its uses? Interned symbols shadow inherited bindings even if
1651 ;; they are not themselves bound to a defined value.
1652 ;;
1653 (define (module-symbol-locally-interned? m v)
1654 (not (not (module-obarray-get-handle (module-obarray m) v))))
1655
1656 ;; module-symbol-interned? module symbol
1657 ;;
1658 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1659 ;; or its uses? Interned symbols shadow inherited bindings even if
1660 ;; they are not themselves bound to a defined value.
1661 ;;
1662 (define (module-symbol-interned? m v)
1663 (module-search module-symbol-locally-interned? m v))
1664
1665
1666 ;;; {Mapping modules x symbols --> variables}
1667 ;;;
1668
1669 ;; module-local-variable module symbol
1670 ;; return the local variable associated with a MODULE and SYMBOL.
1671 ;;
1672 ;;; This function is very important. It is the only function that can
1673 ;;; return a variable from a module other than the mutators that store
1674 ;;; new variables in modules. Therefore, this function is the location
1675 ;;; of the "lazy binder" hack.
1676 ;;;
1677 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1678 ;;; to a variable, return that variable object.
1679 ;;;
1680 ;;; If the symbols is not found at first, but the module has a lazy binder,
1681 ;;; then try the binder.
1682 ;;;
1683 ;;; If the symbol is not found at all, return #f.
1684 ;;;
1685 ;;; (This is now written in C, see `modules.c'.)
1686 ;;;
1687
1688 ;;; {Mapping modules x symbols --> bindings}
1689 ;;;
1690 ;;; These are similar to the mapping to variables, except that the
1691 ;;; variable is dereferenced.
1692 ;;;
1693
1694 ;; module-symbol-binding module symbol opt-value
1695 ;;
1696 ;; return the binding of a variable specified by name within
1697 ;; a given module, signalling an error if the variable is unbound.
1698 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1699 ;; return OPT-VALUE.
1700 ;;
1701 (define (module-symbol-local-binding m v . opt-val)
1702 (let ((var (module-local-variable m v)))
1703 (if (and var (variable-bound? var))
1704 (variable-ref var)
1705 (if (not (null? opt-val))
1706 (car opt-val)
1707 (error "Locally unbound variable." v)))))
1708
1709 ;; module-symbol-binding module symbol opt-value
1710 ;;
1711 ;; return the binding of a variable specified by name within
1712 ;; a given module, signalling an error if the variable is unbound.
1713 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1714 ;; return OPT-VALUE.
1715 ;;
1716 (define (module-symbol-binding m v . opt-val)
1717 (let ((var (module-variable m v)))
1718 (if (and var (variable-bound? var))
1719 (variable-ref var)
1720 (if (not (null? opt-val))
1721 (car opt-val)
1722 (error "Unbound variable." v)))))
1723
1724
1725 \f
1726
1727 ;;; {Adding Variables to Modules}
1728 ;;;
1729
1730 ;; module-make-local-var! module symbol
1731 ;;
1732 ;; ensure a variable for V in the local namespace of M.
1733 ;; If no variable was already there, then create a new and uninitialzied
1734 ;; variable.
1735 ;;
1736 ;; This function is used in modules.c.
1737 ;;
1738 (define (module-make-local-var! m v)
1739 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1740 (and (variable? b)
1741 (begin
1742 ;; Mark as modified since this function is called when
1743 ;; the standard eval closure defines a binding
1744 (module-modified m)
1745 b)))
1746
1747 ;; Create a new local variable.
1748 (let ((local-var (make-undefined-variable)))
1749 (module-add! m v local-var)
1750 local-var)))
1751
1752 ;; module-ensure-local-variable! module symbol
1753 ;;
1754 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1755 ;; there is no binding for SYMBOL, create a new uninitialized
1756 ;; variable. Return the local variable.
1757 ;;
1758 (define (module-ensure-local-variable! module symbol)
1759 (or (module-local-variable module symbol)
1760 (let ((var (make-undefined-variable)))
1761 (module-add! module symbol var)
1762 var)))
1763
1764 ;; module-add! module symbol var
1765 ;;
1766 ;; ensure a particular variable for V in the local namespace of M.
1767 ;;
1768 (define (module-add! m v var)
1769 (if (not (variable? var))
1770 (error "Bad variable to module-add!" var))
1771 (module-obarray-set! (module-obarray m) v var)
1772 (module-modified m))
1773
1774 ;; module-remove!
1775 ;;
1776 ;; make sure that a symbol is undefined in the local namespace of M.
1777 ;;
1778 (define (module-remove! m v)
1779 (module-obarray-remove! (module-obarray m) v)
1780 (module-modified m))
1781
1782 (define (module-clear! m)
1783 (hash-clear! (module-obarray m))
1784 (module-modified m))
1785
1786 ;; MODULE-FOR-EACH -- exported
1787 ;;
1788 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1789 ;;
1790 (define (module-for-each proc module)
1791 (hash-for-each proc (module-obarray module)))
1792
1793 (define (module-map proc module)
1794 (hash-map->list proc (module-obarray module)))
1795
1796 ;; Submodules
1797 ;;
1798 ;; Modules exist in a separate namespace from values, because you generally do
1799 ;; not want the name of a submodule, which you might not even use, to collide
1800 ;; with local variables that happen to be named the same as the submodule.
1801 ;;
1802 (define (module-ref-submodule module name)
1803 (or (hashq-ref (module-submodules module) name)
1804 (and (module-submodule-binder module)
1805 ((module-submodule-binder module) module name))))
1806
1807 (define (module-define-submodule! module name submodule)
1808 (hashq-set! (module-submodules module) name submodule))
1809
1810 ;; It used to be, however, that module names were also present in the
1811 ;; value namespace. When we enable deprecated code, we preserve this
1812 ;; legacy behavior.
1813 ;;
1814 ;; These shims are defined here instead of in deprecated.scm because we
1815 ;; need their definitions before loading other modules.
1816 ;;
1817 (begin-deprecated
1818 (define (module-ref-submodule module name)
1819 (or (hashq-ref (module-submodules module) name)
1820 (and (module-submodule-binder module)
1821 ((module-submodule-binder module) module name))
1822 (let ((var (module-local-variable module name)))
1823 (and var (variable-bound? var) (module? (variable-ref var))
1824 (begin
1825 (warn "module" module "not in submodules table")
1826 (variable-ref var))))))
1827
1828 (define (module-define-submodule! module name submodule)
1829 (let ((var (module-local-variable module name)))
1830 (if (and var
1831 (or (not (variable-bound? var))
1832 (not (module? (variable-ref var)))))
1833 (warn "defining module" module ": not overriding local definition" var)
1834 (module-define! module name submodule)))
1835 (hashq-set! (module-submodules module) name submodule)))
1836
1837 \f
1838
1839 ;;; {Low Level Bootstrapping}
1840 ;;;
1841
1842 ;; make-root-module
1843
1844 ;; A root module uses the pre-modules-obarray as its obarray. This
1845 ;; special obarray accumulates all bindings that have been established
1846 ;; before the module system is fully booted.
1847 ;;
1848 ;; (The obarray continues to be used by code that has been closed over
1849 ;; before the module system has been booted.)
1850
1851 (define (make-root-module)
1852 (let ((m (make-module 0)))
1853 (set-module-obarray! m (%get-pre-modules-obarray))
1854 m))
1855
1856 ;; make-scm-module
1857
1858 ;; The root interface is a module that uses the same obarray as the
1859 ;; root module. It does not allow new definitions, tho.
1860
1861 (define (make-scm-module)
1862 (let ((m (make-module 0)))
1863 (set-module-obarray! m (%get-pre-modules-obarray))
1864 (set-module-eval-closure! m (standard-interface-eval-closure m))
1865 m))
1866
1867
1868 \f
1869
1870 ;;; {Module-based Loading}
1871 ;;;
1872
1873 (define (save-module-excursion thunk)
1874 (let ((inner-module (current-module))
1875 (outer-module #f))
1876 (dynamic-wind (lambda ()
1877 (set! outer-module (current-module))
1878 (set-current-module inner-module)
1879 (set! inner-module #f))
1880 thunk
1881 (lambda ()
1882 (set! inner-module (current-module))
1883 (set-current-module outer-module)
1884 (set! outer-module #f)))))
1885
1886 (define basic-load load)
1887
1888 (define* (load-module filename #:optional reader)
1889 (save-module-excursion
1890 (lambda ()
1891 (let ((oldname (and (current-load-port)
1892 (port-filename (current-load-port)))))
1893 (basic-load (if (and oldname
1894 (> (string-length filename) 0)
1895 (not (char=? (string-ref filename 0) #\/))
1896 (not (string=? (dirname oldname) ".")))
1897 (string-append (dirname oldname) "/" filename)
1898 filename)
1899 reader)))))
1900
1901
1902 \f
1903
1904 ;;; {MODULE-REF -- exported}
1905 ;;;
1906
1907 ;; Returns the value of a variable called NAME in MODULE or any of its
1908 ;; used modules. If there is no such variable, then if the optional third
1909 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1910 ;;
1911 (define (module-ref module name . rest)
1912 (let ((variable (module-variable module name)))
1913 (if (and variable (variable-bound? variable))
1914 (variable-ref variable)
1915 (if (null? rest)
1916 (error "No variable named" name 'in module)
1917 (car rest) ; default value
1918 ))))
1919
1920 ;; MODULE-SET! -- exported
1921 ;;
1922 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1923 ;; to VALUE; if there is no such variable, an error is signaled.
1924 ;;
1925 (define (module-set! module name value)
1926 (let ((variable (module-variable module name)))
1927 (if variable
1928 (variable-set! variable value)
1929 (error "No variable named" name 'in module))))
1930
1931 ;; MODULE-DEFINE! -- exported
1932 ;;
1933 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1934 ;; variable, it is added first.
1935 ;;
1936 (define (module-define! module name value)
1937 (let ((variable (module-local-variable module name)))
1938 (if variable
1939 (begin
1940 (variable-set! variable value)
1941 (module-modified module))
1942 (let ((variable (make-variable value)))
1943 (module-add! module name variable)))))
1944
1945 ;; MODULE-DEFINED? -- exported
1946 ;;
1947 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1948 ;; uses)
1949 ;;
1950 (define (module-defined? module name)
1951 (let ((variable (module-variable module name)))
1952 (and variable (variable-bound? variable))))
1953
1954 ;; MODULE-USE! module interface
1955 ;;
1956 ;; Add INTERFACE to the list of interfaces used by MODULE.
1957 ;;
1958 (define (module-use! module interface)
1959 (if (not (or (eq? module interface)
1960 (memq interface (module-uses module))))
1961 (begin
1962 ;; Newly used modules must be appended rather than consed, so that
1963 ;; `module-variable' traverses the use list starting from the first
1964 ;; used module.
1965 (set-module-uses! module
1966 (append (filter (lambda (m)
1967 (not
1968 (equal? (module-name m)
1969 (module-name interface))))
1970 (module-uses module))
1971 (list interface)))
1972 (hash-clear! (module-import-obarray module))
1973 (module-modified module))))
1974
1975 ;; MODULE-USE-INTERFACES! module interfaces
1976 ;;
1977 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1978 ;;
1979 (define (module-use-interfaces! module interfaces)
1980 (set-module-uses! module
1981 (append (module-uses module) interfaces))
1982 (hash-clear! (module-import-obarray module))
1983 (module-modified module))
1984
1985 \f
1986
1987 ;;; {Recursive Namespaces}
1988 ;;;
1989 ;;; A hierarchical namespace emerges if we consider some module to be
1990 ;;; root, and submodules of that module to be nested namespaces.
1991 ;;;
1992 ;;; The routines here manage variable names in hierarchical namespace.
1993 ;;; Each variable name is a list of elements, looked up in successively nested
1994 ;;; modules.
1995 ;;;
1996 ;;; (nested-ref some-root-module '(foo bar baz))
1997 ;;; => <value of a variable named baz in the submodule bar of
1998 ;;; the submodule foo of some-root-module>
1999 ;;;
2000 ;;;
2001 ;;; There are:
2002 ;;;
2003 ;;; ;; a-root is a module
2004 ;;; ;; name is a list of symbols
2005 ;;;
2006 ;;; nested-ref a-root name
2007 ;;; nested-set! a-root name val
2008 ;;; nested-define! a-root name val
2009 ;;; nested-remove! a-root name
2010 ;;;
2011 ;;; These functions manipulate values in namespaces. For referencing the
2012 ;;; namespaces themselves, use the following:
2013 ;;;
2014 ;;; nested-ref-module a-root name
2015 ;;; nested-define-module! a-root name mod
2016 ;;;
2017 ;;; (current-module) is a natural choice for a root so for convenience there are
2018 ;;; also:
2019 ;;;
2020 ;;; local-ref name == nested-ref (current-module) name
2021 ;;; local-set! name val == nested-set! (current-module) name val
2022 ;;; local-define name val == nested-define! (current-module) name val
2023 ;;; local-remove name == nested-remove! (current-module) name
2024 ;;; local-ref-module name == nested-ref-module (current-module) name
2025 ;;; local-define-module! name m == nested-define-module! (current-module) name m
2026 ;;;
2027
2028
2029 (define (nested-ref root names)
2030 (if (null? names)
2031 root
2032 (let loop ((cur root)
2033 (head (car names))
2034 (tail (cdr names)))
2035 (if (null? tail)
2036 (module-ref cur head #f)
2037 (let ((cur (module-ref-submodule cur head)))
2038 (and cur
2039 (loop cur (car tail) (cdr tail))))))))
2040
2041 (define (nested-set! root names val)
2042 (let loop ((cur root)
2043 (head (car names))
2044 (tail (cdr names)))
2045 (if (null? tail)
2046 (module-set! cur head val)
2047 (let ((cur (module-ref-submodule cur head)))
2048 (if (not cur)
2049 (error "failed to resolve module" names)
2050 (loop cur (car tail) (cdr tail)))))))
2051
2052 (define (nested-define! root names val)
2053 (let loop ((cur root)
2054 (head (car names))
2055 (tail (cdr names)))
2056 (if (null? tail)
2057 (module-define! cur head val)
2058 (let ((cur (module-ref-submodule cur head)))
2059 (if (not cur)
2060 (error "failed to resolve module" names)
2061 (loop cur (car tail) (cdr tail)))))))
2062
2063 (define (nested-remove! root names)
2064 (let loop ((cur root)
2065 (head (car names))
2066 (tail (cdr names)))
2067 (if (null? tail)
2068 (module-remove! cur head)
2069 (let ((cur (module-ref-submodule cur head)))
2070 (if (not cur)
2071 (error "failed to resolve module" names)
2072 (loop cur (car tail) (cdr tail)))))))
2073
2074
2075 (define (nested-ref-module root names)
2076 (let loop ((cur root)
2077 (names names))
2078 (if (null? names)
2079 cur
2080 (let ((cur (module-ref-submodule cur (car names))))
2081 (and cur
2082 (loop cur (cdr names)))))))
2083
2084 (define (nested-define-module! root names module)
2085 (if (null? names)
2086 (error "can't redefine root module" root module)
2087 (let loop ((cur root)
2088 (head (car names))
2089 (tail (cdr names)))
2090 (if (null? tail)
2091 (module-define-submodule! cur head module)
2092 (let ((cur (or (module-ref-submodule cur head)
2093 (let ((m (make-module 31)))
2094 (set-module-kind! m 'directory)
2095 (set-module-name! m (append (module-name cur)
2096 (list head)))
2097 (module-define-submodule! cur head m)
2098 m))))
2099 (loop cur (car tail) (cdr tail)))))))
2100
2101
2102 (define (local-ref names)
2103 (nested-ref (current-module) names))
2104
2105 (define (local-set! names val)
2106 (nested-set! (current-module) names val))
2107
2108 (define (local-define names val)
2109 (nested-define! (current-module) names val))
2110
2111 (define (local-remove names)
2112 (nested-remove! (current-module) names))
2113
2114 (define (local-ref-module names)
2115 (nested-ref-module (current-module) names))
2116
2117 (define (local-define-module names mod)
2118 (nested-define-module! (current-module) names mod))
2119
2120
2121
2122 \f
2123
2124 ;;; {The (guile) module}
2125 ;;;
2126 ;;; The standard module, which has the core Guile bindings. Also called the
2127 ;;; "root module", as it is imported by many other modules, but it is not
2128 ;;; necessarily the root of anything; and indeed, the module named '() might be
2129 ;;; better thought of as a root.
2130 ;;;
2131
2132 (define (set-system-module! m s)
2133 (set-procedure-property! (module-eval-closure m) 'system-module s))
2134 (define the-root-module (make-root-module))
2135 (define the-scm-module (make-scm-module))
2136 (set-module-public-interface! the-root-module the-scm-module)
2137 (set-module-name! the-root-module '(guile))
2138 (set-module-name! the-scm-module '(guile))
2139 (set-module-kind! the-scm-module 'interface)
2140 (set-system-module! the-root-module #t)
2141 (set-system-module! the-scm-module #t)
2142
2143
2144 \f
2145
2146 ;; Now that we have a root module, even though modules aren't fully booted,
2147 ;; expand the definition of resolve-module.
2148 ;;
2149 (define (resolve-module name . args)
2150 (if (equal? name '(guile))
2151 the-root-module
2152 (error "unexpected module to resolve during module boot" name)))
2153
2154 ;; Cheat. These bindings are needed by modules.c, but we don't want
2155 ;; to move their real definition here because that would be unnatural.
2156 ;;
2157 (define process-define-module #f)
2158 (define process-use-modules #f)
2159 (define module-export! #f)
2160 (define default-duplicate-binding-procedures #f)
2161
2162 ;; This boots the module system. All bindings needed by modules.c
2163 ;; must have been defined by now.
2164 ;;
2165 (set-current-module the-root-module)
2166
2167
2168 \f
2169
2170 ;; Now that modules are booted, give module-name its final definition.
2171 ;;
2172 (define module-name
2173 (let ((accessor (record-accessor module-type 'name)))
2174 (lambda (mod)
2175 (or (accessor mod)
2176 (let ((name (list (gensym))))
2177 ;; Name MOD and bind it in the module root so that it's visible to
2178 ;; `resolve-module'. This is important as `psyntax' stores module
2179 ;; names and relies on being able to `resolve-module' them.
2180 (set-module-name! mod name)
2181 (nested-define-module! (resolve-module '() #f) name mod)
2182 (accessor mod))))))
2183
2184 (define (make-modules-in module name)
2185 (or (nested-ref-module module name)
2186 (let ((m (make-module 31)))
2187 (set-module-kind! m 'directory)
2188 (set-module-name! m (append (module-name module) name))
2189 (nested-define-module! module name m)
2190 m)))
2191
2192 (define (beautify-user-module! module)
2193 (let ((interface (module-public-interface module)))
2194 (if (or (not interface)
2195 (eq? interface module))
2196 (let ((interface (make-module 31)))
2197 (set-module-name! interface (module-name module))
2198 (set-module-version! interface (module-version module))
2199 (set-module-kind! interface 'interface)
2200 (set-module-public-interface! module interface))))
2201 (if (and (not (memq the-scm-module (module-uses module)))
2202 (not (eq? module the-root-module)))
2203 ;; Import the default set of bindings (from the SCM module) in MODULE.
2204 (module-use! module the-scm-module)))
2205
2206 (define (version-matches? version-ref target)
2207 (define (sub-versions-match? v-refs t)
2208 (define (sub-version-matches? v-ref t)
2209 (let ((matches? (lambda (v) (sub-version-matches? v t))))
2210 (cond
2211 ((number? v-ref) (eqv? v-ref t))
2212 ((list? v-ref)
2213 (case (car v-ref)
2214 ((>=) (>= t (cadr v-ref)))
2215 ((<=) (<= t (cadr v-ref)))
2216 ((and) (and-map matches? (cdr v-ref)))
2217 ((or) (or-map matches? (cdr v-ref)))
2218 ((not) (not (matches? (cadr v-ref))))
2219 (else (error "Invalid sub-version reference" v-ref))))
2220 (else (error "Invalid sub-version reference" v-ref)))))
2221 (or (null? v-refs)
2222 (and (not (null? t))
2223 (sub-version-matches? (car v-refs) (car t))
2224 (sub-versions-match? (cdr v-refs) (cdr t)))))
2225
2226 (let ((matches? (lambda (v) (version-matches? v target))))
2227 (or (null? version-ref)
2228 (case (car version-ref)
2229 ((and) (and-map matches? (cdr version-ref)))
2230 ((or) (or-map matches? (cdr version-ref)))
2231 ((not) (not (matches? (cadr version-ref))))
2232 (else (sub-versions-match? version-ref target))))))
2233
2234 (define (make-fresh-user-module)
2235 (let ((m (make-module)))
2236 (beautify-user-module! m)
2237 m))
2238
2239 ;; NOTE: This binding is used in libguile/modules.c.
2240 ;;
2241 (define resolve-module
2242 (let ((root (make-module)))
2243 (set-module-name! root '())
2244 ;; Define the-root-module as '(guile).
2245 (module-define-submodule! root 'guile the-root-module)
2246
2247 (lambda* (name #:optional (autoload #t) (version #f) #:key (ensure #t))
2248 (let ((already (nested-ref-module root name)))
2249 (cond
2250 ((and already
2251 (or (not autoload) (module-public-interface already)))
2252 ;; A hit, a palpable hit.
2253 (if (and version
2254 (not (version-matches? version (module-version already))))
2255 (error "incompatible module version already loaded" name))
2256 already)
2257 (autoload
2258 ;; Try to autoload the module, and recurse.
2259 (try-load-module name version)
2260 (resolve-module name #f #:ensure ensure))
2261 (else
2262 ;; No module found (or if one was, it had no public interface), and
2263 ;; we're not autoloading. Make an empty module if #:ensure is true.
2264 (or already
2265 (and ensure
2266 (make-modules-in root name)))))))))
2267
2268
2269 (define (try-load-module name version)
2270 (try-module-autoload name version))
2271
2272 (define (purify-module! module)
2273 "Removes bindings in MODULE which are inherited from the (guile) module."
2274 (let ((use-list (module-uses module)))
2275 (if (and (pair? use-list)
2276 (eq? (car (last-pair use-list)) the-scm-module))
2277 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2278
2279 ;; Return a module that is an interface to the module designated by
2280 ;; NAME.
2281 ;;
2282 ;; `resolve-interface' takes four keyword arguments:
2283 ;;
2284 ;; #:select SELECTION
2285 ;;
2286 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
2287 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2288 ;; is the name in the used module and SEEN is the name in the using
2289 ;; module. Note that SEEN is also passed through RENAMER, below. The
2290 ;; default is to select all bindings. If you specify no selection but
2291 ;; a renamer, only the bindings that already exist in the used module
2292 ;; are made available in the interface. Bindings that are added later
2293 ;; are not picked up.
2294 ;;
2295 ;; #:hide BINDINGS
2296 ;;
2297 ;; BINDINGS is a list of bindings which should not be imported.
2298 ;;
2299 ;; #:prefix PREFIX
2300 ;;
2301 ;; PREFIX is a symbol that will be appended to each exported name.
2302 ;; The default is to not perform any renaming.
2303 ;;
2304 ;; #:renamer RENAMER
2305 ;;
2306 ;; RENAMER is a procedure that takes a symbol and returns its new
2307 ;; name. The default is not perform any renaming.
2308 ;;
2309 ;; Signal "no code for module" error if module name is not resolvable
2310 ;; or its public interface is not available. Signal "no binding"
2311 ;; error if selected binding does not exist in the used module.
2312 ;;
2313 (define* (resolve-interface name #:key
2314 (select #f)
2315 (hide '())
2316 (prefix #f)
2317 (renamer (if prefix
2318 (symbol-prefix-proc prefix)
2319 identity))
2320 version)
2321 (let* ((module (resolve-module name #t version #:ensure #f))
2322 (public-i (and module (module-public-interface module))))
2323 (and (or (not module) (not public-i))
2324 (error "no code for module" name))
2325 (if (and (not select) (null? hide) (eq? renamer identity))
2326 public-i
2327 (let ((selection (or select (module-map (lambda (sym var) sym)
2328 public-i)))
2329 (custom-i (make-module 31)))
2330 (set-module-kind! custom-i 'custom-interface)
2331 (set-module-name! custom-i name)
2332 ;; XXX - should use a lazy binder so that changes to the
2333 ;; used module are picked up automatically.
2334 (for-each (lambda (bspec)
2335 (let* ((direct? (symbol? bspec))
2336 (orig (if direct? bspec (car bspec)))
2337 (seen (if direct? bspec (cdr bspec)))
2338 (var (or (module-local-variable public-i orig)
2339 (module-local-variable module orig)
2340 (error
2341 ;; fixme: format manually for now
2342 (simple-format
2343 #f "no binding `~A' in module ~A"
2344 orig name)))))
2345 (if (memq orig hide)
2346 (set! hide (delq! orig hide))
2347 (module-add! custom-i
2348 (renamer seen)
2349 var))))
2350 selection)
2351 ;; Check that we are not hiding bindings which don't exist
2352 (for-each (lambda (binding)
2353 (if (not (module-local-variable public-i binding))
2354 (error
2355 (simple-format
2356 #f "no binding `~A' to hide in module ~A"
2357 binding name))))
2358 hide)
2359 custom-i))))
2360
2361 (define (symbol-prefix-proc prefix)
2362 (lambda (symbol)
2363 (symbol-append prefix symbol)))
2364
2365 ;; This function is called from "modules.c". If you change it, be
2366 ;; sure to update "modules.c" as well.
2367
2368 (define (process-define-module args)
2369 (let* ((module-id (car args))
2370 (module (resolve-module module-id #f))
2371 (kws (cdr args))
2372 (unrecognized (lambda (arg)
2373 (error "unrecognized define-module argument" arg))))
2374 (beautify-user-module! module)
2375 (let loop ((kws kws)
2376 (reversed-interfaces '())
2377 (exports '())
2378 (re-exports '())
2379 (replacements '())
2380 (autoloads '()))
2381
2382 (if (null? kws)
2383 (call-with-deferred-observers
2384 (lambda ()
2385 (module-use-interfaces! module (reverse reversed-interfaces))
2386 (module-export! module exports)
2387 (module-replace! module replacements)
2388 (module-re-export! module re-exports)
2389 (if (not (null? autoloads))
2390 (apply module-autoload! module autoloads))))
2391 (case (car kws)
2392 ((#:use-module #:use-syntax)
2393 (or (pair? (cdr kws))
2394 (unrecognized kws))
2395 (cond
2396 ((equal? (caadr kws) '(ice-9 syncase))
2397 (issue-deprecation-warning
2398 "(ice-9 syncase) is deprecated. Support for syntax-case is now in Guile core.")
2399 (loop (cddr kws)
2400 reversed-interfaces
2401 exports
2402 re-exports
2403 replacements
2404 autoloads))
2405 (else
2406 (let* ((interface-args (cadr kws))
2407 (interface (apply resolve-interface interface-args)))
2408 (and (eq? (car kws) #:use-syntax)
2409 (or (symbol? (caar interface-args))
2410 (error "invalid module name for use-syntax"
2411 (car interface-args)))
2412 (set-module-transformer!
2413 module
2414 (module-ref interface
2415 (car (last-pair (car interface-args)))
2416 #f)))
2417 (loop (cddr kws)
2418 (cons interface reversed-interfaces)
2419 exports
2420 re-exports
2421 replacements
2422 autoloads)))))
2423 ((#:autoload)
2424 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2425 (unrecognized kws))
2426 (loop (cdddr kws)
2427 reversed-interfaces
2428 exports
2429 re-exports
2430 replacements
2431 (let ((name (cadr kws))
2432 (bindings (caddr kws)))
2433 (cons* name bindings autoloads))))
2434 ((#:no-backtrace)
2435 (set-system-module! module #t)
2436 (loop (cdr kws) reversed-interfaces exports re-exports
2437 replacements autoloads))
2438 ((#:pure)
2439 (purify-module! module)
2440 (loop (cdr kws) reversed-interfaces exports re-exports
2441 replacements autoloads))
2442 ((#:version)
2443 (or (pair? (cdr kws))
2444 (unrecognized kws))
2445 (let ((version (cadr kws)))
2446 (set-module-version! module version)
2447 (set-module-version! (module-public-interface module) version))
2448 (loop (cddr kws) reversed-interfaces exports re-exports
2449 replacements autoloads))
2450 ((#:duplicates)
2451 (if (not (pair? (cdr kws)))
2452 (unrecognized kws))
2453 (set-module-duplicates-handlers!
2454 module
2455 (lookup-duplicates-handlers (cadr kws)))
2456 (loop (cddr kws) reversed-interfaces exports re-exports
2457 replacements autoloads))
2458 ((#:export #:export-syntax)
2459 (or (pair? (cdr kws))
2460 (unrecognized kws))
2461 (loop (cddr kws)
2462 reversed-interfaces
2463 (append (cadr kws) exports)
2464 re-exports
2465 replacements
2466 autoloads))
2467 ((#:re-export #:re-export-syntax)
2468 (or (pair? (cdr kws))
2469 (unrecognized kws))
2470 (loop (cddr kws)
2471 reversed-interfaces
2472 exports
2473 (append (cadr kws) re-exports)
2474 replacements
2475 autoloads))
2476 ((#:replace #:replace-syntax)
2477 (or (pair? (cdr kws))
2478 (unrecognized kws))
2479 (loop (cddr kws)
2480 reversed-interfaces
2481 exports
2482 re-exports
2483 (append (cadr kws) replacements)
2484 autoloads))
2485 ((#:filename)
2486 (or (pair? (cdr kws))
2487 (unrecognized kws))
2488 (set-module-filename! module (cadr kws))
2489 (loop (cddr kws)
2490 reversed-interfaces
2491 exports
2492 re-exports
2493 replacements
2494 autoloads))
2495 (else
2496 (unrecognized kws)))))
2497 (run-hook module-defined-hook module)
2498 module))
2499
2500 ;; `module-defined-hook' is a hook that is run whenever a new module
2501 ;; is defined. Its members are called with one argument, the new
2502 ;; module.
2503 (define module-defined-hook (make-hook 1))
2504
2505 \f
2506
2507 ;;; {Autoload}
2508 ;;;
2509
2510 (define (make-autoload-interface module name bindings)
2511 (let ((b (lambda (a sym definep)
2512 (and (memq sym bindings)
2513 (let ((i (module-public-interface (resolve-module name))))
2514 (if (not i)
2515 (error "missing interface for module" name))
2516 (let ((autoload (memq a (module-uses module))))
2517 ;; Replace autoload-interface with actual interface if
2518 ;; that has not happened yet.
2519 (if (pair? autoload)
2520 (set-car! autoload i)))
2521 (module-local-variable i sym))))))
2522 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2523 (make-hash-table 0) '() (make-weak-value-hash-table 31) #f
2524 (make-hash-table 0) #f #f #f)))
2525
2526 (define (module-autoload! module . args)
2527 "Have @var{module} automatically load the module named @var{name} when one
2528 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2529 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2530 module '(ice-9 q) '(make-q q-length))}."
2531 (let loop ((args args))
2532 (cond ((null? args)
2533 #t)
2534 ((null? (cdr args))
2535 (error "invalid name+binding autoload list" args))
2536 (else
2537 (let ((name (car args))
2538 (bindings (cadr args)))
2539 (module-use! module (make-autoload-interface module
2540 name bindings))
2541 (loop (cddr args)))))))
2542
2543
2544 \f
2545
2546 ;;; {Autoloading modules}
2547 ;;;
2548
2549 (define autoloads-in-progress '())
2550
2551 ;; This function is called from "modules.c". If you change it, be
2552 ;; sure to update "modules.c" as well.
2553
2554 (define* (try-module-autoload module-name #:optional version)
2555 (let* ((reverse-name (reverse module-name))
2556 (name (symbol->string (car reverse-name)))
2557 (dir-hint-module-name (reverse (cdr reverse-name)))
2558 (dir-hint (apply string-append
2559 (map (lambda (elt)
2560 (string-append (symbol->string elt) "/"))
2561 dir-hint-module-name))))
2562 (resolve-module dir-hint-module-name #f)
2563 (and (not (autoload-done-or-in-progress? dir-hint name))
2564 (let ((didit #f))
2565 (dynamic-wind
2566 (lambda () (autoload-in-progress! dir-hint name))
2567 (lambda ()
2568 (with-fluids ((current-reader #f))
2569 (save-module-excursion
2570 (lambda ()
2571 ;; The initial environment when loading a module is a fresh
2572 ;; user module.
2573 (set-current-module (make-fresh-user-module))
2574 ;; Here we could allow some other search strategy (other than
2575 ;; primitive-load-path), for example using versions encoded
2576 ;; into the file system -- but then we would have to figure
2577 ;; out how to locate the compiled file, do autocompilation,
2578 ;; etc. Punt for now, and don't use versions when locating
2579 ;; the file.
2580 (primitive-load-path (in-vicinity dir-hint name) #f)
2581 (set! didit #t)))))
2582 (lambda () (set-autoloaded! dir-hint name didit)))
2583 didit))))
2584
2585 \f
2586
2587 ;;; {Dynamic linking of modules}
2588 ;;;
2589
2590 (define autoloads-done '((guile . guile)))
2591
2592 (define (autoload-done-or-in-progress? p m)
2593 (let ((n (cons p m)))
2594 (->bool (or (member n autoloads-done)
2595 (member n autoloads-in-progress)))))
2596
2597 (define (autoload-done! p m)
2598 (let ((n (cons p m)))
2599 (set! autoloads-in-progress
2600 (delete! n autoloads-in-progress))
2601 (or (member n autoloads-done)
2602 (set! autoloads-done (cons n autoloads-done)))))
2603
2604 (define (autoload-in-progress! p m)
2605 (let ((n (cons p m)))
2606 (set! autoloads-done
2607 (delete! n autoloads-done))
2608 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2609
2610 (define (set-autoloaded! p m done?)
2611 (if done?
2612 (autoload-done! p m)
2613 (let ((n (cons p m)))
2614 (set! autoloads-done (delete! n autoloads-done))
2615 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2616
2617 \f
2618
2619 ;;; {Run-time options}
2620 ;;;
2621
2622 (define-syntax define-option-interface
2623 (syntax-rules ()
2624 ((_ (interface (options enable disable) (option-set!)))
2625 (begin
2626 (define options
2627 (case-lambda
2628 (() (interface))
2629 ((arg)
2630 (if (list? arg)
2631 (begin (interface arg) (interface))
2632 (for-each
2633 (lambda (option)
2634 (apply (lambda (name value documentation)
2635 (display name)
2636 (if (< (string-length (symbol->string name)) 8)
2637 (display #\tab))
2638 (display #\tab)
2639 (display value)
2640 (display #\tab)
2641 (display documentation)
2642 (newline))
2643 option))
2644 (interface #t))))))
2645 (define (enable . flags)
2646 (interface (append flags (interface)))
2647 (interface))
2648 (define (disable . flags)
2649 (let ((options (interface)))
2650 (for-each (lambda (flag) (set! options (delq! flag options)))
2651 flags)
2652 (interface options)
2653 (interface)))
2654 (define-syntax option-set!
2655 (syntax-rules ()
2656 ((_ opt val)
2657 (options (append (options) (list 'opt val))))))))))
2658
2659 (define-option-interface
2660 (eval-options-interface
2661 (eval-options eval-enable eval-disable)
2662 (eval-set!)))
2663
2664 (define-option-interface
2665 (debug-options-interface
2666 (debug-options debug-enable debug-disable)
2667 (debug-set!)))
2668
2669 (define-option-interface
2670 (evaluator-traps-interface
2671 (traps trap-enable trap-disable)
2672 (trap-set!)))
2673
2674 (define-option-interface
2675 (read-options-interface
2676 (read-options read-enable read-disable)
2677 (read-set!)))
2678
2679 (define-option-interface
2680 (print-options-interface
2681 (print-options print-enable print-disable)
2682 (print-set!)))
2683
2684 \f
2685
2686 ;;; {The Unspecified Value}
2687 ;;;
2688 ;;; Currently Guile represents unspecified values via one particular value,
2689 ;;; which may be obtained by evaluating (if #f #f). It would be nice in the
2690 ;;; future if we could replace this with a return of 0 values, though.
2691 ;;;
2692
2693 (define-syntax *unspecified*
2694 (identifier-syntax (if #f #f)))
2695
2696 (define (unspecified? v) (eq? v *unspecified*))
2697
2698
2699 \f
2700
2701 ;;; {Running Repls}
2702 ;;;
2703
2704 (define *repl-stack* (make-fluid))
2705
2706 ;; Programs can call `batch-mode?' to see if they are running as part of a
2707 ;; script or if they are running interactively. REPL implementations ensure that
2708 ;; `batch-mode?' returns #f during their extent.
2709 ;;
2710 (define (batch-mode?)
2711 (null? (or (fluid-ref *repl-stack*) '())))
2712
2713 ;; Programs can re-enter batch mode, for example after a fork, by calling
2714 ;; `ensure-batch-mode!'. It's not a great interface, though; it would be better
2715 ;; to abort to the outermost prompt, and call a thunk there.
2716 ;;
2717 (define (ensure-batch-mode!)
2718 (set! batch-mode? (lambda () #t)))
2719
2720 (define (quit . args)
2721 (apply throw 'quit args))
2722
2723 (define exit quit)
2724
2725 (define (gc-run-time)
2726 (cdr (assq 'gc-time-taken (gc-stats))))
2727
2728 (define abort-hook (make-hook))
2729 (define before-error-hook (make-hook))
2730 (define after-error-hook (make-hook))
2731 (define before-backtrace-hook (make-hook))
2732 (define after-backtrace-hook (make-hook))
2733
2734 (define before-read-hook (make-hook))
2735 (define after-read-hook (make-hook))
2736 (define before-eval-hook (make-hook 1))
2737 (define after-eval-hook (make-hook 1))
2738 (define before-print-hook (make-hook 1))
2739 (define after-print-hook (make-hook 1))
2740
2741 ;;; This hook is run at the very end of an interactive session.
2742 ;;;
2743 (define exit-hook (make-hook))
2744
2745 ;;; The default repl-reader function. We may override this if we've
2746 ;;; the readline library.
2747 (define repl-reader
2748 (lambda* (prompt #:optional (reader (fluid-ref current-reader)))
2749 (if (not (char-ready?))
2750 (display (if (string? prompt) prompt (prompt))))
2751 (force-output)
2752 (run-hook before-read-hook)
2753 ((or reader read) (current-input-port))))
2754
2755
2756 \f
2757
2758 ;;; {IOTA functions: generating lists of numbers}
2759 ;;;
2760
2761 (define (iota n)
2762 (let loop ((count (1- n)) (result '()))
2763 (if (< count 0) result
2764 (loop (1- count) (cons count result)))))
2765
2766 \f
2767
2768 ;;; {While}
2769 ;;;
2770 ;;; with `continue' and `break'.
2771 ;;;
2772
2773 ;; The inliner will remove the prompts at compile-time if it finds that
2774 ;; `continue' or `break' are not used.
2775 ;;
2776 (define-syntax while
2777 (lambda (x)
2778 (syntax-case x ()
2779 ((while cond body ...)
2780 #`(let ((break-tag (make-prompt-tag "break"))
2781 (continue-tag (make-prompt-tag "continue")))
2782 (call-with-prompt
2783 break-tag
2784 (lambda ()
2785 (define-syntax #,(datum->syntax #'while 'break)
2786 (lambda (x)
2787 (syntax-case x ()
2788 ((_)
2789 #'(abort-to-prompt break-tag))
2790 ((_ . args)
2791 (syntax-violation 'break "too many arguments" x))
2792 (_
2793 #'(lambda ()
2794 (abort-to-prompt break-tag))))))
2795 (let lp ()
2796 (call-with-prompt
2797 continue-tag
2798 (lambda ()
2799 (define-syntax #,(datum->syntax #'while 'continue)
2800 (lambda (x)
2801 (syntax-case x ()
2802 ((_)
2803 #'(abort-to-prompt continue-tag))
2804 ((_ . args)
2805 (syntax-violation 'continue "too many arguments" x))
2806 (_
2807 #'(lambda args
2808 (apply abort-to-prompt continue-tag args))))))
2809 (do () ((not cond)) body ...))
2810 (lambda (k) (lp)))))
2811 (lambda (k)
2812 #t)))))))
2813
2814
2815 \f
2816
2817 ;;; {Module System Macros}
2818 ;;;
2819
2820 ;; Return a list of expressions that evaluate to the appropriate
2821 ;; arguments for resolve-interface according to SPEC.
2822
2823 (eval-when (compile)
2824 (if (memq 'prefix (read-options))
2825 (error "boot-9 must be compiled with #:kw, not :kw")))
2826
2827 (define (keyword-like-symbol->keyword sym)
2828 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2829
2830 ;; FIXME: we really need to clean up the guts of the module system.
2831 ;; We can compile to something better than process-define-module.
2832 ;;
2833 (define-syntax define-module
2834 (lambda (x)
2835 (define (keyword-like? stx)
2836 (let ((dat (syntax->datum stx)))
2837 (and (symbol? dat)
2838 (eqv? (string-ref (symbol->string dat) 0) #\:))))
2839 (define (->keyword sym)
2840 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2841
2842 (define (quotify-iface args)
2843 (let loop ((in args) (out '()))
2844 (syntax-case in ()
2845 (() (reverse! out))
2846 ;; The user wanted #:foo, but wrote :foo. Fix it.
2847 ((sym . in) (keyword-like? #'sym)
2848 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
2849 ((kw . in) (not (keyword? (syntax->datum #'kw)))
2850 (syntax-violation 'define-module "expected keyword arg" x #'kw))
2851 ((#:renamer renamer . in)
2852 (loop #'in (cons* #'renamer #:renamer out)))
2853 ((kw val . in)
2854 (loop #'in (cons* #''val #'kw out))))))
2855
2856 (define (quotify args)
2857 ;; Just quote everything except #:use-module and #:use-syntax. We
2858 ;; need to know about all arguments regardless since we want to turn
2859 ;; symbols that look like keywords into real keywords, and the
2860 ;; keyword args in a define-module form are not regular
2861 ;; (i.e. no-backtrace doesn't take a value).
2862 (let loop ((in args) (out '()))
2863 (syntax-case in ()
2864 (() (reverse! out))
2865 ;; The user wanted #:foo, but wrote :foo. Fix it.
2866 ((sym . in) (keyword-like? #'sym)
2867 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
2868 ((kw . in) (not (keyword? (syntax->datum #'kw)))
2869 (syntax-violation 'define-module "expected keyword arg" x #'kw))
2870 ((#:no-backtrace . in)
2871 (loop #'in (cons #:no-backtrace out)))
2872 ((#:pure . in)
2873 (loop #'in (cons #:pure out)))
2874 ((kw)
2875 (syntax-violation 'define-module "keyword arg without value" x #'kw))
2876 ((use-module (name name* ...) . in)
2877 (and (memq (syntax->datum #'use-module) '(#:use-module #:use-syntax))
2878 (and-map symbol? (syntax->datum #'(name name* ...))))
2879 (loop #'in
2880 (cons* #''((name name* ...))
2881 #'use-module
2882 out)))
2883 ((use-module ((name name* ...) arg ...) . in)
2884 (and (memq (syntax->datum #'use-module) '(#:use-module #:use-syntax))
2885 (and-map symbol? (syntax->datum #'(name name* ...))))
2886 (loop #'in
2887 (cons* #`(list '(name name* ...) #,@(quotify-iface #'(arg ...)))
2888 #'use-module
2889 out)))
2890 ((#:autoload name bindings . in)
2891 (loop #'in (cons* #''bindings #''name #:autoload out)))
2892 ((kw val . in)
2893 (loop #'in (cons* #''val #'kw out))))))
2894
2895 (syntax-case x ()
2896 ((_ (name name* ...) arg ...)
2897 (with-syntax (((quoted-arg ...) (quotify #'(arg ...))))
2898 #'(eval-when (eval load compile expand)
2899 (let ((m (process-define-module
2900 (list '(name name* ...)
2901 #:filename (assq-ref
2902 (or (current-source-location) '())
2903 'filename)
2904 quoted-arg ...))))
2905 (set-current-module m)
2906 m)))))))
2907
2908 ;; The guts of the use-modules macro. Add the interfaces of the named
2909 ;; modules to the use-list of the current module, in order.
2910
2911 ;; This function is called by "modules.c". If you change it, be sure
2912 ;; to change scm_c_use_module as well.
2913
2914 (define (process-use-modules module-interface-args)
2915 (let ((interfaces (map (lambda (mif-args)
2916 (or (apply resolve-interface mif-args)
2917 (error "no such module" mif-args)))
2918 module-interface-args)))
2919 (call-with-deferred-observers
2920 (lambda ()
2921 (module-use-interfaces! (current-module) interfaces)))))
2922
2923 (define-syntax use-modules
2924 (lambda (x)
2925 (define (keyword-like? stx)
2926 (let ((dat (syntax->datum stx)))
2927 (and (symbol? dat)
2928 (eqv? (string-ref (symbol->string dat) 0) #\:))))
2929 (define (->keyword sym)
2930 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2931
2932 (define (quotify-iface args)
2933 (let loop ((in args) (out '()))
2934 (syntax-case in ()
2935 (() (reverse! out))
2936 ;; The user wanted #:foo, but wrote :foo. Fix it.
2937 ((sym . in) (keyword-like? #'sym)
2938 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
2939 ((kw . in) (not (keyword? (syntax->datum #'kw)))
2940 (syntax-violation 'define-module "expected keyword arg" x #'kw))
2941 ((#:renamer renamer . in)
2942 (loop #'in (cons* #'renamer #:renamer out)))
2943 ((kw val . in)
2944 (loop #'in (cons* #''val #'kw out))))))
2945
2946 (define (quotify specs)
2947 (let lp ((in specs) (out '()))
2948 (syntax-case in ()
2949 (() (reverse out))
2950 (((name name* ...) . in)
2951 (and-map symbol? (syntax->datum #'(name name* ...)))
2952 (lp #'in (cons #''((name name* ...)) out)))
2953 ((((name name* ...) arg ...) . in)
2954 (and-map symbol? (syntax->datum #'(name name* ...)))
2955 (with-syntax (((quoted-arg ...) (quotify-iface #'(arg ...))))
2956 (lp #'in (cons #`(list '(name name* ...) quoted-arg ...)
2957 out)))))))
2958
2959 (syntax-case x ()
2960 ((_ spec ...)
2961 (with-syntax (((quoted-args ...) (quotify #'(spec ...))))
2962 #'(eval-when (eval load compile expand)
2963 (process-use-modules (list quoted-args ...))
2964 *unspecified*))))))
2965
2966 (define-syntax use-syntax
2967 (syntax-rules ()
2968 ((_ spec ...)
2969 (begin
2970 (eval-when (eval load compile expand)
2971 (issue-deprecation-warning
2972 "`use-syntax' is deprecated. Please contact guile-devel for more info."))
2973 (use-modules spec ...)))))
2974
2975 (include-from-path "ice-9/r6rs-libraries")
2976
2977 (define-syntax define-private
2978 (syntax-rules ()
2979 ((_ foo bar)
2980 (define foo bar))))
2981
2982 (define-syntax define-public
2983 (syntax-rules ()
2984 ((_ (name . args) . body)
2985 (define-public name (lambda args . body)))
2986 ((_ name val)
2987 (begin
2988 (define name val)
2989 (export name)))))
2990
2991 (define-syntax defmacro-public
2992 (syntax-rules ()
2993 ((_ name args . body)
2994 (begin
2995 (defmacro name args . body)
2996 (export-syntax name)))))
2997
2998 ;; And now for the most important macro.
2999 (define-syntax λ
3000 (syntax-rules ()
3001 ((_ formals body ...)
3002 (lambda formals body ...))))
3003
3004 \f
3005 ;; Export a local variable
3006
3007 ;; This function is called from "modules.c". If you change it, be
3008 ;; sure to update "modules.c" as well.
3009
3010 (define (module-export! m names)
3011 (let ((public-i (module-public-interface m)))
3012 (for-each (lambda (name)
3013 (let* ((internal-name (if (pair? name) (car name) name))
3014 (external-name (if (pair? name) (cdr name) name))
3015 (var (module-ensure-local-variable! m internal-name)))
3016 (module-add! public-i external-name var)))
3017 names)))
3018
3019 (define (module-replace! m names)
3020 (let ((public-i (module-public-interface m)))
3021 (for-each (lambda (name)
3022 (let* ((internal-name (if (pair? name) (car name) name))
3023 (external-name (if (pair? name) (cdr name) name))
3024 (var (module-ensure-local-variable! m internal-name)))
3025 (set-object-property! var 'replace #t)
3026 (module-add! public-i external-name var)))
3027 names)))
3028
3029 ;; Export all local variables from a module
3030 ;;
3031 (define (module-export-all! mod)
3032 (define (fresh-interface!)
3033 (let ((iface (make-module)))
3034 (set-module-name! iface (module-name mod))
3035 (set-module-version! iface (module-version mod))
3036 (set-module-kind! iface 'interface)
3037 (set-module-public-interface! mod iface)
3038 iface))
3039 (let ((iface (or (module-public-interface mod)
3040 (fresh-interface!))))
3041 (set-module-obarray! iface (module-obarray mod))))
3042
3043 ;; Re-export a imported variable
3044 ;;
3045 (define (module-re-export! m names)
3046 (let ((public-i (module-public-interface m)))
3047 (for-each (lambda (name)
3048 (let* ((internal-name (if (pair? name) (car name) name))
3049 (external-name (if (pair? name) (cdr name) name))
3050 (var (module-variable m internal-name)))
3051 (cond ((not var)
3052 (error "Undefined variable:" internal-name))
3053 ((eq? var (module-local-variable m internal-name))
3054 (error "re-exporting local variable:" internal-name))
3055 (else
3056 (module-add! public-i external-name var)))))
3057 names)))
3058
3059 (define-syntax export
3060 (syntax-rules ()
3061 ((_ name ...)
3062 (eval-when (eval load compile expand)
3063 (call-with-deferred-observers
3064 (lambda ()
3065 (module-export! (current-module) '(name ...))))))))
3066
3067 (define-syntax re-export
3068 (syntax-rules ()
3069 ((_ name ...)
3070 (eval-when (eval load compile expand)
3071 (call-with-deferred-observers
3072 (lambda ()
3073 (module-re-export! (current-module) '(name ...))))))))
3074
3075 (define-syntax export!
3076 (syntax-rules ()
3077 ((_ name ...)
3078 (eval-when (eval load compile expand)
3079 (call-with-deferred-observers
3080 (lambda ()
3081 (module-replace! (current-module) '(name ...))))))))
3082
3083 (define-syntax export-syntax
3084 (syntax-rules ()
3085 ((_ name ...)
3086 (export name ...))))
3087
3088 (define-syntax re-export-syntax
3089 (syntax-rules ()
3090 ((_ name ...)
3091 (re-export name ...))))
3092
3093 (define load load-module)
3094
3095 \f
3096
3097 ;;; {Parameters}
3098 ;;;
3099
3100 (define* (make-mutable-parameter init #:optional (converter identity))
3101 (let ((fluid (make-fluid)))
3102 (fluid-set! fluid (converter init))
3103 (case-lambda
3104 (() (fluid-ref fluid))
3105 ((val) (fluid-set! fluid (converter val))))))
3106
3107
3108 \f
3109
3110 ;;; {Handling of duplicate imported bindings}
3111 ;;;
3112
3113 ;; Duplicate handlers take the following arguments:
3114 ;;
3115 ;; module importing module
3116 ;; name conflicting name
3117 ;; int1 old interface where name occurs
3118 ;; val1 value of binding in old interface
3119 ;; int2 new interface where name occurs
3120 ;; val2 value of binding in new interface
3121 ;; var previous resolution or #f
3122 ;; val value of previous resolution
3123 ;;
3124 ;; A duplicate handler can take three alternative actions:
3125 ;;
3126 ;; 1. return #f => leave responsibility to next handler
3127 ;; 2. exit with an error
3128 ;; 3. return a variable resolving the conflict
3129 ;;
3130
3131 (define duplicate-handlers
3132 (let ((m (make-module 7)))
3133
3134 (define (check module name int1 val1 int2 val2 var val)
3135 (scm-error 'misc-error
3136 #f
3137 "~A: `~A' imported from both ~A and ~A"
3138 (list (module-name module)
3139 name
3140 (module-name int1)
3141 (module-name int2))
3142 #f))
3143
3144 (define (warn module name int1 val1 int2 val2 var val)
3145 (format (current-error-port)
3146 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3147 (module-name module)
3148 name
3149 (module-name int1)
3150 (module-name int2))
3151 #f)
3152
3153 (define (replace module name int1 val1 int2 val2 var val)
3154 (let ((old (or (and var (object-property var 'replace) var)
3155 (module-variable int1 name)))
3156 (new (module-variable int2 name)))
3157 (if (object-property old 'replace)
3158 (and (or (eq? old new)
3159 (not (object-property new 'replace)))
3160 old)
3161 (and (object-property new 'replace)
3162 new))))
3163
3164 (define (warn-override-core module name int1 val1 int2 val2 var val)
3165 (and (eq? int1 the-scm-module)
3166 (begin
3167 (format (current-error-port)
3168 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3169 (module-name module)
3170 (module-name int2)
3171 name)
3172 (module-local-variable int2 name))))
3173
3174 (define (first module name int1 val1 int2 val2 var val)
3175 (or var (module-local-variable int1 name)))
3176
3177 (define (last module name int1 val1 int2 val2 var val)
3178 (module-local-variable int2 name))
3179
3180 (define (noop module name int1 val1 int2 val2 var val)
3181 #f)
3182
3183 (set-module-name! m 'duplicate-handlers)
3184 (set-module-kind! m 'interface)
3185 (module-define! m 'check check)
3186 (module-define! m 'warn warn)
3187 (module-define! m 'replace replace)
3188 (module-define! m 'warn-override-core warn-override-core)
3189 (module-define! m 'first first)
3190 (module-define! m 'last last)
3191 (module-define! m 'merge-generics noop)
3192 (module-define! m 'merge-accessors noop)
3193 m))
3194
3195 (define (lookup-duplicates-handlers handler-names)
3196 (and handler-names
3197 (map (lambda (handler-name)
3198 (or (module-symbol-local-binding
3199 duplicate-handlers handler-name #f)
3200 (error "invalid duplicate handler name:"
3201 handler-name)))
3202 (if (list? handler-names)
3203 handler-names
3204 (list handler-names)))))
3205
3206 (define default-duplicate-binding-procedures
3207 (make-mutable-parameter #f))
3208
3209 (define default-duplicate-binding-handler
3210 (make-mutable-parameter '(replace warn-override-core warn last)
3211 (lambda (handler-names)
3212 (default-duplicate-binding-procedures
3213 (lookup-duplicates-handlers handler-names))
3214 handler-names)))
3215
3216 \f
3217
3218 ;;; {`cond-expand' for SRFI-0 support.}
3219 ;;;
3220 ;;; This syntactic form expands into different commands or
3221 ;;; definitions, depending on the features provided by the Scheme
3222 ;;; implementation.
3223 ;;;
3224 ;;; Syntax:
3225 ;;;
3226 ;;; <cond-expand>
3227 ;;; --> (cond-expand <cond-expand-clause>+)
3228 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3229 ;;; <cond-expand-clause>
3230 ;;; --> (<feature-requirement> <command-or-definition>*)
3231 ;;; <feature-requirement>
3232 ;;; --> <feature-identifier>
3233 ;;; | (and <feature-requirement>*)
3234 ;;; | (or <feature-requirement>*)
3235 ;;; | (not <feature-requirement>)
3236 ;;; <feature-identifier>
3237 ;;; --> <a symbol which is the name or alias of a SRFI>
3238 ;;;
3239 ;;; Additionally, this implementation provides the
3240 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3241 ;;; determine the implementation type and the supported standard.
3242 ;;;
3243 ;;; Currently, the following feature identifiers are supported:
3244 ;;;
3245 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3246 ;;;
3247 ;;; Remember to update the features list when adding more SRFIs.
3248 ;;;
3249
3250 (define %cond-expand-features
3251 ;; Adjust the above comment when changing this.
3252 '(guile
3253 guile-2
3254 r5rs
3255 srfi-0 ;; cond-expand itself
3256 srfi-4 ;; homogenous numeric vectors
3257 srfi-6 ;; open-input-string etc, in the guile core
3258 srfi-13 ;; string library
3259 srfi-14 ;; character sets
3260 srfi-55 ;; require-extension
3261 srfi-61 ;; general cond clause
3262 ))
3263
3264 ;; This table maps module public interfaces to the list of features.
3265 ;;
3266 (define %cond-expand-table (make-hash-table 31))
3267
3268 ;; Add one or more features to the `cond-expand' feature list of the
3269 ;; module `module'.
3270 ;;
3271 (define (cond-expand-provide module features)
3272 (let ((mod (module-public-interface module)))
3273 (and mod
3274 (hashq-set! %cond-expand-table mod
3275 (append (hashq-ref %cond-expand-table mod '())
3276 features)))))
3277
3278 (define-syntax cond-expand
3279 (lambda (x)
3280 (define (module-has-feature? mod sym)
3281 (or-map (lambda (mod)
3282 (memq sym (hashq-ref %cond-expand-table mod '())))
3283 (module-uses mod)))
3284
3285 (define (condition-matches? condition)
3286 (syntax-case condition (and or not)
3287 ((and c ...)
3288 (and-map condition-matches? #'(c ...)))
3289 ((or c ...)
3290 (or-map condition-matches? #'(c ...)))
3291 ((not c)
3292 (if (condition-matches? #'c) #f #t))
3293 (c
3294 (identifier? #'c)
3295 (let ((sym (syntax->datum #'c)))
3296 (if (memq sym %cond-expand-features)
3297 #t
3298 (module-has-feature? (current-module) sym))))))
3299
3300 (define (match clauses alternate)
3301 (syntax-case clauses ()
3302 (((condition form ...) . rest)
3303 (if (condition-matches? #'condition)
3304 #'(begin form ...)
3305 (match #'rest alternate)))
3306 (() (alternate))))
3307
3308 (syntax-case x (else)
3309 ((_ clause ... (else form ...))
3310 (match #'(clause ...)
3311 (lambda ()
3312 #'(begin form ...))))
3313 ((_ clause ...)
3314 (match #'(clause ...)
3315 (lambda ()
3316 (syntax-violation 'cond-expand "unfulfilled cond-expand" x)))))))
3317
3318 ;; This procedure gets called from the startup code with a list of
3319 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3320 ;;
3321 (define (use-srfis srfis)
3322 (process-use-modules
3323 (map (lambda (num)
3324 (list (list 'srfi (string->symbol
3325 (string-append "srfi-" (number->string num))))))
3326 srfis)))
3327
3328 \f
3329
3330 ;;; srfi-55: require-extension
3331 ;;;
3332
3333 (define-syntax require-extension
3334 (lambda (x)
3335 (syntax-case x (srfi)
3336 ((_ (srfi n ...))
3337 (and-map integer? (syntax->datum #'(n ...)))
3338 (with-syntax
3339 (((srfi-n ...)
3340 (map (lambda (n)
3341 (datum->syntax x (symbol-append 'srfi- n)))
3342 (map string->symbol
3343 (map number->string (syntax->datum #'(n ...)))))))
3344 #'(use-modules (srfi srfi-n) ...)))
3345 ((_ (type arg ...))
3346 (identifier? #'type)
3347 (syntax-violation 'require-extension "Not a recognized extension type"
3348 x)))))
3349
3350 \f
3351
3352 (define using-readline?
3353 (let ((using-readline? (make-fluid)))
3354 (make-procedure-with-setter
3355 (lambda () (fluid-ref using-readline?))
3356 (lambda (v) (fluid-set! using-readline? v)))))
3357
3358 \f
3359
3360 ;;; {Deprecated stuff}
3361 ;;;
3362
3363 (begin-deprecated
3364 (module-use! the-scm-module (resolve-interface '(ice-9 deprecated))))
3365
3366 \f
3367
3368 ;;; Place the user in the guile-user module.
3369 ;;;
3370
3371 ;; FIXME:
3372 (module-use! the-scm-module (resolve-interface '(srfi srfi-4)))
3373
3374 (define-module (guile-user)
3375 #:autoload (system base compile) (compile))
3376
3377 ;; Remain in the `(guile)' module at compilation-time so that the
3378 ;; `-Wunused-toplevel' warning works as expected.
3379 (eval-when (compile) (set-current-module the-root-module))
3380
3381 ;;; boot-9.scm ends here