Merge remote-tracking branch 'origin/stable-2.0'
[bpt/guile.git] / libguile / gc.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001, 2002, 2003, 2006,
2 * 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public License
6 * as published by the Free Software Foundation; either version 3 of
7 * the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
17 * 02110-1301 USA
18 */
19
20 /* #define DEBUGINFO */
21
22 #ifdef HAVE_CONFIG_H
23 # include <config.h>
24 #endif
25
26 #include "libguile/gen-scmconfig.h"
27
28 #include <stdio.h>
29 #include <errno.h>
30 #include <string.h>
31 #include <stdlib.h>
32 #include <math.h>
33
34 #ifdef __ia64__
35 #include <ucontext.h>
36 extern unsigned long * __libc_ia64_register_backing_store_base;
37 #endif
38
39 #include "libguile/_scm.h"
40 #include "libguile/eval.h"
41 #include "libguile/stime.h"
42 #include "libguile/stackchk.h"
43 #include "libguile/struct.h"
44 #include "libguile/smob.h"
45 #include "libguile/arrays.h"
46 #include "libguile/async.h"
47 #include "libguile/ports.h"
48 #include "libguile/root.h"
49 #include "libguile/strings.h"
50 #include "libguile/vectors.h"
51 #include "libguile/hashtab.h"
52 #include "libguile/tags.h"
53
54 #include "libguile/private-gc.h"
55 #include "libguile/validate.h"
56 #include "libguile/deprecation.h"
57 #include "libguile/gc.h"
58 #include "libguile/dynwind.h"
59
60 #include "libguile/bdw-gc.h"
61
62 /* For GC_set_start_callback. */
63 #include <gc/gc_mark.h>
64
65 #ifdef GUILE_DEBUG_MALLOC
66 #include "libguile/debug-malloc.h"
67 #endif
68
69 #ifdef HAVE_UNISTD_H
70 #include <unistd.h>
71 #endif
72
73 /* Set this to != 0 if every cell that is accessed shall be checked:
74 */
75 int scm_debug_cell_accesses_p = 0;
76 int scm_expensive_debug_cell_accesses_p = 0;
77
78 /* Set this to 0 if no additional gc's shall be performed, otherwise set it to
79 * the number of cell accesses after which a gc shall be called.
80 */
81 int scm_debug_cells_gc_interval = 0;
82
83 /* Hash table that keeps a reference to objects the user wants to protect from
84 garbage collection. */
85 static SCM scm_protects;
86
87
88 #if (SCM_DEBUG_CELL_ACCESSES == 1)
89
90
91 /*
92
93 Assert that the given object is a valid reference to a valid cell. This
94 test involves to determine whether the object is a cell pointer, whether
95 this pointer actually points into a heap segment and whether the cell
96 pointed to is not a free cell. Further, additional garbage collections may
97 get executed after a user defined number of cell accesses. This helps to
98 find places in the C code where references are dropped for extremely short
99 periods.
100
101 */
102 void
103 scm_i_expensive_validation_check (SCM cell)
104 {
105 /* If desired, perform additional garbage collections after a user
106 * defined number of cell accesses.
107 */
108 if (scm_debug_cells_gc_interval)
109 {
110 static unsigned int counter = 0;
111
112 if (counter != 0)
113 {
114 --counter;
115 }
116 else
117 {
118 counter = scm_debug_cells_gc_interval;
119 scm_gc ();
120 }
121 }
122 }
123
124 /* Whether cell validation is already running. */
125 static int scm_i_cell_validation_already_running = 0;
126
127 void
128 scm_assert_cell_valid (SCM cell)
129 {
130 if (!scm_i_cell_validation_already_running && scm_debug_cell_accesses_p)
131 {
132 scm_i_cell_validation_already_running = 1; /* set to avoid recursion */
133
134 /*
135 During GC, no user-code should be run, and the guile core
136 should use non-protected accessors.
137 */
138 if (scm_gc_running_p)
139 return;
140
141 /*
142 Only scm_in_heap_p and rescanning the heap is wildly
143 expensive.
144 */
145 if (scm_expensive_debug_cell_accesses_p)
146 scm_i_expensive_validation_check (cell);
147
148 scm_i_cell_validation_already_running = 0; /* re-enable */
149 }
150 }
151
152
153
154 SCM_DEFINE (scm_set_debug_cell_accesses_x, "set-debug-cell-accesses!", 1, 0, 0,
155 (SCM flag),
156 "If @var{flag} is @code{#f}, cell access checking is disabled.\n"
157 "If @var{flag} is @code{#t}, cheap cell access checking is enabled,\n"
158 "but no additional calls to garbage collection are issued.\n"
159 "If @var{flag} is a number, strict cell access checking is enabled,\n"
160 "with an additional garbage collection after the given\n"
161 "number of cell accesses.\n"
162 "This procedure only exists when the compile-time flag\n"
163 "@code{SCM_DEBUG_CELL_ACCESSES} was set to 1.")
164 #define FUNC_NAME s_scm_set_debug_cell_accesses_x
165 {
166 if (scm_is_false (flag))
167 {
168 scm_debug_cell_accesses_p = 0;
169 }
170 else if (scm_is_eq (flag, SCM_BOOL_T))
171 {
172 scm_debug_cells_gc_interval = 0;
173 scm_debug_cell_accesses_p = 1;
174 scm_expensive_debug_cell_accesses_p = 0;
175 }
176 else
177 {
178 scm_debug_cells_gc_interval = scm_to_signed_integer (flag, 0, INT_MAX);
179 scm_debug_cell_accesses_p = 1;
180 scm_expensive_debug_cell_accesses_p = 1;
181 }
182 return SCM_UNSPECIFIED;
183 }
184 #undef FUNC_NAME
185
186
187 #endif /* SCM_DEBUG_CELL_ACCESSES == 1 */
188
189 \f
190
191 /* Hooks. */
192 scm_t_c_hook scm_before_gc_c_hook;
193 scm_t_c_hook scm_before_mark_c_hook;
194 scm_t_c_hook scm_before_sweep_c_hook;
195 scm_t_c_hook scm_after_sweep_c_hook;
196 scm_t_c_hook scm_after_gc_c_hook;
197
198
199 static void
200 run_before_gc_c_hook (void)
201 {
202 if (!SCM_I_CURRENT_THREAD)
203 /* GC while a thread is spinning up; punt. */
204 return;
205
206 scm_c_hook_run (&scm_before_gc_c_hook, NULL);
207 }
208
209
210 /* GC Statistics Keeping
211 */
212 unsigned long scm_gc_ports_collected = 0;
213 static long gc_time_taken = 0;
214 static long gc_start_time = 0;
215
216 static unsigned long free_space_divisor;
217 static unsigned long minimum_free_space_divisor;
218 static double target_free_space_divisor;
219
220 static unsigned long protected_obj_count = 0;
221
222
223 SCM_SYMBOL (sym_gc_time_taken, "gc-time-taken");
224 SCM_SYMBOL (sym_heap_size, "heap-size");
225 SCM_SYMBOL (sym_heap_free_size, "heap-free-size");
226 SCM_SYMBOL (sym_heap_total_allocated, "heap-total-allocated");
227 SCM_SYMBOL (sym_heap_allocated_since_gc, "heap-allocated-since-gc");
228 SCM_SYMBOL (sym_protected_objects, "protected-objects");
229 SCM_SYMBOL (sym_times, "gc-times");
230
231
232 /* {Scheme Interface to GC}
233 */
234 static SCM
235 tag_table_to_type_alist (void *closure, SCM key, SCM val, SCM acc)
236 {
237 if (scm_is_integer (key))
238 {
239 int c_tag = scm_to_int (key);
240
241 char const * name = scm_i_tag_name (c_tag);
242 if (name != NULL)
243 {
244 key = scm_from_locale_string (name);
245 }
246 else
247 {
248 char s[100];
249 sprintf (s, "tag %d", c_tag);
250 key = scm_from_locale_string (s);
251 }
252 }
253
254 return scm_cons (scm_cons (key, val), acc);
255 }
256
257 SCM_DEFINE (scm_gc_live_object_stats, "gc-live-object-stats", 0, 0, 0,
258 (),
259 "Return an alist of statistics of the current live objects. ")
260 #define FUNC_NAME s_scm_gc_live_object_stats
261 {
262 SCM tab = scm_make_hash_table (scm_from_int (57));
263 SCM alist;
264
265 alist
266 = scm_internal_hash_fold (&tag_table_to_type_alist, NULL, SCM_EOL, tab);
267
268 return alist;
269 }
270 #undef FUNC_NAME
271
272 extern int scm_gc_malloc_yield_percentage;
273 SCM_DEFINE (scm_gc_stats, "gc-stats", 0, 0, 0,
274 (),
275 "Return an association list of statistics about Guile's current\n"
276 "use of storage.\n")
277 #define FUNC_NAME s_scm_gc_stats
278 {
279 SCM answer;
280 GC_word heap_size, free_bytes, unmapped_bytes, bytes_since_gc, total_bytes;
281 size_t gc_times;
282
283 GC_get_heap_usage_safe (&heap_size, &free_bytes, &unmapped_bytes,
284 &bytes_since_gc, &total_bytes);
285 #ifdef HAVE_GC_GET_GC_NO
286 /* This function was added in 7.2alpha2 (June 2009). */
287 gc_times = GC_get_gc_no ();
288 #else
289 /* This symbol is deprecated as of 7.3. */
290 gc_times = GC_gc_no;
291 #endif
292
293 answer =
294 scm_list_n (scm_cons (sym_gc_time_taken, scm_from_long (gc_time_taken)),
295 scm_cons (sym_heap_size, scm_from_size_t (heap_size)),
296 scm_cons (sym_heap_free_size, scm_from_size_t (free_bytes)),
297 scm_cons (sym_heap_total_allocated,
298 scm_from_size_t (total_bytes)),
299 scm_cons (sym_heap_allocated_since_gc,
300 scm_from_size_t (bytes_since_gc)),
301 scm_cons (sym_protected_objects,
302 scm_from_ulong (protected_obj_count)),
303 scm_cons (sym_times, scm_from_size_t (gc_times)),
304 SCM_UNDEFINED);
305
306 return answer;
307 }
308 #undef FUNC_NAME
309
310
311 SCM_DEFINE (scm_gc_dump, "gc-dump", 0, 0, 0,
312 (void),
313 "Dump information about the garbage collector's internal data "
314 "structures and memory usage to the standard output.")
315 #define FUNC_NAME s_scm_gc_dump
316 {
317 GC_dump ();
318
319 return SCM_UNSPECIFIED;
320 }
321 #undef FUNC_NAME
322
323
324 SCM_DEFINE (scm_object_address, "object-address", 1, 0, 0,
325 (SCM obj),
326 "Return an integer that for the lifetime of @var{obj} is uniquely\n"
327 "returned by this function for @var{obj}")
328 #define FUNC_NAME s_scm_object_address
329 {
330 return scm_from_ulong (SCM_UNPACK (obj));
331 }
332 #undef FUNC_NAME
333
334
335 SCM_DEFINE (scm_gc_disable, "gc-disable", 0, 0, 0,
336 (),
337 "Disables the garbage collector. Nested calls are permitted. "
338 "GC is re-enabled once @code{gc-enable} has been called the "
339 "same number of times @code{gc-disable} was called.")
340 #define FUNC_NAME s_scm_gc_disable
341 {
342 GC_disable ();
343 return SCM_UNSPECIFIED;
344 }
345 #undef FUNC_NAME
346
347 SCM_DEFINE (scm_gc_enable, "gc-enable", 0, 0, 0,
348 (),
349 "Enables the garbage collector.")
350 #define FUNC_NAME s_scm_gc_enable
351 {
352 GC_enable ();
353 return SCM_UNSPECIFIED;
354 }
355 #undef FUNC_NAME
356
357
358 SCM_DEFINE (scm_gc, "gc", 0, 0, 0,
359 (),
360 "Scans all of SCM objects and reclaims for further use those that are\n"
361 "no longer accessible.")
362 #define FUNC_NAME s_scm_gc
363 {
364 scm_i_gc ("call");
365 /* If you're calling scm_gc(), you probably want synchronous
366 finalization. */
367 GC_invoke_finalizers ();
368 return SCM_UNSPECIFIED;
369 }
370 #undef FUNC_NAME
371
372 void
373 scm_i_gc (const char *what)
374 {
375 GC_gcollect ();
376 }
377
378
379 \f
380 /* {GC Protection Helper Functions}
381 */
382
383
384 /*
385 * If within a function you need to protect one or more scheme objects from
386 * garbage collection, pass them as parameters to one of the
387 * scm_remember_upto_here* functions below. These functions don't do
388 * anything, but since the compiler does not know that they are actually
389 * no-ops, it will generate code that calls these functions with the given
390 * parameters. Therefore, you can be sure that the compiler will keep those
391 * scheme values alive (on the stack or in a register) up to the point where
392 * scm_remember_upto_here* is called. In other words, place the call to
393 * scm_remember_upto_here* _behind_ the last code in your function, that
394 * depends on the scheme object to exist.
395 *
396 * Example: We want to make sure that the string object str does not get
397 * garbage collected during the execution of 'some_function' in the code
398 * below, because otherwise the characters belonging to str would be freed and
399 * 'some_function' might access freed memory. To make sure that the compiler
400 * keeps str alive on the stack or in a register such that it is visible to
401 * the conservative gc we add the call to scm_remember_upto_here_1 _after_ the
402 * call to 'some_function'. Note that this would not be necessary if str was
403 * used anyway after the call to 'some_function'.
404 * char *chars = scm_i_string_chars (str);
405 * some_function (chars);
406 * scm_remember_upto_here_1 (str); // str will be alive up to this point.
407 */
408
409 /* Remove any macro versions of these while defining the functions.
410 Functions are always included in the library, for upward binary
411 compatibility and in case combinations of GCC and non-GCC are used. */
412 #undef scm_remember_upto_here_1
413 #undef scm_remember_upto_here_2
414
415 void
416 scm_remember_upto_here_1 (SCM obj SCM_UNUSED)
417 {
418 /* Empty. Protects a single object from garbage collection. */
419 }
420
421 void
422 scm_remember_upto_here_2 (SCM obj1 SCM_UNUSED, SCM obj2 SCM_UNUSED)
423 {
424 /* Empty. Protects two objects from garbage collection. */
425 }
426
427 void
428 scm_remember_upto_here (SCM obj SCM_UNUSED, ...)
429 {
430 /* Empty. Protects any number of objects from garbage collection. */
431 }
432
433 /*
434 These crazy functions prevent garbage collection
435 of arguments after the first argument by
436 ensuring they remain live throughout the
437 function because they are used in the last
438 line of the code block.
439 It'd be better to have a nice compiler hint to
440 aid the conservative stack-scanning GC. --03/09/00 gjb */
441 SCM
442 scm_return_first (SCM elt, ...)
443 {
444 return elt;
445 }
446
447 int
448 scm_return_first_int (int i, ...)
449 {
450 return i;
451 }
452
453
454 SCM
455 scm_permanent_object (SCM obj)
456 {
457 return (scm_gc_protect_object (obj));
458 }
459
460
461 /* Protect OBJ from the garbage collector. OBJ will not be freed, even if all
462 other references are dropped, until the object is unprotected by calling
463 scm_gc_unprotect_object (OBJ). Calls to scm_gc_protect/unprotect_object nest,
464 i. e. it is possible to protect the same object several times, but it is
465 necessary to unprotect the object the same number of times to actually get
466 the object unprotected. It is an error to unprotect an object more often
467 than it has been protected before. The function scm_protect_object returns
468 OBJ.
469 */
470
471 /* Implementation note: For every object X, there is a counter which
472 scm_gc_protect_object (X) increments and scm_gc_unprotect_object (X) decrements.
473 */
474
475
476
477 SCM
478 scm_gc_protect_object (SCM obj)
479 {
480 SCM handle;
481
482 /* This critical section barrier will be replaced by a mutex. */
483 /* njrev: Indeed; if my comment above is correct, there is the same
484 critsec/mutex inconsistency here. */
485 SCM_CRITICAL_SECTION_START;
486
487 handle = scm_hashq_create_handle_x (scm_protects, obj, scm_from_int (0));
488 SCM_SETCDR (handle, scm_sum (SCM_CDR (handle), scm_from_int (1)));
489
490 protected_obj_count ++;
491
492 SCM_CRITICAL_SECTION_END;
493
494 return obj;
495 }
496
497
498 /* Remove any protection for OBJ established by a prior call to
499 scm_protect_object. This function returns OBJ.
500
501 See scm_protect_object for more information. */
502 SCM
503 scm_gc_unprotect_object (SCM obj)
504 {
505 SCM handle;
506
507 /* This critical section barrier will be replaced by a mutex. */
508 /* njrev: and again. */
509 SCM_CRITICAL_SECTION_START;
510
511 if (scm_gc_running_p)
512 {
513 fprintf (stderr, "scm_unprotect_object called during GC.\n");
514 abort ();
515 }
516
517 handle = scm_hashq_get_handle (scm_protects, obj);
518
519 if (scm_is_false (handle))
520 {
521 fprintf (stderr, "scm_unprotect_object called on unprotected object\n");
522 abort ();
523 }
524 else
525 {
526 SCM count = scm_difference (SCM_CDR (handle), scm_from_int (1));
527 if (scm_is_eq (count, scm_from_int (0)))
528 scm_hashq_remove_x (scm_protects, obj);
529 else
530 SCM_SETCDR (handle, count);
531 }
532 protected_obj_count --;
533
534 SCM_CRITICAL_SECTION_END;
535
536 return obj;
537 }
538
539 void
540 scm_gc_register_root (SCM *p)
541 {
542 /* Nothing. */
543 }
544
545 void
546 scm_gc_unregister_root (SCM *p)
547 {
548 /* Nothing. */
549 }
550
551 void
552 scm_gc_register_roots (SCM *b, unsigned long n)
553 {
554 SCM *p = b;
555 for (; p < b + n; ++p)
556 scm_gc_register_root (p);
557 }
558
559 void
560 scm_gc_unregister_roots (SCM *b, unsigned long n)
561 {
562 SCM *p = b;
563 for (; p < b + n; ++p)
564 scm_gc_unregister_root (p);
565 }
566
567 \f
568
569
570 /*
571 MOVE THIS FUNCTION. IT DOES NOT HAVE ANYTHING TODO WITH GC.
572 */
573
574 /* Get an integer from an environment variable. */
575 int
576 scm_getenv_int (const char *var, int def)
577 {
578 char *end = 0;
579 char *val = getenv (var);
580 long res = def;
581 if (!val)
582 return def;
583 res = strtol (val, &end, 10);
584 if (end == val)
585 return def;
586 return res;
587 }
588
589 void
590 scm_storage_prehistory ()
591 {
592 #ifdef HAVE_GC_SET_ALL_INTERIOR_POINTERS
593 /* This function was added in 7.2alpha2 (June 2009). */
594 GC_set_all_interior_pointers (0);
595 #else
596 /* This symbol is deprecated in 7.3. */
597 GC_all_interior_pointers = 0;
598 #endif
599
600 free_space_divisor = scm_getenv_int ("GC_FREE_SPACE_DIVISOR", 3);
601 minimum_free_space_divisor = free_space_divisor;
602 target_free_space_divisor = free_space_divisor;
603 GC_set_free_space_divisor (free_space_divisor);
604 GC_set_finalize_on_demand (1);
605
606 GC_INIT ();
607
608 #if (! ((defined GC_VERSION_MAJOR) && (GC_VERSION_MAJOR >= 7))) \
609 && (defined SCM_I_GSC_USE_PTHREAD_THREADS)
610 /* When using GC 6.8, this call is required to initialize thread-local
611 freelists (shouldn't be necessary with GC 7.0). */
612 GC_init ();
613 #endif
614
615 GC_expand_hp (SCM_DEFAULT_INIT_HEAP_SIZE_2);
616
617 /* We only need to register a displacement for those types for which the
618 higher bits of the type tag are used to store a pointer (that is, a
619 pointer to an 8-octet aligned region). For `scm_tc3_struct', this is
620 handled in `scm_alloc_struct ()'. */
621 GC_REGISTER_DISPLACEMENT (scm_tc3_cons);
622 /* GC_REGISTER_DISPLACEMENT (scm_tc3_unused); */
623
624 /* Sanity check. */
625 if (!GC_is_visible (&scm_protects))
626 abort ();
627
628 scm_c_hook_init (&scm_before_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
629 scm_c_hook_init (&scm_before_mark_c_hook, 0, SCM_C_HOOK_NORMAL);
630 scm_c_hook_init (&scm_before_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
631 scm_c_hook_init (&scm_after_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
632 scm_c_hook_init (&scm_after_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
633 }
634
635 scm_i_pthread_mutex_t scm_i_gc_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER;
636
637 void
638 scm_init_gc_protect_object ()
639 {
640 scm_protects = scm_c_make_hash_table (31);
641
642 #if 0
643 /* We can't have a cleanup handler since we have no thread to run it
644 in. */
645
646 #ifdef HAVE_ATEXIT
647 atexit (cleanup);
648 #else
649 #ifdef HAVE_ON_EXIT
650 on_exit (cleanup, 0);
651 #endif
652 #endif
653
654 #endif
655 }
656
657 \f
658
659 SCM scm_after_gc_hook;
660
661 static SCM after_gc_async_cell;
662
663 /* The function after_gc_async_thunk causes the execution of the
664 * after-gc-hook. It is run after the gc, as soon as the asynchronous
665 * events are handled by the evaluator.
666 */
667 static SCM
668 after_gc_async_thunk (void)
669 {
670 /* Fun, no? Hook-run *and* run-hook? */
671 scm_c_hook_run (&scm_after_gc_c_hook, NULL);
672 scm_c_run_hook (scm_after_gc_hook, SCM_EOL);
673 return SCM_UNSPECIFIED;
674 }
675
676
677 /* The function queue_after_gc_hook is run by the scm_before_gc_c_hook
678 * at the end of the garbage collection. The only purpose of this
679 * function is to mark the after_gc_async (which will eventually lead to
680 * the execution of the after_gc_async_thunk).
681 */
682 static void *
683 queue_after_gc_hook (void * hook_data SCM_UNUSED,
684 void *fn_data SCM_UNUSED,
685 void *data SCM_UNUSED)
686 {
687 /* If cell access debugging is enabled, the user may choose to perform
688 * additional garbage collections after an arbitrary number of cell
689 * accesses. We don't want the scheme level after-gc-hook to be performed
690 * for each of these garbage collections for the following reason: The
691 * execution of the after-gc-hook causes cell accesses itself. Thus, if the
692 * after-gc-hook was performed with every gc, and if the gc was performed
693 * after a very small number of cell accesses, then the number of cell
694 * accesses during the execution of the after-gc-hook will suffice to cause
695 * the execution of the next gc. Then, guile would keep executing the
696 * after-gc-hook over and over again, and would never come to do other
697 * things.
698 *
699 * To overcome this problem, if cell access debugging with additional
700 * garbage collections is enabled, the after-gc-hook is never run by the
701 * garbage collecter. When running guile with cell access debugging and the
702 * execution of the after-gc-hook is desired, then it is necessary to run
703 * the hook explicitly from the user code. This has the effect, that from
704 * the scheme level point of view it seems that garbage collection is
705 * performed with a much lower frequency than it actually is. Obviously,
706 * this will not work for code that depends on a fixed one to one
707 * relationship between the execution counts of the C level garbage
708 * collection hooks and the execution count of the scheme level
709 * after-gc-hook.
710 */
711
712 #if (SCM_DEBUG_CELL_ACCESSES == 1)
713 if (scm_debug_cells_gc_interval == 0)
714 #endif
715 {
716 scm_i_thread *t = SCM_I_CURRENT_THREAD;
717
718 if (scm_is_false (SCM_CDR (after_gc_async_cell)))
719 {
720 SCM_SETCDR (after_gc_async_cell, t->active_asyncs);
721 t->active_asyncs = after_gc_async_cell;
722 t->pending_asyncs = 1;
723 }
724 }
725
726 return NULL;
727 }
728
729 \f
730
731 static void *
732 start_gc_timer (void * hook_data SCM_UNUSED,
733 void *fn_data SCM_UNUSED,
734 void *data SCM_UNUSED)
735 {
736 if (!gc_start_time)
737 gc_start_time = scm_c_get_internal_run_time ();
738
739 return NULL;
740 }
741
742 static void *
743 accumulate_gc_timer (void * hook_data SCM_UNUSED,
744 void *fn_data SCM_UNUSED,
745 void *data SCM_UNUSED)
746 {
747 if (gc_start_time)
748 {
749 long now = scm_c_get_internal_run_time ();
750 gc_time_taken += now - gc_start_time;
751 gc_start_time = 0;
752 }
753
754 return NULL;
755 }
756
757 /* Return some idea of the memory footprint of a process, in bytes.
758 Currently only works on Linux systems. */
759 static size_t
760 get_image_size (void)
761 {
762 unsigned long size, resident, share;
763 size_t ret = 0;
764
765 FILE *fp = fopen ("/proc/self/statm", "r");
766
767 if (fp && fscanf (fp, "%lu %lu %lu", &size, &resident, &share) == 3)
768 ret = resident * 4096;
769
770 if (fp)
771 fclose (fp);
772
773 return ret;
774 }
775
776 /* These are discussed later. */
777 static size_t bytes_until_gc;
778 static scm_i_pthread_mutex_t bytes_until_gc_lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;
779
780 /* Make GC run more frequently when the process image size is growing,
781 measured against the number of bytes allocated through the GC.
782
783 If Guile is allocating at a GC-managed heap size H, libgc will tend
784 to limit the process image size to H*N. But if at the same time the
785 user program is mallocating at a rate M bytes per GC-allocated byte,
786 then the process stabilizes at H*N*M -- assuming that collecting data
787 will result in malloc'd data being freed. It doesn't take a very
788 large M for this to be a bad situation. To limit the image size,
789 Guile should GC more often -- the bigger the M, the more often.
790
791 Numeric functions that produce bigger and bigger integers are
792 pessimal, because M is an increasing function of time. Here is an
793 example of such a function:
794
795 (define (factorial n)
796 (define (fac n acc)
797 (if (<= n 1)
798 acc
799 (fac (1- n) (* n acc))))
800 (fac n 1))
801
802 It is possible for a process to grow for reasons that will not be
803 solved by faster GC. In that case M will be estimated as
804 artificially high for a while, and so GC will happen more often on
805 the Guile side. But when it stabilizes, Guile can ease back the GC
806 frequency.
807
808 The key is to measure process image growth, not mallocation rate.
809 For maximum effectiveness, Guile reacts quickly to process growth,
810 and exponentially backs down when the process stops growing.
811
812 See http://thread.gmane.org/gmane.lisp.guile.devel/12552/focus=12936
813 for further discussion.
814 */
815 static void *
816 adjust_gc_frequency (void * hook_data SCM_UNUSED,
817 void *fn_data SCM_UNUSED,
818 void *data SCM_UNUSED)
819 {
820 static size_t prev_image_size = 0;
821 static size_t prev_bytes_alloced = 0;
822 size_t image_size;
823 size_t bytes_alloced;
824
825 scm_i_pthread_mutex_lock (&bytes_until_gc_lock);
826 bytes_until_gc = GC_get_heap_size ();
827 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
828
829 image_size = get_image_size ();
830 bytes_alloced = GC_get_total_bytes ();
831
832 #define HEURISTICS_DEBUG 0
833
834 #if HEURISTICS_DEBUG
835 fprintf (stderr, "prev image / alloced: %lu / %lu\n", prev_image_size, prev_bytes_alloced);
836 fprintf (stderr, " image / alloced: %lu / %lu\n", image_size, bytes_alloced);
837 fprintf (stderr, "divisor %lu / %f\n", free_space_divisor, target_free_space_divisor);
838 #endif
839
840 if (prev_image_size && bytes_alloced != prev_bytes_alloced)
841 {
842 double growth_rate, new_target_free_space_divisor;
843 double decay_factor = 0.5;
844 double hysteresis = 0.1;
845
846 growth_rate = ((double) image_size - prev_image_size)
847 / ((double)bytes_alloced - prev_bytes_alloced);
848
849 #if HEURISTICS_DEBUG
850 fprintf (stderr, "growth rate %f\n", growth_rate);
851 #endif
852
853 new_target_free_space_divisor = minimum_free_space_divisor;
854
855 if (growth_rate > 0)
856 new_target_free_space_divisor *= 1.0 + growth_rate;
857
858 #if HEURISTICS_DEBUG
859 fprintf (stderr, "new divisor %f\n", new_target_free_space_divisor);
860 #endif
861
862 if (new_target_free_space_divisor < target_free_space_divisor)
863 /* Decay down. */
864 target_free_space_divisor =
865 (decay_factor * target_free_space_divisor
866 + (1.0 - decay_factor) * new_target_free_space_divisor);
867 else
868 /* Jump up. */
869 target_free_space_divisor = new_target_free_space_divisor;
870
871 #if HEURISTICS_DEBUG
872 fprintf (stderr, "new target divisor %f\n", target_free_space_divisor);
873 #endif
874
875 if (free_space_divisor + 0.5 + hysteresis < target_free_space_divisor
876 || free_space_divisor - 0.5 - hysteresis > target_free_space_divisor)
877 {
878 free_space_divisor = lround (target_free_space_divisor);
879 #if HEURISTICS_DEBUG
880 fprintf (stderr, "new divisor %lu\n", free_space_divisor);
881 #endif
882 GC_set_free_space_divisor (free_space_divisor);
883 }
884 }
885
886 prev_image_size = image_size;
887 prev_bytes_alloced = bytes_alloced;
888
889 return NULL;
890 }
891
892 /* The adjust_gc_frequency routine handles transients in the process
893 image size. It can't handle instense non-GC-managed steady-state
894 allocation though, as it decays the FSD at steady-state down to its
895 minimum value.
896
897 The only real way to handle continuous, high non-GC allocation is to
898 let the GC know about it. This routine can handle non-GC allocation
899 rates that are similar in size to the GC-managed heap size.
900 */
901
902 void
903 scm_gc_register_allocation (size_t size)
904 {
905 scm_i_pthread_mutex_lock (&bytes_until_gc_lock);
906 if (bytes_until_gc - size > bytes_until_gc)
907 {
908 bytes_until_gc = GC_get_heap_size ();
909 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
910 GC_gcollect ();
911 }
912 else
913 {
914 bytes_until_gc -= size;
915 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
916 }
917 }
918
919
920 \f
921
922 char const *
923 scm_i_tag_name (scm_t_bits tag)
924 {
925 switch (tag & 0x7f) /* 7 bits */
926 {
927 case scm_tcs_struct:
928 return "struct";
929 case scm_tcs_cons_imcar:
930 return "cons (immediate car)";
931 case scm_tcs_cons_nimcar:
932 return "cons (non-immediate car)";
933 case scm_tc7_pointer:
934 return "foreign";
935 case scm_tc7_hashtable:
936 return "hashtable";
937 case scm_tc7_weak_set:
938 return "weak-set";
939 case scm_tc7_weak_table:
940 return "weak-table";
941 case scm_tc7_fluid:
942 return "fluid";
943 case scm_tc7_dynamic_state:
944 return "dynamic state";
945 case scm_tc7_frame:
946 return "frame";
947 case scm_tc7_objcode:
948 return "objcode";
949 case scm_tc7_vm:
950 return "vm";
951 case scm_tc7_vm_cont:
952 return "vm continuation";
953 case scm_tc7_wvect:
954 return "weak vector";
955 case scm_tc7_vector:
956 return "vector";
957 case scm_tc7_number:
958 switch (tag)
959 {
960 case scm_tc16_real:
961 return "real";
962 break;
963 case scm_tc16_big:
964 return "bignum";
965 break;
966 case scm_tc16_complex:
967 return "complex number";
968 break;
969 case scm_tc16_fraction:
970 return "fraction";
971 break;
972 }
973 break;
974 case scm_tc7_string:
975 return "string";
976 break;
977 case scm_tc7_stringbuf:
978 return "string buffer";
979 break;
980 case scm_tc7_symbol:
981 return "symbol";
982 break;
983 case scm_tc7_variable:
984 return "variable";
985 break;
986 case scm_tc7_port:
987 return "port";
988 break;
989 case scm_tc7_smob:
990 {
991 int k = 0xff & (tag >> 8);
992 return (scm_smobs[k].name);
993 }
994 break;
995 }
996
997 return NULL;
998 }
999
1000
1001
1002 \f
1003 void
1004 scm_init_gc ()
1005 {
1006 /* `GC_INIT ()' was invoked in `scm_storage_prehistory ()'. */
1007
1008 scm_after_gc_hook = scm_make_hook (SCM_INUM0);
1009 scm_c_define ("after-gc-hook", scm_after_gc_hook);
1010
1011 /* When the async is to run, the cdr of the gc_async pair gets set to
1012 the asyncs queue of the current thread. */
1013 after_gc_async_cell = scm_cons (scm_c_make_gsubr ("%after-gc-thunk", 0, 0, 0,
1014 after_gc_async_thunk),
1015 SCM_BOOL_F);
1016
1017 scm_c_hook_add (&scm_before_gc_c_hook, queue_after_gc_hook, NULL, 0);
1018 scm_c_hook_add (&scm_before_gc_c_hook, start_gc_timer, NULL, 0);
1019 scm_c_hook_add (&scm_after_gc_c_hook, accumulate_gc_timer, NULL, 0);
1020
1021 /* GC_get_heap_usage does not take a lock, and so can run in the GC
1022 start hook. */
1023 scm_c_hook_add (&scm_before_gc_c_hook, adjust_gc_frequency, NULL, 0);
1024
1025 GC_set_start_callback (run_before_gc_c_hook);
1026
1027 #include "libguile/gc.x"
1028 }
1029
1030
1031 void
1032 scm_gc_sweep (void)
1033 #define FUNC_NAME "scm_gc_sweep"
1034 {
1035 /* FIXME */
1036 fprintf (stderr, "%s: doing nothing\n", FUNC_NAME);
1037 }
1038 #undef FUNC_NAME
1039
1040 /*
1041 Local Variables:
1042 c-file-style: "gnu"
1043 End:
1044 */