(Regexp Functions): Add list-matches and fold-matches.
[bpt/guile.git] / doc / ref / api-data.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004
4 @c Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @page
8 @node Simple Data Types
9 @section Simple Generic Data Types
10
11 This chapter describes those of Guile's simple data types which are
12 primarily used for their role as items of generic data. By
13 @dfn{simple} we mean data types that are not primarily used as
14 containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
15 For the documentation of such @dfn{compound} data types, see
16 @ref{Compound Data Types}.
17
18 @c One of the great strengths of Scheme is that there is no straightforward
19 @c distinction between ``data'' and ``functionality''. For example,
20 @c Guile's support for dynamic linking could be described:
21
22 @c @itemize @bullet
23 @c @item
24 @c either in a ``data-centric'' way, as the behaviour and properties of the
25 @c ``dynamically linked object'' data type, and the operations that may be
26 @c applied to instances of this type
27
28 @c @item
29 @c or in a ``functionality-centric'' way, as the set of procedures that
30 @c constitute Guile's support for dynamic linking, in the context of the
31 @c module system.
32 @c @end itemize
33
34 @c The contents of this chapter are, therefore, a matter of judgment. By
35 @c @dfn{generic}, we mean to select those data types whose typical use as
36 @c @emph{data} in a wide variety of programming contexts is more important
37 @c than their use in the implementation of a particular piece of
38 @c @emph{functionality}. The last section of this chapter provides
39 @c references for all the data types that are documented not here but in a
40 @c ``functionality-centric'' way elsewhere in the manual.
41
42 @menu
43 * Booleans:: True/false values.
44 * Numbers:: Numerical data types.
45 * Characters:: Single characters.
46 * Character Sets:: Sets of characters.
47 * Strings:: Sequences of characters.
48 * Regular Expressions:: Pattern matching and substitution.
49 * Symbols:: Symbols.
50 * Keywords:: Self-quoting, customizable display keywords.
51 * Other Types:: "Functionality-centric" data types.
52 @end menu
53
54
55 @node Booleans
56 @subsection Booleans
57 @tpindex Booleans
58
59 The two boolean values are @code{#t} for true and @code{#f} for false.
60
61 Boolean values are returned by predicate procedures, such as the general
62 equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
63 (@pxref{Equality}) and numerical and string comparison operators like
64 @code{string=?} (@pxref{String Comparison}) and @code{<=}
65 (@pxref{Comparison}).
66
67 @lisp
68 (<= 3 8)
69 @result{} #t
70
71 (<= 3 -3)
72 @result{} #f
73
74 (equal? "house" "houses")
75 @result{} #f
76
77 (eq? #f #f)
78 @result{}
79 #t
80 @end lisp
81
82 In test condition contexts like @code{if} and @code{cond} (@pxref{if
83 cond case}), where a group of subexpressions will be evaluated only if a
84 @var{condition} expression evaluates to ``true'', ``true'' means any
85 value at all except @code{#f}.
86
87 @lisp
88 (if #t "yes" "no")
89 @result{} "yes"
90
91 (if 0 "yes" "no")
92 @result{} "yes"
93
94 (if #f "yes" "no")
95 @result{} "no"
96 @end lisp
97
98 A result of this asymmetry is that typical Scheme source code more often
99 uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
100 represent an @code{if} or @code{cond} false value, whereas @code{#t} is
101 not necessary to represent an @code{if} or @code{cond} true value.
102
103 It is important to note that @code{#f} is @strong{not} equivalent to any
104 other Scheme value. In particular, @code{#f} is not the same as the
105 number 0 (like in C and C++), and not the same as the ``empty list''
106 (like in some Lisp dialects).
107
108 In C, the two Scheme boolean values are available as the two constants
109 @code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
110 Care must be taken with the false value @code{SCM_BOOL_F}: it is not
111 false when used in C conditionals. In order to test for it, use
112 @code{scm_is_false} or @code{scm_is_true}.
113
114 @rnindex not
115 @deffn {Scheme Procedure} not x
116 @deffnx {C Function} scm_not (x)
117 Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
118 @end deffn
119
120 @rnindex boolean?
121 @deffn {Scheme Procedure} boolean? obj
122 @deffnx {C Function} scm_boolean_p (obj)
123 Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
124 return @code{#f}.
125 @end deffn
126
127 @deftypevr {C Macro} SCM SCM_BOOL_T
128 The @code{SCM} representation of the Scheme object @code{#t}.
129 @end deftypevr
130
131 @deftypevr {C Macro} SCM SCM_BOOL_F
132 The @code{SCM} representation of the Scheme object @code{#f}.
133 @end deftypevr
134
135 @deftypefn {C Function} int scm_is_true (SCM obj)
136 Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
137 @end deftypefn
138
139 @deftypefn {C Function} int scm_is_false (SCM obj)
140 Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
141 @end deftypefn
142
143 @deftypefn {C Function} int scm_is_bool (SCM obj)
144 Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
145 return @code{0}.
146 @end deftypefn
147
148 @deftypefn {C Function} SCM scm_from_bool (int val)
149 Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
150 @end deftypefn
151
152 @deftypefn {C Function} int scm_to_bool (SCM val)
153 Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
154 when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
155
156 You should probably use @code{scm_is_true} instead of this function
157 when you just want to test a @code{SCM} value for trueness.
158 @end deftypefn
159
160 @node Numbers
161 @subsection Numerical data types
162 @tpindex Numbers
163
164 Guile supports a rich ``tower'' of numerical types --- integer,
165 rational, real and complex --- and provides an extensive set of
166 mathematical and scientific functions for operating on numerical
167 data. This section of the manual documents those types and functions.
168
169 You may also find it illuminating to read R5RS's presentation of numbers
170 in Scheme, which is particularly clear and accessible: see
171 @ref{Numbers,,,r5rs,R5RS}.
172
173 @menu
174 * Numerical Tower:: Scheme's numerical "tower".
175 * Integers:: Whole numbers.
176 * Reals and Rationals:: Real and rational numbers.
177 * Complex Numbers:: Complex numbers.
178 * Exactness:: Exactness and inexactness.
179 * Number Syntax:: Read syntax for numerical data.
180 * Integer Operations:: Operations on integer values.
181 * Comparison:: Comparison predicates.
182 * Conversion:: Converting numbers to and from strings.
183 * Complex:: Complex number operations.
184 * Arithmetic:: Arithmetic functions.
185 * Scientific:: Scientific functions.
186 * Primitive Numerics:: Primitive numeric functions.
187 * Bitwise Operations:: Logical AND, OR, NOT, and so on.
188 * Random:: Random number generation.
189 @end menu
190
191
192 @node Numerical Tower
193 @subsubsection Scheme's Numerical ``Tower''
194 @rnindex number?
195
196 Scheme's numerical ``tower'' consists of the following categories of
197 numbers:
198
199 @table @dfn
200 @item integers
201 Whole numbers, positive or negative; e.g.@: --5, 0, 18.
202
203 @item rationals
204 The set of numbers that can be expressed as @math{@var{p}/@var{q}}
205 where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
206 pi (an irrational number) doesn't. These include integers
207 (@math{@var{n}/1}).
208
209 @item real numbers
210 The set of numbers that describes all possible positions along a
211 one-dimensional line. This includes rationals as well as irrational
212 numbers.
213
214 @item complex numbers
215 The set of numbers that describes all possible positions in a two
216 dimensional space. This includes real as well as imaginary numbers
217 (@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
218 @var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
219 @minus{}1.)
220 @end table
221
222 It is called a tower because each category ``sits on'' the one that
223 follows it, in the sense that every integer is also a rational, every
224 rational is also real, and every real number is also a complex number
225 (but with zero imaginary part).
226
227 In addition to the classification into integers, rationals, reals and
228 complex numbers, Scheme also distinguishes between whether a number is
229 represented exactly or not. For example, the result of
230 @m{2\sin(\pi/4),sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)} but Guile
231 can neither represent @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
232 Instead, it stores an inexact approximation, using the C type
233 @code{double}.
234
235 Guile can represent exact rationals of any magnitude, inexact
236 rationals that fit into a C @code{double}, and inexact complex numbers
237 with @code{double} real and imaginary parts.
238
239 The @code{number?} predicate may be applied to any Scheme value to
240 discover whether the value is any of the supported numerical types.
241
242 @deffn {Scheme Procedure} number? obj
243 @deffnx {C Function} scm_number_p (obj)
244 Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
245 @end deffn
246
247 For example:
248
249 @lisp
250 (number? 3)
251 @result{} #t
252
253 (number? "hello there!")
254 @result{} #f
255
256 (define pi 3.141592654)
257 (number? pi)
258 @result{} #t
259 @end lisp
260
261 @deftypefn {C Function} int scm_is_number (SCM obj)
262 This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
263 @end deftypefn
264
265 The next few subsections document each of Guile's numerical data types
266 in detail.
267
268 @node Integers
269 @subsubsection Integers
270
271 @tpindex Integer numbers
272
273 @rnindex integer?
274
275 Integers are whole numbers, that is numbers with no fractional part,
276 such as 2, 83, and @minus{}3789.
277
278 Integers in Guile can be arbitrarily big, as shown by the following
279 example.
280
281 @lisp
282 (define (factorial n)
283 (let loop ((n n) (product 1))
284 (if (= n 0)
285 product
286 (loop (- n 1) (* product n)))))
287
288 (factorial 3)
289 @result{} 6
290
291 (factorial 20)
292 @result{} 2432902008176640000
293
294 (- (factorial 45))
295 @result{} -119622220865480194561963161495657715064383733760000000000
296 @end lisp
297
298 Readers whose background is in programming languages where integers are
299 limited by the need to fit into just 4 or 8 bytes of memory may find
300 this surprising, or suspect that Guile's representation of integers is
301 inefficient. In fact, Guile achieves a near optimal balance of
302 convenience and efficiency by using the host computer's native
303 representation of integers where possible, and a more general
304 representation where the required number does not fit in the native
305 form. Conversion between these two representations is automatic and
306 completely invisible to the Scheme level programmer.
307
308 The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
309 inexact integers. They are explained in detail in the next section,
310 together with reals and rationals.
311
312 C has a host of different integer types, and Guile offers a host of
313 functions to convert between them and the @code{SCM} representation.
314 For example, a C @code{int} can be handled with @code{scm_to_int} and
315 @code{scm_from_int}. Guile also defines a few C integer types of its
316 own, to help with differences between systems.
317
318 C integer types that are not covered can be handled with the generic
319 @code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
320 signed types, or with @code{scm_to_unsigned_integer} and
321 @code{scm_from_unsigned_integer} for unsigned types.
322
323 Scheme integers can be exact and inexact. For example, a number
324 written as @code{3.0} with an explicit decimal-point is inexact, but
325 it is also an integer. The functions @code{integer?} and
326 @code{scm_is_integer} report true for such a number, but the functions
327 @code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
328 allow exact integers and thus report false. Likewise, the conversion
329 functions like @code{scm_to_signed_integer} only accept exact
330 integers.
331
332 The motivation for this behavior is that the inexactness of a number
333 should not be lost silently. If you want to allow inexact integers,
334 you can explicitely insert a call to @code{inexact->exact} or to its C
335 equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
336 be converted by this call into exact integers; inexact non-integers
337 will become exact fractions.)
338
339 @deffn {Scheme Procedure} integer? x
340 @deffnx {C Function} scm_integer_p (x)
341 Return @code{#t} if @var{x} is an exact or inexact integer number, else
342 @code{#f}.
343
344 @lisp
345 (integer? 487)
346 @result{} #t
347
348 (integer? 3.0)
349 @result{} #t
350
351 (integer? -3.4)
352 @result{} #f
353
354 (integer? +inf.0)
355 @result{} #t
356 @end lisp
357 @end deffn
358
359 @deftypefn {C Function} int scm_is_integer (SCM x)
360 This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
361 @end deftypefn
362
363 @defvr {C Type} scm_t_int8
364 @defvrx {C Type} scm_t_uint8
365 @defvrx {C Type} scm_t_int16
366 @defvrx {C Type} scm_t_uint16
367 @defvrx {C Type} scm_t_int32
368 @defvrx {C Type} scm_t_uint32
369 @defvrx {C Type} scm_t_int64
370 @defvrx {C Type} scm_t_uint64
371 @defvrx {C Type} scm_t_intmax
372 @defvrx {C Type} scm_t_uintmax
373 The C types are equivalent to the corresponding ISO C types but are
374 defined on all platforms, with the exception of @code{scm_t_int64} and
375 @code{scm_t_uint64}, which are only defined when a 64-bit type is
376 available. For example, @code{scm_t_int8} is equivalent to
377 @code{int8_t}.
378
379 You can regard these definitions as a stop-gap measure until all
380 platforms provide these types. If you know that all the platforms
381 that you are interested in already provide these types, it is better
382 to use them directly instead of the types provided by Guile.
383 @end defvr
384
385 @deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
386 @deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
387 Return @code{1} when @var{x} represents an exact integer that is
388 between @var{min} and @var{max}, inclusive.
389
390 These functions can be used to check whether a @code{SCM} value will
391 fit into a given range, such as the range of a given C integer type.
392 If you just want to convert a @code{SCM} value to a given C integer
393 type, use one of the conversion functions directly.
394 @end deftypefn
395
396 @deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
397 @deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
398 When @var{x} represents an exact integer that is between @var{min} and
399 @var{max} inclusive, return that integer. Else signal an error,
400 either a `wrong-type' error when @var{x} is not an exact integer, or
401 an `out-of-range' error when it doesn't fit the given range.
402 @end deftypefn
403
404 @deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
405 @deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
406 Return the @code{SCM} value that represents the integer @var{x}. This
407 function will always succeed and will always return an exact number.
408 @end deftypefn
409
410 @deftypefn {C Function} char scm_to_char (SCM x)
411 @deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
412 @deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
413 @deftypefnx {C Function} short scm_to_short (SCM x)
414 @deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
415 @deftypefnx {C Function} int scm_to_int (SCM x)
416 @deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
417 @deftypefnx {C Function} long scm_to_long (SCM x)
418 @deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
419 @deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
420 @deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
421 @deftypefnx {C Function} size_t scm_to_size_t (SCM x)
422 @deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
423 @deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
424 @deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
425 @deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
426 @deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
427 @deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
428 @deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
429 @deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
430 @deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
431 @deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
432 @deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
433 When @var{x} represents an exact integer that fits into the indicated
434 C type, return that integer. Else signal an error, either a
435 `wrong-type' error when @var{x} is not an exact integer, or an
436 `out-of-range' error when it doesn't fit the given range.
437
438 The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
439 @code{scm_to_int64}, and @code{scm_to_uint64} are only available when
440 the corresponding types are.
441 @end deftypefn
442
443 @deftypefn {C Function} SCM scm_from_char (char x)
444 @deftypefnx {C Function} SCM scm_from_schar (signed char x)
445 @deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
446 @deftypefnx {C Function} SCM scm_from_short (short x)
447 @deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
448 @deftypefnx {C Function} SCM scm_from_int (int x)
449 @deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
450 @deftypefnx {C Function} SCM scm_from_long (long x)
451 @deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
452 @deftypefnx {C Function} SCM scm_from_long_long (long long x)
453 @deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
454 @deftypefnx {C Function} SCM scm_from_size_t (size_t x)
455 @deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
456 @deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
457 @deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
458 @deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
459 @deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
460 @deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
461 @deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
462 @deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
463 @deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
464 @deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
465 @deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
466 Return the @code{SCM} value that represents the integer @var{x}.
467 These functions will always succeed and will always return an exact
468 number.
469 @end deftypefn
470
471 @deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
472 Assign @var{val} to the multiple precision integer @var{rop}.
473 @var{val} must be an exact integer, otherwise an error will be
474 signalled. @var{rop} must have been initialized with @code{mpz_init}
475 before this function is called. When @var{rop} is no longer needed
476 the occupied space must be freed with @code{mpz_clear}.
477 @xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
478 @end deftypefn
479
480 @deftypefn {C Function} SCM scm_from_mpz_t (mpz_t val)
481 Return the @code{SCM} value that represents @var{val}.
482 @end deftypefn
483
484 @node Reals and Rationals
485 @subsubsection Real and Rational Numbers
486 @tpindex Real numbers
487 @tpindex Rational numbers
488
489 @rnindex real?
490 @rnindex rational?
491
492 Mathematically, the real numbers are the set of numbers that describe
493 all possible points along a continuous, infinite, one-dimensional line.
494 The rational numbers are the set of all numbers that can be written as
495 fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
496 All rational numbers are also real, but there are real numbers that
497 are not rational, for example @m{\sqrt2, the square root of 2}, and
498 @m{\pi,pi}.
499
500 Guile can represent both exact and inexact rational numbers, but it
501 can not represent irrational numbers. Exact rationals are represented
502 by storing the numerator and denominator as two exact integers.
503 Inexact rationals are stored as floating point numbers using the C
504 type @code{double}.
505
506 Exact rationals are written as a fraction of integers. There must be
507 no whitespace around the slash:
508
509 @lisp
510 1/2
511 -22/7
512 @end lisp
513
514 Even though the actual encoding of inexact rationals is in binary, it
515 may be helpful to think of it as a decimal number with a limited
516 number of significant figures and a decimal point somewhere, since
517 this corresponds to the standard notation for non-whole numbers. For
518 example:
519
520 @lisp
521 0.34
522 -0.00000142857931198
523 -5648394822220000000000.0
524 4.0
525 @end lisp
526
527 The limited precision of Guile's encoding means that any ``real'' number
528 in Guile can be written in a rational form, by multiplying and then dividing
529 by sufficient powers of 10 (or in fact, 2). For example,
530 @samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
531 100000000000000000. In Guile's current incarnation, therefore, the
532 @code{rational?} and @code{real?} predicates are equivalent.
533
534
535 Dividing by an exact zero leads to a error message, as one might
536 expect. However, dividing by an inexact zero does not produce an
537 error. Instead, the result of the division is either plus or minus
538 infinity, depending on the sign of the divided number.
539
540 The infinities are written @samp{+inf.0} and @samp{-inf.0},
541 respectivly. This syntax is also recognized by @code{read} as an
542 extension to the usual Scheme syntax.
543
544 Dividing zero by zero yields something that is not a number at all:
545 @samp{+nan.0}. This is the special `not a number' value.
546
547 On platforms that follow @acronym{IEEE} 754 for their floating point
548 arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
549 are implemented using the corresponding @acronym{IEEE} 754 values.
550 They behave in arithmetic operations like @acronym{IEEE} 754 describes
551 it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
552
553 The infinities are inexact integers and are considered to be both even
554 and odd. While @samp{+nan.0} is not @code{=} to itself, it is
555 @code{eqv?} to itself.
556
557 To test for the special values, use the functions @code{inf?} and
558 @code{nan?}.
559
560 @deffn {Scheme Procedure} real? obj
561 @deffnx {C Function} scm_real_p (obj)
562 Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
563 that the sets of integer and rational values form subsets of the set
564 of real numbers, so the predicate will also be fulfilled if @var{obj}
565 is an integer number or a rational number.
566 @end deffn
567
568 @deffn {Scheme Procedure} rational? x
569 @deffnx {C Function} scm_rational_p (x)
570 Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
571 Note that the set of integer values forms a subset of the set of
572 rational numbers, i. e. the predicate will also be fulfilled if
573 @var{x} is an integer number.
574
575 Since Guile can not represent irrational numbers, every number
576 satisfying @code{real?} also satisfies @code{rational?} in Guile.
577 @end deffn
578
579 @deffn {Scheme Procedure} rationalize x eps
580 @deffnx {C Function} scm_rationalize (x, eps)
581 Returns the @emph{simplest} rational number differing
582 from @var{x} by no more than @var{eps}.
583
584 As required by @acronym{R5RS}, @code{rationalize} only returns an
585 exact result when both its arguments are exact. Thus, you might need
586 to use @code{inexact->exact} on the arguments.
587
588 @lisp
589 (rationalize (inexact->exact 1.2) 1/100)
590 @result{} 6/5
591 @end lisp
592
593 @end deffn
594
595 @deffn {Scheme Procedure} inf? x
596 @deffnx {C Function} scm_inf_p (x)
597 Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
598 @code{#f} otherwise.
599 @end deffn
600
601 @deffn {Scheme Procedure} nan? x
602 @deffnx {C Function} scm_nan_p (x)
603 Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
604 @end deffn
605
606 @deffn {Scheme Procedure} nan
607 @deffnx {C Function} scm_nan ()
608 Return NaN.
609 @end deffn
610
611 @deffn {Scheme Procedure} inf
612 @deffnx {C Function} scm_inf ()
613 Return Inf.
614 @end deffn
615
616 @deffn {Scheme Procedure} numerator x
617 @deffnx {C Function} scm_numerator (x)
618 Return the numerator of the rational number @var{x}.
619 @end deffn
620
621 @deffn {Scheme Procedure} denominator x
622 @deffnx {C Function} scm_denominator (x)
623 Return the denominator of the rational number @var{x}.
624 @end deffn
625
626 @deftypefn {C Function} int scm_is_real (SCM val)
627 @deftypefnx {C Function} int scm_is_rational (SCM val)
628 Equivalent to @code{scm_is_true (scm_real_p (val))} and
629 @code{scm_is_true (scm_rational_p (val))}, respectively.
630 @end deftypefn
631
632 @deftypefn {C Function} double scm_to_double (SCM val)
633 Returns the number closest to @var{val} that is representable as a
634 @code{double}. Returns infinity for a @var{val} that is too large in
635 magnitude. The argument @var{val} must be a real number.
636 @end deftypefn
637
638 @deftypefn {C Function} SCM scm_from_double (double val)
639 Return the @code{SCM} value that representats @var{val}. The returned
640 value is inexact according to the predicate @code{inexact?}, but it
641 will be exactly equal to @var{val}.
642 @end deftypefn
643
644 @node Complex Numbers
645 @subsubsection Complex Numbers
646 @tpindex Complex numbers
647
648 @rnindex complex?
649
650 Complex numbers are the set of numbers that describe all possible points
651 in a two-dimensional space. The two coordinates of a particular point
652 in this space are known as the @dfn{real} and @dfn{imaginary} parts of
653 the complex number that describes that point.
654
655 In Guile, complex numbers are written in rectangular form as the sum of
656 their real and imaginary parts, using the symbol @code{i} to indicate
657 the imaginary part.
658
659 @lisp
660 3+4i
661 @result{}
662 3.0+4.0i
663
664 (* 3-8i 2.3+0.3i)
665 @result{}
666 9.3-17.5i
667 @end lisp
668
669 @cindex polar form
670 @noindent
671 Polar form can also be used, with an @samp{@@} between magnitude and
672 angle,
673
674 @lisp
675 1@@3.141592 @result{} -1.0 (approx)
676 -1@@1.57079 @result{} 0.0-1.0i (approx)
677 @end lisp
678
679 Guile represents a complex number with a non-zero imaginary part as a
680 pair of inexact rationals, so the real and imaginary parts of a
681 complex number have the same properties of inexactness and limited
682 precision as single inexact rational numbers. Guile can not represent
683 exact complex numbers with non-zero imaginary parts.
684
685 @deffn {Scheme Procedure} complex? z
686 @deffnx {C Function} scm_complex_p (z)
687 Return @code{#t} if @var{x} is a complex number, @code{#f}
688 otherwise. Note that the sets of real, rational and integer
689 values form subsets of the set of complex numbers, i. e. the
690 predicate will also be fulfilled if @var{x} is a real,
691 rational or integer number.
692 @end deffn
693
694 @deftypefn {C Function} int scm_is_complex (SCM val)
695 Equivalent to @code{scm_is_true (scm_complex_p (val))}.
696 @end deftypefn
697
698 @node Exactness
699 @subsubsection Exact and Inexact Numbers
700 @tpindex Exact numbers
701 @tpindex Inexact numbers
702
703 @rnindex exact?
704 @rnindex inexact?
705 @rnindex exact->inexact
706 @rnindex inexact->exact
707
708 R5RS requires that a calculation involving inexact numbers always
709 produces an inexact result. To meet this requirement, Guile
710 distinguishes between an exact integer value such as @samp{5} and the
711 corresponding inexact real value which, to the limited precision
712 available, has no fractional part, and is printed as @samp{5.0}. Guile
713 will only convert the latter value to the former when forced to do so by
714 an invocation of the @code{inexact->exact} procedure.
715
716 @deffn {Scheme Procedure} exact? z
717 @deffnx {C Function} scm_exact_p (z)
718 Return @code{#t} if the number @var{z} is exact, @code{#f}
719 otherwise.
720
721 @lisp
722 (exact? 2)
723 @result{} #t
724
725 (exact? 0.5)
726 @result{} #f
727
728 (exact? (/ 2))
729 @result{} #t
730 @end lisp
731
732 @end deffn
733
734 @deffn {Scheme Procedure} inexact? z
735 @deffnx {C Function} scm_inexact_p (z)
736 Return @code{#t} if the number @var{z} is inexact, @code{#f}
737 else.
738 @end deffn
739
740 @deffn {Scheme Procedure} inexact->exact z
741 @deffnx {C Function} scm_inexact_to_exact (z)
742 Return an exact number that is numerically closest to @var{z}, when
743 there is one. For inexact rationals, Guile returns the exact rational
744 that is numerically equal to the inexact rational. Inexact complex
745 numbers with a non-zero imaginary part can not be made exact.
746
747 @lisp
748 (inexact->exact 0.5)
749 @result{} 1/2
750 @end lisp
751
752 The following happens because 12/10 is not exactly representable as a
753 @code{double} (on most platforms). However, when reading a decimal
754 number that has been marked exact with the ``#e'' prefix, Guile is
755 able to represent it correctly.
756
757 @lisp
758 (inexact->exact 1.2)
759 @result{} 5404319552844595/4503599627370496
760
761 #e1.2
762 @result{} 6/5
763 @end lisp
764
765 @end deffn
766
767 @c begin (texi-doc-string "guile" "exact->inexact")
768 @deffn {Scheme Procedure} exact->inexact z
769 @deffnx {C Function} scm_exact_to_inexact (z)
770 Convert the number @var{z} to its inexact representation.
771 @end deffn
772
773
774 @node Number Syntax
775 @subsubsection Read Syntax for Numerical Data
776
777 The read syntax for integers is a string of digits, optionally
778 preceded by a minus or plus character, a code indicating the
779 base in which the integer is encoded, and a code indicating whether
780 the number is exact or inexact. The supported base codes are:
781
782 @table @code
783 @item #b
784 @itemx #B
785 the integer is written in binary (base 2)
786
787 @item #o
788 @itemx #O
789 the integer is written in octal (base 8)
790
791 @item #d
792 @itemx #D
793 the integer is written in decimal (base 10)
794
795 @item #x
796 @itemx #X
797 the integer is written in hexadecimal (base 16)
798 @end table
799
800 If the base code is omitted, the integer is assumed to be decimal. The
801 following examples show how these base codes are used.
802
803 @lisp
804 -13
805 @result{} -13
806
807 #d-13
808 @result{} -13
809
810 #x-13
811 @result{} -19
812
813 #b+1101
814 @result{} 13
815
816 #o377
817 @result{} 255
818 @end lisp
819
820 The codes for indicating exactness (which can, incidentally, be applied
821 to all numerical values) are:
822
823 @table @code
824 @item #e
825 @itemx #E
826 the number is exact
827
828 @item #i
829 @itemx #I
830 the number is inexact.
831 @end table
832
833 If the exactness indicator is omitted, the number is exact unless it
834 contains a radix point. Since Guile can not represent exact complex
835 numbers, an error is signalled when asking for them.
836
837 @lisp
838 (exact? 1.2)
839 @result{} #f
840
841 (exact? #e1.2)
842 @result{} #t
843
844 (exact? #e+1i)
845 ERROR: Wrong type argument
846 @end lisp
847
848 Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
849 plus and minus infinity, respectively. The value must be written
850 exactly as shown, that is, they always must have a sign and exactly
851 one zero digit after the decimal point. It also understands
852 @samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
853 The sign is ignored for `not-a-number' and the value is always printed
854 as @samp{+nan.0}.
855
856 @node Integer Operations
857 @subsubsection Operations on Integer Values
858 @rnindex odd?
859 @rnindex even?
860 @rnindex quotient
861 @rnindex remainder
862 @rnindex modulo
863 @rnindex gcd
864 @rnindex lcm
865
866 @deffn {Scheme Procedure} odd? n
867 @deffnx {C Function} scm_odd_p (n)
868 Return @code{#t} if @var{n} is an odd number, @code{#f}
869 otherwise.
870 @end deffn
871
872 @deffn {Scheme Procedure} even? n
873 @deffnx {C Function} scm_even_p (n)
874 Return @code{#t} if @var{n} is an even number, @code{#f}
875 otherwise.
876 @end deffn
877
878 @c begin (texi-doc-string "guile" "quotient")
879 @c begin (texi-doc-string "guile" "remainder")
880 @deffn {Scheme Procedure} quotient n d
881 @deffnx {Scheme Procedure} remainder n d
882 @deffnx {C Function} scm_quotient (n, d)
883 @deffnx {C Function} scm_remainder (n, d)
884 Return the quotient or remainder from @var{n} divided by @var{d}. The
885 quotient is rounded towards zero, and the remainder will have the same
886 sign as @var{n}. In all cases quotient and remainder satisfy
887 @math{@var{n} = @var{q}*@var{d} + @var{r}}.
888
889 @lisp
890 (remainder 13 4) @result{} 1
891 (remainder -13 4) @result{} -1
892 @end lisp
893 @end deffn
894
895 @c begin (texi-doc-string "guile" "modulo")
896 @deffn {Scheme Procedure} modulo n d
897 @deffnx {C Function} scm_modulo (n, d)
898 Return the remainder from @var{n} divided by @var{d}, with the same
899 sign as @var{d}.
900
901 @lisp
902 (modulo 13 4) @result{} 1
903 (modulo -13 4) @result{} 3
904 (modulo 13 -4) @result{} -3
905 (modulo -13 -4) @result{} -1
906 @end lisp
907 @end deffn
908
909 @c begin (texi-doc-string "guile" "gcd")
910 @deffn {Scheme Procedure} gcd x@dots{}
911 @deffnx {C Function} scm_gcd (x, y)
912 Return the greatest common divisor of all arguments.
913 If called without arguments, 0 is returned.
914
915 The C function @code{scm_gcd} always takes two arguments, while the
916 Scheme function can take an arbitrary number.
917 @end deffn
918
919 @c begin (texi-doc-string "guile" "lcm")
920 @deffn {Scheme Procedure} lcm x@dots{}
921 @deffnx {C Function} scm_lcm (x, y)
922 Return the least common multiple of the arguments.
923 If called without arguments, 1 is returned.
924
925 The C function @code{scm_lcm} always takes two arguments, while the
926 Scheme function can take an arbitrary number.
927 @end deffn
928
929 @deffn {Scheme Procedure} modulo-expt n k m
930 @deffnx {C Function} scm_modulo_expt (n, k, m)
931 Return @var{n} raised to the integer exponent
932 @var{k}, modulo @var{m}.
933
934 @lisp
935 (modulo-expt 2 3 5)
936 @result{} 3
937 @end lisp
938 @end deffn
939
940 @node Comparison
941 @subsubsection Comparison Predicates
942 @rnindex zero?
943 @rnindex positive?
944 @rnindex negative?
945
946 The C comparison functions below always takes two arguments, while the
947 Scheme functions can take an arbitrary number. Also keep in mind that
948 the C functions return one of the Scheme boolean values
949 @code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
950 is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
951 y))} when testing the two Scheme numbers @code{x} and @code{y} for
952 equality, for example.
953
954 @c begin (texi-doc-string "guile" "=")
955 @deffn {Scheme Procedure} =
956 @deffnx {C Function} scm_num_eq_p (x, y)
957 Return @code{#t} if all parameters are numerically equal.
958 @end deffn
959
960 @c begin (texi-doc-string "guile" "<")
961 @deffn {Scheme Procedure} <
962 @deffnx {C Function} scm_less_p (x, y)
963 Return @code{#t} if the list of parameters is monotonically
964 increasing.
965 @end deffn
966
967 @c begin (texi-doc-string "guile" ">")
968 @deffn {Scheme Procedure} >
969 @deffnx {C Function} scm_gr_p (x, y)
970 Return @code{#t} if the list of parameters is monotonically
971 decreasing.
972 @end deffn
973
974 @c begin (texi-doc-string "guile" "<=")
975 @deffn {Scheme Procedure} <=
976 @deffnx {C Function} scm_leq_p (x, y)
977 Return @code{#t} if the list of parameters is monotonically
978 non-decreasing.
979 @end deffn
980
981 @c begin (texi-doc-string "guile" ">=")
982 @deffn {Scheme Procedure} >=
983 @deffnx {C Function} scm_geq_p (x, y)
984 Return @code{#t} if the list of parameters is monotonically
985 non-increasing.
986 @end deffn
987
988 @c begin (texi-doc-string "guile" "zero?")
989 @deffn {Scheme Procedure} zero? z
990 @deffnx {C Function} scm_zero_p (z)
991 Return @code{#t} if @var{z} is an exact or inexact number equal to
992 zero.
993 @end deffn
994
995 @c begin (texi-doc-string "guile" "positive?")
996 @deffn {Scheme Procedure} positive? x
997 @deffnx {C Function} scm_positive_p (x)
998 Return @code{#t} if @var{x} is an exact or inexact number greater than
999 zero.
1000 @end deffn
1001
1002 @c begin (texi-doc-string "guile" "negative?")
1003 @deffn {Scheme Procedure} negative? x
1004 @deffnx {C Function} scm_negative_p (x)
1005 Return @code{#t} if @var{x} is an exact or inexact number less than
1006 zero.
1007 @end deffn
1008
1009
1010 @node Conversion
1011 @subsubsection Converting Numbers To and From Strings
1012 @rnindex number->string
1013 @rnindex string->number
1014
1015 @deffn {Scheme Procedure} number->string n [radix]
1016 @deffnx {C Function} scm_number_to_string (n, radix)
1017 Return a string holding the external representation of the
1018 number @var{n} in the given @var{radix}. If @var{n} is
1019 inexact, a radix of 10 will be used.
1020 @end deffn
1021
1022 @deffn {Scheme Procedure} string->number string [radix]
1023 @deffnx {C Function} scm_string_to_number (string, radix)
1024 Return a number of the maximally precise representation
1025 expressed by the given @var{string}. @var{radix} must be an
1026 exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1027 is a default radix that may be overridden by an explicit radix
1028 prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
1029 supplied, then the default radix is 10. If string is not a
1030 syntactically valid notation for a number, then
1031 @code{string->number} returns @code{#f}.
1032 @end deffn
1033
1034
1035 @node Complex
1036 @subsubsection Complex Number Operations
1037 @rnindex make-rectangular
1038 @rnindex make-polar
1039 @rnindex real-part
1040 @rnindex imag-part
1041 @rnindex magnitude
1042 @rnindex angle
1043
1044 @deffn {Scheme Procedure} make-rectangular real imaginary
1045 @deffnx {C Function} scm_make_rectangular (real, imaginary)
1046 Return a complex number constructed of the given @var{real} and
1047 @var{imaginary} parts.
1048 @end deffn
1049
1050 @deffn {Scheme Procedure} make-polar x y
1051 @deffnx {C Function} scm_make_polar (x, y)
1052 @cindex polar form
1053 Return the complex number @var{x} * e^(i * @var{y}).
1054 @end deffn
1055
1056 @c begin (texi-doc-string "guile" "real-part")
1057 @deffn {Scheme Procedure} real-part z
1058 @deffnx {C Function} scm_real_part (z)
1059 Return the real part of the number @var{z}.
1060 @end deffn
1061
1062 @c begin (texi-doc-string "guile" "imag-part")
1063 @deffn {Scheme Procedure} imag-part z
1064 @deffnx {C Function} scm_imag_part (z)
1065 Return the imaginary part of the number @var{z}.
1066 @end deffn
1067
1068 @c begin (texi-doc-string "guile" "magnitude")
1069 @deffn {Scheme Procedure} magnitude z
1070 @deffnx {C Function} scm_magnitude (z)
1071 Return the magnitude of the number @var{z}. This is the same as
1072 @code{abs} for real arguments, but also allows complex numbers.
1073 @end deffn
1074
1075 @c begin (texi-doc-string "guile" "angle")
1076 @deffn {Scheme Procedure} angle z
1077 @deffnx {C Function} scm_angle (z)
1078 Return the angle of the complex number @var{z}.
1079 @end deffn
1080
1081 @deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1082 @deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1083 Like @code{scm_make_rectangular} or @code{scm_make_polar},
1084 respectively, but these functions take @code{double}s as their
1085 arguments.
1086 @end deftypefn
1087
1088 @deftypefn {C Function} double scm_c_real_part (z)
1089 @deftypefnx {C Function} double scm_c_imag_part (z)
1090 Returns the real or imaginary part of @var{z} as a @code{double}.
1091 @end deftypefn
1092
1093 @deftypefn {C Function} double scm_c_magnitude (z)
1094 @deftypefnx {C Function} double scm_c_angle (z)
1095 Returns the magnitude or angle of @var{z} as a @code{double}.
1096 @end deftypefn
1097
1098
1099 @node Arithmetic
1100 @subsubsection Arithmetic Functions
1101 @rnindex max
1102 @rnindex min
1103 @rnindex +
1104 @rnindex *
1105 @rnindex -
1106 @rnindex /
1107 @rnindex abs
1108 @rnindex floor
1109 @rnindex ceiling
1110 @rnindex truncate
1111 @rnindex round
1112
1113 The C arithmetic functions below always takes two arguments, while the
1114 Scheme functions can take an arbitrary number. When you need to
1115 invoke them with just one argument, for example to compute the
1116 equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1117 one: @code{scm_difference (x, SCM_UNDEFINED)}.
1118
1119 @c begin (texi-doc-string "guile" "+")
1120 @deffn {Scheme Procedure} + z1 @dots{}
1121 @deffnx {C Function} scm_sum (z1, z2)
1122 Return the sum of all parameter values. Return 0 if called without any
1123 parameters.
1124 @end deffn
1125
1126 @c begin (texi-doc-string "guile" "-")
1127 @deffn {Scheme Procedure} - z1 z2 @dots{}
1128 @deffnx {C Function} scm_difference (z1, z2)
1129 If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1130 the sum of all but the first argument are subtracted from the first
1131 argument.
1132 @end deffn
1133
1134 @c begin (texi-doc-string "guile" "*")
1135 @deffn {Scheme Procedure} * z1 @dots{}
1136 @deffnx {C Function} scm_product (z1, z2)
1137 Return the product of all arguments. If called without arguments, 1 is
1138 returned.
1139 @end deffn
1140
1141 @c begin (texi-doc-string "guile" "/")
1142 @deffn {Scheme Procedure} / z1 z2 @dots{}
1143 @deffnx {C Function} scm_divide (z1, z2)
1144 Divide the first argument by the product of the remaining arguments. If
1145 called with one argument @var{z1}, 1/@var{z1} is returned.
1146 @end deffn
1147
1148 @c begin (texi-doc-string "guile" "abs")
1149 @deffn {Scheme Procedure} abs x
1150 @deffnx {C Function} scm_abs (x)
1151 Return the absolute value of @var{x}.
1152
1153 @var{x} must be a number with zero imaginary part. To calculate the
1154 magnitude of a complex number, use @code{magnitude} instead.
1155 @end deffn
1156
1157 @c begin (texi-doc-string "guile" "max")
1158 @deffn {Scheme Procedure} max x1 x2 @dots{}
1159 @deffnx {C Function} scm_max (x1, x2)
1160 Return the maximum of all parameter values.
1161 @end deffn
1162
1163 @c begin (texi-doc-string "guile" "min")
1164 @deffn {Scheme Procedure} min x1 x2 @dots{}
1165 @deffnx {C Function} scm_min (x1, x2)
1166 Return the minimum of all parameter values.
1167 @end deffn
1168
1169 @c begin (texi-doc-string "guile" "truncate")
1170 @deffn {Scheme Procedure} truncate x
1171 @deffnx {C Function} scm_truncate_number (x)
1172 Round the inexact number @var{x} towards zero.
1173 @end deffn
1174
1175 @c begin (texi-doc-string "guile" "round")
1176 @deffn {Scheme Procedure} round x
1177 @deffnx {C Function} scm_round_number (x)
1178 Round the inexact number @var{x} to the nearest integer. When exactly
1179 halfway between two integers, round to the even one.
1180 @end deffn
1181
1182 @c begin (texi-doc-string "guile" "floor")
1183 @deffn {Scheme Procedure} floor x
1184 @deffnx {C Function} scm_floor (x)
1185 Round the number @var{x} towards minus infinity.
1186 @end deffn
1187
1188 @c begin (texi-doc-string "guile" "ceiling")
1189 @deffn {Scheme Procedure} ceiling x
1190 @deffnx {C Function} scm_ceiling (x)
1191 Round the number @var{x} towards infinity.
1192 @end deffn
1193
1194 @deftypefn {C Function} double scm_c_truncate (double x)
1195 @deftypefnx {C Function} double scm_c_round (double x)
1196 Like @code{scm_truncate_number} or @code{scm_round_number},
1197 respectively, but these functions take and return @code{double}
1198 values.
1199 @end deftypefn
1200
1201 @node Scientific
1202 @subsubsection Scientific Functions
1203
1204 The following procedures accept any kind of number as arguments,
1205 including complex numbers.
1206
1207 @rnindex sqrt
1208 @c begin (texi-doc-string "guile" "sqrt")
1209 @deffn {Scheme Procedure} sqrt z
1210 Return the square root of @var{z}.
1211 @end deffn
1212
1213 @rnindex expt
1214 @c begin (texi-doc-string "guile" "expt")
1215 @deffn {Scheme Procedure} expt z1 z2
1216 Return @var{z1} raised to the power of @var{z2}.
1217 @end deffn
1218
1219 @rnindex sin
1220 @c begin (texi-doc-string "guile" "sin")
1221 @deffn {Scheme Procedure} sin z
1222 Return the sine of @var{z}.
1223 @end deffn
1224
1225 @rnindex cos
1226 @c begin (texi-doc-string "guile" "cos")
1227 @deffn {Scheme Procedure} cos z
1228 Return the cosine of @var{z}.
1229 @end deffn
1230
1231 @rnindex tan
1232 @c begin (texi-doc-string "guile" "tan")
1233 @deffn {Scheme Procedure} tan z
1234 Return the tangent of @var{z}.
1235 @end deffn
1236
1237 @rnindex asin
1238 @c begin (texi-doc-string "guile" "asin")
1239 @deffn {Scheme Procedure} asin z
1240 Return the arcsine of @var{z}.
1241 @end deffn
1242
1243 @rnindex acos
1244 @c begin (texi-doc-string "guile" "acos")
1245 @deffn {Scheme Procedure} acos z
1246 Return the arccosine of @var{z}.
1247 @end deffn
1248
1249 @rnindex atan
1250 @c begin (texi-doc-string "guile" "atan")
1251 @deffn {Scheme Procedure} atan z
1252 @deffnx {Scheme Procedure} atan y x
1253 Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1254 @end deffn
1255
1256 @rnindex exp
1257 @c begin (texi-doc-string "guile" "exp")
1258 @deffn {Scheme Procedure} exp z
1259 Return e to the power of @var{z}, where e is the base of natural
1260 logarithms (2.71828@dots{}).
1261 @end deffn
1262
1263 @rnindex log
1264 @c begin (texi-doc-string "guile" "log")
1265 @deffn {Scheme Procedure} log z
1266 Return the natural logarithm of @var{z}.
1267 @end deffn
1268
1269 @c begin (texi-doc-string "guile" "log10")
1270 @deffn {Scheme Procedure} log10 z
1271 Return the base 10 logarithm of @var{z}.
1272 @end deffn
1273
1274 @c begin (texi-doc-string "guile" "sinh")
1275 @deffn {Scheme Procedure} sinh z
1276 Return the hyperbolic sine of @var{z}.
1277 @end deffn
1278
1279 @c begin (texi-doc-string "guile" "cosh")
1280 @deffn {Scheme Procedure} cosh z
1281 Return the hyperbolic cosine of @var{z}.
1282 @end deffn
1283
1284 @c begin (texi-doc-string "guile" "tanh")
1285 @deffn {Scheme Procedure} tanh z
1286 Return the hyperbolic tangent of @var{z}.
1287 @end deffn
1288
1289 @c begin (texi-doc-string "guile" "asinh")
1290 @deffn {Scheme Procedure} asinh z
1291 Return the hyperbolic arcsine of @var{z}.
1292 @end deffn
1293
1294 @c begin (texi-doc-string "guile" "acosh")
1295 @deffn {Scheme Procedure} acosh z
1296 Return the hyperbolic arccosine of @var{z}.
1297 @end deffn
1298
1299 @c begin (texi-doc-string "guile" "atanh")
1300 @deffn {Scheme Procedure} atanh z
1301 Return the hyperbolic arctangent of @var{z}.
1302 @end deffn
1303
1304
1305 @node Primitive Numerics
1306 @subsubsection Primitive Numeric Functions
1307
1308 Many of Guile's numeric procedures which accept any kind of numbers as
1309 arguments, including complex numbers, are implemented as Scheme
1310 procedures that use the following real number-based primitives. These
1311 primitives signal an error if they are called with complex arguments.
1312
1313 @c begin (texi-doc-string "guile" "$abs")
1314 @deffn {Scheme Procedure} $abs x
1315 Return the absolute value of @var{x}.
1316 @end deffn
1317
1318 @c begin (texi-doc-string "guile" "$sqrt")
1319 @deffn {Scheme Procedure} $sqrt x
1320 Return the square root of @var{x}.
1321 @end deffn
1322
1323 @deffn {Scheme Procedure} $expt x y
1324 @deffnx {C Function} scm_sys_expt (x, y)
1325 Return @var{x} raised to the power of @var{y}. This
1326 procedure does not accept complex arguments.
1327 @end deffn
1328
1329 @c begin (texi-doc-string "guile" "$sin")
1330 @deffn {Scheme Procedure} $sin x
1331 Return the sine of @var{x}.
1332 @end deffn
1333
1334 @c begin (texi-doc-string "guile" "$cos")
1335 @deffn {Scheme Procedure} $cos x
1336 Return the cosine of @var{x}.
1337 @end deffn
1338
1339 @c begin (texi-doc-string "guile" "$tan")
1340 @deffn {Scheme Procedure} $tan x
1341 Return the tangent of @var{x}.
1342 @end deffn
1343
1344 @c begin (texi-doc-string "guile" "$asin")
1345 @deffn {Scheme Procedure} $asin x
1346 Return the arcsine of @var{x}.
1347 @end deffn
1348
1349 @c begin (texi-doc-string "guile" "$acos")
1350 @deffn {Scheme Procedure} $acos x
1351 Return the arccosine of @var{x}.
1352 @end deffn
1353
1354 @c begin (texi-doc-string "guile" "$atan")
1355 @deffn {Scheme Procedure} $atan x
1356 Return the arctangent of @var{x} in the range @minus{}@math{PI/2} to
1357 @math{PI/2}.
1358 @end deffn
1359
1360 @deffn {Scheme Procedure} $atan2 x y
1361 @deffnx {C Function} scm_sys_atan2 (x, y)
1362 Return the arc tangent of the two arguments @var{x} and
1363 @var{y}. This is similar to calculating the arc tangent of
1364 @var{x} / @var{y}, except that the signs of both arguments
1365 are used to determine the quadrant of the result. This
1366 procedure does not accept complex arguments.
1367 @end deffn
1368
1369 @c begin (texi-doc-string "guile" "$exp")
1370 @deffn {Scheme Procedure} $exp x
1371 Return e to the power of @var{x}, where e is the base of natural
1372 logarithms (2.71828@dots{}).
1373 @end deffn
1374
1375 @c begin (texi-doc-string "guile" "$log")
1376 @deffn {Scheme Procedure} $log x
1377 Return the natural logarithm of @var{x}.
1378 @end deffn
1379
1380 @c begin (texi-doc-string "guile" "$sinh")
1381 @deffn {Scheme Procedure} $sinh x
1382 Return the hyperbolic sine of @var{x}.
1383 @end deffn
1384
1385 @c begin (texi-doc-string "guile" "$cosh")
1386 @deffn {Scheme Procedure} $cosh x
1387 Return the hyperbolic cosine of @var{x}.
1388 @end deffn
1389
1390 @c begin (texi-doc-string "guile" "$tanh")
1391 @deffn {Scheme Procedure} $tanh x
1392 Return the hyperbolic tangent of @var{x}.
1393 @end deffn
1394
1395 @c begin (texi-doc-string "guile" "$asinh")
1396 @deffn {Scheme Procedure} $asinh x
1397 Return the hyperbolic arcsine of @var{x}.
1398 @end deffn
1399
1400 @c begin (texi-doc-string "guile" "$acosh")
1401 @deffn {Scheme Procedure} $acosh x
1402 Return the hyperbolic arccosine of @var{x}.
1403 @end deffn
1404
1405 @c begin (texi-doc-string "guile" "$atanh")
1406 @deffn {Scheme Procedure} $atanh x
1407 Return the hyperbolic arctangent of @var{x}.
1408 @end deffn
1409
1410 C functions for the above are provided by the standard mathematics
1411 library. Naturally these expect and return @code{double} arguments
1412 (@pxref{Mathematics,,, libc, GNU C Library Reference Manual}).
1413
1414 @multitable {xx} {Scheme Procedure} {C Function}
1415 @item @tab Scheme Procedure @tab C Function
1416
1417 @item @tab @code{$abs} @tab @code{fabs}
1418 @item @tab @code{$sqrt} @tab @code{sqrt}
1419 @item @tab @code{$sin} @tab @code{sin}
1420 @item @tab @code{$cos} @tab @code{cos}
1421 @item @tab @code{$tan} @tab @code{tan}
1422 @item @tab @code{$asin} @tab @code{asin}
1423 @item @tab @code{$acos} @tab @code{acos}
1424 @item @tab @code{$atan} @tab @code{atan}
1425 @item @tab @code{$atan2} @tab @code{atan2}
1426 @item @tab @code{$exp} @tab @code{exp}
1427 @item @tab @code{$expt} @tab @code{pow}
1428 @item @tab @code{$log} @tab @code{log}
1429 @item @tab @code{$sinh} @tab @code{sinh}
1430 @item @tab @code{$cosh} @tab @code{cosh}
1431 @item @tab @code{$tanh} @tab @code{tanh}
1432 @item @tab @code{$asinh} @tab @code{asinh}
1433 @item @tab @code{$acosh} @tab @code{acosh}
1434 @item @tab @code{$atanh} @tab @code{atanh}
1435 @end multitable
1436
1437 @code{asinh}, @code{acosh} and @code{atanh} are C99 standard but might
1438 not be available on older systems. Guile provides the following
1439 equivalents (on all systems).
1440
1441 @deftypefn {C Function} double scm_asinh (double x)
1442 @deftypefnx {C Function} double scm_acosh (double x)
1443 @deftypefnx {C Function} double scm_atanh (double x)
1444 Return the hyperbolic arcsine, arccosine or arctangent of @var{x}
1445 respectively.
1446 @end deftypefn
1447
1448
1449 @node Bitwise Operations
1450 @subsubsection Bitwise Operations
1451
1452 For the following bitwise functions, negative numbers are treated as
1453 infinite precision twos-complements. For instance @math{-6} is bits
1454 @math{@dots{}111010}, with infinitely many ones on the left. It can
1455 be seen that adding 6 (binary 110) to such a bit pattern gives all
1456 zeros.
1457
1458 @deffn {Scheme Procedure} logand n1 n2 @dots{}
1459 @deffnx {C Function} scm_logand (n1, n2)
1460 Return the bitwise @sc{and} of the integer arguments.
1461
1462 @lisp
1463 (logand) @result{} -1
1464 (logand 7) @result{} 7
1465 (logand #b111 #b011 #b001) @result{} 1
1466 @end lisp
1467 @end deffn
1468
1469 @deffn {Scheme Procedure} logior n1 n2 @dots{}
1470 @deffnx {C Function} scm_logior (n1, n2)
1471 Return the bitwise @sc{or} of the integer arguments.
1472
1473 @lisp
1474 (logior) @result{} 0
1475 (logior 7) @result{} 7
1476 (logior #b000 #b001 #b011) @result{} 3
1477 @end lisp
1478 @end deffn
1479
1480 @deffn {Scheme Procedure} logxor n1 n2 @dots{}
1481 @deffnx {C Function} scm_loxor (n1, n2)
1482 Return the bitwise @sc{xor} of the integer arguments. A bit is
1483 set in the result if it is set in an odd number of arguments.
1484
1485 @lisp
1486 (logxor) @result{} 0
1487 (logxor 7) @result{} 7
1488 (logxor #b000 #b001 #b011) @result{} 2
1489 (logxor #b000 #b001 #b011 #b011) @result{} 1
1490 @end lisp
1491 @end deffn
1492
1493 @deffn {Scheme Procedure} lognot n
1494 @deffnx {C Function} scm_lognot (n)
1495 Return the integer which is the ones-complement of the integer
1496 argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1497
1498 @lisp
1499 (number->string (lognot #b10000000) 2)
1500 @result{} "-10000001"
1501 (number->string (lognot #b0) 2)
1502 @result{} "-1"
1503 @end lisp
1504 @end deffn
1505
1506 @deffn {Scheme Procedure} logtest j k
1507 @deffnx {C Function} scm_logtest (j, k)
1508 Test whether @var{j} and @var{k} have any 1 bits in common. This is
1509 equivalent to @code{(not (zero? (logand j k)))}, but without actually
1510 calculating the @code{logand}, just testing for non-zero.
1511
1512 @lisp
1513 (logtest #b0100 #b1011) @result{} #f
1514 (logtest #b0100 #b0111) @result{} #t
1515 @end lisp
1516 @end deffn
1517
1518 @deffn {Scheme Procedure} logbit? index j
1519 @deffnx {C Function} scm_logbit_p (index, j)
1520 Test whether bit number @var{index} in @var{j} is set. @var{index}
1521 starts from 0 for the least significant bit.
1522
1523 @lisp
1524 (logbit? 0 #b1101) @result{} #t
1525 (logbit? 1 #b1101) @result{} #f
1526 (logbit? 2 #b1101) @result{} #t
1527 (logbit? 3 #b1101) @result{} #t
1528 (logbit? 4 #b1101) @result{} #f
1529 @end lisp
1530 @end deffn
1531
1532 @deffn {Scheme Procedure} ash n cnt
1533 @deffnx {C Function} scm_ash (n, cnt)
1534 Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1535 @var{cnt} is negative. This is an ``arithmetic'' shift.
1536
1537 This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1538 when @var{cnt} is negative it's a division, rounded towards negative
1539 infinity. (Note that this is not the same rounding as @code{quotient}
1540 does.)
1541
1542 With @var{n} viewed as an infinite precision twos complement,
1543 @code{ash} means a left shift introducing zero bits, or a right shift
1544 dropping bits.
1545
1546 @lisp
1547 (number->string (ash #b1 3) 2) @result{} "1000"
1548 (number->string (ash #b1010 -1) 2) @result{} "101"
1549
1550 ;; -23 is bits ...11101001, -6 is bits ...111010
1551 (ash -23 -2) @result{} -6
1552 @end lisp
1553 @end deffn
1554
1555 @deffn {Scheme Procedure} logcount n
1556 @deffnx {C Function} scm_logcount (n)
1557 Return the number of bits in integer @var{n}. If @var{n} is
1558 positive, the 1-bits in its binary representation are counted.
1559 If negative, the 0-bits in its two's-complement binary
1560 representation are counted. If zero, 0 is returned.
1561
1562 @lisp
1563 (logcount #b10101010)
1564 @result{} 4
1565 (logcount 0)
1566 @result{} 0
1567 (logcount -2)
1568 @result{} 1
1569 @end lisp
1570 @end deffn
1571
1572 @deffn {Scheme Procedure} integer-length n
1573 @deffnx {C Function} scm_integer_length (n)
1574 Return the number of bits necessary to represent @var{n}.
1575
1576 For positive @var{n} this is how many bits to the most significant one
1577 bit. For negative @var{n} it's how many bits to the most significant
1578 zero bit in twos complement form.
1579
1580 @lisp
1581 (integer-length #b10101010) @result{} 8
1582 (integer-length #b1111) @result{} 4
1583 (integer-length 0) @result{} 0
1584 (integer-length -1) @result{} 0
1585 (integer-length -256) @result{} 8
1586 (integer-length -257) @result{} 9
1587 @end lisp
1588 @end deffn
1589
1590 @deffn {Scheme Procedure} integer-expt n k
1591 @deffnx {C Function} scm_integer_expt (n, k)
1592 Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1593 integer, @var{n} can be any number.
1594
1595 Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1596 in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1597 @math{0^0} is 1.
1598
1599 @lisp
1600 (integer-expt 2 5) @result{} 32
1601 (integer-expt -3 3) @result{} -27
1602 (integer-expt 5 -3) @result{} 1/125
1603 (integer-expt 0 0) @result{} 1
1604 @end lisp
1605 @end deffn
1606
1607 @deffn {Scheme Procedure} bit-extract n start end
1608 @deffnx {C Function} scm_bit_extract (n, start, end)
1609 Return the integer composed of the @var{start} (inclusive)
1610 through @var{end} (exclusive) bits of @var{n}. The
1611 @var{start}th bit becomes the 0-th bit in the result.
1612
1613 @lisp
1614 (number->string (bit-extract #b1101101010 0 4) 2)
1615 @result{} "1010"
1616 (number->string (bit-extract #b1101101010 4 9) 2)
1617 @result{} "10110"
1618 @end lisp
1619 @end deffn
1620
1621
1622 @node Random
1623 @subsubsection Random Number Generation
1624
1625 Pseudo-random numbers are generated from a random state object, which
1626 can be created with @code{seed->random-state}. The @var{state}
1627 parameter to the various functions below is optional, it defaults to
1628 the state object in the @code{*random-state*} variable.
1629
1630 @deffn {Scheme Procedure} copy-random-state [state]
1631 @deffnx {C Function} scm_copy_random_state (state)
1632 Return a copy of the random state @var{state}.
1633 @end deffn
1634
1635 @deffn {Scheme Procedure} random n [state]
1636 @deffnx {C Function} scm_random (n, state)
1637 Return a number in [0, @var{n}).
1638
1639 Accepts a positive integer or real n and returns a
1640 number of the same type between zero (inclusive) and
1641 @var{n} (exclusive). The values returned have a uniform
1642 distribution.
1643 @end deffn
1644
1645 @deffn {Scheme Procedure} random:exp [state]
1646 @deffnx {C Function} scm_random_exp (state)
1647 Return an inexact real in an exponential distribution with mean
1648 1. For an exponential distribution with mean @var{u} use @code{(*
1649 @var{u} (random:exp))}.
1650 @end deffn
1651
1652 @deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1653 @deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1654 Fills @var{vect} with inexact real random numbers the sum of whose
1655 squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1656 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1657 the coordinates are uniformly distributed over the surface of the unit
1658 n-sphere.
1659 @end deffn
1660
1661 @deffn {Scheme Procedure} random:normal [state]
1662 @deffnx {C Function} scm_random_normal (state)
1663 Return an inexact real in a normal distribution. The distribution
1664 used has mean 0 and standard deviation 1. For a normal distribution
1665 with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1666 (* @var{d} (random:normal)))}.
1667 @end deffn
1668
1669 @deffn {Scheme Procedure} random:normal-vector! vect [state]
1670 @deffnx {C Function} scm_random_normal_vector_x (vect, state)
1671 Fills @var{vect} with inexact real random numbers that are
1672 independent and standard normally distributed
1673 (i.e., with mean 0 and variance 1).
1674 @end deffn
1675
1676 @deffn {Scheme Procedure} random:solid-sphere! vect [state]
1677 @deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1678 Fills @var{vect} with inexact real random numbers the sum of whose
1679 squares is less than 1.0. Thinking of @var{vect} as coordinates in
1680 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1681 the coordinates are uniformly distributed within the unit
1682 @var{n}-sphere.
1683 @c FIXME: What does this mean, particularly the n-sphere part?
1684 @end deffn
1685
1686 @deffn {Scheme Procedure} random:uniform [state]
1687 @deffnx {C Function} scm_random_uniform (state)
1688 Return a uniformly distributed inexact real random number in
1689 [0,1).
1690 @end deffn
1691
1692 @deffn {Scheme Procedure} seed->random-state seed
1693 @deffnx {C Function} scm_seed_to_random_state (seed)
1694 Return a new random state using @var{seed}.
1695 @end deffn
1696
1697 @defvar *random-state*
1698 The global random state used by the above functions when the
1699 @var{state} parameter is not given.
1700 @end defvar
1701
1702
1703 @node Characters
1704 @subsection Characters
1705 @tpindex Characters
1706
1707 In Scheme, a character literal is written as @code{#\@var{name}} where
1708 @var{name} is the name of the character that you want. Printable
1709 characters have their usual single character name; for example,
1710 @code{#\a} is a lower case @code{a}.
1711
1712 Most of the ``control characters'' (those below codepoint 32) in the
1713 @acronym{ASCII} character set, as well as the space, may be referred
1714 to by longer names: for example, @code{#\tab}, @code{#\esc},
1715 @code{#\stx}, and so on. The following table describes the
1716 @acronym{ASCII} names for each character.
1717
1718 @multitable @columnfractions .25 .25 .25 .25
1719 @item 0 = @code{#\nul}
1720 @tab 1 = @code{#\soh}
1721 @tab 2 = @code{#\stx}
1722 @tab 3 = @code{#\etx}
1723 @item 4 = @code{#\eot}
1724 @tab 5 = @code{#\enq}
1725 @tab 6 = @code{#\ack}
1726 @tab 7 = @code{#\bel}
1727 @item 8 = @code{#\bs}
1728 @tab 9 = @code{#\ht}
1729 @tab 10 = @code{#\nl}
1730 @tab 11 = @code{#\vt}
1731 @item 12 = @code{#\np}
1732 @tab 13 = @code{#\cr}
1733 @tab 14 = @code{#\so}
1734 @tab 15 = @code{#\si}
1735 @item 16 = @code{#\dle}
1736 @tab 17 = @code{#\dc1}
1737 @tab 18 = @code{#\dc2}
1738 @tab 19 = @code{#\dc3}
1739 @item 20 = @code{#\dc4}
1740 @tab 21 = @code{#\nak}
1741 @tab 22 = @code{#\syn}
1742 @tab 23 = @code{#\etb}
1743 @item 24 = @code{#\can}
1744 @tab 25 = @code{#\em}
1745 @tab 26 = @code{#\sub}
1746 @tab 27 = @code{#\esc}
1747 @item 28 = @code{#\fs}
1748 @tab 29 = @code{#\gs}
1749 @tab 30 = @code{#\rs}
1750 @tab 31 = @code{#\us}
1751 @item 32 = @code{#\sp}
1752 @end multitable
1753
1754 The ``delete'' character (octal 177) may be referred to with the name
1755 @code{#\del}.
1756
1757 Several characters have more than one name:
1758
1759 @multitable {@code{#\backspace}} {Original}
1760 @item Alias @tab Original
1761 @item @code{#\space} @tab @code{#\sp}
1762 @item @code{#\newline} @tab @code{#\nl}
1763 @item @code{#\tab} @tab @code{#\ht}
1764 @item @code{#\backspace} @tab @code{#\bs}
1765 @item @code{#\return} @tab @code{#\cr}
1766 @item @code{#\page} @tab @code{#\np}
1767 @item @code{#\null} @tab @code{#\nul}
1768 @end multitable
1769
1770 @rnindex char?
1771 @deffn {Scheme Procedure} char? x
1772 @deffnx {C Function} scm_char_p (x)
1773 Return @code{#t} iff @var{x} is a character, else @code{#f}.
1774 @end deffn
1775
1776 @rnindex char=?
1777 @deffn {Scheme Procedure} char=? x y
1778 Return @code{#t} iff @var{x} is the same character as @var{y}, else @code{#f}.
1779 @end deffn
1780
1781 @rnindex char<?
1782 @deffn {Scheme Procedure} char<? x y
1783 Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence,
1784 else @code{#f}.
1785 @end deffn
1786
1787 @rnindex char<=?
1788 @deffn {Scheme Procedure} char<=? x y
1789 Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1790 @acronym{ASCII} sequence, else @code{#f}.
1791 @end deffn
1792
1793 @rnindex char>?
1794 @deffn {Scheme Procedure} char>? x y
1795 Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1796 sequence, else @code{#f}.
1797 @end deffn
1798
1799 @rnindex char>=?
1800 @deffn {Scheme Procedure} char>=? x y
1801 Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1802 @acronym{ASCII} sequence, else @code{#f}.
1803 @end deffn
1804
1805 @rnindex char-ci=?
1806 @deffn {Scheme Procedure} char-ci=? x y
1807 Return @code{#t} iff @var{x} is the same character as @var{y} ignoring
1808 case, else @code{#f}.
1809 @end deffn
1810
1811 @rnindex char-ci<?
1812 @deffn {Scheme Procedure} char-ci<? x y
1813 Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence
1814 ignoring case, else @code{#f}.
1815 @end deffn
1816
1817 @rnindex char-ci<=?
1818 @deffn {Scheme Procedure} char-ci<=? x y
1819 Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1820 @acronym{ASCII} sequence ignoring case, else @code{#f}.
1821 @end deffn
1822
1823 @rnindex char-ci>?
1824 @deffn {Scheme Procedure} char-ci>? x y
1825 Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1826 sequence ignoring case, else @code{#f}.
1827 @end deffn
1828
1829 @rnindex char-ci>=?
1830 @deffn {Scheme Procedure} char-ci>=? x y
1831 Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1832 @acronym{ASCII} sequence ignoring case, else @code{#f}.
1833 @end deffn
1834
1835 @rnindex char-alphabetic?
1836 @deffn {Scheme Procedure} char-alphabetic? chr
1837 @deffnx {C Function} scm_char_alphabetic_p (chr)
1838 Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
1839 @end deffn
1840
1841 @rnindex char-numeric?
1842 @deffn {Scheme Procedure} char-numeric? chr
1843 @deffnx {C Function} scm_char_numeric_p (chr)
1844 Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
1845 @end deffn
1846
1847 @rnindex char-whitespace?
1848 @deffn {Scheme Procedure} char-whitespace? chr
1849 @deffnx {C Function} scm_char_whitespace_p (chr)
1850 Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
1851 @end deffn
1852
1853 @rnindex char-upper-case?
1854 @deffn {Scheme Procedure} char-upper-case? chr
1855 @deffnx {C Function} scm_char_upper_case_p (chr)
1856 Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
1857 @end deffn
1858
1859 @rnindex char-lower-case?
1860 @deffn {Scheme Procedure} char-lower-case? chr
1861 @deffnx {C Function} scm_char_lower_case_p (chr)
1862 Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
1863 @end deffn
1864
1865 @deffn {Scheme Procedure} char-is-both? chr
1866 @deffnx {C Function} scm_char_is_both_p (chr)
1867 Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
1868 @code{#f}.
1869 @end deffn
1870
1871 @rnindex char->integer
1872 @deffn {Scheme Procedure} char->integer chr
1873 @deffnx {C Function} scm_char_to_integer (chr)
1874 Return the number corresponding to ordinal position of @var{chr} in the
1875 @acronym{ASCII} sequence.
1876 @end deffn
1877
1878 @rnindex integer->char
1879 @deffn {Scheme Procedure} integer->char n
1880 @deffnx {C Function} scm_integer_to_char (n)
1881 Return the character at position @var{n} in the @acronym{ASCII} sequence.
1882 @end deffn
1883
1884 @rnindex char-upcase
1885 @deffn {Scheme Procedure} char-upcase chr
1886 @deffnx {C Function} scm_char_upcase (chr)
1887 Return the uppercase character version of @var{chr}.
1888 @end deffn
1889
1890 @rnindex char-downcase
1891 @deffn {Scheme Procedure} char-downcase chr
1892 @deffnx {C Function} scm_char_downcase (chr)
1893 Return the lowercase character version of @var{chr}.
1894 @end deffn
1895
1896 @node Character Sets
1897 @subsection Character Sets
1898
1899 The features described in this section correspond directly to SRFI-14.
1900
1901 The data type @dfn{charset} implements sets of characters
1902 (@pxref{Characters}). Because the internal representation of
1903 character sets is not visible to the user, a lot of procedures for
1904 handling them are provided.
1905
1906 Character sets can be created, extended, tested for the membership of a
1907 characters and be compared to other character sets.
1908
1909 The Guile implementation of character sets currently deals only with
1910 8-bit characters. In the future, when Guile gets support for
1911 international character sets, this will change, but the functions
1912 provided here will always then be able to efficiently cope with very
1913 large character sets.
1914
1915 @menu
1916 * Character Set Predicates/Comparison::
1917 * Iterating Over Character Sets:: Enumerate charset elements.
1918 * Creating Character Sets:: Making new charsets.
1919 * Querying Character Sets:: Test charsets for membership etc.
1920 * Character-Set Algebra:: Calculating new charsets.
1921 * Standard Character Sets:: Variables containing predefined charsets.
1922 @end menu
1923
1924 @node Character Set Predicates/Comparison
1925 @subsubsection Character Set Predicates/Comparison
1926
1927 Use these procedures for testing whether an object is a character set,
1928 or whether several character sets are equal or subsets of each other.
1929 @code{char-set-hash} can be used for calculating a hash value, maybe for
1930 usage in fast lookup procedures.
1931
1932 @deffn {Scheme Procedure} char-set? obj
1933 @deffnx {C Function} scm_char_set_p (obj)
1934 Return @code{#t} if @var{obj} is a character set, @code{#f}
1935 otherwise.
1936 @end deffn
1937
1938 @deffn {Scheme Procedure} char-set= . char_sets
1939 @deffnx {C Function} scm_char_set_eq (char_sets)
1940 Return @code{#t} if all given character sets are equal.
1941 @end deffn
1942
1943 @deffn {Scheme Procedure} char-set<= . char_sets
1944 @deffnx {C Function} scm_char_set_leq (char_sets)
1945 Return @code{#t} if every character set @var{cs}i is a subset
1946 of character set @var{cs}i+1.
1947 @end deffn
1948
1949 @deffn {Scheme Procedure} char-set-hash cs [bound]
1950 @deffnx {C Function} scm_char_set_hash (cs, bound)
1951 Compute a hash value for the character set @var{cs}. If
1952 @var{bound} is given and non-zero, it restricts the
1953 returned value to the range 0 @dots{} @var{bound - 1}.
1954 @end deffn
1955
1956 @c ===================================================================
1957
1958 @node Iterating Over Character Sets
1959 @subsubsection Iterating Over Character Sets
1960
1961 Character set cursors are a means for iterating over the members of a
1962 character sets. After creating a character set cursor with
1963 @code{char-set-cursor}, a cursor can be dereferenced with
1964 @code{char-set-ref}, advanced to the next member with
1965 @code{char-set-cursor-next}. Whether a cursor has passed past the last
1966 element of the set can be checked with @code{end-of-char-set?}.
1967
1968 Additionally, mapping and (un-)folding procedures for character sets are
1969 provided.
1970
1971 @deffn {Scheme Procedure} char-set-cursor cs
1972 @deffnx {C Function} scm_char_set_cursor (cs)
1973 Return a cursor into the character set @var{cs}.
1974 @end deffn
1975
1976 @deffn {Scheme Procedure} char-set-ref cs cursor
1977 @deffnx {C Function} scm_char_set_ref (cs, cursor)
1978 Return the character at the current cursor position
1979 @var{cursor} in the character set @var{cs}. It is an error to
1980 pass a cursor for which @code{end-of-char-set?} returns true.
1981 @end deffn
1982
1983 @deffn {Scheme Procedure} char-set-cursor-next cs cursor
1984 @deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
1985 Advance the character set cursor @var{cursor} to the next
1986 character in the character set @var{cs}. It is an error if the
1987 cursor given satisfies @code{end-of-char-set?}.
1988 @end deffn
1989
1990 @deffn {Scheme Procedure} end-of-char-set? cursor
1991 @deffnx {C Function} scm_end_of_char_set_p (cursor)
1992 Return @code{#t} if @var{cursor} has reached the end of a
1993 character set, @code{#f} otherwise.
1994 @end deffn
1995
1996 @deffn {Scheme Procedure} char-set-fold kons knil cs
1997 @deffnx {C Function} scm_char_set_fold (kons, knil, cs)
1998 Fold the procedure @var{kons} over the character set @var{cs},
1999 initializing it with @var{knil}.
2000 @end deffn
2001
2002 @deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2003 @deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2004 This is a fundamental constructor for character sets.
2005 @itemize @bullet
2006 @item @var{g} is used to generate a series of ``seed'' values
2007 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2008 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2009 @item @var{p} tells us when to stop -- when it returns true
2010 when applied to one of the seed values.
2011 @item @var{f} maps each seed value to a character. These
2012 characters are added to the base character set @var{base_cs} to
2013 form the result; @var{base_cs} defaults to the empty set.
2014 @end itemize
2015 @end deffn
2016
2017 @deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2018 @deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2019 This is a fundamental constructor for character sets.
2020 @itemize @bullet
2021 @item @var{g} is used to generate a series of ``seed'' values
2022 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2023 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2024 @item @var{p} tells us when to stop -- when it returns true
2025 when applied to one of the seed values.
2026 @item @var{f} maps each seed value to a character. These
2027 characters are added to the base character set @var{base_cs} to
2028 form the result; @var{base_cs} defaults to the empty set.
2029 @end itemize
2030 @end deffn
2031
2032 @deffn {Scheme Procedure} char-set-for-each proc cs
2033 @deffnx {C Function} scm_char_set_for_each (proc, cs)
2034 Apply @var{proc} to every character in the character set
2035 @var{cs}. The return value is not specified.
2036 @end deffn
2037
2038 @deffn {Scheme Procedure} char-set-map proc cs
2039 @deffnx {C Function} scm_char_set_map (proc, cs)
2040 Map the procedure @var{proc} over every character in @var{cs}.
2041 @var{proc} must be a character -> character procedure.
2042 @end deffn
2043
2044 @c ===================================================================
2045
2046 @node Creating Character Sets
2047 @subsubsection Creating Character Sets
2048
2049 New character sets are produced with these procedures.
2050
2051 @deffn {Scheme Procedure} char-set-copy cs
2052 @deffnx {C Function} scm_char_set_copy (cs)
2053 Return a newly allocated character set containing all
2054 characters in @var{cs}.
2055 @end deffn
2056
2057 @deffn {Scheme Procedure} char-set . rest
2058 @deffnx {C Function} scm_char_set (rest)
2059 Return a character set containing all given characters.
2060 @end deffn
2061
2062 @deffn {Scheme Procedure} list->char-set list [base_cs]
2063 @deffnx {C Function} scm_list_to_char_set (list, base_cs)
2064 Convert the character list @var{list} to a character set. If
2065 the character set @var{base_cs} is given, the character in this
2066 set are also included in the result.
2067 @end deffn
2068
2069 @deffn {Scheme Procedure} list->char-set! list base_cs
2070 @deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2071 Convert the character list @var{list} to a character set. The
2072 characters are added to @var{base_cs} and @var{base_cs} is
2073 returned.
2074 @end deffn
2075
2076 @deffn {Scheme Procedure} string->char-set str [base_cs]
2077 @deffnx {C Function} scm_string_to_char_set (str, base_cs)
2078 Convert the string @var{str} to a character set. If the
2079 character set @var{base_cs} is given, the characters in this
2080 set are also included in the result.
2081 @end deffn
2082
2083 @deffn {Scheme Procedure} string->char-set! str base_cs
2084 @deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2085 Convert the string @var{str} to a character set. The
2086 characters from the string are added to @var{base_cs}, and
2087 @var{base_cs} is returned.
2088 @end deffn
2089
2090 @deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2091 @deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2092 Return a character set containing every character from @var{cs}
2093 so that it satisfies @var{pred}. If provided, the characters
2094 from @var{base_cs} are added to the result.
2095 @end deffn
2096
2097 @deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2098 @deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2099 Return a character set containing every character from @var{cs}
2100 so that it satisfies @var{pred}. The characters are added to
2101 @var{base_cs} and @var{base_cs} is returned.
2102 @end deffn
2103
2104 @deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2105 @deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2106 Return a character set containing all characters whose
2107 character codes lie in the half-open range
2108 [@var{lower},@var{upper}).
2109
2110 If @var{error} is a true value, an error is signalled if the
2111 specified range contains characters which are not contained in
2112 the implemented character range. If @var{error} is @code{#f},
2113 these characters are silently left out of the resultung
2114 character set.
2115
2116 The characters in @var{base_cs} are added to the result, if
2117 given.
2118 @end deffn
2119
2120 @deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2121 @deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2122 Return a character set containing all characters whose
2123 character codes lie in the half-open range
2124 [@var{lower},@var{upper}).
2125
2126 If @var{error} is a true value, an error is signalled if the
2127 specified range contains characters which are not contained in
2128 the implemented character range. If @var{error} is @code{#f},
2129 these characters are silently left out of the resultung
2130 character set.
2131
2132 The characters are added to @var{base_cs} and @var{base_cs} is
2133 returned.
2134 @end deffn
2135
2136 @deffn {Scheme Procedure} ->char-set x
2137 @deffnx {C Function} scm_to_char_set (x)
2138 Coerces x into a char-set. @var{x} may be a string, character or char-set. A string is converted to the set of its constituent characters; a character is converted to a singleton set; a char-set is returned as-is.
2139 @end deffn
2140
2141 @c ===================================================================
2142
2143 @node Querying Character Sets
2144 @subsubsection Querying Character Sets
2145
2146 Access the elements and other information of a character set with these
2147 procedures.
2148
2149 @deffn {Scheme Procedure} char-set-size cs
2150 @deffnx {C Function} scm_char_set_size (cs)
2151 Return the number of elements in character set @var{cs}.
2152 @end deffn
2153
2154 @deffn {Scheme Procedure} char-set-count pred cs
2155 @deffnx {C Function} scm_char_set_count (pred, cs)
2156 Return the number of the elements int the character set
2157 @var{cs} which satisfy the predicate @var{pred}.
2158 @end deffn
2159
2160 @deffn {Scheme Procedure} char-set->list cs
2161 @deffnx {C Function} scm_char_set_to_list (cs)
2162 Return a list containing the elements of the character set
2163 @var{cs}.
2164 @end deffn
2165
2166 @deffn {Scheme Procedure} char-set->string cs
2167 @deffnx {C Function} scm_char_set_to_string (cs)
2168 Return a string containing the elements of the character set
2169 @var{cs}. The order in which the characters are placed in the
2170 string is not defined.
2171 @end deffn
2172
2173 @deffn {Scheme Procedure} char-set-contains? cs ch
2174 @deffnx {C Function} scm_char_set_contains_p (cs, ch)
2175 Return @code{#t} iff the character @var{ch} is contained in the
2176 character set @var{cs}.
2177 @end deffn
2178
2179 @deffn {Scheme Procedure} char-set-every pred cs
2180 @deffnx {C Function} scm_char_set_every (pred, cs)
2181 Return a true value if every character in the character set
2182 @var{cs} satisfies the predicate @var{pred}.
2183 @end deffn
2184
2185 @deffn {Scheme Procedure} char-set-any pred cs
2186 @deffnx {C Function} scm_char_set_any (pred, cs)
2187 Return a true value if any character in the character set
2188 @var{cs} satisfies the predicate @var{pred}.
2189 @end deffn
2190
2191 @c ===================================================================
2192
2193 @node Character-Set Algebra
2194 @subsubsection Character-Set Algebra
2195
2196 Character sets can be manipulated with the common set algebra operation,
2197 such as union, complement, intersection etc. All of these procedures
2198 provide side-effecting variants, which modify their character set
2199 argument(s).
2200
2201 @deffn {Scheme Procedure} char-set-adjoin cs . rest
2202 @deffnx {C Function} scm_char_set_adjoin (cs, rest)
2203 Add all character arguments to the first argument, which must
2204 be a character set.
2205 @end deffn
2206
2207 @deffn {Scheme Procedure} char-set-delete cs . rest
2208 @deffnx {C Function} scm_char_set_delete (cs, rest)
2209 Delete all character arguments from the first argument, which
2210 must be a character set.
2211 @end deffn
2212
2213 @deffn {Scheme Procedure} char-set-adjoin! cs . rest
2214 @deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
2215 Add all character arguments to the first argument, which must
2216 be a character set.
2217 @end deffn
2218
2219 @deffn {Scheme Procedure} char-set-delete! cs . rest
2220 @deffnx {C Function} scm_char_set_delete_x (cs, rest)
2221 Delete all character arguments from the first argument, which
2222 must be a character set.
2223 @end deffn
2224
2225 @deffn {Scheme Procedure} char-set-complement cs
2226 @deffnx {C Function} scm_char_set_complement (cs)
2227 Return the complement of the character set @var{cs}.
2228 @end deffn
2229
2230 @deffn {Scheme Procedure} char-set-union . rest
2231 @deffnx {C Function} scm_char_set_union (rest)
2232 Return the union of all argument character sets.
2233 @end deffn
2234
2235 @deffn {Scheme Procedure} char-set-intersection . rest
2236 @deffnx {C Function} scm_char_set_intersection (rest)
2237 Return the intersection of all argument character sets.
2238 @end deffn
2239
2240 @deffn {Scheme Procedure} char-set-difference cs1 . rest
2241 @deffnx {C Function} scm_char_set_difference (cs1, rest)
2242 Return the difference of all argument character sets.
2243 @end deffn
2244
2245 @deffn {Scheme Procedure} char-set-xor . rest
2246 @deffnx {C Function} scm_char_set_xor (rest)
2247 Return the exclusive-or of all argument character sets.
2248 @end deffn
2249
2250 @deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
2251 @deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
2252 Return the difference and the intersection of all argument
2253 character sets.
2254 @end deffn
2255
2256 @deffn {Scheme Procedure} char-set-complement! cs
2257 @deffnx {C Function} scm_char_set_complement_x (cs)
2258 Return the complement of the character set @var{cs}.
2259 @end deffn
2260
2261 @deffn {Scheme Procedure} char-set-union! cs1 . rest
2262 @deffnx {C Function} scm_char_set_union_x (cs1, rest)
2263 Return the union of all argument character sets.
2264 @end deffn
2265
2266 @deffn {Scheme Procedure} char-set-intersection! cs1 . rest
2267 @deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
2268 Return the intersection of all argument character sets.
2269 @end deffn
2270
2271 @deffn {Scheme Procedure} char-set-difference! cs1 . rest
2272 @deffnx {C Function} scm_char_set_difference_x (cs1, rest)
2273 Return the difference of all argument character sets.
2274 @end deffn
2275
2276 @deffn {Scheme Procedure} char-set-xor! cs1 . rest
2277 @deffnx {C Function} scm_char_set_xor_x (cs1, rest)
2278 Return the exclusive-or of all argument character sets.
2279 @end deffn
2280
2281 @deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
2282 @deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
2283 Return the difference and the intersection of all argument
2284 character sets.
2285 @end deffn
2286
2287 @c ===================================================================
2288
2289 @node Standard Character Sets
2290 @subsubsection Standard Character Sets
2291
2292 In order to make the use of the character set data type and procedures
2293 useful, several predefined character set variables exist.
2294
2295 @defvr {Scheme Variable} char-set:lower-case
2296 @defvrx {C Variable} scm_char_set_lower_case
2297 All lower-case characters.
2298 @end defvr
2299
2300 @defvr {Scheme Variable} char-set:upper-case
2301 @defvrx {C Variable} scm_char_set_upper_case
2302 All upper-case characters.
2303 @end defvr
2304
2305 @defvr {Scheme Variable} char-set:title-case
2306 @defvrx {C Variable} scm_char_set_title_case
2307 This is empty, because ASCII has no titlecase characters.
2308 @end defvr
2309
2310 @defvr {Scheme Variable} char-set:letter
2311 @defvrx {C Variable} scm_char_set_letter
2312 All letters, e.g. the union of @code{char-set:lower-case} and
2313 @code{char-set:upper-case}.
2314 @end defvr
2315
2316 @defvr {Scheme Variable} char-set:digit
2317 @defvrx {C Variable} scm_char_set_digit
2318 All digits.
2319 @end defvr
2320
2321 @defvr {Scheme Variable} char-set:letter+digit
2322 @defvrx {C Variable} scm_char_set_letter_and_digit
2323 The union of @code{char-set:letter} and @code{char-set:digit}.
2324 @end defvr
2325
2326 @defvr {Scheme Variable} char-set:graphic
2327 @defvrx {C Variable} scm_char_set_graphic
2328 All characters which would put ink on the paper.
2329 @end defvr
2330
2331 @defvr {Scheme Variable} char-set:printing
2332 @defvrx {C Variable} scm_char_set_printing
2333 The union of @code{char-set:graphic} and @code{char-set:whitespace}.
2334 @end defvr
2335
2336 @defvr {Scheme Variable} char-set:whitespace
2337 @defvrx {C Variable} scm_char_set_whitespace
2338 All whitespace characters.
2339 @end defvr
2340
2341 @defvr {Scheme Variable} char-set:blank
2342 @defvrx {C Variable} scm_char_set_blank
2343 All horizontal whitespace characters, that is @code{#\space} and
2344 @code{#\tab}.
2345 @end defvr
2346
2347 @defvr {Scheme Variable} char-set:iso-control
2348 @defvrx {C Variable} scm_char_set_iso_control
2349 The ISO control characters with the codes 0--31 and 127.
2350 @end defvr
2351
2352 @defvr {Scheme Variable} char-set:punctuation
2353 @defvrx {C Variable} scm_char_set_punctuation
2354 The characters @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
2355 @end defvr
2356
2357 @defvr {Scheme Variable} char-set:symbol
2358 @defvrx {C Variable} scm_char_set_symbol
2359 The characters @code{$+<=>^`|~}.
2360 @end defvr
2361
2362 @defvr {Scheme Variable} char-set:hex-digit
2363 @defvrx {C Variable} scm_char_set_hex_digit
2364 The hexadecimal digits @code{0123456789abcdefABCDEF}.
2365 @end defvr
2366
2367 @defvr {Scheme Variable} char-set:ascii
2368 @defvrx {C Variable} scm_char_set_ascii
2369 All ASCII characters.
2370 @end defvr
2371
2372 @defvr {Scheme Variable} char-set:empty
2373 @defvrx {C Variable} scm_char_set_empty
2374 The empty character set.
2375 @end defvr
2376
2377 @defvr {Scheme Variable} char-set:full
2378 @defvrx {C Variable} scm_char_set_full
2379 This character set contains all possible characters.
2380 @end defvr
2381
2382 @node Strings
2383 @subsection Strings
2384 @tpindex Strings
2385
2386 Strings are fixed-length sequences of characters. They can be created
2387 by calling constructor procedures, but they can also literally get
2388 entered at the @acronym{REPL} or in Scheme source files.
2389
2390 @c Guile provides a rich set of string processing procedures, because text
2391 @c handling is very important when Guile is used as a scripting language.
2392
2393 Strings always carry the information about how many characters they are
2394 composed of with them, so there is no special end-of-string character,
2395 like in C. That means that Scheme strings can contain any character,
2396 even the @samp{#\nul} character @samp{\0}.
2397
2398 To use strings efficiently, you need to know a bit about how Guile
2399 implements them. In Guile, a string consists of two parts, a head and
2400 the actual memory where the characters are stored. When a string (or
2401 a substring of it) is copied, only a new head gets created, the memory
2402 is usually not copied. The two heads start out pointing to the same
2403 memory.
2404
2405 When one of these two strings is modified, as with @code{string-set!},
2406 their common memory does get copied so that each string has its own
2407 memory and modifying one does not accidently modify the other as well.
2408 Thus, Guile's strings are `copy on write'; the actual copying of their
2409 memory is delayed until one string is written to.
2410
2411 This implementation makes functions like @code{substring} very
2412 efficient in the common case that no modifications are done to the
2413 involved strings.
2414
2415 If you do know that your strings are getting modified right away, you
2416 can use @code{substring/copy} instead of @code{substring}. This
2417 function performs the copy immediately at the time of creation. This
2418 is more efficient, especially in a multi-threaded program. Also,
2419 @code{substring/copy} can avoid the problem that a short substring
2420 holds on to the memory of a very large original string that could
2421 otherwise be recycled.
2422
2423 If you want to avoid the copy altogether, so that modifications of one
2424 string show up in the other, you can use @code{substring/shared}. The
2425 strings created by this procedure are called @dfn{mutation sharing
2426 substrings} since the substring and the original string share
2427 modifications to each other.
2428
2429 If you want to prevent modifications, use @code{substring/read-only}.
2430
2431 Guile provides all procedures of SRFI-13 and a few more.
2432
2433 @menu
2434 * String Syntax:: Read syntax for strings.
2435 * String Predicates:: Testing strings for certain properties.
2436 * String Constructors:: Creating new string objects.
2437 * List/String Conversion:: Converting from/to lists of characters.
2438 * String Selection:: Select portions from strings.
2439 * String Modification:: Modify parts or whole strings.
2440 * String Comparison:: Lexicographic ordering predicates.
2441 * String Searching:: Searching in strings.
2442 * Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2443 * Reversing and Appending Strings:: Appending strings to form a new string.
2444 * Mapping Folding and Unfolding:: Iterating over strings.
2445 * Miscellaneous String Operations:: Replicating, insertion, parsing, ...
2446 * Conversion to/from C::
2447 @end menu
2448
2449 @node String Syntax
2450 @subsubsection String Read Syntax
2451
2452 @c In the following @code is used to get a good font in TeX etc, but
2453 @c is omitted for Info format, so as not to risk any confusion over
2454 @c whether surrounding ` ' quotes are part of the escape or are
2455 @c special in a string (they're not).
2456
2457 The read syntax for strings is an arbitrarily long sequence of
2458 characters enclosed in double quotes (@nicode{"}).
2459
2460 Backslash is an escape character and can be used to insert the
2461 following special characters. @nicode{\"} and @nicode{\\} are R5RS
2462 standard, the rest are Guile extensions, notice they follow C string
2463 syntax.
2464
2465 @table @asis
2466 @item @nicode{\\}
2467 Backslash character.
2468
2469 @item @nicode{\"}
2470 Double quote character (an unescaped @nicode{"} is otherwise the end
2471 of the string).
2472
2473 @item @nicode{\0}
2474 NUL character (ASCII 0).
2475
2476 @item @nicode{\a}
2477 Bell character (ASCII 7).
2478
2479 @item @nicode{\f}
2480 Formfeed character (ASCII 12).
2481
2482 @item @nicode{\n}
2483 Newline character (ASCII 10).
2484
2485 @item @nicode{\r}
2486 Carriage return character (ASCII 13).
2487
2488 @item @nicode{\t}
2489 Tab character (ASCII 9).
2490
2491 @item @nicode{\v}
2492 Vertical tab character (ASCII 11).
2493
2494 @item @nicode{\xHH}
2495 Character code given by two hexadecimal digits. For example
2496 @nicode{\x7f} for an ASCII DEL (127).
2497 @end table
2498
2499 @noindent
2500 The following are examples of string literals:
2501
2502 @lisp
2503 "foo"
2504 "bar plonk"
2505 "Hello World"
2506 "\"Hi\", he said."
2507 @end lisp
2508
2509
2510 @node String Predicates
2511 @subsubsection String Predicates
2512
2513 The following procedures can be used to check whether a given string
2514 fulfills some specified property.
2515
2516 @rnindex string?
2517 @deffn {Scheme Procedure} string? obj
2518 @deffnx {C Function} scm_string_p (obj)
2519 Return @code{#t} if @var{obj} is a string, else @code{#f}.
2520 @end deffn
2521
2522 @deftypefn {C Function} int scm_is_string (SCM obj)
2523 Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
2524 @end deftypefn
2525
2526 @deffn {Scheme Procedure} string-null? str
2527 @deffnx {C Function} scm_string_null_p (str)
2528 Return @code{#t} if @var{str}'s length is zero, and
2529 @code{#f} otherwise.
2530 @lisp
2531 (string-null? "") @result{} #t
2532 y @result{} "foo"
2533 (string-null? y) @result{} #f
2534 @end lisp
2535 @end deffn
2536
2537 @deffn {Scheme Procedure} string-any char_pred s [start [end]]
2538 @deffnx {C Function} scm_string_any (char_pred, s, start, end)
2539 Check if @var{char_pred} is true for any character in string @var{s}.
2540
2541 @var{char_pred} can be a character to check for any equal to that, or
2542 a character set (@pxref{Character Sets}) to check for any in that set,
2543 or a predicate procedure to call.
2544
2545 For a procedure, calls @code{(@var{char_pred} c)} are made
2546 successively on the characters from @var{start} to @var{end}. If
2547 @var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
2548 stops and that return value is the return from @code{string-any}. The
2549 call on the last character (ie.@: at @math{@var{end}-1}), if that
2550 point is reached, is a tail call.
2551
2552 If there are no characters in @var{s} (ie.@: @var{start} equals
2553 @var{end}) then the return is @code{#f}.
2554 @end deffn
2555
2556 @deffn {Scheme Procedure} string-every char_pred s [start [end]]
2557 @deffnx {C Function} scm_string_every (char_pred, s, start, end)
2558 Check if @var{char_pred} is true for every character in string
2559 @var{s}.
2560
2561 @var{char_pred} can be a character to check for every character equal
2562 to that, or a character set (@pxref{Character Sets}) to check for
2563 every character being in that set, or a predicate procedure to call.
2564
2565 For a procedure, calls @code{(@var{char_pred} c)} are made
2566 successively on the characters from @var{start} to @var{end}. If
2567 @var{char_pred} returns @code{#f}, @code{string-every} stops and
2568 returns @code{#f}. The call on the last character (ie.@: at
2569 @math{@var{end}-1}), if that point is reached, is a tail call and the
2570 return from that call is the return from @code{string-every}.
2571
2572 If there are no characters in @var{s} (ie.@: @var{start} equals
2573 @var{end}) then the return is @code{#t}.
2574 @end deffn
2575
2576 @node String Constructors
2577 @subsubsection String Constructors
2578
2579 The string constructor procedures create new string objects, possibly
2580 initializing them with some specified character data. See also
2581 @xref{String Selection}, for ways to create strings from existing
2582 strings.
2583
2584 @c FIXME::martin: list->string belongs into `List/String Conversion'
2585
2586 @rnindex string
2587 @rnindex list->string
2588 @deffn {Scheme Procedure} string . chrs
2589 @deffnx {Scheme Procedure} list->string chrs
2590 @deffnx {C Function} scm_string (chrs)
2591 Return a newly allocated string composed of the arguments,
2592 @var{chrs}.
2593 @end deffn
2594
2595 @rnindex make-string
2596 @deffn {Scheme Procedure} make-string k [chr]
2597 @deffnx {C Function} scm_make_string (k, chr)
2598 Return a newly allocated string of
2599 length @var{k}. If @var{chr} is given, then all elements of
2600 the string are initialized to @var{chr}, otherwise the contents
2601 of the @var{string} are unspecified.
2602 @end deffn
2603
2604 @deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
2605 Like @code{scm_make_string}, but expects the length as a
2606 @code{size_t}.
2607 @end deftypefn
2608
2609 @deffn {Scheme Procedure} string-tabulate proc len
2610 @deffnx {C Function} scm_string_tabulate (proc, len)
2611 @var{proc} is an integer->char procedure. Construct a string
2612 of size @var{len} by applying @var{proc} to each index to
2613 produce the corresponding string element. The order in which
2614 @var{proc} is applied to the indices is not specified.
2615 @end deffn
2616
2617 @deffn {Scheme Procedure} reverse-list->string chrs
2618 @deffnx {C Function} scm_reverse_list_to_string (chrs)
2619 An efficient implementation of @code{(compose string->list
2620 reverse)}:
2621
2622 @smalllisp
2623 (reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
2624 @end smalllisp
2625 @end deffn
2626
2627 @deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
2628 @deffnx {C Function} scm_string_join (ls, delimiter, grammar)
2629 Append the string in the string list @var{ls}, using the string
2630 @var{delim} as a delimiter between the elements of @var{ls}.
2631 @var{grammar} is a symbol which specifies how the delimiter is
2632 placed between the strings, and defaults to the symbol
2633 @code{infix}.
2634
2635 @table @code
2636 @item infix
2637 Insert the separator between list elements. An empty string
2638 will produce an empty list.
2639 @item string-infix
2640 Like @code{infix}, but will raise an error if given the empty
2641 list.
2642 @item suffix
2643 Insert the separator after every list element.
2644 @item prefix
2645 Insert the separator before each list element.
2646 @end table
2647 @end deffn
2648
2649 @node List/String Conversion
2650 @subsubsection List/String conversion
2651
2652 When processing strings, it is often convenient to first convert them
2653 into a list representation by using the procedure @code{string->list},
2654 work with the resulting list, and then convert it back into a string.
2655 These procedures are useful for similar tasks.
2656
2657 @rnindex string->list
2658 @deffn {Scheme Procedure} string->list str [start [end]]
2659 @deffnx {C Function} scm_substring_to_list (str, start, end)
2660 @deffnx {C Function} scm_string_to_list (str)
2661 Convert the string @var{str} into a list of characters.
2662 @end deffn
2663
2664 @deffn {Scheme Procedure} string-split str chr
2665 @deffnx {C Function} scm_string_split (str, chr)
2666 Split the string @var{str} into the a list of the substrings delimited
2667 by appearances of the character @var{chr}. Note that an empty substring
2668 between separator characters will result in an empty string in the
2669 result list.
2670
2671 @lisp
2672 (string-split "root:x:0:0:root:/root:/bin/bash" #\:)
2673 @result{}
2674 ("root" "x" "0" "0" "root" "/root" "/bin/bash")
2675
2676 (string-split "::" #\:)
2677 @result{}
2678 ("" "" "")
2679
2680 (string-split "" #\:)
2681 @result{}
2682 ("")
2683 @end lisp
2684 @end deffn
2685
2686
2687 @node String Selection
2688 @subsubsection String Selection
2689
2690 Portions of strings can be extracted by these procedures.
2691 @code{string-ref} delivers individual characters whereas
2692 @code{substring} can be used to extract substrings from longer strings.
2693
2694 @rnindex string-length
2695 @deffn {Scheme Procedure} string-length string
2696 @deffnx {C Function} scm_string_length (string)
2697 Return the number of characters in @var{string}.
2698 @end deffn
2699
2700 @deftypefn {C Function} size_t scm_c_string_length (SCM str)
2701 Return the number of characters in @var{str} as a @code{size_t}.
2702 @end deftypefn
2703
2704 @rnindex string-ref
2705 @deffn {Scheme Procedure} string-ref str k
2706 @deffnx {C Function} scm_string_ref (str, k)
2707 Return character @var{k} of @var{str} using zero-origin
2708 indexing. @var{k} must be a valid index of @var{str}.
2709 @end deffn
2710
2711 @deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
2712 Return character @var{k} of @var{str} using zero-origin
2713 indexing. @var{k} must be a valid index of @var{str}.
2714 @end deftypefn
2715
2716 @rnindex string-copy
2717 @deffn {Scheme Procedure} string-copy str [start [end]]
2718 @deffnx {C Function} scm_substring_copy (str, start, end)
2719 @deffnx {C Function} scm_string_copy (str)
2720 Return a copy of the given string @var{str}.
2721
2722 The returned string shares storage with @var{str} initially, but it is
2723 copied as soon as one of the two strings is modified.
2724 @end deffn
2725
2726 @rnindex substring
2727 @deffn {Scheme Procedure} substring str start [end]
2728 @deffnx {C Function} scm_substring (str, start, end)
2729 Return a new string formed from the characters
2730 of @var{str} beginning with index @var{start} (inclusive) and
2731 ending with index @var{end} (exclusive).
2732 @var{str} must be a string, @var{start} and @var{end} must be
2733 exact integers satisfying:
2734
2735 0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
2736
2737 The returned string shares storage with @var{str} initially, but it is
2738 copied as soon as one of the two strings is modified.
2739 @end deffn
2740
2741 @deffn {Scheme Procedure} substring/shared str start [end]
2742 @deffnx {C Function} scm_substring_shared (str, start, end)
2743 Like @code{substring}, but the strings continue to share their storage
2744 even if they are modified. Thus, modifications to @var{str} show up
2745 in the new string, and vice versa.
2746 @end deffn
2747
2748 @deffn {Scheme Procedure} substring/copy str start [end]
2749 @deffnx {C Function} scm_substring_copy (str, start, end)
2750 Like @code{substring}, but the storage for the new string is copied
2751 immediately.
2752 @end deffn
2753
2754 @deffn {Scheme Procedure} substring/read-only str start [end]
2755 @deffnx {C Function} scm_substring_read_only (str, start, end)
2756 Like @code{substring}, but the resulting string can not be modified.
2757 @end deffn
2758
2759 @deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
2760 @deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
2761 @deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
2762 @deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
2763 Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
2764 @end deftypefn
2765
2766 @deffn {Scheme Procedure} string-take s n
2767 @deffnx {C Function} scm_string_take (s, n)
2768 Return the @var{n} first characters of @var{s}.
2769 @end deffn
2770
2771 @deffn {Scheme Procedure} string-drop s n
2772 @deffnx {C Function} scm_string_drop (s, n)
2773 Return all but the first @var{n} characters of @var{s}.
2774 @end deffn
2775
2776 @deffn {Scheme Procedure} string-take-right s n
2777 @deffnx {C Function} scm_string_take_right (s, n)
2778 Return the @var{n} last characters of @var{s}.
2779 @end deffn
2780
2781 @deffn {Scheme Procedure} string-drop-right s n
2782 @deffnx {C Function} scm_string_drop_right (s, n)
2783 Return all but the last @var{n} characters of @var{s}.
2784 @end deffn
2785
2786 @deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
2787 @deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
2788 @deffnx {C Function} scm_string_pad (s, len, chr, start, end)
2789 @deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
2790 Take characters @var{start} to @var{end} from the string @var{s} and
2791 either pad with @var{char} or truncate them to give @var{len}
2792 characters.
2793
2794 @code{string-pad} pads or truncates on the left, so for example
2795
2796 @example
2797 (string-pad "x" 3) @result{} " x"
2798 (string-pad "abcde" 3) @result{} "cde"
2799 @end example
2800
2801 @code{string-pad-right} pads or truncates on the right, so for example
2802
2803 @example
2804 (string-pad-right "x" 3) @result{} "x "
2805 (string-pad-right "abcde" 3) @result{} "abc"
2806 @end example
2807
2808 The return string may share storage with @var{s}, or it can be @var{s}
2809 itself (if @var{start} to @var{end} is the whole string and it's
2810 already @var{len} characters).
2811 @end deffn
2812
2813 @deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
2814 @deffnx {C Function} scm_string_trim (s, char_pred, start, end)
2815 Trim @var{s} by skipping over all characters on the left
2816 that satisfy the parameter @var{char_pred}:
2817
2818 @itemize @bullet
2819 @item
2820 if it is the character @var{ch}, characters equal to
2821 @var{ch} are trimmed,
2822
2823 @item
2824 if it is a procedure @var{pred} characters that
2825 satisfy @var{pred} are trimmed,
2826
2827 @item
2828 if it is a character set, characters in that set are trimmed.
2829 @end itemize
2830
2831 If called without a @var{char_pred} argument, all whitespace is
2832 trimmed.
2833 @end deffn
2834
2835 @deffn {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
2836 @deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
2837 Trim @var{s} by skipping over all characters on the rightt
2838 that satisfy the parameter @var{char_pred}:
2839
2840 @itemize @bullet
2841 @item
2842 if it is the character @var{ch}, characters equal to @var{ch}
2843 are trimmed,
2844
2845 @item
2846 if it is a procedure @var{pred} characters that satisfy
2847 @var{pred} are trimmed,
2848
2849 @item
2850 if it is a character sets, all characters in that set are
2851 trimmed.
2852 @end itemize
2853
2854 If called without a @var{char_pred} argument, all whitespace is
2855 trimmed.
2856 @end deffn
2857
2858 @deffn {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
2859 @deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
2860 Trim @var{s} by skipping over all characters on both sides of
2861 the string that satisfy the parameter @var{char_pred}:
2862
2863 @itemize @bullet
2864 @item
2865 if it is the character @var{ch}, characters equal to @var{ch}
2866 are trimmed,
2867
2868 @item
2869 if it is a procedure @var{pred} characters that satisfy
2870 @var{pred} are trimmed,
2871
2872 @item
2873 if it is a character set, the characters in the set are
2874 trimmed.
2875 @end itemize
2876
2877 If called without a @var{char_pred} argument, all whitespace is
2878 trimmed.
2879 @end deffn
2880
2881 @node String Modification
2882 @subsubsection String Modification
2883
2884 These procedures are for modifying strings in-place. This means that the
2885 result of the operation is not a new string; instead, the original string's
2886 memory representation is modified.
2887
2888 @rnindex string-set!
2889 @deffn {Scheme Procedure} string-set! str k chr
2890 @deffnx {C Function} scm_string_set_x (str, k, chr)
2891 Store @var{chr} in element @var{k} of @var{str} and return
2892 an unspecified value. @var{k} must be a valid index of
2893 @var{str}.
2894 @end deffn
2895
2896 @deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
2897 Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
2898 @end deftypefn
2899
2900 @rnindex string-fill!
2901 @deffn {Scheme Procedure} string-fill! str chr [start [end]]
2902 @deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
2903 @deffnx {C Function} scm_string_fill_x (str, chr)
2904 Stores @var{chr} in every element of the given @var{str} and
2905 returns an unspecified value.
2906 @end deffn
2907
2908 @deffn {Scheme Procedure} substring-fill! str start end fill
2909 @deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
2910 Change every character in @var{str} between @var{start} and
2911 @var{end} to @var{fill}.
2912
2913 @lisp
2914 (define y "abcdefg")
2915 (substring-fill! y 1 3 #\r)
2916 y
2917 @result{} "arrdefg"
2918 @end lisp
2919 @end deffn
2920
2921 @deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
2922 @deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
2923 Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
2924 into @var{str2} beginning at position @var{start2}.
2925 @var{str1} and @var{str2} can be the same string.
2926 @end deffn
2927
2928 @deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
2929 @deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
2930 Copy the sequence of characters from index range [@var{start},
2931 @var{end}) in string @var{s} to string @var{target}, beginning
2932 at index @var{tstart}. The characters are copied left-to-right
2933 or right-to-left as needed -- the copy is guaranteed to work,
2934 even if @var{target} and @var{s} are the same string. It is an
2935 error if the copy operation runs off the end of the target
2936 string.
2937 @end deffn
2938
2939
2940 @node String Comparison
2941 @subsubsection String Comparison
2942
2943 The procedures in this section are similar to the character ordering
2944 predicates (@pxref{Characters}), but are defined on character sequences.
2945
2946 The first set is specified in R5RS and has names that end in @code{?}.
2947 The second set is specified in SRFI-13 and the names have no ending
2948 @code{?}. The predicates ending in @code{-ci} ignore the character case
2949 when comparing strings.
2950
2951 @rnindex string=?
2952 @deffn {Scheme Procedure} string=? s1 s2
2953 Lexicographic equality predicate; return @code{#t} if the two
2954 strings are the same length and contain the same characters in
2955 the same positions, otherwise return @code{#f}.
2956
2957 The procedure @code{string-ci=?} treats upper and lower case
2958 letters as though they were the same character, but
2959 @code{string=?} treats upper and lower case as distinct
2960 characters.
2961 @end deffn
2962
2963 @rnindex string<?
2964 @deffn {Scheme Procedure} string<? s1 s2
2965 Lexicographic ordering predicate; return @code{#t} if @var{s1}
2966 is lexicographically less than @var{s2}.
2967 @end deffn
2968
2969 @rnindex string<=?
2970 @deffn {Scheme Procedure} string<=? s1 s2
2971 Lexicographic ordering predicate; return @code{#t} if @var{s1}
2972 is lexicographically less than or equal to @var{s2}.
2973 @end deffn
2974
2975 @rnindex string>?
2976 @deffn {Scheme Procedure} string>? s1 s2
2977 Lexicographic ordering predicate; return @code{#t} if @var{s1}
2978 is lexicographically greater than @var{s2}.
2979 @end deffn
2980
2981 @rnindex string>=?
2982 @deffn {Scheme Procedure} string>=? s1 s2
2983 Lexicographic ordering predicate; return @code{#t} if @var{s1}
2984 is lexicographically greater than or equal to @var{s2}.
2985 @end deffn
2986
2987 @rnindex string-ci=?
2988 @deffn {Scheme Procedure} string-ci=? s1 s2
2989 Case-insensitive string equality predicate; return @code{#t} if
2990 the two strings are the same length and their component
2991 characters match (ignoring case) at each position; otherwise
2992 return @code{#f}.
2993 @end deffn
2994
2995 @rnindex string-ci<?
2996 @deffn {Scheme Procedure} string-ci<? s1 s2
2997 Case insensitive lexicographic ordering predicate; return
2998 @code{#t} if @var{s1} is lexicographically less than @var{s2}
2999 regardless of case.
3000 @end deffn
3001
3002 @rnindex string<=?
3003 @deffn {Scheme Procedure} string-ci<=? s1 s2
3004 Case insensitive lexicographic ordering predicate; return
3005 @code{#t} if @var{s1} is lexicographically less than or equal
3006 to @var{s2} regardless of case.
3007 @end deffn
3008
3009 @rnindex string-ci>?
3010 @deffn {Scheme Procedure} string-ci>? s1 s2
3011 Case insensitive lexicographic ordering predicate; return
3012 @code{#t} if @var{s1} is lexicographically greater than
3013 @var{s2} regardless of case.
3014 @end deffn
3015
3016 @rnindex string-ci>=?
3017 @deffn {Scheme Procedure} string-ci>=? s1 s2
3018 Case insensitive lexicographic ordering predicate; return
3019 @code{#t} if @var{s1} is lexicographically greater than or
3020 equal to @var{s2} regardless of case.
3021 @end deffn
3022
3023 @deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3024 @deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3025 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3026 mismatch index, depending upon whether @var{s1} is less than,
3027 equal to, or greater than @var{s2}. The mismatch index is the
3028 largest index @var{i} such that for every 0 <= @var{j} <
3029 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3030 @var{i} is the first position that does not match.
3031 @end deffn
3032
3033 @deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3034 @deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3035 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3036 mismatch index, depending upon whether @var{s1} is less than,
3037 equal to, or greater than @var{s2}. The mismatch index is the
3038 largest index @var{i} such that for every 0 <= @var{j} <
3039 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3040 @var{i} is the first position that does not match. The
3041 character comparison is done case-insensitively.
3042 @end deffn
3043
3044 @deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3045 @deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3046 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3047 value otherwise.
3048 @end deffn
3049
3050 @deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3051 @deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3052 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3053 value otherwise.
3054 @end deffn
3055
3056 @deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3057 @deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3058 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3059 true value otherwise.
3060 @end deffn
3061
3062 @deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3063 @deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3064 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3065 true value otherwise.
3066 @end deffn
3067
3068 @deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3069 @deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3070 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3071 value otherwise.
3072 @end deffn
3073
3074 @deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3075 @deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3076 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3077 otherwise.
3078 @end deffn
3079
3080 @deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3081 @deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3082 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3083 value otherwise. The character comparison is done
3084 case-insensitively.
3085 @end deffn
3086
3087 @deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3088 @deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3089 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3090 value otherwise. The character comparison is done
3091 case-insensitively.
3092 @end deffn
3093
3094 @deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3095 @deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3096 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3097 true value otherwise. The character comparison is done
3098 case-insensitively.
3099 @end deffn
3100
3101 @deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3102 @deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3103 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3104 true value otherwise. The character comparison is done
3105 case-insensitively.
3106 @end deffn
3107
3108 @deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3109 @deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3110 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3111 value otherwise. The character comparison is done
3112 case-insensitively.
3113 @end deffn
3114
3115 @deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3116 @deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3117 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3118 otherwise. The character comparison is done
3119 case-insensitively.
3120 @end deffn
3121
3122 @deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3123 @deffnx {C Function} scm_substring_hash (s, bound, start, end)
3124 Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3125 @end deffn
3126
3127 @deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3128 @deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3129 Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3130 @end deffn
3131
3132 @node String Searching
3133 @subsubsection String Searching
3134
3135 @deffn {Scheme Procedure} string-index s char_pred [start [end]]
3136 @deffnx {C Function} scm_string_index (s, char_pred, start, end)
3137 Search through the string @var{s} from left to right, returning
3138 the index of the first occurence of a character which
3139
3140 @itemize @bullet
3141 @item
3142 equals @var{char_pred}, if it is character,
3143
3144 @item
3145 satisifies the predicate @var{char_pred}, if it is a procedure,
3146
3147 @item
3148 is in the set @var{char_pred}, if it is a character set.
3149 @end itemize
3150 @end deffn
3151
3152 @deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3153 @deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3154 Search through the string @var{s} from right to left, returning
3155 the index of the last occurence of a character which
3156
3157 @itemize @bullet
3158 @item
3159 equals @var{char_pred}, if it is character,
3160
3161 @item
3162 satisifies the predicate @var{char_pred}, if it is a procedure,
3163
3164 @item
3165 is in the set if @var{char_pred} is a character set.
3166 @end itemize
3167 @end deffn
3168
3169 @deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3170 @deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3171 Return the length of the longest common prefix of the two
3172 strings.
3173 @end deffn
3174
3175 @deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3176 @deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3177 Return the length of the longest common prefix of the two
3178 strings, ignoring character case.
3179 @end deffn
3180
3181 @deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3182 @deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3183 Return the length of the longest common suffix of the two
3184 strings.
3185 @end deffn
3186
3187 @deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3188 @deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3189 Return the length of the longest common suffix of the two
3190 strings, ignoring character case.
3191 @end deffn
3192
3193 @deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3194 @deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3195 Is @var{s1} a prefix of @var{s2}?
3196 @end deffn
3197
3198 @deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3199 @deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3200 Is @var{s1} a prefix of @var{s2}, ignoring character case?
3201 @end deffn
3202
3203 @deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3204 @deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3205 Is @var{s1} a suffix of @var{s2}?
3206 @end deffn
3207
3208 @deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3209 @deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3210 Is @var{s1} a suffix of @var{s2}, ignoring character case?
3211 @end deffn
3212
3213 @deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3214 @deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3215 Search through the string @var{s} from right to left, returning
3216 the index of the last occurence of a character which
3217
3218 @itemize @bullet
3219 @item
3220 equals @var{char_pred}, if it is character,
3221
3222 @item
3223 satisifies the predicate @var{char_pred}, if it is a procedure,
3224
3225 @item
3226 is in the set if @var{char_pred} is a character set.
3227 @end itemize
3228 @end deffn
3229
3230 @deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3231 @deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3232 Search through the string @var{s} from left to right, returning
3233 the index of the first occurence of a character which
3234
3235 @itemize @bullet
3236 @item
3237 does not equal @var{char_pred}, if it is character,
3238
3239 @item
3240 does not satisify the predicate @var{char_pred}, if it is a
3241 procedure,
3242
3243 @item
3244 is not in the set if @var{char_pred} is a character set.
3245 @end itemize
3246 @end deffn
3247
3248 @deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3249 @deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3250 Search through the string @var{s} from right to left, returning
3251 the index of the last occurence of a character which
3252
3253 @itemize @bullet
3254 @item
3255 does not equal @var{char_pred}, if it is character,
3256
3257 @item
3258 does not satisfy the predicate @var{char_pred}, if it is a
3259 procedure,
3260
3261 @item
3262 is not in the set if @var{char_pred} is a character set.
3263 @end itemize
3264 @end deffn
3265
3266 @deffn {Scheme Procedure} string-count s char_pred [start [end]]
3267 @deffnx {C Function} scm_string_count (s, char_pred, start, end)
3268 Return the count of the number of characters in the string
3269 @var{s} which
3270
3271 @itemize @bullet
3272 @item
3273 equals @var{char_pred}, if it is character,
3274
3275 @item
3276 satisifies the predicate @var{char_pred}, if it is a procedure.
3277
3278 @item
3279 is in the set @var{char_pred}, if it is a character set.
3280 @end itemize
3281 @end deffn
3282
3283 @deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3284 @deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3285 Does string @var{s1} contain string @var{s2}? Return the index
3286 in @var{s1} where @var{s2} occurs as a substring, or false.
3287 The optional start/end indices restrict the operation to the
3288 indicated substrings.
3289 @end deffn
3290
3291 @deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3292 @deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3293 Does string @var{s1} contain string @var{s2}? Return the index
3294 in @var{s1} where @var{s2} occurs as a substring, or false.
3295 The optional start/end indices restrict the operation to the
3296 indicated substrings. Character comparison is done
3297 case-insensitively.
3298 @end deffn
3299
3300 @node Alphabetic Case Mapping
3301 @subsubsection Alphabetic Case Mapping
3302
3303 These are procedures for mapping strings to their upper- or lower-case
3304 equivalents, respectively, or for capitalizing strings.
3305
3306 @deffn {Scheme Procedure} string-upcase str [start [end]]
3307 @deffnx {C Function} scm_substring_upcase (str, start, end)
3308 @deffnx {C Function} scm_string_upcase (str)
3309 Upcase every character in @code{str}.
3310 @end deffn
3311
3312 @deffn {Scheme Procedure} string-upcase! str [start [end]]
3313 @deffnx {C Function} scm_substring_upcase_x (str, start, end)
3314 @deffnx {C Function} scm_string_upcase_x (str)
3315 Destructively upcase every character in @code{str}.
3316
3317 @lisp
3318 (string-upcase! y)
3319 @result{} "ARRDEFG"
3320 y
3321 @result{} "ARRDEFG"
3322 @end lisp
3323 @end deffn
3324
3325 @deffn {Scheme Procedure} string-downcase str [start [end]]
3326 @deffnx {C Function} scm_substring_downcase (str, start, end)
3327 @deffnx {C Function} scm_string_downcase (str)
3328 Downcase every character in @var{str}.
3329 @end deffn
3330
3331 @deffn {Scheme Procedure} string-downcase! str [start [end]]
3332 @deffnx {C Function} scm_substring_downcase_x (str, start, end)
3333 @deffnx {C Function} scm_string_downcase_x (str)
3334 Destructively downcase every character in @var{str}.
3335
3336 @lisp
3337 y
3338 @result{} "ARRDEFG"
3339 (string-downcase! y)
3340 @result{} "arrdefg"
3341 y
3342 @result{} "arrdefg"
3343 @end lisp
3344 @end deffn
3345
3346 @deffn {Scheme Procedure} string-capitalize str
3347 @deffnx {C Function} scm_string_capitalize (str)
3348 Return a freshly allocated string with the characters in
3349 @var{str}, where the first character of every word is
3350 capitalized.
3351 @end deffn
3352
3353 @deffn {Scheme Procedure} string-capitalize! str
3354 @deffnx {C Function} scm_string_capitalize_x (str)
3355 Upcase the first character of every word in @var{str}
3356 destructively and return @var{str}.
3357
3358 @lisp
3359 y @result{} "hello world"
3360 (string-capitalize! y) @result{} "Hello World"
3361 y @result{} "Hello World"
3362 @end lisp
3363 @end deffn
3364
3365 @deffn {Scheme Procedure} string-titlecase str [start [end]]
3366 @deffnx {C Function} scm_string_titlecase (str, start, end)
3367 Titlecase every first character in a word in @var{str}.
3368 @end deffn
3369
3370 @deffn {Scheme Procedure} string-titlecase! str [start [end]]
3371 @deffnx {C Function} scm_string_titlecase_x (str, start, end)
3372 Destructively titlecase every first character in a word in
3373 @var{str}.
3374 @end deffn
3375
3376 @node Reversing and Appending Strings
3377 @subsubsection Reversing and Appending Strings
3378
3379 @deffn {Scheme Procedure} string-reverse str [start [end]]
3380 @deffnx {C Function} scm_string_reverse (str, start, end)
3381 Reverse the string @var{str}. The optional arguments
3382 @var{start} and @var{end} delimit the region of @var{str} to
3383 operate on.
3384 @end deffn
3385
3386 @deffn {Scheme Procedure} string-reverse! str [start [end]]
3387 @deffnx {C Function} scm_string_reverse_x (str, start, end)
3388 Reverse the string @var{str} in-place. The optional arguments
3389 @var{start} and @var{end} delimit the region of @var{str} to
3390 operate on. The return value is unspecified.
3391 @end deffn
3392
3393 @rnindex string-append
3394 @deffn {Scheme Procedure} string-append . args
3395 @deffnx {C Function} scm_string_append (args)
3396 Return a newly allocated string whose characters form the
3397 concatenation of the given strings, @var{args}.
3398
3399 @example
3400 (let ((h "hello "))
3401 (string-append h "world"))
3402 @result{} "hello world"
3403 @end example
3404 @end deffn
3405
3406 @deffn {Scheme Procedure} string-append/shared . ls
3407 @deffnx {C Function} scm_string_append_shared (ls)
3408 Like @code{string-append}, but the result may share memory
3409 with the argument strings.
3410 @end deffn
3411
3412 @deffn {Scheme Procedure} string-concatenate ls
3413 @deffnx {C Function} scm_string_concatenate (ls)
3414 Append the elements of @var{ls} (which must be strings)
3415 together into a single string. Guaranteed to return a freshly
3416 allocated string.
3417 @end deffn
3418
3419 @deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3420 @deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3421 Without optional arguments, this procedure is equivalent to
3422
3423 @smalllisp
3424 (string-concatenate (reverse ls))
3425 @end smalllisp
3426
3427 If the optional argument @var{final_string} is specified, it is
3428 consed onto the beginning to @var{ls} before performing the
3429 list-reverse and string-concatenate operations. If @var{end}
3430 is given, only the characters of @var{final_string} up to index
3431 @var{end} are used.
3432
3433 Guaranteed to return a freshly allocated string.
3434 @end deffn
3435
3436 @deffn {Scheme Procedure} string-concatenate/shared ls
3437 @deffnx {C Function} scm_string_concatenate_shared (ls)
3438 Like @code{string-concatenate}, but the result may share memory
3439 with the strings in the list @var{ls}.
3440 @end deffn
3441
3442 @deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3443 @deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3444 Like @code{string-concatenate-reverse}, but the result may
3445 share memory with the the strings in the @var{ls} arguments.
3446 @end deffn
3447
3448 @node Mapping Folding and Unfolding
3449 @subsubsection Mapping, Folding, and Unfolding
3450
3451 @deffn {Scheme Procedure} string-map proc s [start [end]]
3452 @deffnx {C Function} scm_string_map (proc, s, start, end)
3453 @var{proc} is a char->char procedure, it is mapped over
3454 @var{s}. The order in which the procedure is applied to the
3455 string elements is not specified.
3456 @end deffn
3457
3458 @deffn {Scheme Procedure} string-map! proc s [start [end]]
3459 @deffnx {C Function} scm_string_map_x (proc, s, start, end)
3460 @var{proc} is a char->char procedure, it is mapped over
3461 @var{s}. The order in which the procedure is applied to the
3462 string elements is not specified. The string @var{s} is
3463 modified in-place, the return value is not specified.
3464 @end deffn
3465
3466 @deffn {Scheme Procedure} string-for-each proc s [start [end]]
3467 @deffnx {C Function} scm_string_for_each (proc, s, start, end)
3468 @var{proc} is mapped over @var{s} in left-to-right order. The
3469 return value is not specified.
3470 @end deffn
3471
3472 @deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
3473 @deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
3474 Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
3475 right.
3476
3477 For example, to change characters to alternately upper and lower case,
3478
3479 @example
3480 (define str (string-copy "studly"))
3481 (string-for-each-index (lambda (i)
3482 (string-set! str i
3483 ((if (even? i) char-upcase char-downcase)
3484 (string-ref str i))))
3485 str)
3486 str @result{} "StUdLy"
3487 @end example
3488 @end deffn
3489
3490 @deffn {Scheme Procedure} string-fold kons knil s [start [end]]
3491 @deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
3492 Fold @var{kons} over the characters of @var{s}, with @var{knil}
3493 as the terminating element, from left to right. @var{kons}
3494 must expect two arguments: The actual character and the last
3495 result of @var{kons}' application.
3496 @end deffn
3497
3498 @deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
3499 @deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
3500 Fold @var{kons} over the characters of @var{s}, with @var{knil}
3501 as the terminating element, from right to left. @var{kons}
3502 must expect two arguments: The actual character and the last
3503 result of @var{kons}' application.
3504 @end deffn
3505
3506 @deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
3507 @deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
3508 @itemize @bullet
3509 @item @var{g} is used to generate a series of @emph{seed}
3510 values from the initial @var{seed}: @var{seed}, (@var{g}
3511 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3512 @dots{}
3513 @item @var{p} tells us when to stop -- when it returns true
3514 when applied to one of these seed values.
3515 @item @var{f} maps each seed value to the corresponding
3516 character in the result string. These chars are assembled
3517 into the string in a left-to-right order.
3518 @item @var{base} is the optional initial/leftmost portion
3519 of the constructed string; it default to the empty
3520 string.
3521 @item @var{make_final} is applied to the terminal seed
3522 value (on which @var{p} returns true) to produce
3523 the final/rightmost portion of the constructed string.
3524 It defaults to @code{(lambda (x) )}.
3525 @end itemize
3526 @end deffn
3527
3528 @deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
3529 @deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
3530 @itemize @bullet
3531 @item @var{g} is used to generate a series of @emph{seed}
3532 values from the initial @var{seed}: @var{seed}, (@var{g}
3533 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3534 @dots{}
3535 @item @var{p} tells us when to stop -- when it returns true
3536 when applied to one of these seed values.
3537 @item @var{f} maps each seed value to the corresponding
3538 character in the result string. These chars are assembled
3539 into the string in a right-to-left order.
3540 @item @var{base} is the optional initial/rightmost portion
3541 of the constructed string; it default to the empty
3542 string.
3543 @item @var{make_final} is applied to the terminal seed
3544 value (on which @var{p} returns true) to produce
3545 the final/leftmost portion of the constructed string.
3546 It defaults to @code{(lambda (x) )}.
3547 @end itemize
3548 @end deffn
3549
3550 @node Miscellaneous String Operations
3551 @subsubsection Miscellaneous String Operations
3552
3553 @deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
3554 @deffnx {C Function} scm_xsubstring (s, from, to, start, end)
3555 This is the @emph{extended substring} procedure that implements
3556 replicated copying of a substring of some string.
3557
3558 @var{s} is a string, @var{start} and @var{end} are optional
3559 arguments that demarcate a substring of @var{s}, defaulting to
3560 0 and the length of @var{s}. Replicate this substring up and
3561 down index space, in both the positive and negative directions.
3562 @code{xsubstring} returns the substring of this string
3563 beginning at index @var{from}, and ending at @var{to}, which
3564 defaults to @var{from} + (@var{end} - @var{start}).
3565 @end deffn
3566
3567 @deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
3568 @deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
3569 Exactly the same as @code{xsubstring}, but the extracted text
3570 is written into the string @var{target} starting at index
3571 @var{tstart}. The operation is not defined if @code{(eq?
3572 @var{target} @var{s})} or these arguments share storage -- you
3573 cannot copy a string on top of itself.
3574 @end deffn
3575
3576 @deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
3577 @deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
3578 Return the string @var{s1}, but with the characters
3579 @var{start1} @dots{} @var{end1} replaced by the characters
3580 @var{start2} @dots{} @var{end2} from @var{s2}.
3581 @end deffn
3582
3583 @deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
3584 @deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
3585 Split the string @var{s} into a list of substrings, where each
3586 substring is a maximal non-empty contiguous sequence of
3587 characters from the character set @var{token_set}, which
3588 defaults to @code{char-set:graphic}.
3589 If @var{start} or @var{end} indices are provided, they restrict
3590 @code{string-tokenize} to operating on the indicated substring
3591 of @var{s}.
3592 @end deffn
3593
3594 @deffn {Scheme Procedure} string-filter s char_pred [start [end]]
3595 @deffnx {C Function} scm_string_filter (s, char_pred, start, end)
3596 Filter the string @var{s}, retaining only those characters that
3597 satisfy the @var{char_pred} argument. If the argument is a
3598 procedure, it is applied to each character as a predicate, if
3599 it is a character, it is tested for equality and if it is a
3600 character set, it is tested for membership.
3601 @end deffn
3602
3603 @deffn {Scheme Procedure} string-delete s char_pred [start [end]]
3604 @deffnx {C Function} scm_string_delete (s, char_pred, start, end)
3605 Filter the string @var{s}, retaining only those characters that
3606 do not satisfy the @var{char_pred} argument. If the argument
3607 is a procedure, it is applied to each character as a predicate,
3608 if it is a character, it is tested for equality and if it is a
3609 character set, it is tested for membership.
3610 @end deffn
3611
3612 @node Conversion to/from C
3613 @subsubsection Conversion to/from C
3614
3615 When creating a Scheme string from a C string or when converting a
3616 Scheme string to a C string, the concept of character encoding becomes
3617 important.
3618
3619 In C, a string is just a sequence of bytes, and the character encoding
3620 describes the relation between these bytes and the actual characters
3621 that make up the string. For Scheme strings, character encoding is
3622 not an issue (most of the time), since in Scheme you never get to see
3623 the bytes, only the characters.
3624
3625 Well, ideally, anyway. Right now, Guile simply equates Scheme
3626 characters and bytes, ignoring the possibility of multi-byte encodings
3627 completely. This will change in the future, where Guile will use
3628 Unicode codepoints as its characters and UTF-8 or some other encoding
3629 as its internal encoding. When you exclusively use the functions
3630 listed in this section, you are `future-proof'.
3631
3632 Converting a Scheme string to a C string will often allocate fresh
3633 memory to hold the result. You must take care that this memory is
3634 properly freed eventually. In many cases, this can be achieved by
3635 using @code{scm_frame_free} inside an appropriate frame,
3636 @xref{Frames}.
3637
3638 @deftypefn {C Function} SCM scm_from_locale_string (const char *str)
3639 @deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
3640 Creates a new Scheme string that has the same contents as @var{str}
3641 when interpreted in the current locale character encoding.
3642
3643 For @code{scm_from_locale_string}, @var{str} must be null-terminated.
3644
3645 For @code{scm_from_locale_stringn}, @var{len} specifies the length of
3646 @var{str} in bytes, and @var{str} does not need to be null-terminated.
3647 If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
3648 null-terminated and the real length will be found with @code{strlen}.
3649 @end deftypefn
3650
3651 @deftypefn {C Function} SCM scm_take_locale_string (char *str)
3652 @deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
3653 Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
3654 respectively, but also frees @var{str} with @code{free} eventually.
3655 Thus, you can use this function when you would free @var{str} anyway
3656 immediately after creating the Scheme string. In certain cases, Guile
3657 can then use @var{str} directly as its internal representation.
3658 @end deftypefn
3659
3660 @deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
3661 @deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
3662 Returns a C string in the current locale encoding with the same
3663 contents as @var{str}. The C string must be freed with @code{free}
3664 eventually, maybe by using @code{scm_frame_free}, @xref{Frames}.
3665
3666 For @code{scm_to_locale_string}, the returned string is
3667 null-terminated and an error is signalled when @var{str} contains
3668 @code{#\nul} characters.
3669
3670 For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
3671 @var{str} might contain @code{#\nul} characters and the length of the
3672 returned string in bytes is stored in @code{*@var{lenp}}. The
3673 returned string will not be null-terminated in this case. If
3674 @var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
3675 @code{scm_to_locale_string}.
3676 @end deftypefn
3677
3678 @deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
3679 Puts @var{str} as a C string in the current locale encoding into the
3680 memory pointed to by @var{buf}. The buffer at @var{buf} has room for
3681 @var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
3682 more than that. No terminating @code{'\0'} will be stored.
3683
3684 The return value of @code{scm_to_locale_stringbuf} is the number of
3685 bytes that are needed for all of @var{str}, regardless of whether
3686 @var{buf} was large enough to hold them. Thus, when the return value
3687 is larger than @var{max_len}, only @var{max_len} bytes have been
3688 stored and you probably need to try again with a larger buffer.
3689 @end deftypefn
3690
3691 @node Regular Expressions
3692 @subsection Regular Expressions
3693 @tpindex Regular expressions
3694
3695 @cindex regular expressions
3696 @cindex regex
3697 @cindex emacs regexp
3698
3699 A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
3700 describes a whole class of strings. A full description of regular
3701 expressions and their syntax is beyond the scope of this manual;
3702 an introduction can be found in the Emacs manual (@pxref{Regexps,
3703 , Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
3704 in many general Unix reference books.
3705
3706 If your system does not include a POSIX regular expression library,
3707 and you have not linked Guile with a third-party regexp library such
3708 as Rx, these functions will not be available. You can tell whether
3709 your Guile installation includes regular expression support by
3710 checking whether @code{(provided? 'regex)} returns true.
3711
3712 The following regexp and string matching features are provided by the
3713 @code{(ice-9 regex)} module. Before using the described functions,
3714 you should load this module by executing @code{(use-modules (ice-9
3715 regex))}.
3716
3717 @menu
3718 * Regexp Functions:: Functions that create and match regexps.
3719 * Match Structures:: Finding what was matched by a regexp.
3720 * Backslash Escapes:: Removing the special meaning of regexp
3721 meta-characters.
3722 @end menu
3723
3724
3725 @node Regexp Functions
3726 @subsubsection Regexp Functions
3727
3728 By default, Guile supports POSIX extended regular expressions.
3729 That means that the characters @samp{(}, @samp{)}, @samp{+} and
3730 @samp{?} are special, and must be escaped if you wish to match the
3731 literal characters.
3732
3733 This regular expression interface was modeled after that
3734 implemented by SCSH, the Scheme Shell. It is intended to be
3735 upwardly compatible with SCSH regular expressions.
3736
3737 @deffn {Scheme Procedure} string-match pattern str [start]
3738 Compile the string @var{pattern} into a regular expression and compare
3739 it with @var{str}. The optional numeric argument @var{start} specifies
3740 the position of @var{str} at which to begin matching.
3741
3742 @code{string-match} returns a @dfn{match structure} which
3743 describes what, if anything, was matched by the regular
3744 expression. @xref{Match Structures}. If @var{str} does not match
3745 @var{pattern} at all, @code{string-match} returns @code{#f}.
3746 @end deffn
3747
3748 Two examples of a match follow. In the first example, the pattern
3749 matches the four digits in the match string. In the second, the pattern
3750 matches nothing.
3751
3752 @example
3753 (string-match "[0-9][0-9][0-9][0-9]" "blah2002")
3754 @result{} #("blah2002" (4 . 8))
3755
3756 (string-match "[A-Za-z]" "123456")
3757 @result{} #f
3758 @end example
3759
3760 Each time @code{string-match} is called, it must compile its
3761 @var{pattern} argument into a regular expression structure. This
3762 operation is expensive, which makes @code{string-match} inefficient if
3763 the same regular expression is used several times (for example, in a
3764 loop). For better performance, you can compile a regular expression in
3765 advance and then match strings against the compiled regexp.
3766
3767 @deffn {Scheme Procedure} make-regexp pat flag@dots{}
3768 @deffnx {C Function} scm_make_regexp (pat, flaglst)
3769 Compile the regular expression described by @var{pat}, and
3770 return the compiled regexp structure. If @var{pat} does not
3771 describe a legal regular expression, @code{make-regexp} throws
3772 a @code{regular-expression-syntax} error.
3773
3774 The @var{flag} arguments change the behavior of the compiled
3775 regular expression. The following values may be supplied:
3776
3777 @defvar regexp/icase
3778 Consider uppercase and lowercase letters to be the same when
3779 matching.
3780 @end defvar
3781
3782 @defvar regexp/newline
3783 If a newline appears in the target string, then permit the
3784 @samp{^} and @samp{$} operators to match immediately after or
3785 immediately before the newline, respectively. Also, the
3786 @samp{.} and @samp{[^...]} operators will never match a newline
3787 character. The intent of this flag is to treat the target
3788 string as a buffer containing many lines of text, and the
3789 regular expression as a pattern that may match a single one of
3790 those lines.
3791 @end defvar
3792
3793 @defvar regexp/basic
3794 Compile a basic (``obsolete'') regexp instead of the extended
3795 (``modern'') regexps that are the default. Basic regexps do
3796 not consider @samp{|}, @samp{+} or @samp{?} to be special
3797 characters, and require the @samp{@{...@}} and @samp{(...)}
3798 metacharacters to be backslash-escaped (@pxref{Backslash
3799 Escapes}). There are several other differences between basic
3800 and extended regular expressions, but these are the most
3801 significant.
3802 @end defvar
3803
3804 @defvar regexp/extended
3805 Compile an extended regular expression rather than a basic
3806 regexp. This is the default behavior; this flag will not
3807 usually be needed. If a call to @code{make-regexp} includes
3808 both @code{regexp/basic} and @code{regexp/extended} flags, the
3809 one which comes last will override the earlier one.
3810 @end defvar
3811 @end deffn
3812
3813 @deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
3814 @deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
3815 Match the compiled regular expression @var{rx} against
3816 @code{str}. If the optional integer @var{start} argument is
3817 provided, begin matching from that position in the string.
3818 Return a match structure describing the results of the match,
3819 or @code{#f} if no match could be found.
3820
3821 The @var{flags} argument changes the matching behavior. The following
3822 flag values may be supplied, use @code{logior} (@pxref{Bitwise
3823 Operations}) to combine them,
3824
3825 @defvar regexp/notbol
3826 Consider that the @var{start} offset into @var{str} is not the
3827 beginning of a line and should not match operator @samp{^}.
3828
3829 If @var{rx} was created with the @code{regexp/newline} option above,
3830 @samp{^} will still match after a newline in @var{str}.
3831 @end defvar
3832
3833 @defvar regexp/noteol
3834 Consider that the end of @var{str} is not the end of a line and should
3835 not match operator @samp{$}.
3836
3837 If @var{rx} was created with the @code{regexp/newline} option above,
3838 @samp{$} will still match before a newline in @var{str}.
3839 @end defvar
3840 @end deffn
3841
3842 @lisp
3843 ;; Regexp to match uppercase letters
3844 (define r (make-regexp "[A-Z]*"))
3845
3846 ;; Regexp to match letters, ignoring case
3847 (define ri (make-regexp "[A-Z]*" regexp/icase))
3848
3849 ;; Search for bob using regexp r
3850 (match:substring (regexp-exec r "bob"))
3851 @result{} "" ; no match
3852
3853 ;; Search for bob using regexp ri
3854 (match:substring (regexp-exec ri "Bob"))
3855 @result{} "Bob" ; matched case insensitive
3856 @end lisp
3857
3858 @deffn {Scheme Procedure} regexp? obj
3859 @deffnx {C Function} scm_regexp_p (obj)
3860 Return @code{#t} if @var{obj} is a compiled regular expression,
3861 or @code{#f} otherwise.
3862 @end deffn
3863
3864 @sp 1
3865 @deffn {Scheme Procedure} list-matches regexp str [flags]
3866 Return a list of match structures which are the non-overlapping
3867 matches of @var{regexp} in @var{str}. @var{regexp} can be either a
3868 pattern string or a compiled regexp. The @var{flags} argument is as
3869 per @code{regexp-exec} above.
3870
3871 @example
3872 (map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
3873 @result{} ("abc" "def")
3874 @end example
3875 @end deffn
3876
3877 @deffn {Scheme Procedure} fold-matches regexp str init proc [flags]
3878 Apply @var{proc} to the non-overlapping matches of @var{regexp} in
3879 @var{str}, to build a result. @var{regexp} can be either a pattern
3880 string or a compiled regexp. The @var{flags} argument is as per
3881 @code{regexp-exec} above.
3882
3883 @var{proc} is called as @code{(@var{proc} match prev)} where
3884 @var{match} is a match structure and @var{prev} is the previous return
3885 from @var{proc}. For the first call @var{prev} is the given
3886 @var{init} parameter. @code{fold-matches} returns the final value
3887 from @var{proc}.
3888
3889 For example to count matches,
3890
3891 @example
3892 (fold-matches "[a-z][0-9]" "abc x1 def y2" 0
3893 (lambda (match count)
3894 (1+ count)))
3895 @result{} 2
3896 @end example
3897 @end deffn
3898
3899 @sp 1
3900 Regular expressions are commonly used to find patterns in one string
3901 and replace them with the contents of another string. The following
3902 functions are convenient ways to do this.
3903
3904 @c begin (scm-doc-string "regex.scm" "regexp-substitute")
3905 @deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
3906 Write to @var{port} selected parts of the match structure @var{match}.
3907 Or if @var{port} is @code{#f} then form a string from those parts and
3908 return that.
3909
3910 Each @var{item} specifies a part to be written, and may be one of the
3911 following,
3912
3913 @itemize @bullet
3914 @item
3915 A string. String arguments are written out verbatim.
3916
3917 @item
3918 An integer. The submatch with that number is written
3919 (@code{match:substring}). Zero is the entire match.
3920
3921 @item
3922 The symbol @samp{pre}. The portion of the matched string preceding
3923 the regexp match is written (@code{match:prefix}).
3924
3925 @item
3926 The symbol @samp{post}. The portion of the matched string following
3927 the regexp match is written (@code{match:suffix}).
3928 @end itemize
3929
3930 For example, changing a match and retaining the text before and after,
3931
3932 @example
3933 (regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
3934 'pre "37" 'post)
3935 @result{} "number 37 is good"
3936 @end example
3937
3938 Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
3939 re-ordering and hyphenating the fields.
3940
3941 @lisp
3942 (define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
3943 (define s "Date 20020429 12am.")
3944 (regexp-substitute #f (string-match date-regex s)
3945 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
3946 @result{} "Date 04-29-2002 12am. (20020429)"
3947 @end lisp
3948 @end deffn
3949
3950
3951 @c begin (scm-doc-string "regex.scm" "regexp-substitute")
3952 @deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
3953 @cindex search and replace
3954 Write to @var{port} selected parts of matches of @var{regexp} in
3955 @var{target}. If @var{port} is @code{#f} then form a string from
3956 those parts and return that. @var{regexp} can be a string or a
3957 compiled regex.
3958
3959 This is similar to @code{regexp-substitute}, but allows global
3960 substitutions on @var{target}. Each @var{item} behaves as per
3961 @code{regexp-substitute}, with the following differences,
3962
3963 @itemize @bullet
3964 @item
3965 A function. Called as @code{(@var{item} match)} with the match
3966 structure for the @var{regexp} match, it should return a string to be
3967 written to @var{port}.
3968
3969 @item
3970 The symbol @samp{post}. This doesn't output anything, but instead
3971 causes @code{regexp-substitute/global} to recurse on the unmatched
3972 portion of @var{target}.
3973
3974 This @emph{must} be supplied to perform a global search and replace on
3975 @var{target}; without it @code{regexp-substitute/global} returns after
3976 a single match and output.
3977 @end itemize
3978
3979 For example, to collapse runs of tabs and spaces to a single hyphen
3980 each,
3981
3982 @example
3983 (regexp-substitute/global #f "[ \t]+" "this is the text"
3984 'pre "-" 'post)
3985 @result{} "this-is-the-text"
3986 @end example
3987
3988 Or using a function to reverse the letters in each word,
3989
3990 @example
3991 (regexp-substitute/global #f "[a-z]+" "to do and not-do"
3992 'pre (lambda (m) (string-reverse (match:substring m))) 'post)
3993 @result{} "ot od dna ton-od"
3994 @end example
3995
3996 Without the @code{post} symbol, just one regexp match is made. For
3997 example the following is the date example from
3998 @code{regexp-substitute} above, without the need for the separate
3999 @code{string-match} call.
4000
4001 @lisp
4002 (define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
4003 (define s "Date 20020429 12am.")
4004 (regexp-substitute/global #f date-regex s
4005 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
4006
4007 @result{} "Date 04-29-2002 12am. (20020429)"
4008 @end lisp
4009 @end deffn
4010
4011
4012 @node Match Structures
4013 @subsubsection Match Structures
4014
4015 @cindex match structures
4016
4017 A @dfn{match structure} is the object returned by @code{string-match} and
4018 @code{regexp-exec}. It describes which portion of a string, if any,
4019 matched the given regular expression. Match structures include: a
4020 reference to the string that was checked for matches; the starting and
4021 ending positions of the regexp match; and, if the regexp included any
4022 parenthesized subexpressions, the starting and ending positions of each
4023 submatch.
4024
4025 In each of the regexp match functions described below, the @code{match}
4026 argument must be a match structure returned by a previous call to
4027 @code{string-match} or @code{regexp-exec}. Most of these functions
4028 return some information about the original target string that was
4029 matched against a regular expression; we will call that string
4030 @var{target} for easy reference.
4031
4032 @c begin (scm-doc-string "regex.scm" "regexp-match?")
4033 @deffn {Scheme Procedure} regexp-match? obj
4034 Return @code{#t} if @var{obj} is a match structure returned by a
4035 previous call to @code{regexp-exec}, or @code{#f} otherwise.
4036 @end deffn
4037
4038 @c begin (scm-doc-string "regex.scm" "match:substring")
4039 @deffn {Scheme Procedure} match:substring match [n]
4040 Return the portion of @var{target} matched by subexpression number
4041 @var{n}. Submatch 0 (the default) represents the entire regexp match.
4042 If the regular expression as a whole matched, but the subexpression
4043 number @var{n} did not match, return @code{#f}.
4044 @end deffn
4045
4046 @lisp
4047 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4048 (match:substring s)
4049 @result{} "2002"
4050
4051 ;; match starting at offset 6 in the string
4052 (match:substring
4053 (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
4054 @result{} "7654"
4055 @end lisp
4056
4057 @c begin (scm-doc-string "regex.scm" "match:start")
4058 @deffn {Scheme Procedure} match:start match [n]
4059 Return the starting position of submatch number @var{n}.
4060 @end deffn
4061
4062 In the following example, the result is 4, since the match starts at
4063 character index 4:
4064
4065 @lisp
4066 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4067 (match:start s)
4068 @result{} 4
4069 @end lisp
4070
4071 @c begin (scm-doc-string "regex.scm" "match:end")
4072 @deffn {Scheme Procedure} match:end match [n]
4073 Return the ending position of submatch number @var{n}.
4074 @end deffn
4075
4076 In the following example, the result is 8, since the match runs between
4077 characters 4 and 8 (i.e. the ``2002'').
4078
4079 @lisp
4080 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4081 (match:end s)
4082 @result{} 8
4083 @end lisp
4084
4085 @c begin (scm-doc-string "regex.scm" "match:prefix")
4086 @deffn {Scheme Procedure} match:prefix match
4087 Return the unmatched portion of @var{target} preceding the regexp match.
4088
4089 @lisp
4090 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4091 (match:prefix s)
4092 @result{} "blah"
4093 @end lisp
4094 @end deffn
4095
4096 @c begin (scm-doc-string "regex.scm" "match:suffix")
4097 @deffn {Scheme Procedure} match:suffix match
4098 Return the unmatched portion of @var{target} following the regexp match.
4099 @end deffn
4100
4101 @lisp
4102 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4103 (match:suffix s)
4104 @result{} "foo"
4105 @end lisp
4106
4107 @c begin (scm-doc-string "regex.scm" "match:count")
4108 @deffn {Scheme Procedure} match:count match
4109 Return the number of parenthesized subexpressions from @var{match}.
4110 Note that the entire regular expression match itself counts as a
4111 subexpression, and failed submatches are included in the count.
4112 @end deffn
4113
4114 @c begin (scm-doc-string "regex.scm" "match:string")
4115 @deffn {Scheme Procedure} match:string match
4116 Return the original @var{target} string.
4117 @end deffn
4118
4119 @lisp
4120 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4121 (match:string s)
4122 @result{} "blah2002foo"
4123 @end lisp
4124
4125
4126 @node Backslash Escapes
4127 @subsubsection Backslash Escapes
4128
4129 Sometimes you will want a regexp to match characters like @samp{*} or
4130 @samp{$} exactly. For example, to check whether a particular string
4131 represents a menu entry from an Info node, it would be useful to match
4132 it against a regexp like @samp{^* [^:]*::}. However, this won't work;
4133 because the asterisk is a metacharacter, it won't match the @samp{*} at
4134 the beginning of the string. In this case, we want to make the first
4135 asterisk un-magic.
4136
4137 You can do this by preceding the metacharacter with a backslash
4138 character @samp{\}. (This is also called @dfn{quoting} the
4139 metacharacter, and is known as a @dfn{backslash escape}.) When Guile
4140 sees a backslash in a regular expression, it considers the following
4141 glyph to be an ordinary character, no matter what special meaning it
4142 would ordinarily have. Therefore, we can make the above example work by
4143 changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
4144 the regular expression engine to match only a single asterisk in the
4145 target string.
4146
4147 Since the backslash is itself a metacharacter, you may force a regexp to
4148 match a backslash in the target string by preceding the backslash with
4149 itself. For example, to find variable references in a @TeX{} program,
4150 you might want to find occurrences of the string @samp{\let\} followed
4151 by any number of alphabetic characters. The regular expression
4152 @samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
4153 regexp each match a single backslash in the target string.
4154
4155 @c begin (scm-doc-string "regex.scm" "regexp-quote")
4156 @deffn {Scheme Procedure} regexp-quote str
4157 Quote each special character found in @var{str} with a backslash, and
4158 return the resulting string.
4159 @end deffn
4160
4161 @strong{Very important:} Using backslash escapes in Guile source code
4162 (as in Emacs Lisp or C) can be tricky, because the backslash character
4163 has special meaning for the Guile reader. For example, if Guile
4164 encounters the character sequence @samp{\n} in the middle of a string
4165 while processing Scheme code, it replaces those characters with a
4166 newline character. Similarly, the character sequence @samp{\t} is
4167 replaced by a horizontal tab. Several of these @dfn{escape sequences}
4168 are processed by the Guile reader before your code is executed.
4169 Unrecognized escape sequences are ignored: if the characters @samp{\*}
4170 appear in a string, they will be translated to the single character
4171 @samp{*}.
4172
4173 This translation is obviously undesirable for regular expressions, since
4174 we want to be able to include backslashes in a string in order to
4175 escape regexp metacharacters. Therefore, to make sure that a backslash
4176 is preserved in a string in your Guile program, you must use @emph{two}
4177 consecutive backslashes:
4178
4179 @lisp
4180 (define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
4181 @end lisp
4182
4183 The string in this example is preprocessed by the Guile reader before
4184 any code is executed. The resulting argument to @code{make-regexp} is
4185 the string @samp{^\* [^:]*}, which is what we really want.
4186
4187 This also means that in order to write a regular expression that matches
4188 a single backslash character, the regular expression string in the
4189 source code must include @emph{four} backslashes. Each consecutive pair
4190 of backslashes gets translated by the Guile reader to a single
4191 backslash, and the resulting double-backslash is interpreted by the
4192 regexp engine as matching a single backslash character. Hence:
4193
4194 @lisp
4195 (define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
4196 @end lisp
4197
4198 The reason for the unwieldiness of this syntax is historical. Both
4199 regular expression pattern matchers and Unix string processing systems
4200 have traditionally used backslashes with the special meanings
4201 described above. The POSIX regular expression specification and ANSI C
4202 standard both require these semantics. Attempting to abandon either
4203 convention would cause other kinds of compatibility problems, possibly
4204 more severe ones. Therefore, without extending the Scheme reader to
4205 support strings with different quoting conventions (an ungainly and
4206 confusing extension when implemented in other languages), we must adhere
4207 to this cumbersome escape syntax.
4208
4209
4210 @node Symbols
4211 @subsection Symbols
4212 @tpindex Symbols
4213
4214 Symbols in Scheme are widely used in three ways: as items of discrete
4215 data, as lookup keys for alists and hash tables, and to denote variable
4216 references.
4217
4218 A @dfn{symbol} is similar to a string in that it is defined by a
4219 sequence of characters. The sequence of characters is known as the
4220 symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4221 name doesn't include any characters that could be confused with other
4222 elements of Scheme syntax --- a symbol is written in a Scheme program by
4223 writing the sequence of characters that make up the name, @emph{without}
4224 any quotation marks or other special syntax. For example, the symbol
4225 whose name is ``multiply-by-2'' is written, simply:
4226
4227 @lisp
4228 multiply-by-2
4229 @end lisp
4230
4231 Notice how this differs from a @emph{string} with contents
4232 ``multiply-by-2'', which is written with double quotation marks, like
4233 this:
4234
4235 @lisp
4236 "multiply-by-2"
4237 @end lisp
4238
4239 Looking beyond how they are written, symbols are different from strings
4240 in two important respects.
4241
4242 The first important difference is uniqueness. If the same-looking
4243 string is read twice from two different places in a program, the result
4244 is two @emph{different} string objects whose contents just happen to be
4245 the same. If, on the other hand, the same-looking symbol is read twice
4246 from two different places in a program, the result is the @emph{same}
4247 symbol object both times.
4248
4249 Given two read symbols, you can use @code{eq?} to test whether they are
4250 the same (that is, have the same name). @code{eq?} is the most
4251 efficient comparison operator in Scheme, and comparing two symbols like
4252 this is as fast as comparing, for example, two numbers. Given two
4253 strings, on the other hand, you must use @code{equal?} or
4254 @code{string=?}, which are much slower comparison operators, to
4255 determine whether the strings have the same contents.
4256
4257 @lisp
4258 (define sym1 (quote hello))
4259 (define sym2 (quote hello))
4260 (eq? sym1 sym2) @result{} #t
4261
4262 (define str1 "hello")
4263 (define str2 "hello")
4264 (eq? str1 str2) @result{} #f
4265 (equal? str1 str2) @result{} #t
4266 @end lisp
4267
4268 The second important difference is that symbols, unlike strings, are not
4269 self-evaluating. This is why we need the @code{(quote @dots{})}s in the
4270 example above: @code{(quote hello)} evaluates to the symbol named
4271 "hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
4272 symbol named "hello" and evaluated as a variable reference @dots{} about
4273 which more below (@pxref{Symbol Variables}).
4274
4275 @menu
4276 * Symbol Data:: Symbols as discrete data.
4277 * Symbol Keys:: Symbols as lookup keys.
4278 * Symbol Variables:: Symbols as denoting variables.
4279 * Symbol Primitives:: Operations related to symbols.
4280 * Symbol Props:: Function slots and property lists.
4281 * Symbol Read Syntax:: Extended read syntax for symbols.
4282 * Symbol Uninterned:: Uninterned symbols.
4283 @end menu
4284
4285
4286 @node Symbol Data
4287 @subsubsection Symbols as Discrete Data
4288
4289 Numbers and symbols are similar to the extent that they both lend
4290 themselves to @code{eq?} comparison. But symbols are more descriptive
4291 than numbers, because a symbol's name can be used directly to describe
4292 the concept for which that symbol stands.
4293
4294 For example, imagine that you need to represent some colours in a
4295 computer program. Using numbers, you would have to choose arbitrarily
4296 some mapping between numbers and colours, and then take care to use that
4297 mapping consistently:
4298
4299 @lisp
4300 ;; 1=red, 2=green, 3=purple
4301
4302 (if (eq? (colour-of car) 1)
4303 ...)
4304 @end lisp
4305
4306 @noindent
4307 You can make the mapping more explicit and the code more readable by
4308 defining constants:
4309
4310 @lisp
4311 (define red 1)
4312 (define green 2)
4313 (define purple 3)
4314
4315 (if (eq? (colour-of car) red)
4316 ...)
4317 @end lisp
4318
4319 @noindent
4320 But the simplest and clearest approach is not to use numbers at all, but
4321 symbols whose names specify the colours that they refer to:
4322
4323 @lisp
4324 (if (eq? (colour-of car) 'red)
4325 ...)
4326 @end lisp
4327
4328 The descriptive advantages of symbols over numbers increase as the set
4329 of concepts that you want to describe grows. Suppose that a car object
4330 can have other properties as well, such as whether it has or uses:
4331
4332 @itemize @bullet
4333 @item
4334 automatic or manual transmission
4335 @item
4336 leaded or unleaded fuel
4337 @item
4338 power steering (or not).
4339 @end itemize
4340
4341 @noindent
4342 Then a car's combined property set could be naturally represented and
4343 manipulated as a list of symbols:
4344
4345 @lisp
4346 (properties-of car1)
4347 @result{}
4348 (red manual unleaded power-steering)
4349
4350 (if (memq 'power-steering (properties-of car1))
4351 (display "Unfit people can drive this car.\n")
4352 (display "You'll need strong arms to drive this car!\n"))
4353 @print{}
4354 Unfit people can drive this car.
4355 @end lisp
4356
4357 Remember, the fundamental property of symbols that we are relying on
4358 here is that an occurrence of @code{'red} in one part of a program is an
4359 @emph{indistinguishable} symbol from an occurrence of @code{'red} in
4360 another part of a program; this means that symbols can usefully be
4361 compared using @code{eq?}. At the same time, symbols have naturally
4362 descriptive names. This combination of efficiency and descriptive power
4363 makes them ideal for use as discrete data.
4364
4365
4366 @node Symbol Keys
4367 @subsubsection Symbols as Lookup Keys
4368
4369 Given their efficiency and descriptive power, it is natural to use
4370 symbols as the keys in an association list or hash table.
4371
4372 To illustrate this, consider a more structured representation of the car
4373 properties example from the preceding subsection. Rather than
4374 mixing all the properties up together in a flat list, we could use an
4375 association list like this:
4376
4377 @lisp
4378 (define car1-properties '((colour . red)
4379 (transmission . manual)
4380 (fuel . unleaded)
4381 (steering . power-assisted)))
4382 @end lisp
4383
4384 Notice how this structure is more explicit and extensible than the flat
4385 list. For example it makes clear that @code{manual} refers to the
4386 transmission rather than, say, the windows or the locking of the car.
4387 It also allows further properties to use the same symbols among their
4388 possible values without becoming ambiguous:
4389
4390 @lisp
4391 (define car1-properties '((colour . red)
4392 (transmission . manual)
4393 (fuel . unleaded)
4394 (steering . power-assisted)
4395 (seat-colour . red)
4396 (locking . manual)))
4397 @end lisp
4398
4399 With a representation like this, it is easy to use the efficient
4400 @code{assq-XXX} family of procedures (@pxref{Association Lists}) to
4401 extract or change individual pieces of information:
4402
4403 @lisp
4404 (assq-ref car1-properties 'fuel) @result{} unleaded
4405 (assq-ref car1-properties 'transmission) @result{} manual
4406
4407 (assq-set! car1-properties 'seat-colour 'black)
4408 @result{}
4409 ((colour . red)
4410 (transmission . manual)
4411 (fuel . unleaded)
4412 (steering . power-assisted)
4413 (seat-colour . black)
4414 (locking . manual)))
4415 @end lisp
4416
4417 Hash tables also have keys, and exactly the same arguments apply to the
4418 use of symbols in hash tables as in association lists. The hash value
4419 that Guile uses to decide where to add a symbol-keyed entry to a hash
4420 table can be obtained by calling the @code{symbol-hash} procedure:
4421
4422 @deffn {Scheme Procedure} symbol-hash symbol
4423 @deffnx {C Function} scm_symbol_hash (symbol)
4424 Return a hash value for @var{symbol}.
4425 @end deffn
4426
4427 See @ref{Hash Tables} for information about hash tables in general, and
4428 for why you might choose to use a hash table rather than an association
4429 list.
4430
4431
4432 @node Symbol Variables
4433 @subsubsection Symbols as Denoting Variables
4434
4435 When an unquoted symbol in a Scheme program is evaluated, it is
4436 interpreted as a variable reference, and the result of the evaluation is
4437 the appropriate variable's value.
4438
4439 For example, when the expression @code{(string-length "abcd")} is read
4440 and evaluated, the sequence of characters @code{string-length} is read
4441 as the symbol whose name is "string-length". This symbol is associated
4442 with a variable whose value is the procedure that implements string
4443 length calculation. Therefore evaluation of the @code{string-length}
4444 symbol results in that procedure.
4445
4446 The details of the connection between an unquoted symbol and the
4447 variable to which it refers are explained elsewhere. See @ref{Binding
4448 Constructs}, for how associations between symbols and variables are
4449 created, and @ref{Modules}, for how those associations are affected by
4450 Guile's module system.
4451
4452
4453 @node Symbol Primitives
4454 @subsubsection Operations Related to Symbols
4455
4456 Given any Scheme value, you can determine whether it is a symbol using
4457 the @code{symbol?} primitive:
4458
4459 @rnindex symbol?
4460 @deffn {Scheme Procedure} symbol? obj
4461 @deffnx {C Function} scm_symbol_p (obj)
4462 Return @code{#t} if @var{obj} is a symbol, otherwise return
4463 @code{#f}.
4464 @end deffn
4465
4466 @deftypefn {C Function} int scm_is_symbol (SCM val)
4467 Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
4468 @end deftypefn
4469
4470 Once you know that you have a symbol, you can obtain its name as a
4471 string by calling @code{symbol->string}. Note that Guile differs by
4472 default from R5RS on the details of @code{symbol->string} as regards
4473 case-sensitivity:
4474
4475 @rnindex symbol->string
4476 @deffn {Scheme Procedure} symbol->string s
4477 @deffnx {C Function} scm_symbol_to_string (s)
4478 Return the name of symbol @var{s} as a string. By default, Guile reads
4479 symbols case-sensitively, so the string returned will have the same case
4480 variation as the sequence of characters that caused @var{s} to be
4481 created.
4482
4483 If Guile is set to read symbols case-insensitively (as specified by
4484 R5RS), and @var{s} comes into being as part of a literal expression
4485 (@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
4486 by a call to the @code{read} or @code{string-ci->symbol} procedures,
4487 Guile converts any alphabetic characters in the symbol's name to
4488 lower case before creating the symbol object, so the string returned
4489 here will be in lower case.
4490
4491 If @var{s} was created by @code{string->symbol}, the case of characters
4492 in the string returned will be the same as that in the string that was
4493 passed to @code{string->symbol}, regardless of Guile's case-sensitivity
4494 setting at the time @var{s} was created.
4495
4496 It is an error to apply mutation procedures like @code{string-set!} to
4497 strings returned by this procedure.
4498 @end deffn
4499
4500 Most symbols are created by writing them literally in code. However it
4501 is also possible to create symbols programmatically using the following
4502 @code{string->symbol} and @code{string-ci->symbol} procedures:
4503
4504 @rnindex string->symbol
4505 @deffn {Scheme Procedure} string->symbol string
4506 @deffnx {C Function} scm_string_to_symbol (string)
4507 Return the symbol whose name is @var{string}. This procedure can create
4508 symbols with names containing special characters or letters in the
4509 non-standard case, but it is usually a bad idea to create such symbols
4510 because in some implementations of Scheme they cannot be read as
4511 themselves.
4512 @end deffn
4513
4514 @deffn {Scheme Procedure} string-ci->symbol str
4515 @deffnx {C Function} scm_string_ci_to_symbol (str)
4516 Return the symbol whose name is @var{str}. If Guile is currently
4517 reading symbols case-insensitively, @var{str} is converted to lowercase
4518 before the returned symbol is looked up or created.
4519 @end deffn
4520
4521 The following examples illustrate Guile's detailed behaviour as regards
4522 the case-sensitivity of symbols:
4523
4524 @lisp
4525 (read-enable 'case-insensitive) ; R5RS compliant behaviour
4526
4527 (symbol->string 'flying-fish) @result{} "flying-fish"
4528 (symbol->string 'Martin) @result{} "martin"
4529 (symbol->string
4530 (string->symbol "Malvina")) @result{} "Malvina"
4531
4532 (eq? 'mISSISSIppi 'mississippi) @result{} #t
4533 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
4534 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
4535 (eq? 'LolliPop
4536 (string->symbol (symbol->string 'LolliPop))) @result{} #t
4537 (string=? "K. Harper, M.D."
4538 (symbol->string
4539 (string->symbol "K. Harper, M.D."))) @result{} #t
4540
4541 (read-disable 'case-insensitive) ; Guile default behaviour
4542
4543 (symbol->string 'flying-fish) @result{} "flying-fish"
4544 (symbol->string 'Martin) @result{} "Martin"
4545 (symbol->string
4546 (string->symbol "Malvina")) @result{} "Malvina"
4547
4548 (eq? 'mISSISSIppi 'mississippi) @result{} #f
4549 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
4550 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
4551 (eq? 'LolliPop
4552 (string->symbol (symbol->string 'LolliPop))) @result{} #t
4553 (string=? "K. Harper, M.D."
4554 (symbol->string
4555 (string->symbol "K. Harper, M.D."))) @result{} #t
4556 @end lisp
4557
4558 From C, there are lower level functions that construct a Scheme symbol
4559 from a C string in the current locale encoding.
4560
4561 When you want to do more from C, you should convert between symbols
4562 and strings using @code{scm_symbol_to_string} and
4563 @code{scm_string_to_symbol} and work with the strings.
4564
4565 @deffn {C Function} scm_from_locale_symbol (const char *name)
4566 @deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
4567 Construct and return a Scheme symbol whose name is specified by
4568 @var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
4569 terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
4570 specified explicitly by @var{len}.
4571 @end deffn
4572
4573 Finally, some applications, especially those that generate new Scheme
4574 code dynamically, need to generate symbols for use in the generated
4575 code. The @code{gensym} primitive meets this need:
4576
4577 @deffn {Scheme Procedure} gensym [prefix]
4578 @deffnx {C Function} scm_gensym (prefix)
4579 Create a new symbol with a name constructed from a prefix and a counter
4580 value. The string @var{prefix} can be specified as an optional
4581 argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
4582 at each call. There is no provision for resetting the counter.
4583 @end deffn
4584
4585 The symbols generated by @code{gensym} are @emph{likely} to be unique,
4586 since their names begin with a space and it is only otherwise possible
4587 to generate such symbols if a programmer goes out of their way to do
4588 so. Uniqueness can be guaranteed by instead using uninterned symbols
4589 (@pxref{Symbol Uninterned}), though they can't be usefully written out
4590 and read back in.
4591
4592
4593 @node Symbol Props
4594 @subsubsection Function Slots and Property Lists
4595
4596 In traditional Lisp dialects, symbols are often understood as having
4597 three kinds of value at once:
4598
4599 @itemize @bullet
4600 @item
4601 a @dfn{variable} value, which is used when the symbol appears in
4602 code in a variable reference context
4603
4604 @item
4605 a @dfn{function} value, which is used when the symbol appears in
4606 code in a function name position (i.e. as the first element in an
4607 unquoted list)
4608
4609 @item
4610 a @dfn{property list} value, which is used when the symbol is given as
4611 the first argument to Lisp's @code{put} or @code{get} functions.
4612 @end itemize
4613
4614 Although Scheme (as one of its simplifications with respect to Lisp)
4615 does away with the distinction between variable and function namespaces,
4616 Guile currently retains some elements of the traditional structure in
4617 case they turn out to be useful when implementing translators for other
4618 languages, in particular Emacs Lisp.
4619
4620 Specifically, Guile symbols have two extra slots. for a symbol's
4621 property list, and for its ``function value.'' The following procedures
4622 are provided to access these slots.
4623
4624 @deffn {Scheme Procedure} symbol-fref symbol
4625 @deffnx {C Function} scm_symbol_fref (symbol)
4626 Return the contents of @var{symbol}'s @dfn{function slot}.
4627 @end deffn
4628
4629 @deffn {Scheme Procedure} symbol-fset! symbol value
4630 @deffnx {C Function} scm_symbol_fset_x (symbol, value)
4631 Set the contents of @var{symbol}'s function slot to @var{value}.
4632 @end deffn
4633
4634 @deffn {Scheme Procedure} symbol-pref symbol
4635 @deffnx {C Function} scm_symbol_pref (symbol)
4636 Return the @dfn{property list} currently associated with @var{symbol}.
4637 @end deffn
4638
4639 @deffn {Scheme Procedure} symbol-pset! symbol value
4640 @deffnx {C Function} scm_symbol_pset_x (symbol, value)
4641 Set @var{symbol}'s property list to @var{value}.
4642 @end deffn
4643
4644 @deffn {Scheme Procedure} symbol-property sym prop
4645 From @var{sym}'s property list, return the value for property
4646 @var{prop}. The assumption is that @var{sym}'s property list is an
4647 association list whose keys are distinguished from each other using
4648 @code{equal?}; @var{prop} should be one of the keys in that list. If
4649 the property list has no entry for @var{prop}, @code{symbol-property}
4650 returns @code{#f}.
4651 @end deffn
4652
4653 @deffn {Scheme Procedure} set-symbol-property! sym prop val
4654 In @var{sym}'s property list, set the value for property @var{prop} to
4655 @var{val}, or add a new entry for @var{prop}, with value @var{val}, if
4656 none already exists. For the structure of the property list, see
4657 @code{symbol-property}.
4658 @end deffn
4659
4660 @deffn {Scheme Procedure} symbol-property-remove! sym prop
4661 From @var{sym}'s property list, remove the entry for property
4662 @var{prop}, if there is one. For the structure of the property list,
4663 see @code{symbol-property}.
4664 @end deffn
4665
4666 Support for these extra slots may be removed in a future release, and it
4667 is probably better to avoid using them. (In release 1.6, Guile itself
4668 uses the property list slot sparingly, and the function slot not at
4669 all.) For a more modern and Schemely approach to properties, see
4670 @ref{Object Properties}.
4671
4672
4673 @node Symbol Read Syntax
4674 @subsubsection Extended Read Syntax for Symbols
4675
4676 The read syntax for a symbol is a sequence of letters, digits, and
4677 @dfn{extended alphabetic characters}, beginning with a character that
4678 cannot begin a number. In addition, the special cases of @code{+},
4679 @code{-}, and @code{...} are read as symbols even though numbers can
4680 begin with @code{+}, @code{-} or @code{.}.
4681
4682 Extended alphabetic characters may be used within identifiers as if
4683 they were letters. The set of extended alphabetic characters is:
4684
4685 @example
4686 ! $ % & * + - . / : < = > ? @@ ^ _ ~
4687 @end example
4688
4689 In addition to the standard read syntax defined above (which is taken
4690 from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
4691 Scheme})), Guile provides an extended symbol read syntax that allows the
4692 inclusion of unusual characters such as space characters, newlines and
4693 parentheses. If (for whatever reason) you need to write a symbol
4694 containing characters not mentioned above, you can do so as follows.
4695
4696 @itemize @bullet
4697 @item
4698 Begin the symbol with the characters @code{#@{},
4699
4700 @item
4701 write the characters of the symbol and
4702
4703 @item
4704 finish the symbol with the characters @code{@}#}.
4705 @end itemize
4706
4707 Here are a few examples of this form of read syntax. The first symbol
4708 needs to use extended syntax because it contains a space character, the
4709 second because it contains a line break, and the last because it looks
4710 like a number.
4711
4712 @lisp
4713 #@{foo bar@}#
4714
4715 #@{what
4716 ever@}#
4717
4718 #@{4242@}#
4719 @end lisp
4720
4721 Although Guile provides this extended read syntax for symbols,
4722 widespread usage of it is discouraged because it is not portable and not
4723 very readable.
4724
4725
4726 @node Symbol Uninterned
4727 @subsubsection Uninterned Symbols
4728
4729 What makes symbols useful is that they are automatically kept unique.
4730 There are no two symbols that are distinct objects but have the same
4731 name. But of course, there is no rule without exception. In addition
4732 to the normal symbols that have been discussed up to now, you can also
4733 create special @dfn{uninterned} symbols that behave slightly
4734 differently.
4735
4736 To understand what is different about them and why they might be useful,
4737 we look at how normal symbols are actually kept unique.
4738
4739 Whenever Guile wants to find the symbol with a specific name, for
4740 example during @code{read} or when executing @code{string->symbol}, it
4741 first looks into a table of all existing symbols to find out whether a
4742 symbol with the given name already exists. When this is the case, Guile
4743 just returns that symbol. When not, a new symbol with the name is
4744 created and entered into the table so that it can be found later.
4745
4746 Sometimes you might want to create a symbol that is guaranteed `fresh',
4747 i.e. a symbol that did not exist previously. You might also want to
4748 somehow guarantee that no one else will ever unintentionally stumble
4749 across your symbol in the future. These properties of a symbol are
4750 often needed when generating code during macro expansion. When
4751 introducing new temporary variables, you want to guarantee that they
4752 don't conflict with variables in other people's code.
4753
4754 The simplest way to arrange for this is to create a new symbol but
4755 not enter it into the global table of all symbols. That way, no one
4756 will ever get access to your symbol by chance. Symbols that are not in
4757 the table are called @dfn{uninterned}. Of course, symbols that
4758 @emph{are} in the table are called @dfn{interned}.
4759
4760 You create new uninterned symbols with the function @code{make-symbol}.
4761 You can test whether a symbol is interned or not with
4762 @code{symbol-interned?}.
4763
4764 Uninterned symbols break the rule that the name of a symbol uniquely
4765 identifies the symbol object. Because of this, they can not be written
4766 out and read back in like interned symbols. Currently, Guile has no
4767 support for reading uninterned symbols. Note that the function
4768 @code{gensym} does not return uninterned symbols for this reason.
4769
4770 @deffn {Scheme Procedure} make-symbol name
4771 @deffnx {C Function} scm_make_symbol (name)
4772 Return a new uninterned symbol with the name @var{name}. The returned
4773 symbol is guaranteed to be unique and future calls to
4774 @code{string->symbol} will not return it.
4775 @end deffn
4776
4777 @deffn {Scheme Procedure} symbol-interned? symbol
4778 @deffnx {C Function} scm_symbol_interned_p (symbol)
4779 Return @code{#t} if @var{symbol} is interned, otherwise return
4780 @code{#f}.
4781 @end deffn
4782
4783 For example:
4784
4785 @lisp
4786 (define foo-1 (string->symbol "foo"))
4787 (define foo-2 (string->symbol "foo"))
4788 (define foo-3 (make-symbol "foo"))
4789 (define foo-4 (make-symbol "foo"))
4790
4791 (eq? foo-1 foo-2)
4792 @result{} #t
4793 ; Two interned symbols with the same name are the same object,
4794
4795 (eq? foo-1 foo-3)
4796 @result{} #f
4797 ; but a call to make-symbol with the same name returns a
4798 ; distinct object.
4799
4800 (eq? foo-3 foo-4)
4801 @result{} #f
4802 ; A call to make-symbol always returns a new object, even for
4803 ; the same name.
4804
4805 foo-3
4806 @result{} #<uninterned-symbol foo 8085290>
4807 ; Uninterned symbols print differently from interned symbols,
4808
4809 (symbol? foo-3)
4810 @result{} #t
4811 ; but they are still symbols,
4812
4813 (symbol-interned? foo-3)
4814 @result{} #f
4815 ; just not interned.
4816 @end lisp
4817
4818
4819 @node Keywords
4820 @subsection Keywords
4821 @tpindex Keywords
4822
4823 Keywords are self-evaluating objects with a convenient read syntax that
4824 makes them easy to type.
4825
4826 Guile's keyword support conforms to R5RS, and adds a (switchable) read
4827 syntax extension to permit keywords to begin with @code{:} as well as
4828 @code{#:}.
4829
4830 @menu
4831 * Why Use Keywords?:: Motivation for keyword usage.
4832 * Coding With Keywords:: How to use keywords.
4833 * Keyword Read Syntax:: Read syntax for keywords.
4834 * Keyword Procedures:: Procedures for dealing with keywords.
4835 @end menu
4836
4837 @node Why Use Keywords?
4838 @subsubsection Why Use Keywords?
4839
4840 Keywords are useful in contexts where a program or procedure wants to be
4841 able to accept a large number of optional arguments without making its
4842 interface unmanageable.
4843
4844 To illustrate this, consider a hypothetical @code{make-window}
4845 procedure, which creates a new window on the screen for drawing into
4846 using some graphical toolkit. There are many parameters that the caller
4847 might like to specify, but which could also be sensibly defaulted, for
4848 example:
4849
4850 @itemize @bullet
4851 @item
4852 color depth -- Default: the color depth for the screen
4853
4854 @item
4855 background color -- Default: white
4856
4857 @item
4858 width -- Default: 600
4859
4860 @item
4861 height -- Default: 400
4862 @end itemize
4863
4864 If @code{make-window} did not use keywords, the caller would have to
4865 pass in a value for each possible argument, remembering the correct
4866 argument order and using a special value to indicate the default value
4867 for that argument:
4868
4869 @lisp
4870 (make-window 'default ;; Color depth
4871 'default ;; Background color
4872 800 ;; Width
4873 100 ;; Height
4874 @dots{}) ;; More make-window arguments
4875 @end lisp
4876
4877 With keywords, on the other hand, defaulted arguments are omitted, and
4878 non-default arguments are clearly tagged by the appropriate keyword. As
4879 a result, the invocation becomes much clearer:
4880
4881 @lisp
4882 (make-window #:width 800 #:height 100)
4883 @end lisp
4884
4885 On the other hand, for a simpler procedure with few arguments, the use
4886 of keywords would be a hindrance rather than a help. The primitive
4887 procedure @code{cons}, for example, would not be improved if it had to
4888 be invoked as
4889
4890 @lisp
4891 (cons #:car x #:cdr y)
4892 @end lisp
4893
4894 So the decision whether to use keywords or not is purely pragmatic: use
4895 them if they will clarify the procedure invocation at point of call.
4896
4897 @node Coding With Keywords
4898 @subsubsection Coding With Keywords
4899
4900 If a procedure wants to support keywords, it should take a rest argument
4901 and then use whatever means is convenient to extract keywords and their
4902 corresponding arguments from the contents of that rest argument.
4903
4904 The following example illustrates the principle: the code for
4905 @code{make-window} uses a helper procedure called
4906 @code{get-keyword-value} to extract individual keyword arguments from
4907 the rest argument.
4908
4909 @lisp
4910 (define (get-keyword-value args keyword default)
4911 (let ((kv (memq keyword args)))
4912 (if (and kv (>= (length kv) 2))
4913 (cadr kv)
4914 default)))
4915
4916 (define (make-window . args)
4917 (let ((depth (get-keyword-value args #:depth screen-depth))
4918 (bg (get-keyword-value args #:bg "white"))
4919 (width (get-keyword-value args #:width 800))
4920 (height (get-keyword-value args #:height 100))
4921 @dots{})
4922 @dots{}))
4923 @end lisp
4924
4925 But you don't need to write @code{get-keyword-value}. The @code{(ice-9
4926 optargs)} module provides a set of powerful macros that you can use to
4927 implement keyword-supporting procedures like this:
4928
4929 @lisp
4930 (use-modules (ice-9 optargs))
4931
4932 (define (make-window . args)
4933 (let-keywords args #f ((depth screen-depth)
4934 (bg "white")
4935 (width 800)
4936 (height 100))
4937 ...))
4938 @end lisp
4939
4940 @noindent
4941 Or, even more economically, like this:
4942
4943 @lisp
4944 (use-modules (ice-9 optargs))
4945
4946 (define* (make-window #:key (depth screen-depth)
4947 (bg "white")
4948 (width 800)
4949 (height 100))
4950 ...)
4951 @end lisp
4952
4953 For further details on @code{let-keywords}, @code{define*} and other
4954 facilities provided by the @code{(ice-9 optargs)} module, see
4955 @ref{Optional Arguments}.
4956
4957
4958 @node Keyword Read Syntax
4959 @subsubsection Keyword Read Syntax
4960
4961 Guile, by default, only recognizes a keyword syntax that is compatible
4962 with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
4963 same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
4964 external representation of the keyword named @code{NAME}. Keyword
4965 objects print using this syntax as well, so values containing keyword
4966 objects can be read back into Guile. When used in an expression,
4967 keywords are self-quoting objects.
4968
4969 If the @code{keyword} read option is set to @code{'prefix}, Guile also
4970 recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
4971 of the form @code{:NAME} are read as symbols, as required by R5RS.
4972
4973 To enable and disable the alternative non-R5RS keyword syntax, you use
4974 the @code{read-set!} procedure documented in @ref{User level options
4975 interfaces} and @ref{Reader options}.
4976
4977 @smalllisp
4978 (read-set! keywords 'prefix)
4979
4980 #:type
4981 @result{}
4982 #:type
4983
4984 :type
4985 @result{}
4986 #:type
4987
4988 (read-set! keywords #f)
4989
4990 #:type
4991 @result{}
4992 #:type
4993
4994 :type
4995 @print{}
4996 ERROR: In expression :type:
4997 ERROR: Unbound variable: :type
4998 ABORT: (unbound-variable)
4999 @end smalllisp
5000
5001 @node Keyword Procedures
5002 @subsubsection Keyword Procedures
5003
5004 @deffn {Scheme Procedure} keyword? obj
5005 @deffnx {C Function} scm_keyword_p (obj)
5006 Return @code{#t} if the argument @var{obj} is a keyword, else
5007 @code{#f}.
5008 @end deffn
5009
5010 @deffn {Scheme Procedure} keyword->symbol keyword
5011 @deffnx {C Function} scm_keyword_to_symbol (keyword)
5012 Return the symbol with the same name as @var{keyword}.
5013 @end deffn
5014
5015 @deffn {Scheme Procedure} symbol->keyword symbol
5016 @deffnx {C Function} scm_symbol_to_keyword (symbol)
5017 Return the keyword with the same name as @var{symbol}.
5018 @end deffn
5019
5020 @deftypefn {C Function} int scm_is_keyword (SCM obj)
5021 Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
5022 @end deftypefn
5023
5024 @deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
5025 @deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
5026 Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5027 (@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5028 (@var{str}, @var{len}))}, respectively.
5029 @end deftypefn
5030
5031 @node Other Types
5032 @subsection ``Functionality-Centric'' Data Types
5033
5034 Procedures and macros are documented in their own chapter: see
5035 @ref{Procedures and Macros}.
5036
5037 Variable objects are documented as part of the description of Guile's
5038 module system: see @ref{Variables}.
5039
5040 Asyncs, dynamic roots and fluids are described in the chapter on
5041 scheduling: see @ref{Scheduling}.
5042
5043 Hooks are documented in the chapter on general utility functions: see
5044 @ref{Hooks}.
5045
5046 Ports are described in the chapter on I/O: see @ref{Input and Output}.
5047
5048
5049 @c Local Variables:
5050 @c TeX-master: "guile.texi"
5051 @c End: