* alist.c, arbiters.c, async.c, backtrace.c, boolean.c, chars.c,
[bpt/guile.git] / libguile / sort.c
1 /* Copyright (C) 1999, 2000 Free Software Foundation, Inc.
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2, or (at your option)
5 * any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this software; see the file COPYING. If not, write to
14 * the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
15 * Boston, MA 02111-1307 USA
16 *
17 * As a special exception, the Free Software Foundation gives permission
18 * for additional uses of the text contained in its release of GUILE.
19 *
20 * The exception is that, if you link the GUILE library with other files
21 * to produce an executable, this does not by itself cause the
22 * resulting executable to be covered by the GNU General Public License.
23 * Your use of that executable is in no way restricted on account of
24 * linking the GUILE library code into it.
25 *
26 * This exception does not however invalidate any other reasons why
27 * the executable file might be covered by the GNU General Public License.
28 *
29 * This exception applies only to the code released by the
30 * Free Software Foundation under the name GUILE. If you copy
31 * code from other Free Software Foundation releases into a copy of
32 * GUILE, as the General Public License permits, the exception does
33 * not apply to the code that you add in this way. To avoid misleading
34 * anyone as to the status of such modified files, you must delete
35 * this exception notice from them.
36 *
37 * If you write modifications of your own for GUILE, it is your choice
38 * whether to permit this exception to apply to your modifications.
39 * If you do not wish that, delete this exception notice. */
40
41 /* Software engineering face-lift by Greg J. Badros, 11-Dec-1999,
42 gjb@cs.washington.edu, http://www.cs.washington.edu/homes/gjb */
43
44
45 /* Written in December 1998 by Roland Orre <orre@nada.kth.se>
46 * This implements the same sort interface as slib/sort.scm
47 * for lists and vectors where slib defines:
48 * sorted?, merge, merge!, sort, sort!
49 * For scsh compatibility sort-list and sort-list! are also defined.
50 * In cases where a stable-sort is required use stable-sort or
51 * stable-sort!. An additional feature is
52 * (restricted-vector-sort! vector less? startpos endpos)
53 * which allows you to sort part of a vector.
54 * Thanks to Aubrey Jaffer for the slib/sort.scm library.
55 * Thanks to Richard A. O'Keefe (based on Prolog code by D.H.D.Warren)
56 * for the merge sort inspiration.
57 * Thanks to Douglas C. Schmidt (schmidt@ics.uci.edu) for the
58 * quicksort code.
59 */
60
61 /* We need this to get the definitions for HAVE_ALLOCA_H, etc. */
62 #include "libguile/scmconfig.h"
63
64 /* AIX requires this to be the first thing in the file. The #pragma
65 directive is indented so pre-ANSI compilers will ignore it, rather
66 than choke on it. */
67 #ifndef __GNUC__
68 # if HAVE_ALLOCA_H
69 # include <alloca.h>
70 # else
71 # ifdef _AIX
72 #pragma alloca
73 # else
74 # ifndef alloca /* predefined by HP cc +Olibcalls */
75 char *alloca ();
76 # endif
77 # endif
78 # endif
79 #endif
80
81 #include "libguile/_scm.h"
82
83 #include "libguile/eval.h"
84 #include "libguile/unif.h"
85 #include "libguile/ramap.h"
86 #include "libguile/alist.h"
87 #include "libguile/feature.h"
88 #include "libguile/vectors.h"
89
90 #include "libguile/validate.h"
91 #include "libguile/sort.h"
92
93 /* The routine quicksort was extracted from the GNU C Library qsort.c
94 written by Douglas C. Schmidt (schmidt@ics.uci.edu)
95 and adapted to guile by adding an extra pointer less
96 to quicksort by Roland Orre <orre@nada.kth.se>.
97
98 The reason to do this instead of using the library function qsort
99 was to avoid dependency of the ANSI-C extensions for local functions
100 and also to avoid obscure pool based solutions.
101
102 This sorting routine is not much more efficient than the stable
103 version but doesn't consume extra memory.
104 */
105
106 /* Byte-wise swap two items of size SIZE. */
107 #define SWAP(a, b, size) \
108 do \
109 { \
110 register size_t __size = (size); \
111 register char *__a = (a), *__b = (b); \
112 do \
113 { \
114 char __tmp = *__a; \
115 *__a++ = *__b; \
116 *__b++ = __tmp; \
117 } while (--__size > 0); \
118 } while (0)
119
120 /* Discontinue quicksort algorithm when partition gets below this size.
121 This particular magic number was chosen to work best on a Sun 4/260. */
122 #define MAX_THRESH 4
123
124 /* Stack node declarations used to store unfulfilled partition obligations. */
125 typedef struct
126 {
127 char *lo;
128 char *hi;
129 }
130 stack_node;
131
132 /* The next 4 #defines implement a very fast in-line stack abstraction. */
133 #define STACK_SIZE (8 * sizeof(unsigned long int))
134 #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
135 #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
136 #define STACK_NOT_EMPTY (stack < top)
137
138
139 /* Order size using quicksort. This implementation incorporates
140 four optimizations discussed in Sedgewick:
141
142 1. Non-recursive, using an explicit stack of pointer that store the
143 next array partition to sort. To save time, this maximum amount
144 of space required to store an array of MAX_INT is allocated on the
145 stack. Assuming a 32-bit integer, this needs only 32 *
146 sizeof(stack_node) == 136 bits. Pretty cheap, actually.
147
148 2. Chose the pivot element using a median-of-three decision tree.
149 This reduces the probability of selecting a bad pivot value and
150 eliminates certain extraneous comparisons.
151
152 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
153 insertion sort to order the MAX_THRESH items within each partition.
154 This is a big win, since insertion sort is faster for small, mostly
155 sorted array segments.
156
157 4. The larger of the two sub-partitions is always pushed onto the
158 stack first, with the algorithm then concentrating on the
159 smaller partition. This *guarantees* no more than log (n)
160 stack size is needed (actually O(1) in this case)! */
161
162 typedef int (*cmp_fun_t) (SCM less,
163 const void*,
164 const void*);
165
166 static const char s_buggy_less[] = "buggy less predicate used when sorting";
167
168 static void
169 quicksort (void *const pbase,
170 size_t total_elems,
171 size_t size,
172 cmp_fun_t cmp,
173 SCM less)
174 {
175 register char *base_ptr = (char *) pbase;
176
177 /* Allocating SIZE bytes for a pivot buffer facilitates a better
178 algorithm below since we can do comparisons directly on the pivot. */
179 char *pivot_buffer = (char *) alloca (size);
180 const size_t max_thresh = MAX_THRESH * size;
181
182 if (total_elems == 0)
183 /* Avoid lossage with unsigned arithmetic below. */
184 return;
185
186 if (total_elems > MAX_THRESH)
187 {
188 char *lo = base_ptr;
189 char *hi = &lo[size * (total_elems - 1)];
190 /* Largest size needed for 32-bit int!!! */
191 stack_node stack[STACK_SIZE];
192 stack_node *top = stack + 1;
193
194 while (STACK_NOT_EMPTY)
195 {
196 char *left_ptr;
197 char *right_ptr;
198
199 char *pivot = pivot_buffer;
200
201 /* Select median value from among LO, MID, and HI. Rearrange
202 LO and HI so the three values are sorted. This lowers the
203 probability of picking a pathological pivot value and
204 skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
205
206 char *mid = lo + size * ((hi - lo) / size >> 1);
207
208 if ((*cmp) (less, (void *) mid, (void *) lo))
209 SWAP (mid, lo, size);
210 if ((*cmp) (less, (void *) hi, (void *) mid))
211 SWAP (mid, hi, size);
212 else
213 goto jump_over;
214 if ((*cmp) (less, (void *) mid, (void *) lo))
215 SWAP (mid, lo, size);
216 jump_over:;
217 memcpy (pivot, mid, size);
218 pivot = pivot_buffer;
219
220 left_ptr = lo + size;
221 right_ptr = hi - size;
222
223 /* Here's the famous ``collapse the walls'' section of quicksort.
224 Gotta like those tight inner loops! They are the main reason
225 that this algorithm runs much faster than others. */
226 do
227 {
228 while ((*cmp) (less, (void *) left_ptr, (void *) pivot))
229 {
230 left_ptr += size;
231 /* The comparison predicate may be buggy */
232 if (left_ptr > hi)
233 scm_misc_error (NULL, s_buggy_less, SCM_EOL);
234 }
235
236 while ((*cmp) (less, (void *) pivot, (void *) right_ptr))
237 {
238 right_ptr -= size;
239 /* The comparison predicate may be buggy */
240 if (right_ptr < lo)
241 scm_misc_error (NULL, s_buggy_less, SCM_EOL);
242 }
243
244 if (left_ptr < right_ptr)
245 {
246 SWAP (left_ptr, right_ptr, size);
247 left_ptr += size;
248 right_ptr -= size;
249 }
250 else if (left_ptr == right_ptr)
251 {
252 left_ptr += size;
253 right_ptr -= size;
254 break;
255 }
256 }
257 while (left_ptr <= right_ptr);
258
259 /* Set up pointers for next iteration. First determine whether
260 left and right partitions are below the threshold size. If so,
261 ignore one or both. Otherwise, push the larger partition's
262 bounds on the stack and continue sorting the smaller one. */
263
264 if ((size_t) (right_ptr - lo) <= max_thresh)
265 {
266 if ((size_t) (hi - left_ptr) <= max_thresh)
267 /* Ignore both small partitions. */
268 POP (lo, hi);
269 else
270 /* Ignore small left partition. */
271 lo = left_ptr;
272 }
273 else if ((size_t) (hi - left_ptr) <= max_thresh)
274 /* Ignore small right partition. */
275 hi = right_ptr;
276 else if ((right_ptr - lo) > (hi - left_ptr))
277 {
278 /* Push larger left partition indices. */
279 PUSH (lo, right_ptr);
280 lo = left_ptr;
281 }
282 else
283 {
284 /* Push larger right partition indices. */
285 PUSH (left_ptr, hi);
286 hi = right_ptr;
287 }
288 }
289 }
290
291 /* Once the BASE_PTR array is partially sorted by quicksort the rest
292 is completely sorted using insertion sort, since this is efficient
293 for partitions below MAX_THRESH size. BASE_PTR points to the beginning
294 of the array to sort, and END_PTR points at the very last element in
295 the array (*not* one beyond it!). */
296
297 {
298 char *const end_ptr = &base_ptr[size * (total_elems - 1)];
299 char *tmp_ptr = base_ptr;
300 char *thresh = min (end_ptr, base_ptr + max_thresh);
301 register char *run_ptr;
302
303 /* Find smallest element in first threshold and place it at the
304 array's beginning. This is the smallest array element,
305 and the operation speeds up insertion sort's inner loop. */
306
307 for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
308 if ((*cmp) (less, (void *) run_ptr, (void *) tmp_ptr))
309 tmp_ptr = run_ptr;
310
311 if (tmp_ptr != base_ptr)
312 SWAP (tmp_ptr, base_ptr, size);
313
314 /* Insertion sort, running from left-hand-side up to right-hand-side. */
315
316 run_ptr = base_ptr + size;
317 while ((run_ptr += size) <= end_ptr)
318 {
319 tmp_ptr = run_ptr - size;
320 while ((*cmp) (less, (void *) run_ptr, (void *) tmp_ptr))
321 {
322 tmp_ptr -= size;
323 /* The comparison predicate may be buggy */
324 if (tmp_ptr < base_ptr)
325 scm_misc_error (NULL, s_buggy_less, SCM_EOL);
326 }
327
328 tmp_ptr += size;
329 if (tmp_ptr != run_ptr)
330 {
331 char *trav;
332
333 trav = run_ptr + size;
334 while (--trav >= run_ptr)
335 {
336 char c = *trav;
337 char *hi, *lo;
338
339 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
340 *hi = *lo;
341 *hi = c;
342 }
343 }
344 }
345 }
346 } /* quicksort */
347
348
349 /* comparison routines */
350
351 static int
352 subr2less (SCM less, const void *a, const void *b)
353 {
354 return SCM_NFALSEP (SCM_SUBRF (less) (*(SCM *) a, *(SCM *) b));
355 } /* subr2less */
356
357 static int
358 subr2oless (SCM less, const void *a, const void *b)
359 {
360 return SCM_NFALSEP (SCM_SUBRF (less) (*(SCM *) a,
361 *(SCM *) b,
362 SCM_UNDEFINED));
363 } /* subr2oless */
364
365 static int
366 lsubrless (SCM less, const void *a, const void *b)
367 {
368 return SCM_NFALSEP (SCM_SUBRF (less)
369 (scm_cons (*(SCM *) a,
370 scm_cons (*(SCM *) b, SCM_EOL))));
371 } /* lsubrless */
372
373 static int
374 closureless (SCM code, const void *a, const void *b)
375 {
376 SCM env = SCM_EXTEND_ENV (SCM_CAR (SCM_CODE (code)),
377 scm_cons (*(SCM *) a,
378 scm_cons (*(SCM *) b, SCM_EOL)),
379 SCM_ENV (code));
380 /* Evaluate the closure body */
381 return SCM_NFALSEP (scm_eval_body (SCM_CDR (SCM_CODE (code)), env));
382 } /* closureless */
383
384 static int
385 applyless (SCM less, const void *a, const void *b)
386 {
387 return SCM_NFALSEP (scm_apply (less,
388 scm_cons (*(SCM *) a,
389 scm_cons (*(SCM *) b, SCM_EOL)),
390 SCM_EOL));
391 } /* applyless */
392
393 static cmp_fun_t
394 scm_cmp_function (SCM p)
395 {
396 switch (SCM_TYP7 (p))
397 {
398 case scm_tc7_subr_2:
399 case scm_tc7_rpsubr:
400 case scm_tc7_asubr:
401 return subr2less;
402 case scm_tc7_subr_2o:
403 return subr2oless;
404 case scm_tc7_lsubr:
405 return lsubrless;
406 case scm_tcs_closures:
407 return closureless;
408 default:
409 return applyless;
410 }
411 } /* scm_cmp_function */
412
413
414 /* Question: Is there any need to make this a more general array sort?
415 It is probably enough to manage the vector type. */
416 /* endpos equal as for substring, i.e. endpos is not included. */
417 /* More natural with length? */
418
419 SCM_DEFINE (scm_restricted_vector_sort_x, "restricted-vector-sort!", 4, 0, 0,
420 (SCM vec, SCM less, SCM startpos, SCM endpos),
421 "")
422 #define FUNC_NAME s_scm_restricted_vector_sort_x
423 {
424 size_t vlen, spos, len, size = sizeof (SCM);
425 SCM *vp;
426
427 SCM_VALIDATE_VECTOR (1,vec);
428 SCM_VALIDATE_NIM (2,less);
429
430 vp = SCM_VELTS (vec); /* vector pointer */
431 vlen = SCM_VECTOR_LENGTH (vec);
432
433 SCM_VALIDATE_INUM_COPY (3,startpos,spos);
434 SCM_ASSERT_RANGE (3,startpos,(spos >= 0) && (spos <= vlen));
435 SCM_VALIDATE_INUM_RANGE (4,endpos,0,vlen+1);
436 len = SCM_INUM (endpos) - spos;
437
438 quicksort (&vp[spos], len, size, scm_cmp_function (less), less);
439 return SCM_UNSPECIFIED;
440 /* return vec; */
441 }
442 #undef FUNC_NAME
443
444 /* (sorted? sequence less?)
445 * is true when sequence is a list (x0 x1 ... xm) or a vector #(x0 ... xm)
446 * such that for all 1 <= i <= m,
447 * (not (less? (list-ref list i) (list-ref list (- i 1)))). */
448 SCM_DEFINE (scm_sorted_p, "sorted?", 2, 0, 0,
449 (SCM items, SCM less),
450 "")
451 #define FUNC_NAME s_scm_sorted_p
452 {
453 long len, j; /* list/vector length, temp j */
454 SCM item, rest; /* rest of items loop variable */
455 SCM *vp;
456 cmp_fun_t cmp = scm_cmp_function (less);
457
458 if (SCM_NULLP (items))
459 return SCM_BOOL_T;
460
461 SCM_VALIDATE_NIM (2,less);
462
463 if (SCM_CONSP (items))
464 {
465 len = scm_ilength (items); /* also checks that it's a pure list */
466 SCM_ASSERT_RANGE (1,items,len >= 0);
467 if (len <= 1)
468 return SCM_BOOL_T;
469
470 item = SCM_CAR (items);
471 rest = SCM_CDR (items);
472 j = len - 1;
473 while (j > 0)
474 {
475 if ((*cmp) (less, SCM_CARLOC(rest), &item))
476 return SCM_BOOL_F;
477 else
478 {
479 item = SCM_CAR (rest);
480 rest = SCM_CDR (rest);
481 j--;
482 }
483 }
484 return SCM_BOOL_T;
485 }
486 else
487 {
488 SCM_VALIDATE_VECTOR (1, items);
489
490 vp = SCM_VELTS (items); /* vector pointer */
491 len = SCM_VECTOR_LENGTH (items);
492 j = len - 1;
493 while (j > 0)
494 {
495 if ((*cmp) (less, &vp[1], vp))
496 return SCM_BOOL_F;
497 else
498 {
499 vp++;
500 j--;
501 }
502 }
503 return SCM_BOOL_T;
504 }
505
506 return SCM_BOOL_F;
507 }
508 #undef FUNC_NAME
509
510 /* (merge a b less?)
511 takes two lists a and b such that (sorted? a less?) and (sorted? b less?)
512 and returns a new list in which the elements of a and b have been stably
513 interleaved so that (sorted? (merge a b less?) less?).
514 Note: this does _not_ accept vectors. */
515 SCM_DEFINE (scm_merge, "merge", 3, 0, 0,
516 (SCM alist, SCM blist, SCM less),
517 "")
518 #define FUNC_NAME s_scm_merge
519 {
520 long alen, blen; /* list lengths */
521 SCM build, last;
522 cmp_fun_t cmp = scm_cmp_function (less);
523 SCM_VALIDATE_NIM (3,less);
524
525 if (SCM_NULLP (alist))
526 return blist;
527 else if (SCM_NULLP (blist))
528 return alist;
529 else
530 {
531 SCM_VALIDATE_NONEMPTYLIST_COPYLEN (1,alist,alen);
532 SCM_VALIDATE_NONEMPTYLIST_COPYLEN (2,blist,blen);
533 if ((*cmp) (less, SCM_CARLOC (blist), SCM_CARLOC (alist)))
534 {
535 build = scm_cons (SCM_CAR (blist), SCM_EOL);
536 blist = SCM_CDR (blist);
537 blen--;
538 }
539 else
540 {
541 build = scm_cons (SCM_CAR (alist), SCM_EOL);
542 alist = SCM_CDR (alist);
543 alen--;
544 }
545 last = build;
546 while ((alen > 0) && (blen > 0))
547 {
548 if ((*cmp) (less, SCM_CARLOC (blist), SCM_CARLOC (alist)))
549 {
550 SCM_SETCDR (last, scm_cons (SCM_CAR (blist), SCM_EOL));
551 blist = SCM_CDR (blist);
552 blen--;
553 }
554 else
555 {
556 SCM_SETCDR (last, scm_cons (SCM_CAR (alist), SCM_EOL));
557 alist = SCM_CDR (alist);
558 alen--;
559 }
560 last = SCM_CDR (last);
561 }
562 if ((alen > 0) && (blen == 0))
563 SCM_SETCDR (last, alist);
564 else if ((alen == 0) && (blen > 0))
565 SCM_SETCDR (last, blist);
566 }
567 return build;
568 }
569 #undef FUNC_NAME
570
571
572 static SCM
573 scm_merge_list_x (SCM alist, SCM blist,
574 long alen, long blen,
575 cmp_fun_t cmp, SCM less)
576 {
577 SCM build, last;
578
579 if (SCM_NULLP (alist))
580 return blist;
581 else if (SCM_NULLP (blist))
582 return alist;
583 else
584 {
585 if ((*cmp) (less, SCM_CARLOC (blist), SCM_CARLOC (alist)))
586 {
587 build = blist;
588 blist = SCM_CDR (blist);
589 blen--;
590 }
591 else
592 {
593 build = alist;
594 alist = SCM_CDR (alist);
595 alen--;
596 }
597 last = build;
598 while ((alen > 0) && (blen > 0))
599 {
600 if ((*cmp) (less, SCM_CARLOC (blist), SCM_CARLOC (alist)))
601 {
602 SCM_SETCDR (last, blist);
603 blist = SCM_CDR (blist);
604 blen--;
605 }
606 else
607 {
608 SCM_SETCDR (last, alist);
609 alist = SCM_CDR (alist);
610 alen--;
611 }
612 last = SCM_CDR (last);
613 }
614 if ((alen > 0) && (blen == 0))
615 SCM_SETCDR (last, alist);
616 else if ((alen == 0) && (blen > 0))
617 SCM_SETCDR (last, blist);
618 }
619 return build;
620 } /* scm_merge_list_x */
621
622 SCM_DEFINE (scm_merge_x, "merge!", 3, 0, 0,
623 (SCM alist, SCM blist, SCM less),
624 "")
625 #define FUNC_NAME s_scm_merge_x
626 {
627 long alen, blen; /* list lengths */
628
629 SCM_VALIDATE_NIM (3,less);
630 if (SCM_NULLP (alist))
631 return blist;
632 else if (SCM_NULLP (blist))
633 return alist;
634 else
635 {
636 SCM_VALIDATE_NONEMPTYLIST_COPYLEN (1,alist,alen);
637 SCM_VALIDATE_NONEMPTYLIST_COPYLEN (2,blist,blen);
638 return scm_merge_list_x (alist, blist,
639 alen, blen,
640 scm_cmp_function (less),
641 less);
642 }
643 }
644 #undef FUNC_NAME
645
646 /* This merge sort algorithm is same as slib's by Richard A. O'Keefe.
647 The algorithm is stable. We also tried to use the algorithm used by
648 scsh's merge-sort but that algorithm showed to not be stable, even
649 though it claimed to be.
650 */
651 static SCM
652 scm_merge_list_step (SCM * seq,
653 cmp_fun_t cmp,
654 SCM less,
655 int n)
656 {
657 SCM a, b;
658
659 if (n > 2)
660 {
661 long mid = n / 2;
662 a = scm_merge_list_step (seq, cmp, less, mid);
663 b = scm_merge_list_step (seq, cmp, less, n - mid);
664 return scm_merge_list_x (a, b, mid, n - mid, cmp, less);
665 }
666 else if (n == 2)
667 {
668 SCM p = *seq;
669 SCM rest = SCM_CDR (*seq);
670 SCM x = SCM_CAR (*seq);
671 SCM y = SCM_CAR (SCM_CDR (*seq));
672 *seq = SCM_CDR (rest);
673 SCM_SETCDR (rest, SCM_EOL);
674 if ((*cmp) (less, &y, &x))
675 {
676 SCM_SETCAR (p, y);
677 SCM_SETCAR (rest, x);
678 }
679 return p;
680 }
681 else if (n == 1)
682 {
683 SCM p = *seq;
684 *seq = SCM_CDR (p);
685 SCM_SETCDR (p, SCM_EOL);
686 return p;
687 }
688 else
689 return SCM_EOL;
690 } /* scm_merge_list_step */
691
692
693 /* scm_sort_x manages lists and vectors, not stable sort */
694 SCM_DEFINE (scm_sort_x, "sort!", 2, 0, 0,
695 (SCM items, SCM less),
696 "")
697 #define FUNC_NAME s_scm_sort_x
698 {
699 long len; /* list/vector length */
700 if (SCM_NULLP(items))
701 return SCM_EOL;
702
703 SCM_VALIDATE_NIM (2,less);
704
705 if (SCM_CONSP (items))
706 {
707 SCM_VALIDATE_LIST_COPYLEN (1,items,len);
708 return scm_merge_list_step (&items, scm_cmp_function (less), less, len);
709 }
710 else if (SCM_VECTORP (items))
711 {
712 len = SCM_VECTOR_LENGTH (items);
713 scm_restricted_vector_sort_x (items,
714 less,
715 SCM_MAKINUM (0L),
716 SCM_MAKINUM (len));
717 return items;
718 }
719 else
720 RETURN_SCM_WTA (1,items);
721 }
722 #undef FUNC_NAME
723
724 /* scm_sort manages lists and vectors, not stable sort */
725
726 SCM_DEFINE (scm_sort, "sort", 2, 0, 0,
727 (SCM items, SCM less),
728 "")
729 #define FUNC_NAME s_scm_sort
730 {
731 SCM sortvec; /* the vector we actually sort */
732 long len; /* list/vector length */
733 if (SCM_NULLP(items))
734 return SCM_EOL;
735
736 SCM_VALIDATE_NIM (2,less);
737 if (SCM_CONSP (items))
738 {
739 SCM_VALIDATE_LIST_COPYLEN (1,items,len);
740 items = scm_list_copy (items);
741 return scm_merge_list_step (&items, scm_cmp_function (less), less, len);
742 }
743 #ifdef HAVE_ARRAYS
744 /* support ordinary vectors even if arrays not available? */
745 else if (SCM_VECTORP (items))
746 {
747 len = SCM_VECTOR_LENGTH (items);
748 sortvec = scm_make_uve (len, scm_array_prototype (items));
749 scm_array_copy_x (items, sortvec);
750 scm_restricted_vector_sort_x (sortvec,
751 less,
752 SCM_MAKINUM (0L),
753 SCM_MAKINUM (len));
754 return sortvec;
755 }
756 #endif
757 else
758 RETURN_SCM_WTA (1,items);
759 }
760 #undef FUNC_NAME
761
762 static void
763 scm_merge_vector_x (void *const vecbase,
764 void *const tempbase,
765 cmp_fun_t cmp,
766 SCM less,
767 long low,
768 long mid,
769 long high)
770 {
771 register SCM *vp = (SCM *) vecbase;
772 register SCM *temp = (SCM *) tempbase;
773 long it; /* Index for temp vector */
774 long i1 = low; /* Index for lower vector segment */
775 long i2 = mid + 1; /* Index for upper vector segment */
776
777 /* Copy while both segments contain more characters */
778 for (it = low; (i1 <= mid) && (i2 <= high); ++it)
779 if ((*cmp) (less, &vp[i2], &vp[i1]))
780 temp[it] = vp[i2++];
781 else
782 temp[it] = vp[i1++];
783
784 /* Copy while first segment contains more characters */
785 while (i1 <= mid)
786 temp[it++] = vp[i1++];
787
788 /* Copy while second segment contains more characters */
789 while (i2 <= high)
790 temp[it++] = vp[i2++];
791
792 /* Copy back from temp to vp */
793 for (it = low; it <= high; ++it)
794 vp[it] = temp[it];
795 } /* scm_merge_vector_x */
796
797 static void
798 scm_merge_vector_step (void *const vp,
799 void *const temp,
800 cmp_fun_t cmp,
801 SCM less,
802 long low,
803 long high)
804 {
805 if (high > low)
806 {
807 long mid = (low + high) / 2;
808 scm_merge_vector_step (vp, temp, cmp, less, low, mid);
809 scm_merge_vector_step (vp, temp, cmp, less, mid+1, high);
810 scm_merge_vector_x (vp, temp, cmp, less, low, mid, high);
811 }
812 } /* scm_merge_vector_step */
813
814
815 /* stable-sort! manages lists and vectors */
816
817 SCM_DEFINE (scm_stable_sort_x, "stable-sort!", 2, 0, 0,
818 (SCM items, SCM less),
819 "")
820 #define FUNC_NAME s_scm_stable_sort_x
821 {
822 long len; /* list/vector length */
823
824 if (SCM_NULLP (items))
825 return SCM_EOL;
826
827 SCM_VALIDATE_NIM (2,less);
828 if (SCM_CONSP (items))
829 {
830 SCM_VALIDATE_LIST_COPYLEN (1,items,len);
831 return scm_merge_list_step (&items, scm_cmp_function (less), less, len);
832 }
833 else if (SCM_VECTORP (items))
834 {
835 SCM *temp, *vp;
836 len = SCM_VECTOR_LENGTH (items);
837 temp = malloc (len * sizeof(SCM));
838 vp = SCM_VELTS (items);
839 scm_merge_vector_step (vp,
840 temp,
841 scm_cmp_function (less),
842 less,
843 0,
844 len - 1);
845 free(temp);
846 return items;
847 }
848 else
849 RETURN_SCM_WTA (1,items);
850 }
851 #undef FUNC_NAME
852
853 /* stable_sort manages lists and vectors */
854
855 SCM_DEFINE (scm_stable_sort, "stable-sort", 2, 0, 0,
856 (SCM items, SCM less),
857 "")
858 #define FUNC_NAME s_scm_stable_sort
859 {
860 long len; /* list/vector length */
861 if (SCM_NULLP (items))
862 return SCM_EOL;
863
864 SCM_VALIDATE_NIM (2,less);
865 if (SCM_CONSP (items))
866 {
867 SCM_VALIDATE_LIST_COPYLEN (1,items,len);
868 items = scm_list_copy (items);
869 return scm_merge_list_step (&items, scm_cmp_function (less), less, len);
870 }
871 #ifdef HAVE_ARRAYS
872 /* support ordinary vectors even if arrays not available? */
873 else if (SCM_VECTORP (items))
874 {
875 SCM retvec;
876 SCM *temp, *vp;
877 len = SCM_VECTOR_LENGTH (items);
878 retvec = scm_make_uve (len, scm_array_prototype (items));
879 scm_array_copy_x (items, retvec);
880 temp = malloc (len * sizeof (SCM));
881 vp = SCM_VELTS (retvec);
882 scm_merge_vector_step (vp,
883 temp,
884 scm_cmp_function (less),
885 less,
886 0,
887 len - 1);
888 free (temp);
889 return retvec;
890 }
891 #endif
892 else
893 RETURN_SCM_WTA (1,items);
894 }
895 #undef FUNC_NAME
896
897 /* stable */
898 SCM_DEFINE (scm_sort_list_x, "sort-list!", 2, 0, 0,
899 (SCM items, SCM less),
900 "")
901 #define FUNC_NAME s_scm_sort_list_x
902 {
903 long len;
904 SCM_VALIDATE_LIST_COPYLEN (1,items,len);
905 SCM_VALIDATE_NIM (2,less);
906 return scm_merge_list_step (&items, scm_cmp_function (less), less, len);
907 }
908 #undef FUNC_NAME
909
910 /* stable */
911 SCM_DEFINE (scm_sort_list, "sort-list", 2, 0, 0,
912 (SCM items, SCM less),
913 "")
914 #define FUNC_NAME s_scm_sort_list
915 {
916 long len;
917 SCM_VALIDATE_LIST_COPYLEN (1,items,len);
918 SCM_VALIDATE_NIM (2,less);
919 items = scm_list_copy (items);
920 return scm_merge_list_step (&items, scm_cmp_function (less), less, len);
921 }
922 #undef FUNC_NAME
923
924 void
925 scm_init_sort ()
926 {
927 #ifndef SCM_MAGIC_SNARFER
928 #include "libguile/sort.x"
929 #endif
930
931 scm_add_feature ("sort");
932 }
933
934 /*
935 Local Variables:
936 c-file-style: "gnu"
937 End:
938 */