Do not scan for coding declarations in open-file.
[bpt/guile.git] / module / ice-9 / psyntax.scm
1 ;;;; -*-scheme-*-
2 ;;;;
3 ;;;; Copyright (C) 2001, 2003, 2006, 2009, 2010, 2011,
4 ;;;; 2012, 2013 Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 3 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20 \f
21
22 ;;; Portable implementation of syntax-case
23 ;;; Originally extracted from Chez Scheme Version 5.9f
24 ;;; Authors: R. Kent Dybvig, Oscar Waddell, Bob Hieb, Carl Bruggeman
25
26 ;;; Copyright (c) 1992-1997 Cadence Research Systems
27 ;;; Permission to copy this software, in whole or in part, to use this
28 ;;; software for any lawful purpose, and to redistribute this software
29 ;;; is granted subject to the restriction that all copies made of this
30 ;;; software must include this copyright notice in full. This software
31 ;;; is provided AS IS, with NO WARRANTY, EITHER EXPRESS OR IMPLIED,
32 ;;; INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
33 ;;; OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL THE
34 ;;; AUTHORS BE LIABLE FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES OF ANY
35 ;;; NATURE WHATSOEVER.
36
37 ;;; Modified by Mikael Djurfeldt <djurfeldt@nada.kth.se> according
38 ;;; to the ChangeLog distributed in the same directory as this file:
39 ;;; 1997-08-19, 1997-09-03, 1997-09-10, 2000-08-13, 2000-08-24,
40 ;;; 2000-09-12, 2001-03-08
41
42 ;;; Modified by Andy Wingo <wingo@pobox.com> according to the Git
43 ;;; revision control logs corresponding to this file: 2009, 2010.
44
45
46 ;;; This file defines the syntax-case expander, macroexpand, and a set
47 ;;; of associated syntactic forms and procedures. Of these, the
48 ;;; following are documented in The Scheme Programming Language,
49 ;;; Fourth Edition (R. Kent Dybvig, MIT Press, 2009), and in the
50 ;;; R6RS:
51 ;;;
52 ;;; bound-identifier=?
53 ;;; datum->syntax
54 ;;; define-syntax
55 ;;; syntax-parameterize
56 ;;; free-identifier=?
57 ;;; generate-temporaries
58 ;;; identifier?
59 ;;; identifier-syntax
60 ;;; let-syntax
61 ;;; letrec-syntax
62 ;;; syntax
63 ;;; syntax-case
64 ;;; syntax->datum
65 ;;; syntax-rules
66 ;;; with-syntax
67 ;;;
68 ;;; Additionally, the expander provides definitions for a number of core
69 ;;; Scheme syntactic bindings, such as `let', `lambda', and the like.
70
71 ;;; The remaining exports are listed below:
72 ;;;
73 ;;; (macroexpand datum)
74 ;;; if datum represents a valid expression, macroexpand returns an
75 ;;; expanded version of datum in a core language that includes no
76 ;;; syntactic abstractions. The core language includes begin,
77 ;;; define, if, lambda, letrec, quote, and set!.
78 ;;; (eval-when situations expr ...)
79 ;;; conditionally evaluates expr ... at compile-time or run-time
80 ;;; depending upon situations (see the Chez Scheme System Manual,
81 ;;; Revision 3, for a complete description)
82 ;;; (syntax-violation who message form [subform])
83 ;;; used to report errors found during expansion
84 ;;; ($sc-dispatch e p)
85 ;;; used by expanded code to handle syntax-case matching
86
87 ;;; This file is shipped along with an expanded version of itself,
88 ;;; psyntax-pp.scm, which is loaded when psyntax.scm has not yet been
89 ;;; compiled. In this way, psyntax bootstraps off of an expanded
90 ;;; version of itself.
91
92 ;;; This implementation of the expander sometimes uses syntactic
93 ;;; abstractions when procedural abstractions would suffice. For
94 ;;; example, we define top-wrap and top-marked? as
95 ;;;
96 ;;; (define-syntax top-wrap (identifier-syntax '((top))))
97 ;;; (define-syntax top-marked?
98 ;;; (syntax-rules ()
99 ;;; ((_ w) (memq 'top (wrap-marks w)))))
100 ;;;
101 ;;; rather than
102 ;;;
103 ;;; (define top-wrap '((top)))
104 ;;; (define top-marked?
105 ;;; (lambda (w) (memq 'top (wrap-marks w))))
106 ;;;
107 ;;; On the other hand, we don't do this consistently; we define
108 ;;; make-wrap, wrap-marks, and wrap-subst simply as
109 ;;;
110 ;;; (define make-wrap cons)
111 ;;; (define wrap-marks car)
112 ;;; (define wrap-subst cdr)
113 ;;;
114 ;;; In Chez Scheme, the syntactic and procedural forms of these
115 ;;; abstractions are equivalent, since the optimizer consistently
116 ;;; integrates constants and small procedures. This will be true of
117 ;;; Guile as well, once we implement a proper inliner.
118
119
120 ;;; Implementation notes:
121
122 ;;; Objects with no standard print syntax, including objects containing
123 ;;; cycles and syntax object, are allowed in quoted data as long as they
124 ;;; are contained within a syntax form or produced by datum->syntax.
125 ;;; Such objects are never copied.
126
127 ;;; All identifiers that don't have macro definitions and are not bound
128 ;;; lexically are assumed to be global variables.
129
130 ;;; Top-level definitions of macro-introduced identifiers are allowed.
131 ;;; This may not be appropriate for implementations in which the
132 ;;; model is that bindings are created by definitions, as opposed to
133 ;;; one in which initial values are assigned by definitions.
134
135 ;;; Identifiers and syntax objects are implemented as vectors for
136 ;;; portability. As a result, it is possible to "forge" syntax objects.
137
138 ;;; The implementation of generate-temporaries assumes that it is
139 ;;; possible to generate globally unique symbols (gensyms).
140
141 ;;; The source location associated with incoming expressions is tracked
142 ;;; via the source-properties mechanism, a weak map from expression to
143 ;;; source information. At times the source is separated from the
144 ;;; expression; see the note below about "efficiency and confusion".
145
146
147 ;;; Bootstrapping:
148
149 ;;; When changing syntax-object representations, it is necessary to support
150 ;;; both old and new syntax-object representations in id-var-name. It
151 ;;; should be sufficient to recognize old representations and treat
152 ;;; them as not lexically bound.
153
154
155
156 (eval-when (compile)
157 (set-current-module (resolve-module '(guile))))
158
159 (let ()
160 (define-syntax define-expansion-constructors
161 (lambda (x)
162 (syntax-case x ()
163 ((_)
164 (let lp ((n 0) (out '()))
165 (if (< n (vector-length %expanded-vtables))
166 (lp (1+ n)
167 (let* ((vtable (vector-ref %expanded-vtables n))
168 (stem (struct-ref vtable (+ vtable-offset-user 0)))
169 (fields (struct-ref vtable (+ vtable-offset-user 2)))
170 (sfields (map (lambda (f) (datum->syntax x f)) fields))
171 (ctor (datum->syntax x (symbol-append 'make- stem))))
172 (cons #`(define (#,ctor #,@sfields)
173 (make-struct (vector-ref %expanded-vtables #,n) 0
174 #,@sfields))
175 out)))
176 #`(begin #,@(reverse out))))))))
177
178 (define-syntax define-expansion-accessors
179 (lambda (x)
180 (syntax-case x ()
181 ((_ stem field ...)
182 (let lp ((n 0))
183 (let ((vtable (vector-ref %expanded-vtables n))
184 (stem (syntax->datum #'stem)))
185 (if (eq? (struct-ref vtable (+ vtable-offset-user 0)) stem)
186 #`(begin
187 (define (#,(datum->syntax x (symbol-append stem '?)) x)
188 (and (struct? x)
189 (eq? (struct-vtable x)
190 (vector-ref %expanded-vtables #,n))))
191 #,@(map
192 (lambda (f)
193 (let ((get (datum->syntax x (symbol-append stem '- f)))
194 (set (datum->syntax x (symbol-append 'set- stem '- f '!)))
195 (idx (list-index (struct-ref vtable
196 (+ vtable-offset-user 2))
197 f)))
198 #`(begin
199 (define (#,get x)
200 (struct-ref x #,idx))
201 (define (#,set x v)
202 (struct-set! x #,idx v)))))
203 (syntax->datum #'(field ...))))
204 (lp (1+ n)))))))))
205
206 (define-syntax define-structure
207 (lambda (x)
208 (define construct-name
209 (lambda (template-identifier . args)
210 (datum->syntax
211 template-identifier
212 (string->symbol
213 (apply string-append
214 (map (lambda (x)
215 (if (string? x)
216 x
217 (symbol->string (syntax->datum x))))
218 args))))))
219 (syntax-case x ()
220 ((_ (name id1 ...))
221 (and-map identifier? #'(name id1 ...))
222 (with-syntax
223 ((constructor (construct-name #'name "make-" #'name))
224 (predicate (construct-name #'name #'name "?"))
225 ((access ...)
226 (map (lambda (x) (construct-name x #'name "-" x))
227 #'(id1 ...)))
228 ((assign ...)
229 (map (lambda (x)
230 (construct-name x "set-" #'name "-" x "!"))
231 #'(id1 ...)))
232 (structure-length
233 (+ (length #'(id1 ...)) 1))
234 ((index ...)
235 (let f ((i 1) (ids #'(id1 ...)))
236 (if (null? ids)
237 '()
238 (cons i (f (+ i 1) (cdr ids)))))))
239 #'(begin
240 (define constructor
241 (lambda (id1 ...)
242 (vector 'name id1 ... )))
243 (define predicate
244 (lambda (x)
245 (and (vector? x)
246 (= (vector-length x) structure-length)
247 (eq? (vector-ref x 0) 'name))))
248 (define access
249 (lambda (x)
250 (vector-ref x index)))
251 ...
252 (define assign
253 (lambda (x update)
254 (vector-set! x index update)))
255 ...))))))
256
257 (let ()
258 (define-expansion-constructors)
259 (define-expansion-accessors lambda meta)
260
261 ;; hooks to nonportable run-time helpers
262 (begin
263 (define-syntax fx+ (identifier-syntax +))
264 (define-syntax fx- (identifier-syntax -))
265 (define-syntax fx= (identifier-syntax =))
266 (define-syntax fx< (identifier-syntax <))
267
268 (define top-level-eval-hook
269 (lambda (x mod)
270 (primitive-eval x)))
271
272 (define local-eval-hook
273 (lambda (x mod)
274 (primitive-eval x)))
275
276 ;; Capture syntax-session-id before we shove it off into a module.
277 (define session-id
278 (let ((v (module-variable (current-module) 'syntax-session-id)))
279 (lambda ()
280 ((variable-ref v)))))
281
282 (define put-global-definition-hook
283 (lambda (symbol type val)
284 (module-define! (current-module)
285 symbol
286 (make-syntax-transformer symbol type val))))
287
288 (define get-global-definition-hook
289 (lambda (symbol module)
290 (if (and (not module) (current-module))
291 (warn "module system is booted, we should have a module" symbol))
292 (let ((v (module-variable (if module
293 (resolve-module (cdr module))
294 (current-module))
295 symbol)))
296 (and v (variable-bound? v)
297 (let ((val (variable-ref v)))
298 (and (macro? val) (macro-type val)
299 (cons (macro-type val)
300 (macro-binding val)))))))))
301
302
303 (define (decorate-source e s)
304 (if (and s (supports-source-properties? e))
305 (set-source-properties! e s))
306 e)
307
308 (define (maybe-name-value! name val)
309 (if (lambda? val)
310 (let ((meta (lambda-meta val)))
311 (if (not (assq 'name meta))
312 (set-lambda-meta! val (acons 'name name meta))))))
313
314 ;; output constructors
315 (define build-void
316 (lambda (source)
317 (make-void source)))
318
319 (define build-application
320 (lambda (source fun-exp arg-exps)
321 (make-application source fun-exp arg-exps)))
322
323 (define build-conditional
324 (lambda (source test-exp then-exp else-exp)
325 (make-conditional source test-exp then-exp else-exp)))
326
327 (define build-dynlet
328 (lambda (source fluids vals body)
329 (make-dynlet source fluids vals body)))
330
331 (define build-lexical-reference
332 (lambda (type source name var)
333 (make-lexical-ref source name var)))
334
335 (define build-lexical-assignment
336 (lambda (source name var exp)
337 (maybe-name-value! name exp)
338 (make-lexical-set source name var exp)))
339
340 (define (analyze-variable mod var modref-cont bare-cont)
341 (if (not mod)
342 (bare-cont var)
343 (let ((kind (car mod))
344 (mod (cdr mod)))
345 (case kind
346 ((public) (modref-cont mod var #t))
347 ((private) (if (not (equal? mod (module-name (current-module))))
348 (modref-cont mod var #f)
349 (bare-cont var)))
350 ((bare) (bare-cont var))
351 ((hygiene) (if (and (not (equal? mod (module-name (current-module))))
352 (module-variable (resolve-module mod) var))
353 (modref-cont mod var #f)
354 (bare-cont var)))
355 (else (syntax-violation #f "bad module kind" var mod))))))
356
357 (define build-global-reference
358 (lambda (source var mod)
359 (analyze-variable
360 mod var
361 (lambda (mod var public?)
362 (make-module-ref source mod var public?))
363 (lambda (var)
364 (make-toplevel-ref source var)))))
365
366 (define build-global-assignment
367 (lambda (source var exp mod)
368 (maybe-name-value! var exp)
369 (analyze-variable
370 mod var
371 (lambda (mod var public?)
372 (make-module-set source mod var public? exp))
373 (lambda (var)
374 (make-toplevel-set source var exp)))))
375
376 (define build-global-definition
377 (lambda (source var exp)
378 (maybe-name-value! var exp)
379 (make-toplevel-define source var exp)))
380
381 (define build-simple-lambda
382 (lambda (src req rest vars meta exp)
383 (make-lambda src
384 meta
385 ;; hah, a case in which kwargs would be nice.
386 (make-lambda-case
387 ;; src req opt rest kw inits vars body else
388 src req #f rest #f '() vars exp #f))))
389
390 (define build-case-lambda
391 (lambda (src meta body)
392 (make-lambda src meta body)))
393
394 (define build-lambda-case
395 ;; req := (name ...)
396 ;; opt := (name ...) | #f
397 ;; rest := name | #f
398 ;; kw := (allow-other-keys? (keyword name var) ...) | #f
399 ;; inits: (init ...)
400 ;; vars: (sym ...)
401 ;; vars map to named arguments in the following order:
402 ;; required, optional (positional), rest, keyword.
403 ;; the body of a lambda: anything, already expanded
404 ;; else: lambda-case | #f
405 (lambda (src req opt rest kw inits vars body else-case)
406 (make-lambda-case src req opt rest kw inits vars body else-case)))
407
408 (define build-primref
409 (lambda (src name)
410 (if (equal? (module-name (current-module)) '(guile))
411 (make-toplevel-ref src name)
412 (make-module-ref src '(guile) name #f))))
413
414 (define (build-data src exp)
415 (make-const src exp))
416
417 (define build-sequence
418 (lambda (src exps)
419 (if (null? (cdr exps))
420 (car exps)
421 (make-sequence src exps))))
422
423 (define build-let
424 (lambda (src ids vars val-exps body-exp)
425 (for-each maybe-name-value! ids val-exps)
426 (if (null? vars)
427 body-exp
428 (make-let src ids vars val-exps body-exp))))
429
430 (define build-named-let
431 (lambda (src ids vars val-exps body-exp)
432 (let ((f (car vars))
433 (f-name (car ids))
434 (vars (cdr vars))
435 (ids (cdr ids)))
436 (let ((proc (build-simple-lambda src ids #f vars '() body-exp)))
437 (maybe-name-value! f-name proc)
438 (for-each maybe-name-value! ids val-exps)
439 (make-letrec
440 src #f
441 (list f-name) (list f) (list proc)
442 (build-application src (build-lexical-reference 'fun src f-name f)
443 val-exps))))))
444
445 (define build-letrec
446 (lambda (src in-order? ids vars val-exps body-exp)
447 (if (null? vars)
448 body-exp
449 (begin
450 (for-each maybe-name-value! ids val-exps)
451 (make-letrec src in-order? ids vars val-exps body-exp)))))
452
453
454 ;; FIXME: use a faster gensym
455 (define-syntax-rule (build-lexical-var src id)
456 (gensym (string-append (symbol->string id) "-")))
457
458 (define-structure (syntax-object expression wrap module))
459
460 (define-syntax no-source (identifier-syntax #f))
461
462 (define source-annotation
463 (lambda (x)
464 (let ((props (source-properties
465 (if (syntax-object? x)
466 (syntax-object-expression x)
467 x))))
468 (and (pair? props) props))))
469
470 (define-syntax-rule (arg-check pred? e who)
471 (let ((x e))
472 (if (not (pred? x)) (syntax-violation who "invalid argument" x))))
473
474 ;; compile-time environments
475
476 ;; wrap and environment comprise two level mapping.
477 ;; wrap : id --> label
478 ;; env : label --> <element>
479
480 ;; environments are represented in two parts: a lexical part and a global
481 ;; part. The lexical part is a simple list of associations from labels
482 ;; to bindings. The global part is implemented by
483 ;; {put,get}-global-definition-hook and associates symbols with
484 ;; bindings.
485
486 ;; global (assumed global variable) and displaced-lexical (see below)
487 ;; do not show up in any environment; instead, they are fabricated by
488 ;; lookup when it finds no other bindings.
489
490 ;; <environment> ::= ((<label> . <binding>)*)
491
492 ;; identifier bindings include a type and a value
493
494 ;; <binding> ::= (macro . <procedure>) macros
495 ;; (core . <procedure>) core forms
496 ;; (module-ref . <procedure>) @ or @@
497 ;; (begin) begin
498 ;; (define) define
499 ;; (define-syntax) define-syntax
500 ;; (define-syntax-parameter) define-syntax-parameter
501 ;; (local-syntax . rec?) let-syntax/letrec-syntax
502 ;; (eval-when) eval-when
503 ;; (syntax . (<var> . <level>)) pattern variables
504 ;; (global) assumed global variable
505 ;; (lexical . <var>) lexical variables
506 ;; (displaced-lexical) displaced lexicals
507 ;; <level> ::= <nonnegative integer>
508 ;; <var> ::= variable returned by build-lexical-var
509
510 ;; a macro is a user-defined syntactic-form. a core is a
511 ;; system-defined syntactic form. begin, define, define-syntax,
512 ;; define-syntax-parameter, and eval-when are treated specially
513 ;; since they are sensitive to whether the form is at top-level and
514 ;; (except for eval-when) can denote valid internal definitions.
515
516 ;; a pattern variable is a variable introduced by syntax-case and can
517 ;; be referenced only within a syntax form.
518
519 ;; any identifier for which no top-level syntax definition or local
520 ;; binding of any kind has been seen is assumed to be a global
521 ;; variable.
522
523 ;; a lexical variable is a lambda- or letrec-bound variable.
524
525 ;; a displaced-lexical identifier is a lexical identifier removed from
526 ;; it's scope by the return of a syntax object containing the identifier.
527 ;; a displaced lexical can also appear when a letrec-syntax-bound
528 ;; keyword is referenced on the rhs of one of the letrec-syntax clauses.
529 ;; a displaced lexical should never occur with properly written macros.
530
531 (define-syntax make-binding
532 (syntax-rules (quote)
533 ((_ type value) (cons type value))
534 ((_ 'type) '(type))
535 ((_ type) (cons type '()))))
536 (define-syntax-rule (binding-type x)
537 (car x))
538 (define-syntax-rule (binding-value x)
539 (cdr x))
540
541 (define-syntax null-env (identifier-syntax '()))
542
543 (define extend-env
544 (lambda (labels bindings r)
545 (if (null? labels)
546 r
547 (extend-env (cdr labels) (cdr bindings)
548 (cons (cons (car labels) (car bindings)) r)))))
549
550 (define extend-var-env
551 ;; variant of extend-env that forms "lexical" binding
552 (lambda (labels vars r)
553 (if (null? labels)
554 r
555 (extend-var-env (cdr labels) (cdr vars)
556 (cons (cons (car labels) (make-binding 'lexical (car vars))) r)))))
557
558 ;; we use a "macros only" environment in expansion of local macro
559 ;; definitions so that their definitions can use local macros without
560 ;; attempting to use other lexical identifiers.
561 (define macros-only-env
562 (lambda (r)
563 (if (null? r)
564 '()
565 (let ((a (car r)))
566 (if (eq? (cadr a) 'macro)
567 (cons a (macros-only-env (cdr r)))
568 (macros-only-env (cdr r)))))))
569
570 (define lookup
571 ;; x may be a label or a symbol
572 ;; although symbols are usually global, we check the environment first
573 ;; anyway because a temporary binding may have been established by
574 ;; fluid-let-syntax
575 (lambda (x r mod)
576 (cond
577 ((assq x r) => cdr)
578 ((symbol? x)
579 (or (get-global-definition-hook x mod) (make-binding 'global)))
580 (else (make-binding 'displaced-lexical)))))
581
582 (define global-extend
583 (lambda (type sym val)
584 (put-global-definition-hook sym type val)))
585
586
587 ;; Conceptually, identifiers are always syntax objects. Internally,
588 ;; however, the wrap is sometimes maintained separately (a source of
589 ;; efficiency and confusion), so that symbols are also considered
590 ;; identifiers by id?. Externally, they are always wrapped.
591
592 (define nonsymbol-id?
593 (lambda (x)
594 (and (syntax-object? x)
595 (symbol? (syntax-object-expression x)))))
596
597 (define id?
598 (lambda (x)
599 (cond
600 ((symbol? x) #t)
601 ((syntax-object? x) (symbol? (syntax-object-expression x)))
602 (else #f))))
603
604 (define-syntax-rule (id-sym-name e)
605 (let ((x e))
606 (if (syntax-object? x)
607 (syntax-object-expression x)
608 x)))
609
610 (define id-sym-name&marks
611 (lambda (x w)
612 (if (syntax-object? x)
613 (values
614 (syntax-object-expression x)
615 (join-marks (wrap-marks w) (wrap-marks (syntax-object-wrap x))))
616 (values x (wrap-marks w)))))
617
618 ;; syntax object wraps
619
620 ;; <wrap> ::= ((<mark> ...) . (<subst> ...))
621 ;; <subst> ::= shift | <subs>
622 ;; <subs> ::= #(ribcage #(<sym> ...) #(<mark> ...) #(<label> ...))
623 ;; | #(ribcage (<sym> ...) (<mark> ...) (<label> ...))
624
625 (define-syntax make-wrap (identifier-syntax cons))
626 (define-syntax wrap-marks (identifier-syntax car))
627 (define-syntax wrap-subst (identifier-syntax cdr))
628
629 ;; labels must be comparable with "eq?", have read-write invariance,
630 ;; and distinct from symbols.
631 (define (gen-label)
632 (string-append "l-" (session-id) (symbol->string (gensym "-"))))
633
634 (define gen-labels
635 (lambda (ls)
636 (if (null? ls)
637 '()
638 (cons (gen-label) (gen-labels (cdr ls))))))
639
640 (define-structure (ribcage symnames marks labels))
641
642 (define-syntax empty-wrap (identifier-syntax '(())))
643
644 (define-syntax top-wrap (identifier-syntax '((top))))
645
646 (define-syntax-rule (top-marked? w)
647 (memq 'top (wrap-marks w)))
648
649 ;; Marks must be comparable with "eq?" and distinct from pairs and
650 ;; the symbol top. We do not use integers so that marks will remain
651 ;; unique even across file compiles.
652
653 (define-syntax the-anti-mark (identifier-syntax #f))
654
655 (define anti-mark
656 (lambda (w)
657 (make-wrap (cons the-anti-mark (wrap-marks w))
658 (cons 'shift (wrap-subst w)))))
659
660 (define-syntax-rule (new-mark)
661 (gensym (string-append "m-" (session-id) "-")))
662
663 ;; make-empty-ribcage and extend-ribcage maintain list-based ribcages for
664 ;; internal definitions, in which the ribcages are built incrementally
665 (define-syntax-rule (make-empty-ribcage)
666 (make-ribcage '() '() '()))
667
668 (define extend-ribcage!
669 ;; must receive ids with complete wraps
670 (lambda (ribcage id label)
671 (set-ribcage-symnames! ribcage
672 (cons (syntax-object-expression id)
673 (ribcage-symnames ribcage)))
674 (set-ribcage-marks! ribcage
675 (cons (wrap-marks (syntax-object-wrap id))
676 (ribcage-marks ribcage)))
677 (set-ribcage-labels! ribcage
678 (cons label (ribcage-labels ribcage)))))
679
680 ;; make-binding-wrap creates vector-based ribcages
681 (define make-binding-wrap
682 (lambda (ids labels w)
683 (if (null? ids)
684 w
685 (make-wrap
686 (wrap-marks w)
687 (cons
688 (let ((labelvec (list->vector labels)))
689 (let ((n (vector-length labelvec)))
690 (let ((symnamevec (make-vector n)) (marksvec (make-vector n)))
691 (let f ((ids ids) (i 0))
692 (if (not (null? ids))
693 (call-with-values
694 (lambda () (id-sym-name&marks (car ids) w))
695 (lambda (symname marks)
696 (vector-set! symnamevec i symname)
697 (vector-set! marksvec i marks)
698 (f (cdr ids) (fx+ i 1))))))
699 (make-ribcage symnamevec marksvec labelvec))))
700 (wrap-subst w))))))
701
702 (define smart-append
703 (lambda (m1 m2)
704 (if (null? m2)
705 m1
706 (append m1 m2))))
707
708 (define join-wraps
709 (lambda (w1 w2)
710 (let ((m1 (wrap-marks w1)) (s1 (wrap-subst w1)))
711 (if (null? m1)
712 (if (null? s1)
713 w2
714 (make-wrap
715 (wrap-marks w2)
716 (smart-append s1 (wrap-subst w2))))
717 (make-wrap
718 (smart-append m1 (wrap-marks w2))
719 (smart-append s1 (wrap-subst w2)))))))
720
721 (define join-marks
722 (lambda (m1 m2)
723 (smart-append m1 m2)))
724
725 (define same-marks?
726 (lambda (x y)
727 (or (eq? x y)
728 (and (not (null? x))
729 (not (null? y))
730 (eq? (car x) (car y))
731 (same-marks? (cdr x) (cdr y))))))
732
733 (define id-var-name
734 (lambda (id w)
735 (define-syntax-rule (first e)
736 ;; Rely on Guile's multiple-values truncation.
737 e)
738 (define search
739 (lambda (sym subst marks)
740 (if (null? subst)
741 (values #f marks)
742 (let ((fst (car subst)))
743 (if (eq? fst 'shift)
744 (search sym (cdr subst) (cdr marks))
745 (let ((symnames (ribcage-symnames fst)))
746 (if (vector? symnames)
747 (search-vector-rib sym subst marks symnames fst)
748 (search-list-rib sym subst marks symnames fst))))))))
749 (define search-list-rib
750 (lambda (sym subst marks symnames ribcage)
751 (let f ((symnames symnames) (i 0))
752 (cond
753 ((null? symnames) (search sym (cdr subst) marks))
754 ((and (eq? (car symnames) sym)
755 (same-marks? marks (list-ref (ribcage-marks ribcage) i)))
756 (values (list-ref (ribcage-labels ribcage) i) marks))
757 (else (f (cdr symnames) (fx+ i 1)))))))
758 (define search-vector-rib
759 (lambda (sym subst marks symnames ribcage)
760 (let ((n (vector-length symnames)))
761 (let f ((i 0))
762 (cond
763 ((fx= i n) (search sym (cdr subst) marks))
764 ((and (eq? (vector-ref symnames i) sym)
765 (same-marks? marks (vector-ref (ribcage-marks ribcage) i)))
766 (values (vector-ref (ribcage-labels ribcage) i) marks))
767 (else (f (fx+ i 1))))))))
768 (cond
769 ((symbol? id)
770 (or (first (search id (wrap-subst w) (wrap-marks w))) id))
771 ((syntax-object? id)
772 (let ((id (syntax-object-expression id))
773 (w1 (syntax-object-wrap id)))
774 (let ((marks (join-marks (wrap-marks w) (wrap-marks w1))))
775 (call-with-values (lambda () (search id (wrap-subst w) marks))
776 (lambda (new-id marks)
777 (or new-id
778 (first (search id (wrap-subst w1) marks))
779 id))))))
780 (else (syntax-violation 'id-var-name "invalid id" id)))))
781
782 ;; A helper procedure for syntax-locally-bound-identifiers, which
783 ;; itself is a helper for transformer procedures.
784 ;; `locally-bound-identifiers' returns a list of all bindings
785 ;; visible to a syntax object with the given wrap. They are in
786 ;; order from outer to inner.
787 ;;
788 ;; The purpose of this procedure is to give a transformer procedure
789 ;; references on bound identifiers, that the transformer can then
790 ;; introduce some of them in its output. As such, the identifiers
791 ;; are anti-marked, so that rebuild-macro-output doesn't apply new
792 ;; marks to them.
793 ;;
794 (define locally-bound-identifiers
795 (lambda (w mod)
796 (define scan
797 (lambda (subst results)
798 (if (null? subst)
799 results
800 (let ((fst (car subst)))
801 (if (eq? fst 'shift)
802 (scan (cdr subst) results)
803 (let ((symnames (ribcage-symnames fst))
804 (marks (ribcage-marks fst)))
805 (if (vector? symnames)
806 (scan-vector-rib subst symnames marks results)
807 (scan-list-rib subst symnames marks results))))))))
808 (define scan-list-rib
809 (lambda (subst symnames marks results)
810 (let f ((symnames symnames) (marks marks) (results results))
811 (if (null? symnames)
812 (scan (cdr subst) results)
813 (f (cdr symnames) (cdr marks)
814 (cons (wrap (car symnames)
815 (anti-mark (make-wrap (car marks) subst))
816 mod)
817 results))))))
818 (define scan-vector-rib
819 (lambda (subst symnames marks results)
820 (let ((n (vector-length symnames)))
821 (let f ((i 0) (results results))
822 (if (fx= i n)
823 (scan (cdr subst) results)
824 (f (fx+ i 1)
825 (cons (wrap (vector-ref symnames i)
826 (anti-mark (make-wrap (vector-ref marks i) subst))
827 mod)
828 results)))))))
829 (scan (wrap-subst w) '())))
830
831 ;; Returns three values: binding type, binding value, the module (for
832 ;; resolving toplevel vars).
833 (define (resolve-identifier id w r mod)
834 (define (resolve-global var mod)
835 (let ((b (or (get-global-definition-hook var mod)
836 (make-binding 'global))))
837 (if (eq? (binding-type b) 'global)
838 (values 'global var mod)
839 (values (binding-type b) (binding-value b) mod))))
840 (define (resolve-lexical label mod)
841 (let ((b (or (assq-ref r label)
842 (make-binding 'displaced-lexical))))
843 (values (binding-type b) (binding-value b) mod)))
844 (let ((n (id-var-name id w)))
845 (cond
846 ((symbol? n)
847 (resolve-global n (if (syntax-object? id)
848 (syntax-object-module id)
849 mod)))
850 ((string? n)
851 (resolve-lexical n (if (syntax-object? id)
852 (syntax-object-module id)
853 mod)))
854 (else
855 (error "unexpected id-var-name" id w n)))))
856
857 (define transformer-environment
858 (make-fluid
859 (lambda (k)
860 (error "called outside the dynamic extent of a syntax transformer"))))
861
862 (define (with-transformer-environment k)
863 ((fluid-ref transformer-environment) k))
864
865 ;; free-id=? must be passed fully wrapped ids since (free-id=? x y)
866 ;; may be true even if (free-id=? (wrap x w) (wrap y w)) is not.
867
868 (define free-id=?
869 (lambda (i j)
870 (and (eq? (id-sym-name i) (id-sym-name j)) ; accelerator
871 (eq? (id-var-name i empty-wrap) (id-var-name j empty-wrap)))))
872
873 ;; bound-id=? may be passed unwrapped (or partially wrapped) ids as
874 ;; long as the missing portion of the wrap is common to both of the ids
875 ;; since (bound-id=? x y) iff (bound-id=? (wrap x w) (wrap y w))
876
877 (define bound-id=?
878 (lambda (i j)
879 (if (and (syntax-object? i) (syntax-object? j))
880 (and (eq? (syntax-object-expression i)
881 (syntax-object-expression j))
882 (same-marks? (wrap-marks (syntax-object-wrap i))
883 (wrap-marks (syntax-object-wrap j))))
884 (eq? i j))))
885
886 ;; "valid-bound-ids?" returns #t if it receives a list of distinct ids.
887 ;; valid-bound-ids? may be passed unwrapped (or partially wrapped) ids
888 ;; as long as the missing portion of the wrap is common to all of the
889 ;; ids.
890
891 (define valid-bound-ids?
892 (lambda (ids)
893 (and (let all-ids? ((ids ids))
894 (or (null? ids)
895 (and (id? (car ids))
896 (all-ids? (cdr ids)))))
897 (distinct-bound-ids? ids))))
898
899 ;; distinct-bound-ids? expects a list of ids and returns #t if there are
900 ;; no duplicates. It is quadratic on the length of the id list; long
901 ;; lists could be sorted to make it more efficient. distinct-bound-ids?
902 ;; may be passed unwrapped (or partially wrapped) ids as long as the
903 ;; missing portion of the wrap is common to all of the ids.
904
905 (define distinct-bound-ids?
906 (lambda (ids)
907 (let distinct? ((ids ids))
908 (or (null? ids)
909 (and (not (bound-id-member? (car ids) (cdr ids)))
910 (distinct? (cdr ids)))))))
911
912 (define bound-id-member?
913 (lambda (x list)
914 (and (not (null? list))
915 (or (bound-id=? x (car list))
916 (bound-id-member? x (cdr list))))))
917
918 ;; wrapping expressions and identifiers
919
920 (define wrap
921 (lambda (x w defmod)
922 (cond
923 ((and (null? (wrap-marks w)) (null? (wrap-subst w))) x)
924 ((syntax-object? x)
925 (make-syntax-object
926 (syntax-object-expression x)
927 (join-wraps w (syntax-object-wrap x))
928 (syntax-object-module x)))
929 ((null? x) x)
930 (else (make-syntax-object x w defmod)))))
931
932 (define source-wrap
933 (lambda (x w s defmod)
934 (wrap (decorate-source x s) w defmod)))
935
936 ;; expanding
937
938 (define expand-sequence
939 (lambda (body r w s mod)
940 (build-sequence s
941 (let dobody ((body body) (r r) (w w) (mod mod))
942 (if (null? body)
943 '()
944 (let ((first (expand (car body) r w mod)))
945 (cons first (dobody (cdr body) r w mod))))))))
946
947 ;; At top-level, we allow mixed definitions and expressions. Like
948 ;; expand-body we expand in two passes.
949 ;;
950 ;; First, from left to right, we expand just enough to know what
951 ;; expressions are definitions, syntax definitions, and splicing
952 ;; statements (`begin'). If we anything needs evaluating at
953 ;; expansion-time, it is expanded directly.
954 ;;
955 ;; Otherwise we collect expressions to expand, in thunks, and then
956 ;; expand them all at the end. This allows all syntax expanders
957 ;; visible in a toplevel sequence to be visible during the
958 ;; expansions of all normal definitions and expressions in the
959 ;; sequence.
960 ;;
961 (define expand-top-sequence
962 (lambda (body r w s m esew mod)
963 (define (scan body r w s m esew mod exps)
964 (cond
965 ((null? body)
966 ;; in reversed order
967 exps)
968 (else
969 (call-with-values
970 (lambda ()
971 (call-with-values
972 (lambda ()
973 (let ((e (car body)))
974 (syntax-type e r w (or (source-annotation e) s) #f mod #f)))
975 (lambda (type value form e w s mod)
976 (case type
977 ((begin-form)
978 (syntax-case e ()
979 ((_) exps)
980 ((_ e1 e2 ...)
981 (scan #'(e1 e2 ...) r w s m esew mod exps))))
982 ((local-syntax-form)
983 (expand-local-syntax value e r w s mod
984 (lambda (body r w s mod)
985 (scan body r w s m esew mod exps))))
986 ((eval-when-form)
987 (syntax-case e ()
988 ((_ (x ...) e1 e2 ...)
989 (let ((when-list (parse-when-list e #'(x ...)))
990 (body #'(e1 e2 ...)))
991 (cond
992 ((eq? m 'e)
993 (if (memq 'eval when-list)
994 (scan body r w s
995 (if (memq 'expand when-list) 'c&e 'e)
996 '(eval)
997 mod exps)
998 (begin
999 (if (memq 'expand when-list)
1000 (top-level-eval-hook
1001 (expand-top-sequence body r w s 'e '(eval) mod)
1002 mod))
1003 (values exps))))
1004 ((memq 'load when-list)
1005 (if (or (memq 'compile when-list)
1006 (memq 'expand when-list)
1007 (and (eq? m 'c&e) (memq 'eval when-list)))
1008 (scan body r w s 'c&e '(compile load) mod exps)
1009 (if (memq m '(c c&e))
1010 (scan body r w s 'c '(load) mod exps)
1011 (values exps))))
1012 ((or (memq 'compile when-list)
1013 (memq 'expand when-list)
1014 (and (eq? m 'c&e) (memq 'eval when-list)))
1015 (top-level-eval-hook
1016 (expand-top-sequence body r w s 'e '(eval) mod)
1017 mod)
1018 (values exps))
1019 (else
1020 (values exps)))))))
1021 ((define-syntax-form define-syntax-parameter-form)
1022 (let ((n (id-var-name value w)) (r (macros-only-env r)))
1023 (case m
1024 ((c)
1025 (if (memq 'compile esew)
1026 (let ((e (expand-install-global n (expand e r w mod))))
1027 (top-level-eval-hook e mod)
1028 (if (memq 'load esew)
1029 (values (cons e exps))
1030 (values exps)))
1031 (if (memq 'load esew)
1032 (values (cons (expand-install-global n (expand e r w mod))
1033 exps))
1034 (values exps))))
1035 ((c&e)
1036 (let ((e (expand-install-global n (expand e r w mod))))
1037 (top-level-eval-hook e mod)
1038 (values (cons e exps))))
1039 (else
1040 (if (memq 'eval esew)
1041 (top-level-eval-hook
1042 (expand-install-global n (expand e r w mod))
1043 mod))
1044 (values exps)))))
1045 ((define-form)
1046 (let* ((n (id-var-name value w))
1047 ;; Lookup the name in the module of the define form.
1048 (type (binding-type (lookup n r mod))))
1049 (case type
1050 ((global core macro module-ref)
1051 ;; affect compile-time environment (once we have booted)
1052 (if (and (memq m '(c c&e))
1053 (not (module-local-variable (current-module) n))
1054 (current-module))
1055 (let ((old (module-variable (current-module) n)))
1056 ;; use value of the same-named imported variable, if
1057 ;; any
1058 (if (and (variable? old) (variable-bound? old))
1059 (module-define! (current-module) n (variable-ref old))
1060 (module-add! (current-module) n (make-undefined-variable)))))
1061 (values
1062 (cons
1063 (if (eq? m 'c&e)
1064 (let ((x (build-global-definition s n (expand e r w mod))))
1065 (top-level-eval-hook x mod)
1066 x)
1067 (lambda ()
1068 (build-global-definition s n (expand e r w mod))))
1069 exps)))
1070 ((displaced-lexical)
1071 (syntax-violation #f "identifier out of context"
1072 (source-wrap form w s mod)
1073 (wrap value w mod)))
1074 (else
1075 (syntax-violation #f "cannot define keyword at top level"
1076 (source-wrap form w s mod)
1077 (wrap value w mod))))))
1078 (else
1079 (values (cons
1080 (if (eq? m 'c&e)
1081 (let ((x (expand-expr type value form e r w s mod)))
1082 (top-level-eval-hook x mod)
1083 x)
1084 (lambda ()
1085 (expand-expr type value form e r w s mod)))
1086 exps)))))))
1087 (lambda (exps)
1088 (scan (cdr body) r w s m esew mod exps))))))
1089
1090 (call-with-values (lambda ()
1091 (scan body r w s m esew mod '()))
1092 (lambda (exps)
1093 (if (null? exps)
1094 (build-void s)
1095 (build-sequence
1096 s
1097 (let lp ((in exps) (out '()))
1098 (if (null? in) out
1099 (let ((e (car in)))
1100 (lp (cdr in)
1101 (cons (if (procedure? e) (e) e) out)))))))))))
1102
1103 (define expand-install-global
1104 (lambda (name e)
1105 (build-global-definition
1106 no-source
1107 name
1108 (build-application
1109 no-source
1110 (build-primref no-source 'make-syntax-transformer)
1111 (list (build-data no-source name)
1112 (build-data no-source 'macro)
1113 e)))))
1114
1115 (define parse-when-list
1116 (lambda (e when-list)
1117 ;; when-list is syntax'd version of list of situations
1118 (let ((result (strip when-list empty-wrap)))
1119 (let lp ((l result))
1120 (if (null? l)
1121 result
1122 (if (memq (car l) '(compile load eval expand))
1123 (lp (cdr l))
1124 (syntax-violation 'eval-when "invalid situation" e
1125 (car l))))))))
1126
1127 ;; syntax-type returns seven values: type, value, form, e, w, s, and
1128 ;; mod. The first two are described in the table below.
1129 ;;
1130 ;; type value explanation
1131 ;; -------------------------------------------------------------------
1132 ;; core procedure core singleton
1133 ;; core-form procedure core form
1134 ;; module-ref procedure @ or @@ singleton
1135 ;; lexical name lexical variable reference
1136 ;; global name global variable reference
1137 ;; begin none begin keyword
1138 ;; define none define keyword
1139 ;; define-syntax none define-syntax keyword
1140 ;; define-syntax-parameter none define-syntax-parameter keyword
1141 ;; local-syntax rec? letrec-syntax/let-syntax keyword
1142 ;; eval-when none eval-when keyword
1143 ;; syntax level pattern variable
1144 ;; displaced-lexical none displaced lexical identifier
1145 ;; lexical-call name call to lexical variable
1146 ;; global-call name call to global variable
1147 ;; call none any other call
1148 ;; begin-form none begin expression
1149 ;; define-form id variable definition
1150 ;; define-syntax-form id syntax definition
1151 ;; define-syntax-parameter-form id syntax parameter definition
1152 ;; local-syntax-form rec? syntax definition
1153 ;; eval-when-form none eval-when form
1154 ;; constant none self-evaluating datum
1155 ;; other none anything else
1156 ;;
1157 ;; form is the entire form. For definition forms (define-form,
1158 ;; define-syntax-form, and define-syntax-parameter-form), e is the
1159 ;; rhs expression. For all others, e is the entire form. w is the
1160 ;; wrap for both form and e. s is the source for the entire form.
1161 ;; mod is the module for both form and e.
1162 ;;
1163 ;; syntax-type expands macros and unwraps as necessary to get to one
1164 ;; of the forms above. It also parses definition forms, although
1165 ;; perhaps this should be done by the consumer.
1166
1167 (define syntax-type
1168 (lambda (e r w s rib mod for-car?)
1169 (cond
1170 ((symbol? e)
1171 (let* ((n (id-var-name e w))
1172 (b (lookup n r mod))
1173 (type (binding-type b)))
1174 (case type
1175 ((lexical) (values type (binding-value b) e e w s mod))
1176 ((global) (values type n e e w s mod))
1177 ((macro)
1178 (if for-car?
1179 (values type (binding-value b) e e w s mod)
1180 (syntax-type (expand-macro (binding-value b) e r w s rib mod)
1181 r empty-wrap s rib mod #f)))
1182 (else (values type (binding-value b) e e w s mod)))))
1183 ((pair? e)
1184 (let ((first (car e)))
1185 (call-with-values
1186 (lambda () (syntax-type first r w s rib mod #t))
1187 (lambda (ftype fval fform fe fw fs fmod)
1188 (case ftype
1189 ((lexical)
1190 (values 'lexical-call fval e e w s mod))
1191 ((global)
1192 ;; If we got here via an (@@ ...) expansion, we need to
1193 ;; make sure the fmod information is propagated back
1194 ;; correctly -- hence this consing.
1195 (values 'global-call (make-syntax-object fval w fmod)
1196 e e w s mod))
1197 ((macro)
1198 (syntax-type (expand-macro fval e r w s rib mod)
1199 r empty-wrap s rib mod for-car?))
1200 ((module-ref)
1201 (call-with-values (lambda () (fval e r w))
1202 (lambda (e r w s mod)
1203 (syntax-type e r w s rib mod for-car?))))
1204 ((core)
1205 (values 'core-form fval e e w s mod))
1206 ((local-syntax)
1207 (values 'local-syntax-form fval e e w s mod))
1208 ((begin)
1209 (values 'begin-form #f e e w s mod))
1210 ((eval-when)
1211 (values 'eval-when-form #f e e w s mod))
1212 ((define)
1213 (syntax-case e ()
1214 ((_ name val)
1215 (id? #'name)
1216 (values 'define-form #'name e #'val w s mod))
1217 ((_ (name . args) e1 e2 ...)
1218 (and (id? #'name)
1219 (valid-bound-ids? (lambda-var-list #'args)))
1220 ;; need lambda here...
1221 (values 'define-form (wrap #'name w mod)
1222 (wrap e w mod)
1223 (decorate-source
1224 (cons #'lambda (wrap #'(args e1 e2 ...) w mod))
1225 s)
1226 empty-wrap s mod))
1227 ((_ name)
1228 (id? #'name)
1229 (values 'define-form (wrap #'name w mod)
1230 (wrap e w mod)
1231 #'(if #f #f)
1232 empty-wrap s mod))))
1233 ((define-syntax)
1234 (syntax-case e ()
1235 ((_ name val)
1236 (id? #'name)
1237 (values 'define-syntax-form #'name e #'val w s mod))))
1238 ((define-syntax-parameter)
1239 (syntax-case e ()
1240 ((_ name val)
1241 (id? #'name)
1242 (values 'define-syntax-parameter-form #'name e #'val w s mod))))
1243 (else
1244 (values 'call #f e e w s mod)))))))
1245 ((syntax-object? e)
1246 (syntax-type (syntax-object-expression e)
1247 r
1248 (join-wraps w (syntax-object-wrap e))
1249 (or (source-annotation e) s) rib
1250 (or (syntax-object-module e) mod) for-car?))
1251 ((self-evaluating? e) (values 'constant #f e e w s mod))
1252 (else (values 'other #f e e w s mod)))))
1253
1254 (define expand
1255 (lambda (e r w mod)
1256 (call-with-values
1257 (lambda () (syntax-type e r w (source-annotation e) #f mod #f))
1258 (lambda (type value form e w s mod)
1259 (expand-expr type value form e r w s mod)))))
1260
1261 (define expand-expr
1262 (lambda (type value form e r w s mod)
1263 (case type
1264 ((lexical)
1265 (build-lexical-reference 'value s e value))
1266 ((core core-form)
1267 ;; apply transformer
1268 (value e r w s mod))
1269 ((module-ref)
1270 (call-with-values (lambda () (value e r w))
1271 (lambda (e r w s mod)
1272 (expand e r w mod))))
1273 ((lexical-call)
1274 (expand-application
1275 (let ((id (car e)))
1276 (build-lexical-reference 'fun (source-annotation id)
1277 (if (syntax-object? id)
1278 (syntax->datum id)
1279 id)
1280 value))
1281 e r w s mod))
1282 ((global-call)
1283 (expand-application
1284 (build-global-reference (source-annotation (car e))
1285 (if (syntax-object? value)
1286 (syntax-object-expression value)
1287 value)
1288 (if (syntax-object? value)
1289 (syntax-object-module value)
1290 mod))
1291 e r w s mod))
1292 ((constant) (build-data s (strip (source-wrap e w s mod) empty-wrap)))
1293 ((global) (build-global-reference s value mod))
1294 ((call) (expand-application (expand (car e) r w mod) e r w s mod))
1295 ((begin-form)
1296 (syntax-case e ()
1297 ((_ e1 e2 ...) (expand-sequence #'(e1 e2 ...) r w s mod))
1298 ((_)
1299 (if (include-deprecated-features)
1300 (begin
1301 (issue-deprecation-warning
1302 "Sequences of zero expressions are deprecated. Use *unspecified*.")
1303 (expand-void))
1304 (syntax-violation #f "sequence of zero expressions"
1305 (source-wrap e w s mod))))))
1306 ((local-syntax-form)
1307 (expand-local-syntax value e r w s mod expand-sequence))
1308 ((eval-when-form)
1309 (syntax-case e ()
1310 ((_ (x ...) e1 e2 ...)
1311 (let ((when-list (parse-when-list e #'(x ...))))
1312 (if (memq 'eval when-list)
1313 (expand-sequence #'(e1 e2 ...) r w s mod)
1314 (expand-void))))))
1315 ((define-form define-syntax-form define-syntax-parameter-form)
1316 (syntax-violation #f "definition in expression context, where definitions are not allowed,"
1317 (source-wrap form w s mod)))
1318 ((syntax)
1319 (syntax-violation #f "reference to pattern variable outside syntax form"
1320 (source-wrap e w s mod)))
1321 ((displaced-lexical)
1322 (syntax-violation #f "reference to identifier outside its scope"
1323 (source-wrap e w s mod)))
1324 (else (syntax-violation #f "unexpected syntax"
1325 (source-wrap e w s mod))))))
1326
1327 (define expand-application
1328 (lambda (x e r w s mod)
1329 (syntax-case e ()
1330 ((e0 e1 ...)
1331 (build-application s x
1332 (map (lambda (e) (expand e r w mod)) #'(e1 ...)))))))
1333
1334 ;; (What follows is my interpretation of what's going on here -- Andy)
1335 ;;
1336 ;; A macro takes an expression, a tree, the leaves of which are identifiers
1337 ;; and datums. Identifiers are symbols along with a wrap and a module. For
1338 ;; efficiency, subtrees that share wraps and modules may be grouped as one
1339 ;; syntax object.
1340 ;;
1341 ;; Going into the expansion, the expression is given an anti-mark, which
1342 ;; logically propagates to all leaves. Then, in the new expression returned
1343 ;; from the transfomer, if we see an expression with an anti-mark, we know it
1344 ;; pertains to the original expression; conversely, expressions without the
1345 ;; anti-mark are known to be introduced by the transformer.
1346 ;;
1347 ;; OK, good until now. We know this algorithm does lexical scoping
1348 ;; appropriately because it's widely known in the literature, and psyntax is
1349 ;; widely used. But what about modules? Here we're on our own. What we do is
1350 ;; to mark the module of expressions produced by a macro as pertaining to the
1351 ;; module that was current when the macro was defined -- that is, free
1352 ;; identifiers introduced by a macro are scoped in the macro's module, not in
1353 ;; the expansion's module. Seems to work well.
1354 ;;
1355 ;; The only wrinkle is when we want a macro to expand to code in another
1356 ;; module, as is the case for the r6rs `library' form -- the body expressions
1357 ;; should be scoped relative the new module, the one defined by the macro.
1358 ;; For that, use `(@@ mod-name body)'.
1359 ;;
1360 ;; Part of the macro output will be from the site of the macro use and part
1361 ;; from the macro definition. We allow source information from the macro use
1362 ;; to pass through, but we annotate the parts coming from the macro with the
1363 ;; source location information corresponding to the macro use. It would be
1364 ;; really nice if we could also annotate introduced expressions with the
1365 ;; locations corresponding to the macro definition, but that is not yet
1366 ;; possible.
1367 (define expand-macro
1368 (lambda (p e r w s rib mod)
1369 (define rebuild-macro-output
1370 (lambda (x m)
1371 (cond ((pair? x)
1372 (decorate-source
1373 (cons (rebuild-macro-output (car x) m)
1374 (rebuild-macro-output (cdr x) m))
1375 s))
1376 ((syntax-object? x)
1377 (let ((w (syntax-object-wrap x)))
1378 (let ((ms (wrap-marks w)) (ss (wrap-subst w)))
1379 (if (and (pair? ms) (eq? (car ms) the-anti-mark))
1380 ;; output is from original text
1381 (make-syntax-object
1382 (syntax-object-expression x)
1383 (make-wrap (cdr ms) (if rib (cons rib (cdr ss)) (cdr ss)))
1384 (syntax-object-module x))
1385 ;; output introduced by macro
1386 (make-syntax-object
1387 (decorate-source (syntax-object-expression x) s)
1388 (make-wrap (cons m ms)
1389 (if rib
1390 (cons rib (cons 'shift ss))
1391 (cons 'shift ss)))
1392 (syntax-object-module x))))))
1393
1394 ((vector? x)
1395 (let* ((n (vector-length x))
1396 (v (decorate-source (make-vector n) s)))
1397 (do ((i 0 (fx+ i 1)))
1398 ((fx= i n) v)
1399 (vector-set! v i
1400 (rebuild-macro-output (vector-ref x i) m)))))
1401 ((symbol? x)
1402 (syntax-violation #f "encountered raw symbol in macro output"
1403 (source-wrap e w (wrap-subst w) mod) x))
1404 (else (decorate-source x s)))))
1405 (with-fluids ((transformer-environment
1406 (lambda (k) (k e r w s rib mod))))
1407 (rebuild-macro-output (p (source-wrap e (anti-mark w) s mod))
1408 (new-mark)))))
1409
1410 (define expand-body
1411 ;; In processing the forms of the body, we create a new, empty wrap.
1412 ;; This wrap is augmented (destructively) each time we discover that
1413 ;; the next form is a definition. This is done:
1414 ;;
1415 ;; (1) to allow the first nondefinition form to be a call to
1416 ;; one of the defined ids even if the id previously denoted a
1417 ;; definition keyword or keyword for a macro expanding into a
1418 ;; definition;
1419 ;; (2) to prevent subsequent definition forms (but unfortunately
1420 ;; not earlier ones) and the first nondefinition form from
1421 ;; confusing one of the bound identifiers for an auxiliary
1422 ;; keyword; and
1423 ;; (3) so that we do not need to restart the expansion of the
1424 ;; first nondefinition form, which is problematic anyway
1425 ;; since it might be the first element of a begin that we
1426 ;; have just spliced into the body (meaning if we restarted,
1427 ;; we'd really need to restart with the begin or the macro
1428 ;; call that expanded into the begin, and we'd have to give
1429 ;; up allowing (begin <defn>+ <expr>+), which is itself
1430 ;; problematic since we don't know if a begin contains only
1431 ;; definitions until we've expanded it).
1432 ;;
1433 ;; Before processing the body, we also create a new environment
1434 ;; containing a placeholder for the bindings we will add later and
1435 ;; associate this environment with each form. In processing a
1436 ;; let-syntax or letrec-syntax, the associated environment may be
1437 ;; augmented with local keyword bindings, so the environment may
1438 ;; be different for different forms in the body. Once we have
1439 ;; gathered up all of the definitions, we evaluate the transformer
1440 ;; expressions and splice into r at the placeholder the new variable
1441 ;; and keyword bindings. This allows let-syntax or letrec-syntax
1442 ;; forms local to a portion or all of the body to shadow the
1443 ;; definition bindings.
1444 ;;
1445 ;; Subforms of a begin, let-syntax, or letrec-syntax are spliced
1446 ;; into the body.
1447 ;;
1448 ;; outer-form is fully wrapped w/source
1449 (lambda (body outer-form r w mod)
1450 (let* ((r (cons '("placeholder" . (placeholder)) r))
1451 (ribcage (make-empty-ribcage))
1452 (w (make-wrap (wrap-marks w) (cons ribcage (wrap-subst w)))))
1453 (let parse ((body (map (lambda (x) (cons r (wrap x w mod))) body))
1454 (ids '()) (labels '())
1455 (var-ids '()) (vars '()) (vals '()) (bindings '()))
1456 (if (null? body)
1457 (syntax-violation #f "no expressions in body" outer-form)
1458 (let ((e (cdar body)) (er (caar body)))
1459 (call-with-values
1460 (lambda () (syntax-type e er empty-wrap (source-annotation e) ribcage mod #f))
1461 (lambda (type value form e w s mod)
1462 (case type
1463 ((define-form)
1464 (let ((id (wrap value w mod)) (label (gen-label)))
1465 (let ((var (gen-var id)))
1466 (extend-ribcage! ribcage id label)
1467 (parse (cdr body)
1468 (cons id ids) (cons label labels)
1469 (cons id var-ids)
1470 (cons var vars) (cons (cons er (wrap e w mod)) vals)
1471 (cons (make-binding 'lexical var) bindings)))))
1472 ((define-syntax-form define-syntax-parameter-form)
1473 (let ((id (wrap value w mod))
1474 (label (gen-label))
1475 (trans-r (macros-only-env er)))
1476 (extend-ribcage! ribcage id label)
1477 ;; As required by R6RS, evaluate the right-hand-sides of internal
1478 ;; syntax definition forms and add their transformers to the
1479 ;; compile-time environment immediately, so that the newly-defined
1480 ;; keywords may be used in definition context within the same
1481 ;; lexical contour.
1482 (set-cdr! r (extend-env (list label)
1483 (list (make-binding 'macro
1484 (eval-local-transformer
1485 (expand e trans-r w mod)
1486 mod)))
1487 (cdr r)))
1488 (parse (cdr body) (cons id ids) labels var-ids vars vals bindings)))
1489 ((begin-form)
1490 (syntax-case e ()
1491 ((_ e1 ...)
1492 (parse (let f ((forms #'(e1 ...)))
1493 (if (null? forms)
1494 (cdr body)
1495 (cons (cons er (wrap (car forms) w mod))
1496 (f (cdr forms)))))
1497 ids labels var-ids vars vals bindings))))
1498 ((local-syntax-form)
1499 (expand-local-syntax value e er w s mod
1500 (lambda (forms er w s mod)
1501 (parse (let f ((forms forms))
1502 (if (null? forms)
1503 (cdr body)
1504 (cons (cons er (wrap (car forms) w mod))
1505 (f (cdr forms)))))
1506 ids labels var-ids vars vals bindings))))
1507 (else ; found a non-definition
1508 (if (null? ids)
1509 (build-sequence no-source
1510 (map (lambda (x)
1511 (expand (cdr x) (car x) empty-wrap mod))
1512 (cons (cons er (source-wrap e w s mod))
1513 (cdr body))))
1514 (begin
1515 (if (not (valid-bound-ids? ids))
1516 (syntax-violation
1517 #f "invalid or duplicate identifier in definition"
1518 outer-form))
1519 (set-cdr! r (extend-env labels bindings (cdr r)))
1520 (build-letrec no-source #t
1521 (reverse (map syntax->datum var-ids))
1522 (reverse vars)
1523 (map (lambda (x)
1524 (expand (cdr x) (car x) empty-wrap mod))
1525 (reverse vals))
1526 (build-sequence no-source
1527 (map (lambda (x)
1528 (expand (cdr x) (car x) empty-wrap mod))
1529 (cons (cons er (source-wrap e w s mod))
1530 (cdr body)))))))))))))))))
1531
1532 (define expand-local-syntax
1533 (lambda (rec? e r w s mod k)
1534 (syntax-case e ()
1535 ((_ ((id val) ...) e1 e2 ...)
1536 (let ((ids #'(id ...)))
1537 (if (not (valid-bound-ids? ids))
1538 (syntax-violation #f "duplicate bound keyword" e)
1539 (let ((labels (gen-labels ids)))
1540 (let ((new-w (make-binding-wrap ids labels w)))
1541 (k #'(e1 e2 ...)
1542 (extend-env
1543 labels
1544 (let ((w (if rec? new-w w))
1545 (trans-r (macros-only-env r)))
1546 (map (lambda (x)
1547 (make-binding 'macro
1548 (eval-local-transformer
1549 (expand x trans-r w mod)
1550 mod)))
1551 #'(val ...)))
1552 r)
1553 new-w
1554 s
1555 mod))))))
1556 (_ (syntax-violation #f "bad local syntax definition"
1557 (source-wrap e w s mod))))))
1558
1559 (define eval-local-transformer
1560 (lambda (expanded mod)
1561 (let ((p (local-eval-hook expanded mod)))
1562 (if (procedure? p)
1563 p
1564 (syntax-violation #f "nonprocedure transformer" p)))))
1565
1566 (define expand-void
1567 (lambda ()
1568 (build-void no-source)))
1569
1570 (define ellipsis?
1571 (lambda (x)
1572 (and (nonsymbol-id? x)
1573 (free-id=? x #'(... ...)))))
1574
1575 (define lambda-formals
1576 (lambda (orig-args)
1577 (define (req args rreq)
1578 (syntax-case args ()
1579 (()
1580 (check (reverse rreq) #f))
1581 ((a . b) (id? #'a)
1582 (req #'b (cons #'a rreq)))
1583 (r (id? #'r)
1584 (check (reverse rreq) #'r))
1585 (else
1586 (syntax-violation 'lambda "invalid argument list" orig-args args))))
1587 (define (check req rest)
1588 (cond
1589 ((distinct-bound-ids? (if rest (cons rest req) req))
1590 (values req #f rest #f))
1591 (else
1592 (syntax-violation 'lambda "duplicate identifier in argument list"
1593 orig-args))))
1594 (req orig-args '())))
1595
1596 (define expand-simple-lambda
1597 (lambda (e r w s mod req rest meta body)
1598 (let* ((ids (if rest (append req (list rest)) req))
1599 (vars (map gen-var ids))
1600 (labels (gen-labels ids)))
1601 (build-simple-lambda
1602 s
1603 (map syntax->datum req) (and rest (syntax->datum rest)) vars
1604 meta
1605 (expand-body body (source-wrap e w s mod)
1606 (extend-var-env labels vars r)
1607 (make-binding-wrap ids labels w)
1608 mod)))))
1609
1610 (define lambda*-formals
1611 (lambda (orig-args)
1612 (define (req args rreq)
1613 (syntax-case args ()
1614 (()
1615 (check (reverse rreq) '() #f '()))
1616 ((a . b) (id? #'a)
1617 (req #'b (cons #'a rreq)))
1618 ((a . b) (eq? (syntax->datum #'a) #:optional)
1619 (opt #'b (reverse rreq) '()))
1620 ((a . b) (eq? (syntax->datum #'a) #:key)
1621 (key #'b (reverse rreq) '() '()))
1622 ((a b) (eq? (syntax->datum #'a) #:rest)
1623 (rest #'b (reverse rreq) '() '()))
1624 (r (id? #'r)
1625 (rest #'r (reverse rreq) '() '()))
1626 (else
1627 (syntax-violation 'lambda* "invalid argument list" orig-args args))))
1628 (define (opt args req ropt)
1629 (syntax-case args ()
1630 (()
1631 (check req (reverse ropt) #f '()))
1632 ((a . b) (id? #'a)
1633 (opt #'b req (cons #'(a #f) ropt)))
1634 (((a init) . b) (id? #'a)
1635 (opt #'b req (cons #'(a init) ropt)))
1636 ((a . b) (eq? (syntax->datum #'a) #:key)
1637 (key #'b req (reverse ropt) '()))
1638 ((a b) (eq? (syntax->datum #'a) #:rest)
1639 (rest #'b req (reverse ropt) '()))
1640 (r (id? #'r)
1641 (rest #'r req (reverse ropt) '()))
1642 (else
1643 (syntax-violation 'lambda* "invalid optional argument list"
1644 orig-args args))))
1645 (define (key args req opt rkey)
1646 (syntax-case args ()
1647 (()
1648 (check req opt #f (cons #f (reverse rkey))))
1649 ((a . b) (id? #'a)
1650 (with-syntax ((k (symbol->keyword (syntax->datum #'a))))
1651 (key #'b req opt (cons #'(k a #f) rkey))))
1652 (((a init) . b) (id? #'a)
1653 (with-syntax ((k (symbol->keyword (syntax->datum #'a))))
1654 (key #'b req opt (cons #'(k a init) rkey))))
1655 (((a init k) . b) (and (id? #'a)
1656 (keyword? (syntax->datum #'k)))
1657 (key #'b req opt (cons #'(k a init) rkey)))
1658 ((aok) (eq? (syntax->datum #'aok) #:allow-other-keys)
1659 (check req opt #f (cons #t (reverse rkey))))
1660 ((aok a b) (and (eq? (syntax->datum #'aok) #:allow-other-keys)
1661 (eq? (syntax->datum #'a) #:rest))
1662 (rest #'b req opt (cons #t (reverse rkey))))
1663 ((aok . r) (and (eq? (syntax->datum #'aok) #:allow-other-keys)
1664 (id? #'r))
1665 (rest #'r req opt (cons #t (reverse rkey))))
1666 ((a b) (eq? (syntax->datum #'a) #:rest)
1667 (rest #'b req opt (cons #f (reverse rkey))))
1668 (r (id? #'r)
1669 (rest #'r req opt (cons #f (reverse rkey))))
1670 (else
1671 (syntax-violation 'lambda* "invalid keyword argument list"
1672 orig-args args))))
1673 (define (rest args req opt kw)
1674 (syntax-case args ()
1675 (r (id? #'r)
1676 (check req opt #'r kw))
1677 (else
1678 (syntax-violation 'lambda* "invalid rest argument"
1679 orig-args args))))
1680 (define (check req opt rest kw)
1681 (cond
1682 ((distinct-bound-ids?
1683 (append req (map car opt) (if rest (list rest) '())
1684 (if (pair? kw) (map cadr (cdr kw)) '())))
1685 (values req opt rest kw))
1686 (else
1687 (syntax-violation 'lambda* "duplicate identifier in argument list"
1688 orig-args))))
1689 (req orig-args '())))
1690
1691 (define expand-lambda-case
1692 (lambda (e r w s mod get-formals clauses)
1693 (define (parse-req req opt rest kw body)
1694 (let ((vars (map gen-var req))
1695 (labels (gen-labels req)))
1696 (let ((r* (extend-var-env labels vars r))
1697 (w* (make-binding-wrap req labels w)))
1698 (parse-opt (map syntax->datum req)
1699 opt rest kw body (reverse vars) r* w* '() '()))))
1700 (define (parse-opt req opt rest kw body vars r* w* out inits)
1701 (cond
1702 ((pair? opt)
1703 (syntax-case (car opt) ()
1704 ((id i)
1705 (let* ((v (gen-var #'id))
1706 (l (gen-labels (list v)))
1707 (r** (extend-var-env l (list v) r*))
1708 (w** (make-binding-wrap (list #'id) l w*)))
1709 (parse-opt req (cdr opt) rest kw body (cons v vars)
1710 r** w** (cons (syntax->datum #'id) out)
1711 (cons (expand #'i r* w* mod) inits))))))
1712 (rest
1713 (let* ((v (gen-var rest))
1714 (l (gen-labels (list v)))
1715 (r* (extend-var-env l (list v) r*))
1716 (w* (make-binding-wrap (list rest) l w*)))
1717 (parse-kw req (if (pair? out) (reverse out) #f)
1718 (syntax->datum rest)
1719 (if (pair? kw) (cdr kw) kw)
1720 body (cons v vars) r* w*
1721 (if (pair? kw) (car kw) #f)
1722 '() inits)))
1723 (else
1724 (parse-kw req (if (pair? out) (reverse out) #f) #f
1725 (if (pair? kw) (cdr kw) kw)
1726 body vars r* w*
1727 (if (pair? kw) (car kw) #f)
1728 '() inits))))
1729 (define (parse-kw req opt rest kw body vars r* w* aok out inits)
1730 (cond
1731 ((pair? kw)
1732 (syntax-case (car kw) ()
1733 ((k id i)
1734 (let* ((v (gen-var #'id))
1735 (l (gen-labels (list v)))
1736 (r** (extend-var-env l (list v) r*))
1737 (w** (make-binding-wrap (list #'id) l w*)))
1738 (parse-kw req opt rest (cdr kw) body (cons v vars)
1739 r** w** aok
1740 (cons (list (syntax->datum #'k)
1741 (syntax->datum #'id)
1742 v)
1743 out)
1744 (cons (expand #'i r* w* mod) inits))))))
1745 (else
1746 (parse-body req opt rest
1747 (if (or aok (pair? out)) (cons aok (reverse out)) #f)
1748 body (reverse vars) r* w* (reverse inits) '()))))
1749 (define (parse-body req opt rest kw body vars r* w* inits meta)
1750 (syntax-case body ()
1751 ((docstring e1 e2 ...) (string? (syntax->datum #'docstring))
1752 (parse-body req opt rest kw #'(e1 e2 ...) vars r* w* inits
1753 (append meta
1754 `((documentation
1755 . ,(syntax->datum #'docstring))))))
1756 ((#((k . v) ...) e1 e2 ...)
1757 (parse-body req opt rest kw #'(e1 e2 ...) vars r* w* inits
1758 (append meta (syntax->datum #'((k . v) ...)))))
1759 ((e1 e2 ...)
1760 (values meta req opt rest kw inits vars
1761 (expand-body #'(e1 e2 ...) (source-wrap e w s mod)
1762 r* w* mod)))))
1763
1764 (syntax-case clauses ()
1765 (() (values '() #f))
1766 (((args e1 e2 ...) (args* e1* e2* ...) ...)
1767 (call-with-values (lambda () (get-formals #'args))
1768 (lambda (req opt rest kw)
1769 (call-with-values (lambda ()
1770 (parse-req req opt rest kw #'(e1 e2 ...)))
1771 (lambda (meta req opt rest kw inits vars body)
1772 (call-with-values
1773 (lambda ()
1774 (expand-lambda-case e r w s mod get-formals
1775 #'((args* e1* e2* ...) ...)))
1776 (lambda (meta* else*)
1777 (values
1778 (append meta meta*)
1779 (build-lambda-case s req opt rest kw inits vars
1780 body else*))))))))))))
1781
1782 ;; data
1783
1784 ;; strips syntax-objects down to top-wrap
1785 ;;
1786 ;; since only the head of a list is annotated by the reader, not each pair
1787 ;; in the spine, we also check for pairs whose cars are annotated in case
1788 ;; we've been passed the cdr of an annotated list
1789
1790 (define strip
1791 (lambda (x w)
1792 (if (top-marked? w)
1793 x
1794 (let f ((x x))
1795 (cond
1796 ((syntax-object? x)
1797 (strip (syntax-object-expression x) (syntax-object-wrap x)))
1798 ((pair? x)
1799 (let ((a (f (car x))) (d (f (cdr x))))
1800 (if (and (eq? a (car x)) (eq? d (cdr x)))
1801 x
1802 (cons a d))))
1803 ((vector? x)
1804 (let ((old (vector->list x)))
1805 (let ((new (map f old)))
1806 ;; inlined and-map with two args
1807 (let lp ((l1 old) (l2 new))
1808 (if (null? l1)
1809 x
1810 (if (eq? (car l1) (car l2))
1811 (lp (cdr l1) (cdr l2))
1812 (list->vector new)))))))
1813 (else x))))))
1814
1815 ;; lexical variables
1816
1817 (define gen-var
1818 (lambda (id)
1819 (let ((id (if (syntax-object? id) (syntax-object-expression id) id)))
1820 (build-lexical-var no-source id))))
1821
1822 ;; appears to return a reversed list
1823 (define lambda-var-list
1824 (lambda (vars)
1825 (let lvl ((vars vars) (ls '()) (w empty-wrap))
1826 (cond
1827 ((pair? vars) (lvl (cdr vars) (cons (wrap (car vars) w #f) ls) w))
1828 ((id? vars) (cons (wrap vars w #f) ls))
1829 ((null? vars) ls)
1830 ((syntax-object? vars)
1831 (lvl (syntax-object-expression vars)
1832 ls
1833 (join-wraps w (syntax-object-wrap vars))))
1834 ;; include anything else to be caught by subsequent error
1835 ;; checking
1836 (else (cons vars ls))))))
1837
1838 ;; core transformers
1839
1840 (global-extend 'local-syntax 'letrec-syntax #t)
1841 (global-extend 'local-syntax 'let-syntax #f)
1842
1843 (global-extend 'core 'syntax-parameterize
1844 (lambda (e r w s mod)
1845 (syntax-case e ()
1846 ((_ ((var val) ...) e1 e2 ...)
1847 (valid-bound-ids? #'(var ...))
1848 (let ((names (map (lambda (x) (id-var-name x w)) #'(var ...))))
1849 (for-each
1850 (lambda (id n)
1851 (case (binding-type (lookup n r mod))
1852 ((displaced-lexical)
1853 (syntax-violation 'syntax-parameterize
1854 "identifier out of context"
1855 e
1856 (source-wrap id w s mod)))))
1857 #'(var ...)
1858 names)
1859 (expand-body
1860 #'(e1 e2 ...)
1861 (source-wrap e w s mod)
1862 (extend-env
1863 names
1864 (let ((trans-r (macros-only-env r)))
1865 (map (lambda (x)
1866 (make-binding 'macro
1867 (eval-local-transformer (expand x trans-r w mod)
1868 mod)))
1869 #'(val ...)))
1870 r)
1871 w
1872 mod)))
1873 (_ (syntax-violation 'syntax-parameterize "bad syntax"
1874 (source-wrap e w s mod))))))
1875
1876 (global-extend 'core 'quote
1877 (lambda (e r w s mod)
1878 (syntax-case e ()
1879 ((_ e) (build-data s (strip #'e w)))
1880 (_ (syntax-violation 'quote "bad syntax"
1881 (source-wrap e w s mod))))))
1882
1883 (global-extend 'core 'syntax
1884 (let ()
1885 (define gen-syntax
1886 (lambda (src e r maps ellipsis? mod)
1887 (if (id? e)
1888 (let ((label (id-var-name e empty-wrap)))
1889 ;; Mod does not matter, we are looking to see if
1890 ;; the id is lexical syntax.
1891 (let ((b (lookup label r mod)))
1892 (if (eq? (binding-type b) 'syntax)
1893 (call-with-values
1894 (lambda ()
1895 (let ((var.lev (binding-value b)))
1896 (gen-ref src (car var.lev) (cdr var.lev) maps)))
1897 (lambda (var maps) (values `(ref ,var) maps)))
1898 (if (ellipsis? e)
1899 (syntax-violation 'syntax "misplaced ellipsis" src)
1900 (values `(quote ,e) maps)))))
1901 (syntax-case e ()
1902 ((dots e)
1903 (ellipsis? #'dots)
1904 (gen-syntax src #'e r maps (lambda (x) #f) mod))
1905 ((x dots . y)
1906 ;; this could be about a dozen lines of code, except that we
1907 ;; choose to handle #'(x ... ...) forms
1908 (ellipsis? #'dots)
1909 (let f ((y #'y)
1910 (k (lambda (maps)
1911 (call-with-values
1912 (lambda ()
1913 (gen-syntax src #'x r
1914 (cons '() maps) ellipsis? mod))
1915 (lambda (x maps)
1916 (if (null? (car maps))
1917 (syntax-violation 'syntax "extra ellipsis"
1918 src)
1919 (values (gen-map x (car maps))
1920 (cdr maps))))))))
1921 (syntax-case y ()
1922 ((dots . y)
1923 (ellipsis? #'dots)
1924 (f #'y
1925 (lambda (maps)
1926 (call-with-values
1927 (lambda () (k (cons '() maps)))
1928 (lambda (x maps)
1929 (if (null? (car maps))
1930 (syntax-violation 'syntax "extra ellipsis" src)
1931 (values (gen-mappend x (car maps))
1932 (cdr maps))))))))
1933 (_ (call-with-values
1934 (lambda () (gen-syntax src y r maps ellipsis? mod))
1935 (lambda (y maps)
1936 (call-with-values
1937 (lambda () (k maps))
1938 (lambda (x maps)
1939 (values (gen-append x y) maps)))))))))
1940 ((x . y)
1941 (call-with-values
1942 (lambda () (gen-syntax src #'x r maps ellipsis? mod))
1943 (lambda (x maps)
1944 (call-with-values
1945 (lambda () (gen-syntax src #'y r maps ellipsis? mod))
1946 (lambda (y maps) (values (gen-cons x y) maps))))))
1947 (#(e1 e2 ...)
1948 (call-with-values
1949 (lambda ()
1950 (gen-syntax src #'(e1 e2 ...) r maps ellipsis? mod))
1951 (lambda (e maps) (values (gen-vector e) maps))))
1952 (_ (values `(quote ,e) maps))))))
1953
1954 (define gen-ref
1955 (lambda (src var level maps)
1956 (if (fx= level 0)
1957 (values var maps)
1958 (if (null? maps)
1959 (syntax-violation 'syntax "missing ellipsis" src)
1960 (call-with-values
1961 (lambda () (gen-ref src var (fx- level 1) (cdr maps)))
1962 (lambda (outer-var outer-maps)
1963 (let ((b (assq outer-var (car maps))))
1964 (if b
1965 (values (cdr b) maps)
1966 (let ((inner-var (gen-var 'tmp)))
1967 (values inner-var
1968 (cons (cons (cons outer-var inner-var)
1969 (car maps))
1970 outer-maps)))))))))))
1971
1972 (define gen-mappend
1973 (lambda (e map-env)
1974 `(apply (primitive append) ,(gen-map e map-env))))
1975
1976 (define gen-map
1977 (lambda (e map-env)
1978 (let ((formals (map cdr map-env))
1979 (actuals (map (lambda (x) `(ref ,(car x))) map-env)))
1980 (cond
1981 ((eq? (car e) 'ref)
1982 ;; identity map equivalence:
1983 ;; (map (lambda (x) x) y) == y
1984 (car actuals))
1985 ((and-map
1986 (lambda (x) (and (eq? (car x) 'ref) (memq (cadr x) formals)))
1987 (cdr e))
1988 ;; eta map equivalence:
1989 ;; (map (lambda (x ...) (f x ...)) y ...) == (map f y ...)
1990 `(map (primitive ,(car e))
1991 ,@(map (let ((r (map cons formals actuals)))
1992 (lambda (x) (cdr (assq (cadr x) r))))
1993 (cdr e))))
1994 (else `(map (lambda ,formals ,e) ,@actuals))))))
1995
1996 (define gen-cons
1997 (lambda (x y)
1998 (case (car y)
1999 ((quote)
2000 (if (eq? (car x) 'quote)
2001 `(quote (,(cadr x) . ,(cadr y)))
2002 (if (eq? (cadr y) '())
2003 `(list ,x)
2004 `(cons ,x ,y))))
2005 ((list) `(list ,x ,@(cdr y)))
2006 (else `(cons ,x ,y)))))
2007
2008 (define gen-append
2009 (lambda (x y)
2010 (if (equal? y '(quote ()))
2011 x
2012 `(append ,x ,y))))
2013
2014 (define gen-vector
2015 (lambda (x)
2016 (cond
2017 ((eq? (car x) 'list) `(vector ,@(cdr x)))
2018 ((eq? (car x) 'quote) `(quote #(,@(cadr x))))
2019 (else `(list->vector ,x)))))
2020
2021
2022 (define regen
2023 (lambda (x)
2024 (case (car x)
2025 ((ref) (build-lexical-reference 'value no-source (cadr x) (cadr x)))
2026 ((primitive) (build-primref no-source (cadr x)))
2027 ((quote) (build-data no-source (cadr x)))
2028 ((lambda)
2029 (if (list? (cadr x))
2030 (build-simple-lambda no-source (cadr x) #f (cadr x) '() (regen (caddr x)))
2031 (error "how did we get here" x)))
2032 (else (build-application no-source
2033 (build-primref no-source (car x))
2034 (map regen (cdr x)))))))
2035
2036 (lambda (e r w s mod)
2037 (let ((e (source-wrap e w s mod)))
2038 (syntax-case e ()
2039 ((_ x)
2040 (call-with-values
2041 (lambda () (gen-syntax e #'x r '() ellipsis? mod))
2042 (lambda (e maps) (regen e))))
2043 (_ (syntax-violation 'syntax "bad `syntax' form" e)))))))
2044
2045 (global-extend 'core 'lambda
2046 (lambda (e r w s mod)
2047 (syntax-case e ()
2048 ((_ args e1 e2 ...)
2049 (call-with-values (lambda () (lambda-formals #'args))
2050 (lambda (req opt rest kw)
2051 (let lp ((body #'(e1 e2 ...)) (meta '()))
2052 (syntax-case body ()
2053 ((docstring e1 e2 ...) (string? (syntax->datum #'docstring))
2054 (lp #'(e1 e2 ...)
2055 (append meta
2056 `((documentation
2057 . ,(syntax->datum #'docstring))))))
2058 ((#((k . v) ...) e1 e2 ...)
2059 (lp #'(e1 e2 ...)
2060 (append meta (syntax->datum #'((k . v) ...)))))
2061 (_ (expand-simple-lambda e r w s mod req rest meta body)))))))
2062 (_ (syntax-violation 'lambda "bad lambda" e)))))
2063
2064 (global-extend 'core 'lambda*
2065 (lambda (e r w s mod)
2066 (syntax-case e ()
2067 ((_ args e1 e2 ...)
2068 (call-with-values
2069 (lambda ()
2070 (expand-lambda-case e r w s mod
2071 lambda*-formals #'((args e1 e2 ...))))
2072 (lambda (meta lcase)
2073 (build-case-lambda s meta lcase))))
2074 (_ (syntax-violation 'lambda "bad lambda*" e)))))
2075
2076 (global-extend 'core 'case-lambda
2077 (lambda (e r w s mod)
2078 (define (build-it meta clauses)
2079 (call-with-values
2080 (lambda ()
2081 (expand-lambda-case e r w s mod
2082 lambda-formals
2083 clauses))
2084 (lambda (meta* lcase)
2085 (build-case-lambda s (append meta meta*) lcase))))
2086 (syntax-case e ()
2087 ((_ (args e1 e2 ...) ...)
2088 (build-it '() #'((args e1 e2 ...) ...)))
2089 ((_ docstring (args e1 e2 ...) ...)
2090 (string? (syntax->datum #'docstring))
2091 (build-it `((documentation
2092 . ,(syntax->datum #'docstring)))
2093 #'((args e1 e2 ...) ...)))
2094 (_ (syntax-violation 'case-lambda "bad case-lambda" e)))))
2095
2096 (global-extend 'core 'case-lambda*
2097 (lambda (e r w s mod)
2098 (define (build-it meta clauses)
2099 (call-with-values
2100 (lambda ()
2101 (expand-lambda-case e r w s mod
2102 lambda*-formals
2103 clauses))
2104 (lambda (meta* lcase)
2105 (build-case-lambda s (append meta meta*) lcase))))
2106 (syntax-case e ()
2107 ((_ (args e1 e2 ...) ...)
2108 (build-it '() #'((args e1 e2 ...) ...)))
2109 ((_ docstring (args e1 e2 ...) ...)
2110 (string? (syntax->datum #'docstring))
2111 (build-it `((documentation
2112 . ,(syntax->datum #'docstring)))
2113 #'((args e1 e2 ...) ...)))
2114 (_ (syntax-violation 'case-lambda "bad case-lambda*" e)))))
2115
2116 (global-extend 'core 'let
2117 (let ()
2118 (define (expand-let e r w s mod constructor ids vals exps)
2119 (if (not (valid-bound-ids? ids))
2120 (syntax-violation 'let "duplicate bound variable" e)
2121 (let ((labels (gen-labels ids))
2122 (new-vars (map gen-var ids)))
2123 (let ((nw (make-binding-wrap ids labels w))
2124 (nr (extend-var-env labels new-vars r)))
2125 (constructor s
2126 (map syntax->datum ids)
2127 new-vars
2128 (map (lambda (x) (expand x r w mod)) vals)
2129 (expand-body exps (source-wrap e nw s mod)
2130 nr nw mod))))))
2131 (lambda (e r w s mod)
2132 (syntax-case e ()
2133 ((_ ((id val) ...) e1 e2 ...)
2134 (and-map id? #'(id ...))
2135 (expand-let e r w s mod
2136 build-let
2137 #'(id ...)
2138 #'(val ...)
2139 #'(e1 e2 ...)))
2140 ((_ f ((id val) ...) e1 e2 ...)
2141 (and (id? #'f) (and-map id? #'(id ...)))
2142 (expand-let e r w s mod
2143 build-named-let
2144 #'(f id ...)
2145 #'(val ...)
2146 #'(e1 e2 ...)))
2147 (_ (syntax-violation 'let "bad let" (source-wrap e w s mod)))))))
2148
2149
2150 (global-extend 'core 'letrec
2151 (lambda (e r w s mod)
2152 (syntax-case e ()
2153 ((_ ((id val) ...) e1 e2 ...)
2154 (and-map id? #'(id ...))
2155 (let ((ids #'(id ...)))
2156 (if (not (valid-bound-ids? ids))
2157 (syntax-violation 'letrec "duplicate bound variable" e)
2158 (let ((labels (gen-labels ids))
2159 (new-vars (map gen-var ids)))
2160 (let ((w (make-binding-wrap ids labels w))
2161 (r (extend-var-env labels new-vars r)))
2162 (build-letrec s #f
2163 (map syntax->datum ids)
2164 new-vars
2165 (map (lambda (x) (expand x r w mod)) #'(val ...))
2166 (expand-body #'(e1 e2 ...)
2167 (source-wrap e w s mod) r w mod)))))))
2168 (_ (syntax-violation 'letrec "bad letrec" (source-wrap e w s mod))))))
2169
2170
2171 (global-extend 'core 'letrec*
2172 (lambda (e r w s mod)
2173 (syntax-case e ()
2174 ((_ ((id val) ...) e1 e2 ...)
2175 (and-map id? #'(id ...))
2176 (let ((ids #'(id ...)))
2177 (if (not (valid-bound-ids? ids))
2178 (syntax-violation 'letrec* "duplicate bound variable" e)
2179 (let ((labels (gen-labels ids))
2180 (new-vars (map gen-var ids)))
2181 (let ((w (make-binding-wrap ids labels w))
2182 (r (extend-var-env labels new-vars r)))
2183 (build-letrec s #t
2184 (map syntax->datum ids)
2185 new-vars
2186 (map (lambda (x) (expand x r w mod)) #'(val ...))
2187 (expand-body #'(e1 e2 ...)
2188 (source-wrap e w s mod) r w mod)))))))
2189 (_ (syntax-violation 'letrec* "bad letrec*" (source-wrap e w s mod))))))
2190
2191
2192 (global-extend 'core 'set!
2193 (lambda (e r w s mod)
2194 (syntax-case e ()
2195 ((_ id val)
2196 (id? #'id)
2197 (let ((n (id-var-name #'id w))
2198 ;; Lookup id in its module
2199 (id-mod (if (syntax-object? #'id)
2200 (syntax-object-module #'id)
2201 mod)))
2202 (let ((b (lookup n r id-mod)))
2203 (case (binding-type b)
2204 ((lexical)
2205 (build-lexical-assignment s
2206 (syntax->datum #'id)
2207 (binding-value b)
2208 (expand #'val r w mod)))
2209 ((global)
2210 (build-global-assignment s n (expand #'val r w mod) id-mod))
2211 ((macro)
2212 (let ((p (binding-value b)))
2213 (if (procedure-property p 'variable-transformer)
2214 ;; As syntax-type does, call expand-macro with
2215 ;; the mod of the expression. Hmm.
2216 (expand (expand-macro p e r w s #f mod) r empty-wrap mod)
2217 (syntax-violation 'set! "not a variable transformer"
2218 (wrap e w mod)
2219 (wrap #'id w id-mod)))))
2220 ((displaced-lexical)
2221 (syntax-violation 'set! "identifier out of context"
2222 (wrap #'id w mod)))
2223 (else (syntax-violation 'set! "bad set!"
2224 (source-wrap e w s mod)))))))
2225 ((_ (head tail ...) val)
2226 (call-with-values
2227 (lambda () (syntax-type #'head r empty-wrap no-source #f mod #t))
2228 (lambda (type value formform ee ww ss modmod)
2229 (case type
2230 ((module-ref)
2231 (let ((val (expand #'val r w mod)))
2232 (call-with-values (lambda () (value #'(head tail ...) r w))
2233 (lambda (e r w s* mod)
2234 (syntax-case e ()
2235 (e (id? #'e)
2236 (build-global-assignment s (syntax->datum #'e)
2237 val mod)))))))
2238 (else
2239 (build-application s
2240 (expand #'(setter head) r w mod)
2241 (map (lambda (e) (expand e r w mod))
2242 #'(tail ... val))))))))
2243 (_ (syntax-violation 'set! "bad set!" (source-wrap e w s mod))))))
2244
2245 (global-extend 'module-ref '@
2246 (lambda (e r w)
2247 (syntax-case e ()
2248 ((_ (mod ...) id)
2249 (and (and-map id? #'(mod ...)) (id? #'id))
2250 ;; Strip the wrap from the identifier and return top-wrap
2251 ;; so that the identifier will not be captured by lexicals.
2252 (values (syntax->datum #'id) r top-wrap #f
2253 (syntax->datum
2254 #'(public mod ...)))))))
2255
2256 (global-extend 'module-ref '@@
2257 (lambda (e r w)
2258 (define remodulate
2259 (lambda (x mod)
2260 (cond ((pair? x)
2261 (cons (remodulate (car x) mod)
2262 (remodulate (cdr x) mod)))
2263 ((syntax-object? x)
2264 (make-syntax-object
2265 (remodulate (syntax-object-expression x) mod)
2266 (syntax-object-wrap x)
2267 ;; hither the remodulation
2268 mod))
2269 ((vector? x)
2270 (let* ((n (vector-length x)) (v (make-vector n)))
2271 (do ((i 0 (fx+ i 1)))
2272 ((fx= i n) v)
2273 (vector-set! v i (remodulate (vector-ref x i) mod)))))
2274 (else x))))
2275 (syntax-case e (@@)
2276 ((_ (mod ...) id)
2277 (and (and-map id? #'(mod ...)) (id? #'id))
2278 ;; Strip the wrap from the identifier and return top-wrap
2279 ;; so that the identifier will not be captured by lexicals.
2280 (values (syntax->datum #'id) r top-wrap #f
2281 (syntax->datum
2282 #'(private mod ...))))
2283 ((_ @@ (mod ...) exp)
2284 (and-map id? #'(mod ...))
2285 ;; This is a special syntax used to support R6RS library forms.
2286 ;; Unlike the syntax above, the last item is not restricted to
2287 ;; be a single identifier, and the syntax objects are kept
2288 ;; intact, with only their module changed.
2289 (let ((mod (syntax->datum #'(private mod ...))))
2290 (values (remodulate #'exp mod)
2291 r w (source-annotation #'exp)
2292 mod))))))
2293
2294 (global-extend 'core 'if
2295 (lambda (e r w s mod)
2296 (syntax-case e ()
2297 ((_ test then)
2298 (build-conditional
2299 s
2300 (expand #'test r w mod)
2301 (expand #'then r w mod)
2302 (build-void no-source)))
2303 ((_ test then else)
2304 (build-conditional
2305 s
2306 (expand #'test r w mod)
2307 (expand #'then r w mod)
2308 (expand #'else r w mod))))))
2309
2310 (global-extend 'core 'with-fluids
2311 (lambda (e r w s mod)
2312 (syntax-case e ()
2313 ((_ ((fluid val) ...) b b* ...)
2314 (build-dynlet
2315 s
2316 (map (lambda (x) (expand x r w mod)) #'(fluid ...))
2317 (map (lambda (x) (expand x r w mod)) #'(val ...))
2318 (expand-body #'(b b* ...)
2319 (source-wrap e w s mod) r w mod))))))
2320
2321 (global-extend 'begin 'begin '())
2322
2323 (global-extend 'define 'define '())
2324
2325 (global-extend 'define-syntax 'define-syntax '())
2326 (global-extend 'define-syntax-parameter 'define-syntax-parameter '())
2327
2328 (global-extend 'eval-when 'eval-when '())
2329
2330 (global-extend 'core 'syntax-case
2331 (let ()
2332 (define convert-pattern
2333 ;; accepts pattern & keys
2334 ;; returns $sc-dispatch pattern & ids
2335 (lambda (pattern keys)
2336 (define cvt*
2337 (lambda (p* n ids)
2338 (if (not (pair? p*))
2339 (cvt p* n ids)
2340 (call-with-values
2341 (lambda () (cvt* (cdr p*) n ids))
2342 (lambda (y ids)
2343 (call-with-values
2344 (lambda () (cvt (car p*) n ids))
2345 (lambda (x ids)
2346 (values (cons x y) ids))))))))
2347
2348 (define (v-reverse x)
2349 (let loop ((r '()) (x x))
2350 (if (not (pair? x))
2351 (values r x)
2352 (loop (cons (car x) r) (cdr x)))))
2353
2354 (define cvt
2355 (lambda (p n ids)
2356 (if (id? p)
2357 (cond
2358 ((bound-id-member? p keys)
2359 (values (vector 'free-id p) ids))
2360 ((free-id=? p #'_)
2361 (values '_ ids))
2362 (else
2363 (values 'any (cons (cons p n) ids))))
2364 (syntax-case p ()
2365 ((x dots)
2366 (ellipsis? (syntax dots))
2367 (call-with-values
2368 (lambda () (cvt (syntax x) (fx+ n 1) ids))
2369 (lambda (p ids)
2370 (values (if (eq? p 'any) 'each-any (vector 'each p))
2371 ids))))
2372 ((x dots . ys)
2373 (ellipsis? (syntax dots))
2374 (call-with-values
2375 (lambda () (cvt* (syntax ys) n ids))
2376 (lambda (ys ids)
2377 (call-with-values
2378 (lambda () (cvt (syntax x) (+ n 1) ids))
2379 (lambda (x ids)
2380 (call-with-values
2381 (lambda () (v-reverse ys))
2382 (lambda (ys e)
2383 (values `#(each+ ,x ,ys ,e)
2384 ids))))))))
2385 ((x . y)
2386 (call-with-values
2387 (lambda () (cvt (syntax y) n ids))
2388 (lambda (y ids)
2389 (call-with-values
2390 (lambda () (cvt (syntax x) n ids))
2391 (lambda (x ids)
2392 (values (cons x y) ids))))))
2393 (() (values '() ids))
2394 (#(x ...)
2395 (call-with-values
2396 (lambda () (cvt (syntax (x ...)) n ids))
2397 (lambda (p ids) (values (vector 'vector p) ids))))
2398 (x (values (vector 'atom (strip p empty-wrap)) ids))))))
2399 (cvt pattern 0 '())))
2400
2401 (define build-dispatch-call
2402 (lambda (pvars exp y r mod)
2403 (let ((ids (map car pvars)) (levels (map cdr pvars)))
2404 (let ((labels (gen-labels ids)) (new-vars (map gen-var ids)))
2405 (build-application no-source
2406 (build-primref no-source 'apply)
2407 (list (build-simple-lambda no-source (map syntax->datum ids) #f new-vars '()
2408 (expand exp
2409 (extend-env
2410 labels
2411 (map (lambda (var level)
2412 (make-binding 'syntax `(,var . ,level)))
2413 new-vars
2414 (map cdr pvars))
2415 r)
2416 (make-binding-wrap ids labels empty-wrap)
2417 mod))
2418 y))))))
2419
2420 (define gen-clause
2421 (lambda (x keys clauses r pat fender exp mod)
2422 (call-with-values
2423 (lambda () (convert-pattern pat keys))
2424 (lambda (p pvars)
2425 (cond
2426 ((not (distinct-bound-ids? (map car pvars)))
2427 (syntax-violation 'syntax-case "duplicate pattern variable" pat))
2428 ((not (and-map (lambda (x) (not (ellipsis? (car x)))) pvars))
2429 (syntax-violation 'syntax-case "misplaced ellipsis" pat))
2430 (else
2431 (let ((y (gen-var 'tmp)))
2432 ;; fat finger binding and references to temp variable y
2433 (build-application no-source
2434 (build-simple-lambda no-source (list 'tmp) #f (list y) '()
2435 (let ((y (build-lexical-reference 'value no-source
2436 'tmp y)))
2437 (build-conditional no-source
2438 (syntax-case fender ()
2439 (#t y)
2440 (_ (build-conditional no-source
2441 y
2442 (build-dispatch-call pvars fender y r mod)
2443 (build-data no-source #f))))
2444 (build-dispatch-call pvars exp y r mod)
2445 (gen-syntax-case x keys clauses r mod))))
2446 (list (if (eq? p 'any)
2447 (build-application no-source
2448 (build-primref no-source 'list)
2449 (list x))
2450 (build-application no-source
2451 (build-primref no-source '$sc-dispatch)
2452 (list x (build-data no-source p)))))))))))))
2453
2454 (define gen-syntax-case
2455 (lambda (x keys clauses r mod)
2456 (if (null? clauses)
2457 (build-application no-source
2458 (build-primref no-source 'syntax-violation)
2459 (list (build-data no-source #f)
2460 (build-data no-source
2461 "source expression failed to match any pattern")
2462 x))
2463 (syntax-case (car clauses) ()
2464 ((pat exp)
2465 (if (and (id? #'pat)
2466 (and-map (lambda (x) (not (free-id=? #'pat x)))
2467 (cons #'(... ...) keys)))
2468 (if (free-id=? #'pat #'_)
2469 (expand #'exp r empty-wrap mod)
2470 (let ((labels (list (gen-label)))
2471 (var (gen-var #'pat)))
2472 (build-application no-source
2473 (build-simple-lambda
2474 no-source (list (syntax->datum #'pat)) #f (list var)
2475 '()
2476 (expand #'exp
2477 (extend-env labels
2478 (list (make-binding 'syntax `(,var . 0)))
2479 r)
2480 (make-binding-wrap #'(pat)
2481 labels empty-wrap)
2482 mod))
2483 (list x))))
2484 (gen-clause x keys (cdr clauses) r
2485 #'pat #t #'exp mod)))
2486 ((pat fender exp)
2487 (gen-clause x keys (cdr clauses) r
2488 #'pat #'fender #'exp mod))
2489 (_ (syntax-violation 'syntax-case "invalid clause"
2490 (car clauses)))))))
2491
2492 (lambda (e r w s mod)
2493 (let ((e (source-wrap e w s mod)))
2494 (syntax-case e ()
2495 ((_ val (key ...) m ...)
2496 (if (and-map (lambda (x) (and (id? x) (not (ellipsis? x))))
2497 #'(key ...))
2498 (let ((x (gen-var 'tmp)))
2499 ;; fat finger binding and references to temp variable x
2500 (build-application s
2501 (build-simple-lambda no-source (list 'tmp) #f (list x) '()
2502 (gen-syntax-case (build-lexical-reference 'value no-source
2503 'tmp x)
2504 #'(key ...) #'(m ...)
2505 r
2506 mod))
2507 (list (expand #'val r empty-wrap mod))))
2508 (syntax-violation 'syntax-case "invalid literals list" e))))))))
2509
2510 ;; The portable macroexpand seeds expand-top's mode m with 'e (for
2511 ;; evaluating) and esew (which stands for "eval syntax expanders
2512 ;; when") with '(eval). In Chez Scheme, m is set to 'c instead of e
2513 ;; if we are compiling a file, and esew is set to
2514 ;; (eval-syntactic-expanders-when), which defaults to the list
2515 ;; '(compile load eval). This means that, by default, top-level
2516 ;; syntactic definitions are evaluated immediately after they are
2517 ;; expanded, and the expanded definitions are also residualized into
2518 ;; the object file if we are compiling a file.
2519 (set! macroexpand
2520 (lambda* (x #:optional (m 'e) (esew '(eval)))
2521 (expand-top-sequence (list x) null-env top-wrap #f m esew
2522 (cons 'hygiene (module-name (current-module))))))
2523
2524 (set! identifier?
2525 (lambda (x)
2526 (nonsymbol-id? x)))
2527
2528 (set! datum->syntax
2529 (lambda (id datum)
2530 (make-syntax-object datum (syntax-object-wrap id)
2531 (syntax-object-module id))))
2532
2533 (set! syntax->datum
2534 ;; accepts any object, since syntax objects may consist partially
2535 ;; or entirely of unwrapped, nonsymbolic data
2536 (lambda (x)
2537 (strip x empty-wrap)))
2538
2539 (set! syntax-source
2540 (lambda (x) (source-annotation x)))
2541
2542 (set! generate-temporaries
2543 (lambda (ls)
2544 (arg-check list? ls 'generate-temporaries)
2545 (let ((mod (cons 'hygiene (module-name (current-module)))))
2546 (map (lambda (x) (wrap (gensym "t-") top-wrap mod)) ls))))
2547
2548 (set! free-identifier=?
2549 (lambda (x y)
2550 (arg-check nonsymbol-id? x 'free-identifier=?)
2551 (arg-check nonsymbol-id? y 'free-identifier=?)
2552 (free-id=? x y)))
2553
2554 (set! bound-identifier=?
2555 (lambda (x y)
2556 (arg-check nonsymbol-id? x 'bound-identifier=?)
2557 (arg-check nonsymbol-id? y 'bound-identifier=?)
2558 (bound-id=? x y)))
2559
2560 (set! syntax-violation
2561 (lambda* (who message form #:optional subform)
2562 (arg-check (lambda (x) (or (not x) (string? x) (symbol? x)))
2563 who 'syntax-violation)
2564 (arg-check string? message 'syntax-violation)
2565 (throw 'syntax-error who message
2566 (or (source-annotation subform)
2567 (source-annotation form))
2568 (strip form empty-wrap)
2569 (and subform (strip subform empty-wrap)))))
2570
2571 (let ()
2572 (define (syntax-module id)
2573 (arg-check nonsymbol-id? id 'syntax-module)
2574 (cdr (syntax-object-module id)))
2575
2576 (define (syntax-local-binding id)
2577 (arg-check nonsymbol-id? id 'syntax-local-binding)
2578 (with-transformer-environment
2579 (lambda (e r w s rib mod)
2580 (define (strip-anti-mark w)
2581 (let ((ms (wrap-marks w)) (s (wrap-subst w)))
2582 (if (and (pair? ms) (eq? (car ms) the-anti-mark))
2583 ;; output is from original text
2584 (make-wrap (cdr ms) (if rib (cons rib (cdr s)) (cdr s)))
2585 ;; output introduced by macro
2586 (make-wrap ms (if rib (cons rib s) s)))))
2587 (call-with-values (lambda ()
2588 (resolve-identifier
2589 (syntax-object-expression id)
2590 (strip-anti-mark (syntax-object-wrap id))
2591 r
2592 (syntax-object-module id)))
2593 (lambda (type value mod)
2594 (case type
2595 ((lexical) (values 'lexical value))
2596 ((macro) (values 'macro value))
2597 ((syntax) (values 'pattern-variable value))
2598 ((displaced-lexical) (values 'displaced-lexical #f))
2599 ((global) (values 'global (cons value (cdr mod))))
2600 (else (values 'other #f))))))))
2601
2602 (define (syntax-locally-bound-identifiers id)
2603 (arg-check nonsymbol-id? id 'syntax-locally-bound-identifiers)
2604 (locally-bound-identifiers (syntax-object-wrap id)
2605 (syntax-object-module id)))
2606
2607 ;; Using define! instead of set! to avoid warnings at
2608 ;; compile-time, after the variables are stolen away into (system
2609 ;; syntax). See the end of boot-9.scm.
2610 ;;
2611 (define! 'syntax-module syntax-module)
2612 (define! 'syntax-local-binding syntax-local-binding)
2613 (define! 'syntax-locally-bound-identifiers syntax-locally-bound-identifiers))
2614
2615 ;; $sc-dispatch expects an expression and a pattern. If the expression
2616 ;; matches the pattern a list of the matching expressions for each
2617 ;; "any" is returned. Otherwise, #f is returned. (This use of #f will
2618 ;; not work on r4rs implementations that violate the ieee requirement
2619 ;; that #f and () be distinct.)
2620
2621 ;; The expression is matched with the pattern as follows:
2622
2623 ;; pattern: matches:
2624 ;; () empty list
2625 ;; any anything
2626 ;; (<pattern>1 . <pattern>2) (<pattern>1 . <pattern>2)
2627 ;; each-any (any*)
2628 ;; #(free-id <key>) <key> with free-identifier=?
2629 ;; #(each <pattern>) (<pattern>*)
2630 ;; #(each+ p1 (p2_1 ... p2_n) p3) (p1* (p2_n ... p2_1) . p3)
2631 ;; #(vector <pattern>) (list->vector <pattern>)
2632 ;; #(atom <object>) <object> with "equal?"
2633
2634 ;; Vector cops out to pair under assumption that vectors are rare. If
2635 ;; not, should convert to:
2636 ;; #(vector <pattern>*) #(<pattern>*)
2637
2638 (let ()
2639
2640 (define match-each
2641 (lambda (e p w mod)
2642 (cond
2643 ((pair? e)
2644 (let ((first (match (car e) p w '() mod)))
2645 (and first
2646 (let ((rest (match-each (cdr e) p w mod)))
2647 (and rest (cons first rest))))))
2648 ((null? e) '())
2649 ((syntax-object? e)
2650 (match-each (syntax-object-expression e)
2651 p
2652 (join-wraps w (syntax-object-wrap e))
2653 (syntax-object-module e)))
2654 (else #f))))
2655
2656 (define match-each+
2657 (lambda (e x-pat y-pat z-pat w r mod)
2658 (let f ((e e) (w w))
2659 (cond
2660 ((pair? e)
2661 (call-with-values (lambda () (f (cdr e) w))
2662 (lambda (xr* y-pat r)
2663 (if r
2664 (if (null? y-pat)
2665 (let ((xr (match (car e) x-pat w '() mod)))
2666 (if xr
2667 (values (cons xr xr*) y-pat r)
2668 (values #f #f #f)))
2669 (values
2670 '()
2671 (cdr y-pat)
2672 (match (car e) (car y-pat) w r mod)))
2673 (values #f #f #f)))))
2674 ((syntax-object? e)
2675 (f (syntax-object-expression e) (join-wraps w e)))
2676 (else
2677 (values '() y-pat (match e z-pat w r mod)))))))
2678
2679 (define match-each-any
2680 (lambda (e w mod)
2681 (cond
2682 ((pair? e)
2683 (let ((l (match-each-any (cdr e) w mod)))
2684 (and l (cons (wrap (car e) w mod) l))))
2685 ((null? e) '())
2686 ((syntax-object? e)
2687 (match-each-any (syntax-object-expression e)
2688 (join-wraps w (syntax-object-wrap e))
2689 mod))
2690 (else #f))))
2691
2692 (define match-empty
2693 (lambda (p r)
2694 (cond
2695 ((null? p) r)
2696 ((eq? p '_) r)
2697 ((eq? p 'any) (cons '() r))
2698 ((pair? p) (match-empty (car p) (match-empty (cdr p) r)))
2699 ((eq? p 'each-any) (cons '() r))
2700 (else
2701 (case (vector-ref p 0)
2702 ((each) (match-empty (vector-ref p 1) r))
2703 ((each+) (match-empty (vector-ref p 1)
2704 (match-empty
2705 (reverse (vector-ref p 2))
2706 (match-empty (vector-ref p 3) r))))
2707 ((free-id atom) r)
2708 ((vector) (match-empty (vector-ref p 1) r)))))))
2709
2710 (define combine
2711 (lambda (r* r)
2712 (if (null? (car r*))
2713 r
2714 (cons (map car r*) (combine (map cdr r*) r)))))
2715
2716 (define match*
2717 (lambda (e p w r mod)
2718 (cond
2719 ((null? p) (and (null? e) r))
2720 ((pair? p)
2721 (and (pair? e) (match (car e) (car p) w
2722 (match (cdr e) (cdr p) w r mod)
2723 mod)))
2724 ((eq? p 'each-any)
2725 (let ((l (match-each-any e w mod))) (and l (cons l r))))
2726 (else
2727 (case (vector-ref p 0)
2728 ((each)
2729 (if (null? e)
2730 (match-empty (vector-ref p 1) r)
2731 (let ((l (match-each e (vector-ref p 1) w mod)))
2732 (and l
2733 (let collect ((l l))
2734 (if (null? (car l))
2735 r
2736 (cons (map car l) (collect (map cdr l)))))))))
2737 ((each+)
2738 (call-with-values
2739 (lambda ()
2740 (match-each+ e (vector-ref p 1) (vector-ref p 2) (vector-ref p 3) w r mod))
2741 (lambda (xr* y-pat r)
2742 (and r
2743 (null? y-pat)
2744 (if (null? xr*)
2745 (match-empty (vector-ref p 1) r)
2746 (combine xr* r))))))
2747 ((free-id) (and (id? e) (free-id=? (wrap e w mod) (vector-ref p 1)) r))
2748 ((atom) (and (equal? (vector-ref p 1) (strip e w)) r))
2749 ((vector)
2750 (and (vector? e)
2751 (match (vector->list e) (vector-ref p 1) w r mod))))))))
2752
2753 (define match
2754 (lambda (e p w r mod)
2755 (cond
2756 ((not r) #f)
2757 ((eq? p '_) r)
2758 ((eq? p 'any) (cons (wrap e w mod) r))
2759 ((syntax-object? e)
2760 (match*
2761 (syntax-object-expression e)
2762 p
2763 (join-wraps w (syntax-object-wrap e))
2764 r
2765 (syntax-object-module e)))
2766 (else (match* e p w r mod)))))
2767
2768 (set! $sc-dispatch
2769 (lambda (e p)
2770 (cond
2771 ((eq? p 'any) (list e))
2772 ((eq? p '_) '())
2773 ((syntax-object? e)
2774 (match* (syntax-object-expression e)
2775 p (syntax-object-wrap e) '() (syntax-object-module e)))
2776 (else (match* e p empty-wrap '() #f))))))))
2777
2778
2779 (define-syntax with-syntax
2780 (lambda (x)
2781 (syntax-case x ()
2782 ((_ () e1 e2 ...)
2783 #'(let () e1 e2 ...))
2784 ((_ ((out in)) e1 e2 ...)
2785 #'(syntax-case in ()
2786 (out (let () e1 e2 ...))))
2787 ((_ ((out in) ...) e1 e2 ...)
2788 #'(syntax-case (list in ...) ()
2789 ((out ...) (let () e1 e2 ...)))))))
2790
2791 (define-syntax syntax-rules
2792 (lambda (xx)
2793 (syntax-case xx ()
2794 ((_ (k ...) ((keyword . pattern) template) ...)
2795 #'(lambda (x)
2796 ;; embed patterns as procedure metadata
2797 #((macro-type . syntax-rules)
2798 (patterns pattern ...))
2799 (syntax-case x (k ...)
2800 ((dummy . pattern) #'template)
2801 ...)))
2802 ((_ (k ...) docstring ((keyword . pattern) template) ...)
2803 (string? (syntax->datum #'docstring))
2804 #'(lambda (x)
2805 ;; the same, but allow a docstring
2806 docstring
2807 #((macro-type . syntax-rules)
2808 (patterns pattern ...))
2809 (syntax-case x (k ...)
2810 ((dummy . pattern) #'template)
2811 ...))))))
2812
2813 (define-syntax define-syntax-rule
2814 (lambda (x)
2815 (syntax-case x ()
2816 ((_ (name . pattern) template)
2817 #'(define-syntax name
2818 (syntax-rules ()
2819 ((_ . pattern) template))))
2820 ((_ (name . pattern) docstring template)
2821 (string? (syntax->datum #'docstring))
2822 #'(define-syntax name
2823 (syntax-rules ()
2824 docstring
2825 ((_ . pattern) template)))))))
2826
2827 (define-syntax let*
2828 (lambda (x)
2829 (syntax-case x ()
2830 ((let* ((x v) ...) e1 e2 ...)
2831 (and-map identifier? #'(x ...))
2832 (let f ((bindings #'((x v) ...)))
2833 (if (null? bindings)
2834 #'(let () e1 e2 ...)
2835 (with-syntax ((body (f (cdr bindings)))
2836 (binding (car bindings)))
2837 #'(let (binding) body))))))))
2838
2839 (define-syntax quasiquote
2840 (let ()
2841 (define (quasi p lev)
2842 (syntax-case p (unquote quasiquote)
2843 ((unquote p)
2844 (if (= lev 0)
2845 #'("value" p)
2846 (quasicons #'("quote" unquote) (quasi #'(p) (- lev 1)))))
2847 ((quasiquote p) (quasicons #'("quote" quasiquote) (quasi #'(p) (+ lev 1))))
2848 ((p . q)
2849 (syntax-case #'p (unquote unquote-splicing)
2850 ((unquote p ...)
2851 (if (= lev 0)
2852 (quasilist* #'(("value" p) ...) (quasi #'q lev))
2853 (quasicons
2854 (quasicons #'("quote" unquote) (quasi #'(p ...) (- lev 1)))
2855 (quasi #'q lev))))
2856 ((unquote-splicing p ...)
2857 (if (= lev 0)
2858 (quasiappend #'(("value" p) ...) (quasi #'q lev))
2859 (quasicons
2860 (quasicons #'("quote" unquote-splicing) (quasi #'(p ...) (- lev 1)))
2861 (quasi #'q lev))))
2862 (_ (quasicons (quasi #'p lev) (quasi #'q lev)))))
2863 (#(x ...) (quasivector (vquasi #'(x ...) lev)))
2864 (p #'("quote" p))))
2865 (define (vquasi p lev)
2866 (syntax-case p ()
2867 ((p . q)
2868 (syntax-case #'p (unquote unquote-splicing)
2869 ((unquote p ...)
2870 (if (= lev 0)
2871 (quasilist* #'(("value" p) ...) (vquasi #'q lev))
2872 (quasicons
2873 (quasicons #'("quote" unquote) (quasi #'(p ...) (- lev 1)))
2874 (vquasi #'q lev))))
2875 ((unquote-splicing p ...)
2876 (if (= lev 0)
2877 (quasiappend #'(("value" p) ...) (vquasi #'q lev))
2878 (quasicons
2879 (quasicons
2880 #'("quote" unquote-splicing)
2881 (quasi #'(p ...) (- lev 1)))
2882 (vquasi #'q lev))))
2883 (_ (quasicons (quasi #'p lev) (vquasi #'q lev)))))
2884 (() #'("quote" ()))))
2885 (define (quasicons x y)
2886 (with-syntax ((x x) (y y))
2887 (syntax-case #'y ()
2888 (("quote" dy)
2889 (syntax-case #'x ()
2890 (("quote" dx) #'("quote" (dx . dy)))
2891 (_ (if (null? #'dy) #'("list" x) #'("list*" x y)))))
2892 (("list" . stuff) #'("list" x . stuff))
2893 (("list*" . stuff) #'("list*" x . stuff))
2894 (_ #'("list*" x y)))))
2895 (define (quasiappend x y)
2896 (syntax-case y ()
2897 (("quote" ())
2898 (cond
2899 ((null? x) #'("quote" ()))
2900 ((null? (cdr x)) (car x))
2901 (else (with-syntax (((p ...) x)) #'("append" p ...)))))
2902 (_
2903 (cond
2904 ((null? x) y)
2905 (else (with-syntax (((p ...) x) (y y)) #'("append" p ... y)))))))
2906 (define (quasilist* x y)
2907 (let f ((x x))
2908 (if (null? x)
2909 y
2910 (quasicons (car x) (f (cdr x))))))
2911 (define (quasivector x)
2912 (syntax-case x ()
2913 (("quote" (x ...)) #'("quote" #(x ...)))
2914 (_
2915 (let f ((y x) (k (lambda (ls) #`("vector" #,@ls))))
2916 (syntax-case y ()
2917 (("quote" (y ...)) (k #'(("quote" y) ...)))
2918 (("list" y ...) (k #'(y ...)))
2919 (("list*" y ... z) (f #'z (lambda (ls) (k (append #'(y ...) ls)))))
2920 (else #`("list->vector" #,x)))))))
2921 (define (emit x)
2922 (syntax-case x ()
2923 (("quote" x) #''x)
2924 (("list" x ...) #`(list #,@(map emit #'(x ...))))
2925 ;; could emit list* for 3+ arguments if implementation supports
2926 ;; list*
2927 (("list*" x ... y)
2928 (let f ((x* #'(x ...)))
2929 (if (null? x*)
2930 (emit #'y)
2931 #`(cons #,(emit (car x*)) #,(f (cdr x*))))))
2932 (("append" x ...) #`(append #,@(map emit #'(x ...))))
2933 (("vector" x ...) #`(vector #,@(map emit #'(x ...))))
2934 (("list->vector" x) #`(list->vector #,(emit #'x)))
2935 (("value" x) #'x)))
2936 (lambda (x)
2937 (syntax-case x ()
2938 ;; convert to intermediate language, combining introduced (but
2939 ;; not unquoted source) quote expressions where possible and
2940 ;; choosing optimal construction code otherwise, then emit
2941 ;; Scheme code corresponding to the intermediate language forms.
2942 ((_ e) (emit (quasi #'e 0)))))))
2943
2944 (define-syntax include
2945 (lambda (x)
2946 (define read-file
2947 (lambda (fn dir k)
2948 (let* ((p (open-input-file
2949 (if (absolute-file-name? fn)
2950 fn
2951 (in-vicinity dir fn))))
2952 (enc (file-encoding p)))
2953
2954 ;; Choose the input encoding deterministically.
2955 (set-port-encoding! p (or enc "UTF-8"))
2956
2957 (let f ((x (read p))
2958 (result '()))
2959 (if (eof-object? x)
2960 (begin
2961 (close-input-port p)
2962 (reverse result))
2963 (f (read p)
2964 (cons (datum->syntax k x) result)))))))
2965 (let* ((src (syntax-source x))
2966 (file (and src (assq-ref src 'filename)))
2967 (dir (and (string? file) (dirname file))))
2968 (syntax-case x ()
2969 ((k filename)
2970 (let ((fn (syntax->datum #'filename)))
2971 (with-syntax (((exp ...) (read-file fn dir #'filename)))
2972 #'(begin exp ...))))))))
2973
2974 (define-syntax include-from-path
2975 (lambda (x)
2976 (syntax-case x ()
2977 ((k filename)
2978 (let ((fn (syntax->datum #'filename)))
2979 (with-syntax ((fn (datum->syntax
2980 #'filename
2981 (or (%search-load-path fn)
2982 (syntax-violation 'include-from-path
2983 "file not found in path"
2984 x #'filename)))))
2985 #'(include fn)))))))
2986
2987 (define-syntax unquote
2988 (lambda (x)
2989 (syntax-violation 'unquote
2990 "expression not valid outside of quasiquote"
2991 x)))
2992
2993 (define-syntax unquote-splicing
2994 (lambda (x)
2995 (syntax-violation 'unquote-splicing
2996 "expression not valid outside of quasiquote"
2997 x)))
2998
2999 (define (make-variable-transformer proc)
3000 (if (procedure? proc)
3001 (let ((trans (lambda (x)
3002 #((macro-type . variable-transformer))
3003 (proc x))))
3004 (set-procedure-property! trans 'variable-transformer #t)
3005 trans)
3006 (error "variable transformer not a procedure" proc)))
3007
3008 (define-syntax identifier-syntax
3009 (lambda (xx)
3010 (syntax-case xx (set!)
3011 ((_ e)
3012 #'(lambda (x)
3013 #((macro-type . identifier-syntax))
3014 (syntax-case x ()
3015 (id
3016 (identifier? #'id)
3017 #'e)
3018 ((_ x (... ...))
3019 #'(e x (... ...))))))
3020 ((_ (id exp1) ((set! var val) exp2))
3021 (and (identifier? #'id) (identifier? #'var))
3022 #'(make-variable-transformer
3023 (lambda (x)
3024 #((macro-type . variable-transformer))
3025 (syntax-case x (set!)
3026 ((set! var val) #'exp2)
3027 ((id x (... ...)) #'(exp1 x (... ...)))
3028 (id (identifier? #'id) #'exp1))))))))
3029
3030 (define-syntax define*
3031 (lambda (x)
3032 (syntax-case x ()
3033 ((_ (id . args) b0 b1 ...)
3034 #'(define id (lambda* args b0 b1 ...)))
3035 ((_ id val) (identifier? #'id)
3036 #'(define id val)))))