more libgc 7.1 compat
[bpt/guile.git] / libguile / gc.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001, 2002, 2003, 2006, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
2 *
3 * This library is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU Lesser General Public License
5 * as published by the Free Software Foundation; either version 3 of
6 * the License, or (at your option) any later version.
7 *
8 * This library is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
12 *
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301 USA
17 */
18
19 /* #define DEBUGINFO */
20
21 #ifdef HAVE_CONFIG_H
22 # include <config.h>
23 #endif
24
25 #define SCM_BUILDING_DEPRECATED_CODE
26
27 #include "libguile/gen-scmconfig.h"
28
29 #include <stdio.h>
30 #include <errno.h>
31 #include <string.h>
32 #include <stdlib.h>
33 #include <math.h>
34
35 #ifdef __ia64__
36 #include <ucontext.h>
37 extern unsigned long * __libc_ia64_register_backing_store_base;
38 #endif
39
40 #include "libguile/_scm.h"
41 #include "libguile/eval.h"
42 #include "libguile/stime.h"
43 #include "libguile/stackchk.h"
44 #include "libguile/struct.h"
45 #include "libguile/smob.h"
46 #include "libguile/arrays.h"
47 #include "libguile/async.h"
48 #include "libguile/ports.h"
49 #include "libguile/root.h"
50 #include "libguile/strings.h"
51 #include "libguile/vectors.h"
52 #include "libguile/weaks.h"
53 #include "libguile/hashtab.h"
54 #include "libguile/tags.h"
55
56 #include "libguile/private-gc.h"
57 #include "libguile/validate.h"
58 #include "libguile/deprecation.h"
59 #include "libguile/gc.h"
60 #include "libguile/dynwind.h"
61
62 #include "libguile/bdw-gc.h"
63
64 /* For GC_set_start_callback. */
65 #include <gc/gc_mark.h>
66
67 #ifdef GUILE_DEBUG_MALLOC
68 #include "libguile/debug-malloc.h"
69 #endif
70
71 #ifdef HAVE_UNISTD_H
72 #include <unistd.h>
73 #endif
74
75 /* Set this to != 0 if every cell that is accessed shall be checked:
76 */
77 int scm_debug_cell_accesses_p = 0;
78 int scm_expensive_debug_cell_accesses_p = 0;
79
80 /* Set this to 0 if no additional gc's shall be performed, otherwise set it to
81 * the number of cell accesses after which a gc shall be called.
82 */
83 int scm_debug_cells_gc_interval = 0;
84
85 #if SCM_ENABLE_DEPRECATED == 1
86 /* Hash table that keeps a reference to objects the user wants to protect from
87 garbage collection. It could arguably be private but applications have come
88 to rely on it (e.g., Lilypond 2.13.9). */
89 SCM scm_protects;
90 #else
91 static SCM scm_protects;
92 #endif
93
94 #if (SCM_DEBUG_CELL_ACCESSES == 1)
95
96
97 /*
98
99 Assert that the given object is a valid reference to a valid cell. This
100 test involves to determine whether the object is a cell pointer, whether
101 this pointer actually points into a heap segment and whether the cell
102 pointed to is not a free cell. Further, additional garbage collections may
103 get executed after a user defined number of cell accesses. This helps to
104 find places in the C code where references are dropped for extremely short
105 periods.
106
107 */
108 void
109 scm_i_expensive_validation_check (SCM cell)
110 {
111 /* If desired, perform additional garbage collections after a user
112 * defined number of cell accesses.
113 */
114 if (scm_debug_cells_gc_interval)
115 {
116 static unsigned int counter = 0;
117
118 if (counter != 0)
119 {
120 --counter;
121 }
122 else
123 {
124 counter = scm_debug_cells_gc_interval;
125 scm_gc ();
126 }
127 }
128 }
129
130 /* Whether cell validation is already running. */
131 static int scm_i_cell_validation_already_running = 0;
132
133 void
134 scm_assert_cell_valid (SCM cell)
135 {
136 if (!scm_i_cell_validation_already_running && scm_debug_cell_accesses_p)
137 {
138 scm_i_cell_validation_already_running = 1; /* set to avoid recursion */
139
140 /*
141 During GC, no user-code should be run, and the guile core
142 should use non-protected accessors.
143 */
144 if (scm_gc_running_p)
145 return;
146
147 /*
148 Only scm_in_heap_p and rescanning the heap is wildly
149 expensive.
150 */
151 if (scm_expensive_debug_cell_accesses_p)
152 scm_i_expensive_validation_check (cell);
153
154 scm_i_cell_validation_already_running = 0; /* re-enable */
155 }
156 }
157
158
159
160 SCM_DEFINE (scm_set_debug_cell_accesses_x, "set-debug-cell-accesses!", 1, 0, 0,
161 (SCM flag),
162 "If @var{flag} is @code{#f}, cell access checking is disabled.\n"
163 "If @var{flag} is @code{#t}, cheap cell access checking is enabled,\n"
164 "but no additional calls to garbage collection are issued.\n"
165 "If @var{flag} is a number, strict cell access checking is enabled,\n"
166 "with an additional garbage collection after the given\n"
167 "number of cell accesses.\n"
168 "This procedure only exists when the compile-time flag\n"
169 "@code{SCM_DEBUG_CELL_ACCESSES} was set to 1.")
170 #define FUNC_NAME s_scm_set_debug_cell_accesses_x
171 {
172 if (scm_is_false (flag))
173 {
174 scm_debug_cell_accesses_p = 0;
175 }
176 else if (scm_is_eq (flag, SCM_BOOL_T))
177 {
178 scm_debug_cells_gc_interval = 0;
179 scm_debug_cell_accesses_p = 1;
180 scm_expensive_debug_cell_accesses_p = 0;
181 }
182 else
183 {
184 scm_debug_cells_gc_interval = scm_to_signed_integer (flag, 0, INT_MAX);
185 scm_debug_cell_accesses_p = 1;
186 scm_expensive_debug_cell_accesses_p = 1;
187 }
188 return SCM_UNSPECIFIED;
189 }
190 #undef FUNC_NAME
191
192
193 #endif /* SCM_DEBUG_CELL_ACCESSES == 1 */
194
195 \f
196
197 /* Compatibility. */
198
199 #ifndef HAVE_GC_GET_HEAP_USAGE_SAFE
200 static void
201 GC_get_heap_usage_safe (GC_word *pheap_size, GC_word *pfree_bytes,
202 GC_word *punmapped_bytes, GC_word *pbytes_since_gc,
203 GC_word *ptotal_bytes)
204 {
205 *pheap_size = GC_get_heap_size ();
206 *pfree_bytes = GC_get_free_bytes ();
207 #ifdef HAVE_GC_GET_UNMAPPED_BYTES
208 *punmapped_bytes = GC_get_unmapped_bytes ();
209 #else
210 *punmapped_bytes = 0;
211 #endif
212 *pbytes_since_gc = GC_get_bytes_since_gc ();
213 *ptotal_bytes = GC_get_total_bytes ();
214 }
215 #endif
216
217 #ifndef HAVE_GC_GET_FREE_SPACE_DIVISOR
218 static GC_word
219 GC_get_free_space_divisor (void)
220 {
221 return GC_free_space_divisor;
222 }
223 #endif
224
225 \f
226 /* Hooks. */
227 scm_t_c_hook scm_before_gc_c_hook;
228 scm_t_c_hook scm_before_mark_c_hook;
229 scm_t_c_hook scm_before_sweep_c_hook;
230 scm_t_c_hook scm_after_sweep_c_hook;
231 scm_t_c_hook scm_after_gc_c_hook;
232
233
234 static void
235 run_before_gc_c_hook (void)
236 {
237 if (!SCM_I_CURRENT_THREAD)
238 /* GC while a thread is spinning up; punt. */
239 return;
240
241 scm_c_hook_run (&scm_before_gc_c_hook, NULL);
242 }
243
244
245 /* GC Statistics Keeping
246 */
247 unsigned long scm_gc_ports_collected = 0;
248 static long gc_time_taken = 0;
249 static long gc_start_time = 0;
250
251 static unsigned long free_space_divisor;
252 static unsigned long minimum_free_space_divisor;
253 static double target_free_space_divisor;
254
255 static unsigned long protected_obj_count = 0;
256
257
258 SCM_SYMBOL (sym_gc_time_taken, "gc-time-taken");
259 SCM_SYMBOL (sym_heap_size, "heap-size");
260 SCM_SYMBOL (sym_heap_free_size, "heap-free-size");
261 SCM_SYMBOL (sym_heap_total_allocated, "heap-total-allocated");
262 SCM_SYMBOL (sym_heap_allocated_since_gc, "heap-allocated-since-gc");
263 SCM_SYMBOL (sym_protected_objects, "protected-objects");
264 SCM_SYMBOL (sym_times, "gc-times");
265
266
267 /* {Scheme Interface to GC}
268 */
269 static SCM
270 tag_table_to_type_alist (void *closure, SCM key, SCM val, SCM acc)
271 {
272 if (scm_is_integer (key))
273 {
274 int c_tag = scm_to_int (key);
275
276 char const * name = scm_i_tag_name (c_tag);
277 if (name != NULL)
278 {
279 key = scm_from_locale_string (name);
280 }
281 else
282 {
283 char s[100];
284 sprintf (s, "tag %d", c_tag);
285 key = scm_from_locale_string (s);
286 }
287 }
288
289 return scm_cons (scm_cons (key, val), acc);
290 }
291
292 SCM_DEFINE (scm_gc_live_object_stats, "gc-live-object-stats", 0, 0, 0,
293 (),
294 "Return an alist of statistics of the current live objects. ")
295 #define FUNC_NAME s_scm_gc_live_object_stats
296 {
297 SCM tab = scm_make_hash_table (scm_from_int (57));
298 SCM alist;
299
300 alist
301 = scm_internal_hash_fold (&tag_table_to_type_alist, NULL, SCM_EOL, tab);
302
303 return alist;
304 }
305 #undef FUNC_NAME
306
307 extern int scm_gc_malloc_yield_percentage;
308 SCM_DEFINE (scm_gc_stats, "gc-stats", 0, 0, 0,
309 (),
310 "Return an association list of statistics about Guile's current\n"
311 "use of storage.\n")
312 #define FUNC_NAME s_scm_gc_stats
313 {
314 SCM answer;
315 GC_word heap_size, free_bytes, unmapped_bytes, bytes_since_gc, total_bytes;
316 size_t gc_times;
317
318 GC_get_heap_usage_safe (&heap_size, &free_bytes, &unmapped_bytes,
319 &bytes_since_gc, &total_bytes);
320 gc_times = GC_gc_no;
321
322 answer =
323 scm_list_n (scm_cons (sym_gc_time_taken, scm_from_long (gc_time_taken)),
324 scm_cons (sym_heap_size, scm_from_size_t (heap_size)),
325 scm_cons (sym_heap_free_size, scm_from_size_t (free_bytes)),
326 scm_cons (sym_heap_total_allocated,
327 scm_from_size_t (total_bytes)),
328 scm_cons (sym_heap_allocated_since_gc,
329 scm_from_size_t (bytes_since_gc)),
330 scm_cons (sym_protected_objects,
331 scm_from_ulong (protected_obj_count)),
332 scm_cons (sym_times, scm_from_size_t (gc_times)),
333 SCM_UNDEFINED);
334
335 return answer;
336 }
337 #undef FUNC_NAME
338
339
340 SCM_DEFINE (scm_gc_dump, "gc-dump", 0, 0, 0,
341 (void),
342 "Dump information about the garbage collector's internal data "
343 "structures and memory usage to the standard output.")
344 #define FUNC_NAME s_scm_gc_dump
345 {
346 GC_dump ();
347
348 return SCM_UNSPECIFIED;
349 }
350 #undef FUNC_NAME
351
352
353 SCM_DEFINE (scm_object_address, "object-address", 1, 0, 0,
354 (SCM obj),
355 "Return an integer that for the lifetime of @var{obj} is uniquely\n"
356 "returned by this function for @var{obj}")
357 #define FUNC_NAME s_scm_object_address
358 {
359 return scm_from_ulong (SCM_UNPACK (obj));
360 }
361 #undef FUNC_NAME
362
363
364 SCM_DEFINE (scm_gc_disable, "gc-disable", 0, 0, 0,
365 (),
366 "Disables the garbage collector. Nested calls are permitted. "
367 "GC is re-enabled once @code{gc-enable} has been called the "
368 "same number of times @code{gc-disable} was called.")
369 #define FUNC_NAME s_scm_gc_disable
370 {
371 GC_disable ();
372 return SCM_UNSPECIFIED;
373 }
374 #undef FUNC_NAME
375
376 SCM_DEFINE (scm_gc_enable, "gc-enable", 0, 0, 0,
377 (),
378 "Enables the garbage collector.")
379 #define FUNC_NAME s_scm_gc_enable
380 {
381 GC_enable ();
382 return SCM_UNSPECIFIED;
383 }
384 #undef FUNC_NAME
385
386
387 SCM_DEFINE (scm_gc, "gc", 0, 0, 0,
388 (),
389 "Scans all of SCM objects and reclaims for further use those that are\n"
390 "no longer accessible.")
391 #define FUNC_NAME s_scm_gc
392 {
393 scm_i_gc ("call");
394 /* If you're calling scm_gc(), you probably want synchronous
395 finalization. */
396 GC_invoke_finalizers ();
397 return SCM_UNSPECIFIED;
398 }
399 #undef FUNC_NAME
400
401 void
402 scm_i_gc (const char *what)
403 {
404 #ifndef HAVE_GC_SET_START_CALLBACK
405 run_before_gc_c_hook ();
406 #endif
407 GC_gcollect ();
408 }
409
410
411 \f
412 /* {GC Protection Helper Functions}
413 */
414
415
416 /*
417 * If within a function you need to protect one or more scheme objects from
418 * garbage collection, pass them as parameters to one of the
419 * scm_remember_upto_here* functions below. These functions don't do
420 * anything, but since the compiler does not know that they are actually
421 * no-ops, it will generate code that calls these functions with the given
422 * parameters. Therefore, you can be sure that the compiler will keep those
423 * scheme values alive (on the stack or in a register) up to the point where
424 * scm_remember_upto_here* is called. In other words, place the call to
425 * scm_remember_upto_here* _behind_ the last code in your function, that
426 * depends on the scheme object to exist.
427 *
428 * Example: We want to make sure that the string object str does not get
429 * garbage collected during the execution of 'some_function' in the code
430 * below, because otherwise the characters belonging to str would be freed and
431 * 'some_function' might access freed memory. To make sure that the compiler
432 * keeps str alive on the stack or in a register such that it is visible to
433 * the conservative gc we add the call to scm_remember_upto_here_1 _after_ the
434 * call to 'some_function'. Note that this would not be necessary if str was
435 * used anyway after the call to 'some_function'.
436 * char *chars = scm_i_string_chars (str);
437 * some_function (chars);
438 * scm_remember_upto_here_1 (str); // str will be alive up to this point.
439 */
440
441 /* Remove any macro versions of these while defining the functions.
442 Functions are always included in the library, for upward binary
443 compatibility and in case combinations of GCC and non-GCC are used. */
444 #undef scm_remember_upto_here_1
445 #undef scm_remember_upto_here_2
446
447 void
448 scm_remember_upto_here_1 (SCM obj SCM_UNUSED)
449 {
450 /* Empty. Protects a single object from garbage collection. */
451 }
452
453 void
454 scm_remember_upto_here_2 (SCM obj1 SCM_UNUSED, SCM obj2 SCM_UNUSED)
455 {
456 /* Empty. Protects two objects from garbage collection. */
457 }
458
459 void
460 scm_remember_upto_here (SCM obj SCM_UNUSED, ...)
461 {
462 /* Empty. Protects any number of objects from garbage collection. */
463 }
464
465 /*
466 These crazy functions prevent garbage collection
467 of arguments after the first argument by
468 ensuring they remain live throughout the
469 function because they are used in the last
470 line of the code block.
471 It'd be better to have a nice compiler hint to
472 aid the conservative stack-scanning GC. --03/09/00 gjb */
473 SCM
474 scm_return_first (SCM elt, ...)
475 {
476 return elt;
477 }
478
479 int
480 scm_return_first_int (int i, ...)
481 {
482 return i;
483 }
484
485
486 SCM
487 scm_permanent_object (SCM obj)
488 {
489 return (scm_gc_protect_object (obj));
490 }
491
492
493 /* Protect OBJ from the garbage collector. OBJ will not be freed, even if all
494 other references are dropped, until the object is unprotected by calling
495 scm_gc_unprotect_object (OBJ). Calls to scm_gc_protect/unprotect_object nest,
496 i. e. it is possible to protect the same object several times, but it is
497 necessary to unprotect the object the same number of times to actually get
498 the object unprotected. It is an error to unprotect an object more often
499 than it has been protected before. The function scm_protect_object returns
500 OBJ.
501 */
502
503 /* Implementation note: For every object X, there is a counter which
504 scm_gc_protect_object (X) increments and scm_gc_unprotect_object (X) decrements.
505 */
506
507
508
509 SCM
510 scm_gc_protect_object (SCM obj)
511 {
512 SCM handle;
513
514 /* This critical section barrier will be replaced by a mutex. */
515 /* njrev: Indeed; if my comment above is correct, there is the same
516 critsec/mutex inconsistency here. */
517 SCM_CRITICAL_SECTION_START;
518
519 handle = scm_hashq_create_handle_x (scm_protects, obj, scm_from_int (0));
520 SCM_SETCDR (handle, scm_sum (SCM_CDR (handle), scm_from_int (1)));
521
522 protected_obj_count ++;
523
524 SCM_CRITICAL_SECTION_END;
525
526 return obj;
527 }
528
529
530 /* Remove any protection for OBJ established by a prior call to
531 scm_protect_object. This function returns OBJ.
532
533 See scm_protect_object for more information. */
534 SCM
535 scm_gc_unprotect_object (SCM obj)
536 {
537 SCM handle;
538
539 /* This critical section barrier will be replaced by a mutex. */
540 /* njrev: and again. */
541 SCM_CRITICAL_SECTION_START;
542
543 if (scm_gc_running_p)
544 {
545 fprintf (stderr, "scm_unprotect_object called during GC.\n");
546 abort ();
547 }
548
549 handle = scm_hashq_get_handle (scm_protects, obj);
550
551 if (scm_is_false (handle))
552 {
553 fprintf (stderr, "scm_unprotect_object called on unprotected object\n");
554 abort ();
555 }
556 else
557 {
558 SCM count = scm_difference (SCM_CDR (handle), scm_from_int (1));
559 if (scm_is_eq (count, scm_from_int (0)))
560 scm_hashq_remove_x (scm_protects, obj);
561 else
562 SCM_SETCDR (handle, count);
563 }
564 protected_obj_count --;
565
566 SCM_CRITICAL_SECTION_END;
567
568 return obj;
569 }
570
571 void
572 scm_gc_register_root (SCM *p)
573 {
574 /* Nothing. */
575 }
576
577 void
578 scm_gc_unregister_root (SCM *p)
579 {
580 /* Nothing. */
581 }
582
583 void
584 scm_gc_register_roots (SCM *b, unsigned long n)
585 {
586 SCM *p = b;
587 for (; p < b + n; ++p)
588 scm_gc_register_root (p);
589 }
590
591 void
592 scm_gc_unregister_roots (SCM *b, unsigned long n)
593 {
594 SCM *p = b;
595 for (; p < b + n; ++p)
596 scm_gc_unregister_root (p);
597 }
598
599 \f
600
601
602 /*
603 MOVE THIS FUNCTION. IT DOES NOT HAVE ANYTHING TODO WITH GC.
604 */
605
606 /* Get an integer from an environment variable. */
607 int
608 scm_getenv_int (const char *var, int def)
609 {
610 char *end = 0;
611 char *val = getenv (var);
612 long res = def;
613 if (!val)
614 return def;
615 res = strtol (val, &end, 10);
616 if (end == val)
617 return def;
618 return res;
619 }
620
621 #ifndef HAVE_GC_SET_FINALIZE_ON_DEMAND
622 static void
623 GC_set_finalize_on_demand (int foo)
624 {
625 GC_finalize_on_demand = foo;
626 }
627 #endif
628
629 void
630 scm_storage_prehistory ()
631 {
632 GC_all_interior_pointers = 0;
633 free_space_divisor = scm_getenv_int ("GC_FREE_SPACE_DIVISOR", 3);
634 minimum_free_space_divisor = free_space_divisor;
635 target_free_space_divisor = free_space_divisor;
636 GC_set_free_space_divisor (free_space_divisor);
637 GC_set_finalize_on_demand (1);
638
639 GC_INIT ();
640
641 #if (! ((defined GC_VERSION_MAJOR) && (GC_VERSION_MAJOR >= 7))) \
642 && (defined SCM_I_GSC_USE_PTHREAD_THREADS)
643 /* When using GC 6.8, this call is required to initialize thread-local
644 freelists (shouldn't be necessary with GC 7.0). */
645 GC_init ();
646 #endif
647
648 GC_expand_hp (SCM_DEFAULT_INIT_HEAP_SIZE_2);
649
650 /* We only need to register a displacement for those types for which the
651 higher bits of the type tag are used to store a pointer (that is, a
652 pointer to an 8-octet aligned region). For `scm_tc3_struct', this is
653 handled in `scm_alloc_struct ()'. */
654 GC_REGISTER_DISPLACEMENT (scm_tc3_cons);
655 /* GC_REGISTER_DISPLACEMENT (scm_tc3_unused); */
656
657 /* Sanity check. */
658 if (!GC_is_visible (&scm_protects))
659 abort ();
660
661 scm_c_hook_init (&scm_before_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
662 scm_c_hook_init (&scm_before_mark_c_hook, 0, SCM_C_HOOK_NORMAL);
663 scm_c_hook_init (&scm_before_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
664 scm_c_hook_init (&scm_after_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
665 scm_c_hook_init (&scm_after_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
666 }
667
668 scm_i_pthread_mutex_t scm_i_gc_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER;
669
670 void
671 scm_init_gc_protect_object ()
672 {
673 scm_protects = scm_c_make_hash_table (31);
674
675 #if 0
676 /* We can't have a cleanup handler since we have no thread to run it
677 in. */
678
679 #ifdef HAVE_ATEXIT
680 atexit (cleanup);
681 #else
682 #ifdef HAVE_ON_EXIT
683 on_exit (cleanup, 0);
684 #endif
685 #endif
686
687 #endif
688 }
689
690 \f
691
692 SCM scm_after_gc_hook;
693
694 static SCM after_gc_async_cell;
695
696 /* The function after_gc_async_thunk causes the execution of the
697 * after-gc-hook. It is run after the gc, as soon as the asynchronous
698 * events are handled by the evaluator.
699 */
700 static SCM
701 after_gc_async_thunk (void)
702 {
703 /* Fun, no? Hook-run *and* run-hook? */
704 scm_c_hook_run (&scm_after_gc_c_hook, NULL);
705 scm_c_run_hook (scm_after_gc_hook, SCM_EOL);
706 return SCM_UNSPECIFIED;
707 }
708
709
710 /* The function queue_after_gc_hook is run by the scm_before_gc_c_hook
711 * at the end of the garbage collection. The only purpose of this
712 * function is to mark the after_gc_async (which will eventually lead to
713 * the execution of the after_gc_async_thunk).
714 */
715 static void *
716 queue_after_gc_hook (void * hook_data SCM_UNUSED,
717 void *fn_data SCM_UNUSED,
718 void *data SCM_UNUSED)
719 {
720 /* If cell access debugging is enabled, the user may choose to perform
721 * additional garbage collections after an arbitrary number of cell
722 * accesses. We don't want the scheme level after-gc-hook to be performed
723 * for each of these garbage collections for the following reason: The
724 * execution of the after-gc-hook causes cell accesses itself. Thus, if the
725 * after-gc-hook was performed with every gc, and if the gc was performed
726 * after a very small number of cell accesses, then the number of cell
727 * accesses during the execution of the after-gc-hook will suffice to cause
728 * the execution of the next gc. Then, guile would keep executing the
729 * after-gc-hook over and over again, and would never come to do other
730 * things.
731 *
732 * To overcome this problem, if cell access debugging with additional
733 * garbage collections is enabled, the after-gc-hook is never run by the
734 * garbage collecter. When running guile with cell access debugging and the
735 * execution of the after-gc-hook is desired, then it is necessary to run
736 * the hook explicitly from the user code. This has the effect, that from
737 * the scheme level point of view it seems that garbage collection is
738 * performed with a much lower frequency than it actually is. Obviously,
739 * this will not work for code that depends on a fixed one to one
740 * relationship between the execution counts of the C level garbage
741 * collection hooks and the execution count of the scheme level
742 * after-gc-hook.
743 */
744
745 #if (SCM_DEBUG_CELL_ACCESSES == 1)
746 if (scm_debug_cells_gc_interval == 0)
747 #endif
748 {
749 scm_i_thread *t = SCM_I_CURRENT_THREAD;
750
751 if (scm_is_false (SCM_CDR (after_gc_async_cell)))
752 {
753 SCM_SETCDR (after_gc_async_cell, t->active_asyncs);
754 t->active_asyncs = after_gc_async_cell;
755 t->pending_asyncs = 1;
756 }
757 }
758
759 return NULL;
760 }
761
762 \f
763
764 static void *
765 start_gc_timer (void * hook_data SCM_UNUSED,
766 void *fn_data SCM_UNUSED,
767 void *data SCM_UNUSED)
768 {
769 if (!gc_start_time)
770 gc_start_time = scm_c_get_internal_run_time ();
771
772 return NULL;
773 }
774
775 static void *
776 accumulate_gc_timer (void * hook_data SCM_UNUSED,
777 void *fn_data SCM_UNUSED,
778 void *data SCM_UNUSED)
779 {
780 if (gc_start_time)
781 {
782 long now = scm_c_get_internal_run_time ();
783 gc_time_taken += now - gc_start_time;
784 gc_start_time = 0;
785 }
786
787 return NULL;
788 }
789
790 /* Return some idea of the memory footprint of a process, in bytes.
791 Currently only works on Linux systems. */
792 static size_t
793 get_image_size (void)
794 {
795 unsigned long size, resident, share;
796 size_t ret = 0;
797
798 FILE *fp = fopen ("/proc/self/statm", "r");
799
800 if (fp && fscanf (fp, "%lu %lu %lu", &size, &resident, &share) == 3)
801 ret = resident * 4096;
802
803 if (fp)
804 fclose (fp);
805
806 return ret;
807 }
808
809 /* These are discussed later. */
810 static size_t bytes_until_gc;
811 static scm_i_pthread_mutex_t bytes_until_gc_lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;
812
813 /* Make GC run more frequently when the process image size is growing,
814 measured against the number of bytes allocated through the GC.
815
816 If Guile is allocating at a GC-managed heap size H, libgc will tend
817 to limit the process image size to H*N. But if at the same time the
818 user program is mallocating at a rate M bytes per GC-allocated byte,
819 then the process stabilizes at H*N*M -- assuming that collecting data
820 will result in malloc'd data being freed. It doesn't take a very
821 large M for this to be a bad situation. To limit the image size,
822 Guile should GC more often -- the bigger the M, the more often.
823
824 Numeric functions that produce bigger and bigger integers are
825 pessimal, because M is an increasing function of time. Here is an
826 example of such a function:
827
828 (define (factorial n)
829 (define (fac n acc)
830 (if (<= n 1)
831 acc
832 (fac (1- n) (* n acc))))
833 (fac n 1))
834
835 It is possible for a process to grow for reasons that will not be
836 solved by faster GC. In that case M will be estimated as
837 artificially high for a while, and so GC will happen more often on
838 the Guile side. But when it stabilizes, Guile can ease back the GC
839 frequency.
840
841 The key is to measure process image growth, not mallocation rate.
842 For maximum effectiveness, Guile reacts quickly to process growth,
843 and exponentially backs down when the process stops growing.
844
845 See http://thread.gmane.org/gmane.lisp.guile.devel/12552/focus=12936
846 for further discussion.
847 */
848 static void *
849 adjust_gc_frequency (void * hook_data SCM_UNUSED,
850 void *fn_data SCM_UNUSED,
851 void *data SCM_UNUSED)
852 {
853 static size_t prev_image_size = 0;
854 static size_t prev_bytes_alloced = 0;
855 size_t image_size;
856 size_t bytes_alloced;
857
858 scm_i_pthread_mutex_lock (&bytes_until_gc_lock);
859 bytes_until_gc = GC_get_heap_size ();
860 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
861
862 image_size = get_image_size ();
863 bytes_alloced = GC_get_total_bytes ();
864
865 #define HEURISTICS_DEBUG 0
866
867 #if HEURISTICS_DEBUG
868 fprintf (stderr, "prev image / alloced: %lu / %lu\n", prev_image_size, prev_bytes_alloced);
869 fprintf (stderr, " image / alloced: %lu / %lu\n", image_size, bytes_alloced);
870 fprintf (stderr, "divisor %lu / %f\n", free_space_divisor, target_free_space_divisor);
871 #endif
872
873 if (prev_image_size && bytes_alloced != prev_bytes_alloced)
874 {
875 double growth_rate, new_target_free_space_divisor;
876 double decay_factor = 0.5;
877 double hysteresis = 0.1;
878
879 growth_rate = ((double) image_size - prev_image_size)
880 / ((double)bytes_alloced - prev_bytes_alloced);
881
882 #if HEURISTICS_DEBUG
883 fprintf (stderr, "growth rate %f\n", growth_rate);
884 #endif
885
886 new_target_free_space_divisor = minimum_free_space_divisor;
887
888 if (growth_rate > 0)
889 new_target_free_space_divisor *= 1.0 + growth_rate;
890
891 #if HEURISTICS_DEBUG
892 fprintf (stderr, "new divisor %f\n", new_target_free_space_divisor);
893 #endif
894
895 if (new_target_free_space_divisor < target_free_space_divisor)
896 /* Decay down. */
897 target_free_space_divisor =
898 (decay_factor * target_free_space_divisor
899 + (1.0 - decay_factor) * new_target_free_space_divisor);
900 else
901 /* Jump up. */
902 target_free_space_divisor = new_target_free_space_divisor;
903
904 #if HEURISTICS_DEBUG
905 fprintf (stderr, "new target divisor %f\n", target_free_space_divisor);
906 #endif
907
908 if (free_space_divisor + 0.5 + hysteresis < target_free_space_divisor
909 || free_space_divisor - 0.5 - hysteresis > target_free_space_divisor)
910 {
911 free_space_divisor = lround (target_free_space_divisor);
912 #if HEURISTICS_DEBUG
913 fprintf (stderr, "new divisor %lu\n", free_space_divisor);
914 #endif
915 GC_set_free_space_divisor (free_space_divisor);
916 }
917 }
918
919 prev_image_size = image_size;
920 prev_bytes_alloced = bytes_alloced;
921
922 return NULL;
923 }
924
925 /* The adjust_gc_frequency routine handles transients in the process
926 image size. It can't handle instense non-GC-managed steady-state
927 allocation though, as it decays the FSD at steady-state down to its
928 minimum value.
929
930 The only real way to handle continuous, high non-GC allocation is to
931 let the GC know about it. This routine can handle non-GC allocation
932 rates that are similar in size to the GC-managed heap size.
933 */
934
935 void
936 scm_gc_register_allocation (size_t size)
937 {
938 scm_i_pthread_mutex_lock (&bytes_until_gc_lock);
939 if (bytes_until_gc - size > bytes_until_gc)
940 {
941 bytes_until_gc = GC_get_heap_size ();
942 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
943 GC_gcollect ();
944 }
945 else
946 {
947 bytes_until_gc -= size;
948 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
949 }
950 }
951
952
953 \f
954
955 char const *
956 scm_i_tag_name (scm_t_bits tag)
957 {
958 switch (tag & 0x7f) /* 7 bits */
959 {
960 case scm_tcs_struct:
961 return "struct";
962 case scm_tcs_cons_imcar:
963 return "cons (immediate car)";
964 case scm_tcs_cons_nimcar:
965 return "cons (non-immediate car)";
966 case scm_tc7_pointer:
967 return "foreign";
968 case scm_tc7_hashtable:
969 return "hashtable";
970 case scm_tc7_fluid:
971 return "fluid";
972 case scm_tc7_dynamic_state:
973 return "dynamic state";
974 case scm_tc7_frame:
975 return "frame";
976 case scm_tc7_objcode:
977 return "objcode";
978 case scm_tc7_vm:
979 return "vm";
980 case scm_tc7_vm_cont:
981 return "vm continuation";
982 case scm_tc7_wvect:
983 return "weak vector";
984 case scm_tc7_vector:
985 return "vector";
986 case scm_tc7_number:
987 switch (tag)
988 {
989 case scm_tc16_real:
990 return "real";
991 break;
992 case scm_tc16_big:
993 return "bignum";
994 break;
995 case scm_tc16_complex:
996 return "complex number";
997 break;
998 case scm_tc16_fraction:
999 return "fraction";
1000 break;
1001 }
1002 break;
1003 case scm_tc7_string:
1004 return "string";
1005 break;
1006 case scm_tc7_stringbuf:
1007 return "string buffer";
1008 break;
1009 case scm_tc7_symbol:
1010 return "symbol";
1011 break;
1012 case scm_tc7_variable:
1013 return "variable";
1014 break;
1015 case scm_tc7_port:
1016 return "port";
1017 break;
1018 case scm_tc7_smob:
1019 {
1020 int k = 0xff & (tag >> 8);
1021 return (scm_smobs[k].name);
1022 }
1023 break;
1024 }
1025
1026 return NULL;
1027 }
1028
1029
1030
1031 \f
1032 void
1033 scm_init_gc ()
1034 {
1035 /* `GC_INIT ()' was invoked in `scm_storage_prehistory ()'. */
1036
1037 scm_after_gc_hook = scm_make_hook (SCM_INUM0);
1038 scm_c_define ("after-gc-hook", scm_after_gc_hook);
1039
1040 /* When the async is to run, the cdr of the gc_async pair gets set to
1041 the asyncs queue of the current thread. */
1042 after_gc_async_cell = scm_cons (scm_c_make_gsubr ("%after-gc-thunk", 0, 0, 0,
1043 after_gc_async_thunk),
1044 SCM_BOOL_F);
1045
1046 scm_c_hook_add (&scm_before_gc_c_hook, queue_after_gc_hook, NULL, 0);
1047 scm_c_hook_add (&scm_before_gc_c_hook, start_gc_timer, NULL, 0);
1048 scm_c_hook_add (&scm_after_gc_c_hook, accumulate_gc_timer, NULL, 0);
1049
1050 #if HAVE_GC_GET_HEAP_USAGE_SAFE
1051 /* GC_get_heap_usage does not take a lock, and so can run in the GC
1052 start hook. */
1053 scm_c_hook_add (&scm_before_gc_c_hook, adjust_gc_frequency, NULL, 0);
1054 #else
1055 /* GC_get_heap_usage might take a lock (and did from 7.2alpha1 to
1056 7.2alpha7), so call it in the after_gc_hook. */
1057 scm_c_hook_add (&scm_after_gc_c_hook, adjust_gc_frequency, NULL, 0);
1058 #endif
1059
1060 #ifdef HAVE_GC_SET_START_CALLBACK
1061 GC_set_start_callback (run_before_gc_c_hook);
1062 #endif
1063
1064 #include "libguile/gc.x"
1065 }
1066
1067
1068 void
1069 scm_gc_sweep (void)
1070 #define FUNC_NAME "scm_gc_sweep"
1071 {
1072 /* FIXME */
1073 fprintf (stderr, "%s: doing nothing\n", FUNC_NAME);
1074 }
1075 #undef FUNC_NAME
1076
1077 /*
1078 Local Variables:
1079 c-file-style: "gnu"
1080 End:
1081 */