guile-user has no filename
[bpt/guile.git] / module / ice-9 / boot-9.scm
1 ;;; -*- mode: scheme; coding: utf-8; -*-
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 3 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;; Before compiling, make sure any symbols are resolved in the (guile)
37 ;; module, the primary location of those symbols, rather than in
38 ;; (guile-user), the default module that we compile in.
39
40 (eval-when (compile)
41 (set-current-module (resolve-module '(guile))))
42
43 \f
44
45 ;;; {Error handling}
46 ;;;
47
48 ;; Define delimited continuation operators, and implement catch and throw in
49 ;; terms of them.
50
51 (define make-prompt-tag
52 (lambda* (#:optional (stem "prompt"))
53 (gensym stem)))
54
55 (define default-prompt-tag
56 ;; not sure if we should expose this to the user as a fluid
57 (let ((%default-prompt-tag (make-prompt-tag)))
58 (lambda ()
59 %default-prompt-tag)))
60
61 (define (call-with-prompt tag thunk handler)
62 (@prompt tag (thunk) handler))
63 (define (abort-to-prompt tag . args)
64 (@abort tag args))
65
66
67 ;; Define catch and with-throw-handler, using some common helper routines and a
68 ;; shared fluid. Hide the helpers in a lexical contour.
69
70 (define with-throw-handler #f)
71 (let ()
72 ;; Ideally we'd like to be able to give these default values for all threads,
73 ;; even threads not created by Guile; but alack, that does not currently seem
74 ;; possible. So wrap the getters in thunks.
75 (define %running-exception-handlers (make-fluid))
76 (define %exception-handler (make-fluid))
77
78 (define (running-exception-handlers)
79 (or (fluid-ref %running-exception-handlers)
80 (begin
81 (fluid-set! %running-exception-handlers '())
82 '())))
83 (define (exception-handler)
84 (or (fluid-ref %exception-handler)
85 (begin
86 (fluid-set! %exception-handler default-exception-handler)
87 default-exception-handler)))
88
89 (define (default-exception-handler k . args)
90 (cond
91 ((eq? k 'quit)
92 (primitive-exit (cond
93 ((not (pair? args)) 0)
94 ((integer? (car args)) (car args))
95 ((not (car args)) 1)
96 (else 0))))
97 (else
98 (format (current-error-port) "guile: uncaught throw to ~a: ~a\n" k args)
99 (primitive-exit 1))))
100
101 (define (default-throw-handler prompt-tag catch-k)
102 (let ((prev (exception-handler)))
103 (lambda (thrown-k . args)
104 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
105 (apply abort-to-prompt prompt-tag thrown-k args)
106 (apply prev thrown-k args)))))
107
108 (define (custom-throw-handler prompt-tag catch-k pre)
109 (let ((prev (exception-handler)))
110 (lambda (thrown-k . args)
111 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
112 (let ((running (running-exception-handlers)))
113 (with-fluids ((%running-exception-handlers (cons pre running)))
114 (if (not (memq pre running))
115 (apply pre thrown-k args))
116 ;; fall through
117 (if prompt-tag
118 (apply abort-to-prompt prompt-tag thrown-k args)
119 (apply prev thrown-k args))))
120 (apply prev thrown-k args)))))
121
122 (set! catch
123 (lambda* (k thunk handler #:optional pre-unwind-handler)
124 "Invoke @var{thunk} in the dynamic context of @var{handler} for
125 exceptions matching @var{key}. If thunk throws to the symbol
126 @var{key}, then @var{handler} is invoked this way:
127 @lisp
128 (handler key args ...)
129 @end lisp
130
131 @var{key} is a symbol or @code{#t}.
132
133 @var{thunk} takes no arguments. If @var{thunk} returns
134 normally, that is the return value of @code{catch}.
135
136 Handler is invoked outside the scope of its own @code{catch}.
137 If @var{handler} again throws to the same key, a new handler
138 from further up the call chain is invoked.
139
140 If the key is @code{#t}, then a throw to @emph{any} symbol will
141 match this call to @code{catch}.
142
143 If a @var{pre-unwind-handler} is given and @var{thunk} throws
144 an exception that matches @var{key}, Guile calls the
145 @var{pre-unwind-handler} before unwinding the dynamic state and
146 invoking the main @var{handler}. @var{pre-unwind-handler} should
147 be a procedure with the same signature as @var{handler}, that
148 is @code{(lambda (key . args))}. It is typically used to save
149 the stack at the point where the exception occurred, but can also
150 query other parts of the dynamic state at that point, such as
151 fluid values.
152
153 A @var{pre-unwind-handler} can exit either normally or non-locally.
154 If it exits normally, Guile unwinds the stack and dynamic context
155 and then calls the normal (third argument) handler. If it exits
156 non-locally, that exit determines the continuation."
157 (if (not (or (symbol? k) (eqv? k #t)))
158 (scm-error "catch" 'wrong-type-arg
159 "Wrong type argument in position ~a: ~a"
160 (list 1 k) (list k)))
161 (let ((tag (make-prompt-tag "catch")))
162 (call-with-prompt
163 tag
164 (lambda ()
165 (with-fluids
166 ((%exception-handler
167 (if pre-unwind-handler
168 (custom-throw-handler tag k pre-unwind-handler)
169 (default-throw-handler tag k))))
170 (thunk)))
171 (lambda (cont k . args)
172 (apply handler k args))))))
173
174 (set! with-throw-handler
175 (lambda (k thunk pre-unwind-handler)
176 "Add @var{handler} to the dynamic context as a throw handler
177 for key @var{key}, then invoke @var{thunk}."
178 (if (not (or (symbol? k) (eqv? k #t)))
179 (scm-error "with-throw-handler" 'wrong-type-arg
180 "Wrong type argument in position ~a: ~a"
181 (list 1 k) (list k)))
182 (with-fluids ((%exception-handler
183 (custom-throw-handler #f k pre-unwind-handler)))
184 (thunk))))
185
186 (set! throw
187 (lambda (key . args)
188 "Invoke the catch form matching @var{key}, passing @var{args} to the
189 @var{handler}.
190
191 @var{key} is a symbol. It will match catches of the same symbol or of @code{#t}.
192
193 If there is no handler at all, Guile prints an error and then exits."
194 (if (not (symbol? key))
195 ((exception-handler) 'wrong-type-arg "throw"
196 "Wrong type argument in position ~a: ~a" (list 1 key) (list key))
197 (apply (exception-handler) key args)))))
198
199
200 \f
201
202 ;;; {R4RS compliance}
203 ;;;
204
205 (primitive-load-path "ice-9/r4rs")
206
207 \f
208
209 ;;; {Simple Debugging Tools}
210 ;;;
211
212 ;; peek takes any number of arguments, writes them to the
213 ;; current ouput port, and returns the last argument.
214 ;; It is handy to wrap around an expression to look at
215 ;; a value each time is evaluated, e.g.:
216 ;;
217 ;; (+ 10 (troublesome-fn))
218 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
219 ;;
220
221 (define (peek . stuff)
222 (newline)
223 (display ";;; ")
224 (write stuff)
225 (newline)
226 (car (last-pair stuff)))
227
228 (define pk peek)
229
230
231 (define (warn . stuff)
232 (with-output-to-port (current-error-port)
233 (lambda ()
234 (newline)
235 (display ";;; WARNING ")
236 (display stuff)
237 (newline)
238 (car (last-pair stuff)))))
239
240 \f
241
242 ;;; {Features}
243 ;;;
244
245 (define (provide sym)
246 (if (not (memq sym *features*))
247 (set! *features* (cons sym *features*))))
248
249 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
250 ;; provided? also checks to see if the module is available. We should do that
251 ;; too, but don't.
252
253 (define (provided? feature)
254 (and (memq feature *features*) #t))
255
256 \f
257
258 ;;; {Structs}
259 ;;;
260
261 (define (make-struct/no-tail vtable . args)
262 (apply make-struct vtable 0 args))
263
264 \f
265
266 ;;; {and-map and or-map}
267 ;;;
268 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
269 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
270 ;;;
271
272 ;; and-map f l
273 ;;
274 ;; Apply f to successive elements of l until exhaustion or f returns #f.
275 ;; If returning early, return #f. Otherwise, return the last value returned
276 ;; by f. If f has never been called because l is empty, return #t.
277 ;;
278 (define (and-map f lst)
279 (let loop ((result #t)
280 (l lst))
281 (and result
282 (or (and (null? l)
283 result)
284 (loop (f (car l)) (cdr l))))))
285
286 ;; or-map f l
287 ;;
288 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
289 ;; If returning early, return the return value of f.
290 ;;
291 (define (or-map f lst)
292 (let loop ((result #f)
293 (l lst))
294 (or result
295 (and (not (null? l))
296 (loop (f (car l)) (cdr l))))))
297
298 \f
299
300 ;; let format alias simple-format until the more complete version is loaded
301
302 (define format simple-format)
303
304 ;; this is scheme wrapping the C code so the final pred call is a tail call,
305 ;; per SRFI-13 spec
306 (define string-any
307 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
308 (if (and (procedure? char_pred)
309 (> end start)
310 (<= end (string-length s))) ;; let c-code handle range error
311 (or (string-any-c-code char_pred s start (1- end))
312 (char_pred (string-ref s (1- end))))
313 (string-any-c-code char_pred s start end))))
314
315 ;; this is scheme wrapping the C code so the final pred call is a tail call,
316 ;; per SRFI-13 spec
317 (define string-every
318 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
319 (if (and (procedure? char_pred)
320 (> end start)
321 (<= end (string-length s))) ;; let c-code handle range error
322 (and (string-every-c-code char_pred s start (1- end))
323 (char_pred (string-ref s (1- end))))
324 (string-every-c-code char_pred s start end))))
325
326 ;; A variant of string-fill! that we keep for compatability
327 ;;
328 (define (substring-fill! str start end fill)
329 (string-fill! str fill start end))
330
331 \f
332
333 ;; Define a minimal stub of the module API for psyntax, before modules
334 ;; have booted.
335 (define (module-name x)
336 '(guile))
337 (define (module-define! module sym val)
338 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
339 (if v
340 (variable-set! v val)
341 (hashq-set! (%get-pre-modules-obarray) sym
342 (make-variable val)))))
343 (define (module-ref module sym)
344 (let ((v (module-variable module sym)))
345 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
346 (define (resolve-module . args)
347 #f)
348
349 ;; API provided by psyntax
350 (define syntax-violation #f)
351 (define datum->syntax #f)
352 (define syntax->datum #f)
353 (define syntax-source #f)
354 (define identifier? #f)
355 (define generate-temporaries #f)
356 (define bound-identifier=? #f)
357 (define free-identifier=? #f)
358
359 ;; $sc-dispatch is an implementation detail of psyntax. It is used by
360 ;; expanded macros, to dispatch an input against a set of patterns.
361 (define $sc-dispatch #f)
362
363 ;; Load it up!
364 (primitive-load-path "ice-9/psyntax-pp")
365 ;; The binding for `macroexpand' has now been overridden, making psyntax the
366 ;; expander now.
367
368 (define-syntax and
369 (syntax-rules ()
370 ((_) #t)
371 ((_ x) x)
372 ((_ x y ...) (if x (and y ...) #f))))
373
374 (define-syntax or
375 (syntax-rules ()
376 ((_) #f)
377 ((_ x) x)
378 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
379
380 ;; The "maybe-more" bits are something of a hack, so that we can support
381 ;; SRFI-61. Rewrites into a standalone syntax-case macro would be
382 ;; appreciated.
383 (define-syntax cond
384 (syntax-rules (=> else)
385 ((_ "maybe-more" test consequent)
386 (if test consequent))
387
388 ((_ "maybe-more" test consequent clause ...)
389 (if test consequent (cond clause ...)))
390
391 ((_ (else else1 else2 ...))
392 (begin else1 else2 ...))
393
394 ((_ (test => receiver) more-clause ...)
395 (let ((t test))
396 (cond "maybe-more" t (receiver t) more-clause ...)))
397
398 ((_ (generator guard => receiver) more-clause ...)
399 (call-with-values (lambda () generator)
400 (lambda t
401 (cond "maybe-more"
402 (apply guard t) (apply receiver t) more-clause ...))))
403
404 ((_ (test => receiver ...) more-clause ...)
405 (syntax-violation 'cond "wrong number of receiver expressions"
406 '(test => receiver ...)))
407 ((_ (generator guard => receiver ...) more-clause ...)
408 (syntax-violation 'cond "wrong number of receiver expressions"
409 '(generator guard => receiver ...)))
410
411 ((_ (test) more-clause ...)
412 (let ((t test))
413 (cond "maybe-more" t t more-clause ...)))
414
415 ((_ (test body1 body2 ...) more-clause ...)
416 (cond "maybe-more"
417 test (begin body1 body2 ...) more-clause ...))))
418
419 (define-syntax case
420 (syntax-rules (else)
421 ((case (key ...)
422 clauses ...)
423 (let ((atom-key (key ...)))
424 (case atom-key clauses ...)))
425 ((case key
426 (else result1 result2 ...))
427 (begin result1 result2 ...))
428 ((case key
429 ((atoms ...) result1 result2 ...))
430 (if (memv key '(atoms ...))
431 (begin result1 result2 ...)))
432 ((case key
433 ((atoms ...) result1 result2 ...)
434 clause clauses ...)
435 (if (memv key '(atoms ...))
436 (begin result1 result2 ...)
437 (case key clause clauses ...)))))
438
439 (define-syntax do
440 (syntax-rules ()
441 ((do ((var init step ...) ...)
442 (test expr ...)
443 command ...)
444 (letrec
445 ((loop
446 (lambda (var ...)
447 (if test
448 (begin
449 (if #f #f)
450 expr ...)
451 (begin
452 command
453 ...
454 (loop (do "step" var step ...)
455 ...))))))
456 (loop init ...)))
457 ((do "step" x)
458 x)
459 ((do "step" x y)
460 y)))
461
462 (define-syntax delay
463 (syntax-rules ()
464 ((_ exp) (make-promise (lambda () exp)))))
465
466 (include-from-path "ice-9/quasisyntax")
467
468 (define-syntax current-source-location
469 (lambda (x)
470 (syntax-case x ()
471 ((_)
472 (with-syntax ((s (datum->syntax x (syntax-source x))))
473 #''s)))))
474
475
476 \f
477
478 ;;; {Defmacros}
479 ;;;
480
481 (define-syntax define-macro
482 (lambda (x)
483 "Define a defmacro."
484 (syntax-case x ()
485 ((_ (macro . args) doc body1 body ...)
486 (string? (syntax->datum #'doc))
487 #'(define-macro macro doc (lambda args body1 body ...)))
488 ((_ (macro . args) body ...)
489 #'(define-macro macro #f (lambda args body ...)))
490 ((_ macro doc transformer)
491 (or (string? (syntax->datum #'doc))
492 (not (syntax->datum #'doc)))
493 #'(define-syntax macro
494 (lambda (y)
495 doc
496 #((macro-type . defmacro)
497 (defmacro-args args))
498 (syntax-case y ()
499 ((_ . args)
500 (let ((v (syntax->datum #'args)))
501 (datum->syntax y (apply transformer v)))))))))))
502
503 (define-syntax defmacro
504 (lambda (x)
505 "Define a defmacro, with the old lispy defun syntax."
506 (syntax-case x ()
507 ((_ macro args doc body1 body ...)
508 (string? (syntax->datum #'doc))
509 #'(define-macro macro doc (lambda args body1 body ...)))
510 ((_ macro args body ...)
511 #'(define-macro macro #f (lambda args body ...))))))
512
513 (provide 'defmacro)
514
515 \f
516
517 ;;; {Deprecation}
518 ;;;
519
520 (define-syntax begin-deprecated
521 (lambda (x)
522 (syntax-case x ()
523 ((_ form form* ...)
524 (if (include-deprecated-features)
525 #'(begin form form* ...)
526 #'(begin))))))
527
528 \f
529
530 ;;; {Trivial Functions}
531 ;;;
532
533 (define (identity x) x)
534
535 (define (compose proc . rest)
536 "Compose PROC with the procedures in REST, such that the last one in
537 REST is applied first and PROC last, and return the resulting procedure.
538 The given procedures must have compatible arity."
539 (if (null? rest)
540 proc
541 (let ((g (apply compose rest)))
542 (lambda args
543 (call-with-values (lambda () (apply g args)) proc)))))
544
545 (define (negate proc)
546 "Return a procedure with the same arity as PROC that returns the `not'
547 of PROC's result."
548 (lambda args
549 (not (apply proc args))))
550
551 (define (const value)
552 "Return a procedure that accepts any number of arguments and returns
553 VALUE."
554 (lambda _
555 value))
556
557 (define (and=> value procedure) (and value (procedure value)))
558 (define call/cc call-with-current-continuation)
559
560 (define-syntax false-if-exception
561 (syntax-rules ()
562 ((_ expr)
563 (catch #t
564 (lambda () expr)
565 (lambda (k . args) #f)))))
566
567 \f
568
569 ;;; {General Properties}
570 ;;;
571
572 ;; Properties are a lispy way to associate random info with random objects.
573 ;; Traditionally properties are implemented as an alist or a plist actually
574 ;; pertaining to the object in question.
575 ;;
576 ;; These "object properties" have the advantage that they can be associated with
577 ;; any object, even if the object has no plist. Object properties are good when
578 ;; you are extending pre-existing objects in unexpected ways. They also present
579 ;; a pleasing, uniform procedure-with-setter interface. But if you have a data
580 ;; type that always has properties, it's often still best to store those
581 ;; properties within the object itself.
582
583 (define (make-object-property)
584 (let ((prop (primitive-make-property #f)))
585 (make-procedure-with-setter
586 (lambda (obj) (primitive-property-ref prop obj))
587 (lambda (obj val) (primitive-property-set! prop obj val)))))
588
589 \f
590
591 ;;; {Symbol Properties}
592 ;;;
593
594 ;;; Symbol properties are something you see in old Lisp code. In most current
595 ;;; Guile code, symbols are not used as a data structure -- they are used as
596 ;;; keys into other data structures.
597
598 (define (symbol-property sym prop)
599 (let ((pair (assoc prop (symbol-pref sym))))
600 (and pair (cdr pair))))
601
602 (define (set-symbol-property! sym prop val)
603 (let ((pair (assoc prop (symbol-pref sym))))
604 (if pair
605 (set-cdr! pair val)
606 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
607
608 (define (symbol-property-remove! sym prop)
609 (let ((pair (assoc prop (symbol-pref sym))))
610 (if pair
611 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
612
613 \f
614
615 ;;; {Arrays}
616 ;;;
617
618 (define (array-shape a)
619 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
620 (array-dimensions a)))
621
622 \f
623
624 ;;; {Keywords}
625 ;;;
626
627 ;;; It's much better if you can use lambda* / define*, of course.
628
629 (define (kw-arg-ref args kw)
630 (let ((rem (member kw args)))
631 (and rem (pair? (cdr rem)) (cadr rem))))
632
633 \f
634
635 ;;; {Structs}
636 ;;;
637
638 (define (struct-layout s)
639 (struct-ref (struct-vtable s) vtable-index-layout))
640
641 \f
642
643 ;;; {Records}
644 ;;;
645
646 ;; Printing records: by default, records are printed as
647 ;;
648 ;; #<type-name field1: val1 field2: val2 ...>
649 ;;
650 ;; You can change that by giving a custom printing function to
651 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
652 ;; will be called like
653 ;;
654 ;; (<printer> object port)
655 ;;
656 ;; It should print OBJECT to PORT.
657
658 (define (inherit-print-state old-port new-port)
659 (if (get-print-state old-port)
660 (port-with-print-state new-port (get-print-state old-port))
661 new-port))
662
663 ;; 0: type-name, 1: fields, 2: constructor
664 (define record-type-vtable
665 ;; FIXME: This should just call make-vtable, not make-vtable-vtable; but for
666 ;; that we need to expose the bare vtable-vtable to Scheme.
667 (make-vtable-vtable "prprpw" 0
668 (lambda (s p)
669 (cond ((eq? s record-type-vtable)
670 (display "#<record-type-vtable>" p))
671 (else
672 (display "#<record-type " p)
673 (display (record-type-name s) p)
674 (display ">" p))))))
675
676 (define (record-type? obj)
677 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
678
679 (define* (make-record-type type-name fields #:optional printer)
680 ;; Pre-generate constructors for nfields < 20.
681 (define-syntax make-constructor
682 (lambda (x)
683 (define *max-static-argument-count* 20)
684 (define (make-formals n)
685 (let lp ((i 0))
686 (if (< i n)
687 (cons (datum->syntax
688 x
689 (string->symbol
690 (string (integer->char (+ (char->integer #\a) i)))))
691 (lp (1+ i)))
692 '())))
693 (syntax-case x ()
694 ((_ rtd exp) (not (identifier? #'exp))
695 #'(let ((n exp))
696 (make-constructor rtd n)))
697 ((_ rtd nfields)
698 #`(case nfields
699 #,@(let lp ((n 0))
700 (if (< n *max-static-argument-count*)
701 (cons (with-syntax (((formal ...) (make-formals n))
702 (n n))
703 #'((n)
704 (lambda (formal ...)
705 (make-struct rtd 0 formal ...))))
706 (lp (1+ n)))
707 '()))
708 (else
709 (lambda args
710 (if (= (length args) nfields)
711 (apply make-struct rtd 0 args)
712 (scm-error 'wrong-number-of-args
713 (format #f "make-~a" type-name)
714 "Wrong number of arguments" '() #f)))))))))
715
716 (define (default-record-printer s p)
717 (display "#<" p)
718 (display (record-type-name (record-type-descriptor s)) p)
719 (let loop ((fields (record-type-fields (record-type-descriptor s)))
720 (off 0))
721 (cond
722 ((not (null? fields))
723 (display " " p)
724 (display (car fields) p)
725 (display ": " p)
726 (display (struct-ref s off) p)
727 (loop (cdr fields) (+ 1 off)))))
728 (display ">" p))
729
730 (let ((rtd (make-struct record-type-vtable 0
731 (make-struct-layout
732 (apply string-append
733 (map (lambda (f) "pw") fields)))
734 (or printer default-record-printer)
735 type-name
736 (copy-tree fields))))
737 (struct-set! rtd (+ vtable-offset-user 2)
738 (make-constructor rtd (length fields)))
739 ;; Temporary solution: Associate a name to the record type descriptor
740 ;; so that the object system can create a wrapper class for it.
741 (set-struct-vtable-name! rtd (if (symbol? type-name)
742 type-name
743 (string->symbol type-name)))
744 rtd))
745
746 (define (record-type-name obj)
747 (if (record-type? obj)
748 (struct-ref obj vtable-offset-user)
749 (error 'not-a-record-type obj)))
750
751 (define (record-type-fields obj)
752 (if (record-type? obj)
753 (struct-ref obj (+ 1 vtable-offset-user))
754 (error 'not-a-record-type obj)))
755
756 (define* (record-constructor rtd #:optional field-names)
757 (if (not field-names)
758 (struct-ref rtd (+ 2 vtable-offset-user))
759 (primitive-eval
760 `(lambda ,field-names
761 (make-struct ',rtd 0 ,@(map (lambda (f)
762 (if (memq f field-names)
763 f
764 #f))
765 (record-type-fields rtd)))))))
766
767 (define (record-predicate rtd)
768 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
769
770 (define (%record-type-error rtd obj) ;; private helper
771 (or (eq? rtd (record-type-descriptor obj))
772 (scm-error 'wrong-type-arg "%record-type-check"
773 "Wrong type record (want `~S'): ~S"
774 (list (record-type-name rtd) obj)
775 #f)))
776
777 (define (record-accessor rtd field-name)
778 (let ((pos (list-index (record-type-fields rtd) field-name)))
779 (if (not pos)
780 (error 'no-such-field field-name))
781 (lambda (obj)
782 (if (eq? (struct-vtable obj) rtd)
783 (struct-ref obj pos)
784 (%record-type-error rtd obj)))))
785
786 (define (record-modifier rtd field-name)
787 (let ((pos (list-index (record-type-fields rtd) field-name)))
788 (if (not pos)
789 (error 'no-such-field field-name))
790 (lambda (obj val)
791 (if (eq? (struct-vtable obj) rtd)
792 (struct-set! obj pos val)
793 (%record-type-error rtd obj)))))
794
795 (define (record? obj)
796 (and (struct? obj) (record-type? (struct-vtable obj))))
797
798 (define (record-type-descriptor obj)
799 (if (struct? obj)
800 (struct-vtable obj)
801 (error 'not-a-record obj)))
802
803 (provide 'record)
804
805 \f
806
807 ;;; {Booleans}
808 ;;;
809
810 (define (->bool x) (not (not x)))
811
812 \f
813
814 ;;; {Symbols}
815 ;;;
816
817 (define (symbol-append . args)
818 (string->symbol (apply string-append (map symbol->string args))))
819
820 (define (list->symbol . args)
821 (string->symbol (apply list->string args)))
822
823 (define (symbol . args)
824 (string->symbol (apply string args)))
825
826 \f
827
828 ;;; {Lists}
829 ;;;
830
831 (define (list-index l k)
832 (let loop ((n 0)
833 (l l))
834 (and (not (null? l))
835 (if (eq? (car l) k)
836 n
837 (loop (+ n 1) (cdr l))))))
838
839 \f
840
841 (if (provided? 'posix)
842 (primitive-load-path "ice-9/posix"))
843
844 (if (provided? 'socket)
845 (primitive-load-path "ice-9/networking"))
846
847 ;; For reference, Emacs file-exists-p uses stat in this same way.
848 (define file-exists?
849 (if (provided? 'posix)
850 (lambda (str)
851 (->bool (stat str #f)))
852 (lambda (str)
853 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
854 (lambda args #f))))
855 (if port (begin (close-port port) #t)
856 #f)))))
857
858 (define file-is-directory?
859 (if (provided? 'posix)
860 (lambda (str)
861 (eq? (stat:type (stat str)) 'directory))
862 (lambda (str)
863 (let ((port (catch 'system-error
864 (lambda () (open-file (string-append str "/.")
865 OPEN_READ))
866 (lambda args #f))))
867 (if port (begin (close-port port) #t)
868 #f)))))
869
870 (define (system-error-errno args)
871 (if (eq? (car args) 'system-error)
872 (car (list-ref args 4))
873 #f))
874
875 \f
876
877 ;;; {Error Handling}
878 ;;;
879
880 (define error
881 (case-lambda
882 (()
883 (scm-error 'misc-error #f "?" #f #f))
884 ((message . args)
885 (let ((msg (string-join (cons "~A" (make-list (length args) "~S")))))
886 (scm-error 'misc-error #f msg (cons message args) #f)))))
887
888 \f
889
890 ;;; {Time Structures}
891 ;;;
892
893 (define (tm:sec obj) (vector-ref obj 0))
894 (define (tm:min obj) (vector-ref obj 1))
895 (define (tm:hour obj) (vector-ref obj 2))
896 (define (tm:mday obj) (vector-ref obj 3))
897 (define (tm:mon obj) (vector-ref obj 4))
898 (define (tm:year obj) (vector-ref obj 5))
899 (define (tm:wday obj) (vector-ref obj 6))
900 (define (tm:yday obj) (vector-ref obj 7))
901 (define (tm:isdst obj) (vector-ref obj 8))
902 (define (tm:gmtoff obj) (vector-ref obj 9))
903 (define (tm:zone obj) (vector-ref obj 10))
904
905 (define (set-tm:sec obj val) (vector-set! obj 0 val))
906 (define (set-tm:min obj val) (vector-set! obj 1 val))
907 (define (set-tm:hour obj val) (vector-set! obj 2 val))
908 (define (set-tm:mday obj val) (vector-set! obj 3 val))
909 (define (set-tm:mon obj val) (vector-set! obj 4 val))
910 (define (set-tm:year obj val) (vector-set! obj 5 val))
911 (define (set-tm:wday obj val) (vector-set! obj 6 val))
912 (define (set-tm:yday obj val) (vector-set! obj 7 val))
913 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
914 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
915 (define (set-tm:zone obj val) (vector-set! obj 10 val))
916
917 (define (tms:clock obj) (vector-ref obj 0))
918 (define (tms:utime obj) (vector-ref obj 1))
919 (define (tms:stime obj) (vector-ref obj 2))
920 (define (tms:cutime obj) (vector-ref obj 3))
921 (define (tms:cstime obj) (vector-ref obj 4))
922
923 \f
924
925 ;;; {File Descriptors and Ports}
926 ;;;
927
928 (define file-position ftell)
929 (define* (file-set-position port offset #:optional (whence SEEK_SET))
930 (seek port offset whence))
931
932 (define (move->fdes fd/port fd)
933 (cond ((integer? fd/port)
934 (dup->fdes fd/port fd)
935 (close fd/port)
936 fd)
937 (else
938 (primitive-move->fdes fd/port fd)
939 (set-port-revealed! fd/port 1)
940 fd/port)))
941
942 (define (release-port-handle port)
943 (let ((revealed (port-revealed port)))
944 (if (> revealed 0)
945 (set-port-revealed! port (- revealed 1)))))
946
947 (define dup->port
948 (case-lambda
949 ((port/fd mode)
950 (fdopen (dup->fdes port/fd) mode))
951 ((port/fd mode new-fd)
952 (let ((port (fdopen (dup->fdes port/fd new-fd) mode)))
953 (set-port-revealed! port 1)
954 port))))
955
956 (define dup->inport
957 (case-lambda
958 ((port/fd)
959 (dup->port port/fd "r"))
960 ((port/fd new-fd)
961 (dup->port port/fd "r" new-fd))))
962
963 (define dup->outport
964 (case-lambda
965 ((port/fd)
966 (dup->port port/fd "w"))
967 ((port/fd new-fd)
968 (dup->port port/fd "w" new-fd))))
969
970 (define dup
971 (case-lambda
972 ((port/fd)
973 (if (integer? port/fd)
974 (dup->fdes port/fd)
975 (dup->port port/fd (port-mode port/fd))))
976 ((port/fd new-fd)
977 (if (integer? port/fd)
978 (dup->fdes port/fd new-fd)
979 (dup->port port/fd (port-mode port/fd) new-fd)))))
980
981 (define (duplicate-port port modes)
982 (dup->port port modes))
983
984 (define (fdes->inport fdes)
985 (let loop ((rest-ports (fdes->ports fdes)))
986 (cond ((null? rest-ports)
987 (let ((result (fdopen fdes "r")))
988 (set-port-revealed! result 1)
989 result))
990 ((input-port? (car rest-ports))
991 (set-port-revealed! (car rest-ports)
992 (+ (port-revealed (car rest-ports)) 1))
993 (car rest-ports))
994 (else
995 (loop (cdr rest-ports))))))
996
997 (define (fdes->outport fdes)
998 (let loop ((rest-ports (fdes->ports fdes)))
999 (cond ((null? rest-ports)
1000 (let ((result (fdopen fdes "w")))
1001 (set-port-revealed! result 1)
1002 result))
1003 ((output-port? (car rest-ports))
1004 (set-port-revealed! (car rest-ports)
1005 (+ (port-revealed (car rest-ports)) 1))
1006 (car rest-ports))
1007 (else
1008 (loop (cdr rest-ports))))))
1009
1010 (define (port->fdes port)
1011 (set-port-revealed! port (+ (port-revealed port) 1))
1012 (fileno port))
1013
1014 (define (setenv name value)
1015 (if value
1016 (putenv (string-append name "=" value))
1017 (putenv name)))
1018
1019 (define (unsetenv name)
1020 "Remove the entry for NAME from the environment."
1021 (putenv name))
1022
1023 \f
1024
1025 ;;; {Load Paths}
1026 ;;;
1027
1028 (define (in-vicinity vicinity file)
1029 (let ((tail (let ((len (string-length vicinity)))
1030 (if (zero? len)
1031 #f
1032 (string-ref vicinity (- len 1))))))
1033 (string-append vicinity
1034 (if (or (not tail)
1035 (eq? tail #\/))
1036 ""
1037 "/")
1038 file)))
1039
1040 \f
1041
1042 ;;; {Help for scm_shell}
1043 ;;;
1044 ;;; The argument-processing code used by Guile-based shells generates
1045 ;;; Scheme code based on the argument list. This page contains help
1046 ;;; functions for the code it generates.
1047 ;;;
1048
1049 (define (command-line) (program-arguments))
1050
1051 ;; This is mostly for the internal use of the code generated by
1052 ;; scm_compile_shell_switches.
1053
1054 (define (load-user-init)
1055 (let* ((home (or (getenv "HOME")
1056 (false-if-exception (passwd:dir (getpwuid (getuid))))
1057 "/")) ;; fallback for cygwin etc.
1058 (init-file (in-vicinity home ".guile")))
1059 (if (file-exists? init-file)
1060 (primitive-load init-file))))
1061
1062 \f
1063
1064 ;;; {The interpreter stack}
1065 ;;;
1066
1067 ;; %stacks defined in stacks.c
1068 (define (%start-stack tag thunk)
1069 (let ((prompt-tag (make-prompt-tag "start-stack")))
1070 (call-with-prompt
1071 prompt-tag
1072 (lambda ()
1073 (with-fluids ((%stacks (acons tag prompt-tag
1074 (or (fluid-ref %stacks) '()))))
1075 (thunk)))
1076 (lambda (k . args)
1077 (%start-stack tag (lambda () (apply k args)))))))
1078 (define-syntax start-stack
1079 (syntax-rules ()
1080 ((_ tag exp)
1081 (%start-stack tag (lambda () exp)))))
1082
1083 \f
1084
1085 ;;; {Loading by paths}
1086 ;;;
1087
1088 ;;; Load a Scheme source file named NAME, searching for it in the
1089 ;;; directories listed in %load-path, and applying each of the file
1090 ;;; name extensions listed in %load-extensions.
1091 (define (load-from-path name)
1092 (start-stack 'load-stack
1093 (primitive-load-path name)))
1094
1095 (define %load-verbosely #f)
1096 (define (assert-load-verbosity v) (set! %load-verbosely v))
1097
1098 (define (%load-announce file)
1099 (if %load-verbosely
1100 (with-output-to-port (current-error-port)
1101 (lambda ()
1102 (display ";;; ")
1103 (display "loading ")
1104 (display file)
1105 (newline)
1106 (force-output)))))
1107
1108 (set! %load-hook %load-announce)
1109
1110 (define* (load name #:optional reader)
1111 ;; Returns the .go file corresponding to `name'. Does not search load
1112 ;; paths, only the fallback path. If the .go file is missing or out of
1113 ;; date, and autocompilation is enabled, will try autocompilation, just
1114 ;; as primitive-load-path does internally. primitive-load is
1115 ;; unaffected. Returns #f if autocompilation failed or was disabled.
1116 ;;
1117 ;; NB: Unless we need to compile the file, this function should not cause
1118 ;; (system base compile) to be loaded up. For that reason compiled-file-name
1119 ;; partially duplicates functionality from (system base compile).
1120 (define (compiled-file-name canon-path)
1121 (and %compile-fallback-path
1122 (string-append
1123 %compile-fallback-path
1124 ;; no need for '/' separator here, canon-path is absolute
1125 canon-path
1126 (cond ((or (null? %load-compiled-extensions)
1127 (string-null? (car %load-compiled-extensions)))
1128 (warn "invalid %load-compiled-extensions"
1129 %load-compiled-extensions)
1130 ".go")
1131 (else (car %load-compiled-extensions))))))
1132 (define (fresh-compiled-file-name go-path)
1133 (catch #t
1134 (lambda ()
1135 (let* ((scmstat (stat name))
1136 (gostat (stat go-path #f)))
1137 (if (and gostat
1138 (or (> (stat:mtime gostat) (stat:mtime scmstat))
1139 (and (= (stat:mtime gostat) (stat:mtime scmstat))
1140 (>= (stat:mtimensec gostat)
1141 (stat:mtimensec scmstat)))))
1142 go-path
1143 (begin
1144 (if gostat
1145 (format (current-error-port)
1146 ";;; note: source file ~a\n;;; newer than compiled ~a\n"
1147 name go-path))
1148 (cond
1149 (%load-should-autocompile
1150 (%warn-autocompilation-enabled)
1151 (format (current-error-port) ";;; compiling ~a\n" name)
1152 ;; This use of @ is (ironically?) boot-safe, as modules have
1153 ;; not been booted yet, so the resolve-module call in psyntax
1154 ;; doesn't try to load a module, and compile-file will be
1155 ;; treated as a function, not a macro.
1156 (let ((cfn ((@ (system base compile) compile-file) name
1157 #:env (current-module))))
1158 (format (current-error-port) ";;; compiled ~a\n" cfn)
1159 cfn))
1160 (else #f))))))
1161 (lambda (k . args)
1162 (format (current-error-port)
1163 ";;; WARNING: compilation of ~a failed:\n;;; key ~a, throw_args ~s\n"
1164 name k args)
1165 #f)))
1166 (with-fluids ((current-reader reader))
1167 (let ((cfn (and=> (and=> (false-if-exception (canonicalize-path name))
1168 compiled-file-name)
1169 fresh-compiled-file-name)))
1170 (if cfn
1171 (load-compiled cfn)
1172 (start-stack 'load-stack
1173 (primitive-load name))))))
1174
1175 \f
1176
1177 ;;; {Reader Extensions}
1178 ;;;
1179 ;;; Reader code for various "#c" forms.
1180 ;;;
1181
1182 (define read-eval? (make-fluid))
1183 (fluid-set! read-eval? #f)
1184 (read-hash-extend #\.
1185 (lambda (c port)
1186 (if (fluid-ref read-eval?)
1187 (eval (read port) (interaction-environment))
1188 (error
1189 "#. read expansion found and read-eval? is #f."))))
1190
1191 \f
1192
1193 ;;; {Low Level Modules}
1194 ;;;
1195 ;;; These are the low level data structures for modules.
1196 ;;;
1197 ;;; Every module object is of the type 'module-type', which is a record
1198 ;;; consisting of the following members:
1199 ;;;
1200 ;;; - eval-closure: the function that defines for its module the strategy that
1201 ;;; shall be followed when looking up symbols in the module.
1202 ;;;
1203 ;;; An eval-closure is a function taking two arguments: the symbol to be
1204 ;;; looked up and a boolean value telling whether a binding for the symbol
1205 ;;; should be created if it does not exist yet. If the symbol lookup
1206 ;;; succeeded (either because an existing binding was found or because a new
1207 ;;; binding was created), a variable object representing the binding is
1208 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1209 ;;; closure does not take the module to be searched as an argument: During
1210 ;;; construction of the eval-closure, the eval-closure has to store the
1211 ;;; module it belongs to in its environment. This means, that any
1212 ;;; eval-closure can belong to only one module.
1213 ;;;
1214 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1215 ;;; special cases of eval-closures are to be distinguished: During startup
1216 ;;; the module system is not yet activated. In this phase, no modules are
1217 ;;; defined and all bindings are automatically stored by the system in the
1218 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1219 ;;; functions which require an eval-closure as their argument need to be
1220 ;;; passed the value #f.
1221 ;;;
1222 ;;; The other two special cases of eval-closures are the
1223 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1224 ;;; behave equally for the case that no new binding is to be created. The
1225 ;;; difference between the two comes in, when the boolean argument to the
1226 ;;; eval-closure indicates that a new binding shall be created if it is not
1227 ;;; found.
1228 ;;;
1229 ;;; Given that no new binding shall be created, both standard eval-closures
1230 ;;; define the following standard strategy of searching bindings in the
1231 ;;; module: First, the module's obarray is searched for the symbol. Second,
1232 ;;; if no binding for the symbol was found in the module's obarray, the
1233 ;;; module's binder procedure is exececuted. If this procedure did not
1234 ;;; return a binding for the symbol, the modules referenced in the module's
1235 ;;; uses list are recursively searched for a binding of the symbol. If the
1236 ;;; binding can not be found in these modules also, the symbol lookup has
1237 ;;; failed.
1238 ;;;
1239 ;;; If a new binding shall be created, the standard-interface-eval-closure
1240 ;;; immediately returns indicating failure. That is, it does not even try
1241 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1242 ;;; first search the obarray, and if no binding was found there, would
1243 ;;; create a new binding in the obarray, therefore not calling the binder
1244 ;;; procedure or searching the modules in the uses list.
1245 ;;;
1246 ;;; The explanation of the following members obarray, binder and uses
1247 ;;; assumes that the symbol lookup follows the strategy that is defined in
1248 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1249 ;;;
1250 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1251 ;;; hash table, the definitions are found that are local to the module (that
1252 ;;; is, not imported from other modules). When looking up bindings in the
1253 ;;; module, this hash table is searched first.
1254 ;;;
1255 ;;; - binder: either #f or a function taking a module and a symbol argument.
1256 ;;; If it is a function it is called after the obarray has been
1257 ;;; unsuccessfully searched for a binding. It then can provide bindings
1258 ;;; that would otherwise not be found locally in the module.
1259 ;;;
1260 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1261 ;;; These modules are the third place queried for bindings after the obarray
1262 ;;; has been unsuccessfully searched and the binder function did not deliver
1263 ;;; a result either.
1264 ;;;
1265 ;;; - transformer: either #f or a function taking a scheme expression as
1266 ;;; delivered by read. If it is a function, it will be called to perform
1267 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1268 ;;; expression. The output of the transformer function will then be passed
1269 ;;; to Guile's internal memoizer. This means that the output must be valid
1270 ;;; scheme code. The only exception is, that the output may make use of the
1271 ;;; syntax extensions provided to identify the modules that a binding
1272 ;;; belongs to.
1273 ;;;
1274 ;;; - name: the name of the module. This is used for all kinds of printing
1275 ;;; outputs. In certain places the module name also serves as a way of
1276 ;;; identification. When adding a module to the uses list of another
1277 ;;; module, it is made sure that the new uses list will not contain two
1278 ;;; modules of the same name.
1279 ;;;
1280 ;;; - kind: classification of the kind of module. The value is (currently?)
1281 ;;; only used for printing. It has no influence on how a module is treated.
1282 ;;; Currently the following values are used when setting the module kind:
1283 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1284 ;;; is set, it defaults to 'module.
1285 ;;;
1286 ;;; - duplicates-handlers: a list of procedures that get called to make a
1287 ;;; choice between two duplicate bindings when name clashes occur. See the
1288 ;;; `duplicate-handlers' global variable below.
1289 ;;;
1290 ;;; - observers: a list of procedures that get called when the module is
1291 ;;; modified.
1292 ;;;
1293 ;;; - weak-observers: a weak-key hash table of procedures that get called
1294 ;;; when the module is modified. See `module-observe-weak' for details.
1295 ;;;
1296 ;;; In addition, the module may (must?) contain a binding for
1297 ;;; `%module-public-interface'. This variable should be bound to a module
1298 ;;; representing the exported interface of a module. See the
1299 ;;; `module-public-interface' and `module-export!' procedures.
1300 ;;;
1301 ;;; !!! warning: The interface to lazy binder procedures is going
1302 ;;; to be changed in an incompatible way to permit all the basic
1303 ;;; module ops to be virtualized.
1304 ;;;
1305 ;;; (make-module size use-list lazy-binding-proc) => module
1306 ;;; module-{obarray,uses,binder}[|-set!]
1307 ;;; (module? obj) => [#t|#f]
1308 ;;; (module-locally-bound? module symbol) => [#t|#f]
1309 ;;; (module-bound? module symbol) => [#t|#f]
1310 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1311 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1312 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1313 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1314 ;;; (module-symbol-binding module symbol opt-value)
1315 ;;; => [ <obj> | opt-value | an error occurs ]
1316 ;;; (module-make-local-var! module symbol) => #<variable...>
1317 ;;; (module-add! module symbol var) => unspecified
1318 ;;; (module-remove! module symbol) => unspecified
1319 ;;; (module-for-each proc module) => unspecified
1320 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1321 ;;; (set-current-module module) => unspecified
1322 ;;; (current-module) => #<module...>
1323 ;;;
1324 ;;;
1325
1326 \f
1327
1328 ;;; {Printing Modules}
1329 ;;;
1330
1331 ;; This is how modules are printed. You can re-define it.
1332 (define (%print-module mod port)
1333 (display "#<" port)
1334 (display (or (module-kind mod) "module") port)
1335 (display " " port)
1336 (display (module-name mod) port)
1337 (display " " port)
1338 (display (number->string (object-address mod) 16) port)
1339 (display ">" port))
1340
1341 (letrec-syntax
1342 ;; Locally extend the syntax to allow record accessors to be defined at
1343 ;; compile-time. Cache the rtd locally to the constructor, the getters and
1344 ;; the setters, in order to allow for redefinition of the record type; not
1345 ;; relevant in the case of modules, but perhaps if we make this public, it
1346 ;; could matter.
1347
1348 ((define-record-type
1349 (lambda (x)
1350 (define (make-id scope . fragments)
1351 (datum->syntax #'scope
1352 (apply symbol-append
1353 (map (lambda (x)
1354 (if (symbol? x) x (syntax->datum x)))
1355 fragments))))
1356
1357 (define (getter rtd type-name field slot)
1358 #`(define #,(make-id rtd type-name '- field)
1359 (let ((rtd #,rtd))
1360 (lambda (#,type-name)
1361 (if (eq? (struct-vtable #,type-name) rtd)
1362 (struct-ref #,type-name #,slot)
1363 (%record-type-error rtd #,type-name))))))
1364
1365 (define (setter rtd type-name field slot)
1366 #`(define #,(make-id rtd 'set- type-name '- field '!)
1367 (let ((rtd #,rtd))
1368 (lambda (#,type-name val)
1369 (if (eq? (struct-vtable #,type-name) rtd)
1370 (struct-set! #,type-name #,slot val)
1371 (%record-type-error rtd #,type-name))))))
1372
1373 (define (accessors rtd type-name fields n exp)
1374 (syntax-case fields ()
1375 (() exp)
1376 (((field #:no-accessors) field* ...) (identifier? #'field)
1377 (accessors rtd type-name #'(field* ...) (1+ n)
1378 exp))
1379 (((field #:no-setter) field* ...) (identifier? #'field)
1380 (accessors rtd type-name #'(field* ...) (1+ n)
1381 #`(begin #,exp
1382 #,(getter rtd type-name #'field n))))
1383 (((field #:no-getter) field* ...) (identifier? #'field)
1384 (accessors rtd type-name #'(field* ...) (1+ n)
1385 #`(begin #,exp
1386 #,(setter rtd type-name #'field n))))
1387 ((field field* ...) (identifier? #'field)
1388 (accessors rtd type-name #'(field* ...) (1+ n)
1389 #`(begin #,exp
1390 #,(getter rtd type-name #'field n)
1391 #,(setter rtd type-name #'field n))))))
1392
1393 (define (predicate rtd type-name fields exp)
1394 (accessors
1395 rtd type-name fields 0
1396 #`(begin
1397 #,exp
1398 (define (#,(make-id rtd type-name '?) obj)
1399 (and (struct? obj) (eq? (struct-vtable obj) #,rtd))))))
1400
1401 (define (field-list fields)
1402 (syntax-case fields ()
1403 (() '())
1404 (((f . opts) . rest) (identifier? #'f)
1405 (cons #'f (field-list #'rest)))
1406 ((f . rest) (identifier? #'f)
1407 (cons #'f (field-list #'rest)))))
1408
1409 (define (constructor rtd type-name fields exp)
1410 (let ((ctor (make-id rtd type-name '-constructor))
1411 (args (field-list fields)))
1412 (predicate rtd type-name fields
1413 #`(begin #,exp
1414 (define #,ctor
1415 (let ((rtd #,rtd))
1416 (lambda #,args
1417 (make-struct rtd 0 #,@args))))
1418 (struct-set! #,rtd (+ vtable-offset-user 2)
1419 #,ctor)))))
1420
1421 (define (type type-name printer fields)
1422 (define (make-layout)
1423 (let lp ((fields fields) (slots '()))
1424 (syntax-case fields ()
1425 (() (datum->syntax #'here
1426 (make-struct-layout
1427 (apply string-append slots))))
1428 ((_ . rest) (lp #'rest (cons "pw" slots))))))
1429
1430 (let ((rtd (make-id type-name type-name '-type)))
1431 (constructor rtd type-name fields
1432 #`(begin
1433 (define #,rtd
1434 (make-struct record-type-vtable 0
1435 '#,(make-layout)
1436 #,printer
1437 '#,type-name
1438 '#,(field-list fields)))
1439 (set-struct-vtable-name! #,rtd '#,type-name)))))
1440
1441 (syntax-case x ()
1442 ((_ type-name printer (field ...))
1443 (type #'type-name #'printer #'(field ...)))))))
1444
1445 ;; module-type
1446 ;;
1447 ;; A module is characterized by an obarray in which local symbols
1448 ;; are interned, a list of modules, "uses", from which non-local
1449 ;; bindings can be inherited, and an optional lazy-binder which
1450 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1451 ;; bindings that would otherwise not be found locally in the module.
1452 ;;
1453 ;; NOTE: If you change the set of fields or their order, you also need to
1454 ;; change the constants in libguile/modules.h.
1455 ;;
1456 ;; NOTE: The getter `module-eval-closure' is used in libguile/modules.c.
1457 ;; NOTE: The getter `module-transfomer' is defined libguile/modules.c.
1458 ;; NOTE: The getter `module-name' is defined later, due to boot reasons.
1459 ;; NOTE: The getter `module-public-interface' is used in libguile/modules.c.
1460 ;;
1461 (define-record-type module
1462 (lambda (obj port) (%print-module obj port))
1463 (obarray
1464 uses
1465 binder
1466 eval-closure
1467 (transformer #:no-getter)
1468 (name #:no-getter)
1469 kind
1470 duplicates-handlers
1471 (import-obarray #:no-setter)
1472 observers
1473 (weak-observers #:no-setter)
1474 version
1475 submodules
1476 submodule-binder
1477 public-interface
1478 filename)))
1479
1480
1481 ;; make-module &opt size uses binder
1482 ;;
1483 ;; Create a new module, perhaps with a particular size of obarray,
1484 ;; initial uses list, or binding procedure.
1485 ;;
1486 (define* (make-module #:optional (size 31) (uses '()) (binder #f))
1487 (define %default-import-size
1488 ;; Typical number of imported bindings actually used by a module.
1489 600)
1490
1491 (if (not (integer? size))
1492 (error "Illegal size to make-module." size))
1493 (if (not (and (list? uses)
1494 (and-map module? uses)))
1495 (error "Incorrect use list." uses))
1496 (if (and binder (not (procedure? binder)))
1497 (error
1498 "Lazy-binder expected to be a procedure or #f." binder))
1499
1500 (let ((module (module-constructor (make-hash-table size)
1501 uses binder #f macroexpand
1502 #f #f #f
1503 (make-hash-table %default-import-size)
1504 '()
1505 (make-weak-key-hash-table 31) #f
1506 (make-hash-table 7) #f #f #f)))
1507
1508 ;; We can't pass this as an argument to module-constructor,
1509 ;; because we need it to close over a pointer to the module
1510 ;; itself.
1511 (set-module-eval-closure! module (standard-eval-closure module))
1512
1513 module))
1514
1515
1516 \f
1517
1518 ;;; {Observer protocol}
1519 ;;;
1520
1521 (define (module-observe module proc)
1522 (set-module-observers! module (cons proc (module-observers module)))
1523 (cons module proc))
1524
1525 (define* (module-observe-weak module observer-id #:optional (proc observer-id))
1526 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1527 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1528 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1529 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1530 ;; for instance).
1531
1532 ;; The two-argument version is kept for backward compatibility: when called
1533 ;; with two arguments, the observer gets unregistered when closure PROC
1534 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1535 (hashq-set! (module-weak-observers module) observer-id proc))
1536
1537 (define (module-unobserve token)
1538 (let ((module (car token))
1539 (id (cdr token)))
1540 (if (integer? id)
1541 (hash-remove! (module-weak-observers module) id)
1542 (set-module-observers! module (delq1! id (module-observers module)))))
1543 *unspecified*)
1544
1545 (define module-defer-observers #f)
1546 (define module-defer-observers-mutex (make-mutex 'recursive))
1547 (define module-defer-observers-table (make-hash-table))
1548
1549 (define (module-modified m)
1550 (if module-defer-observers
1551 (hash-set! module-defer-observers-table m #t)
1552 (module-call-observers m)))
1553
1554 ;;; This function can be used to delay calls to observers so that they
1555 ;;; can be called once only in the face of massive updating of modules.
1556 ;;;
1557 (define (call-with-deferred-observers thunk)
1558 (dynamic-wind
1559 (lambda ()
1560 (lock-mutex module-defer-observers-mutex)
1561 (set! module-defer-observers #t))
1562 thunk
1563 (lambda ()
1564 (set! module-defer-observers #f)
1565 (hash-for-each (lambda (m dummy)
1566 (module-call-observers m))
1567 module-defer-observers-table)
1568 (hash-clear! module-defer-observers-table)
1569 (unlock-mutex module-defer-observers-mutex))))
1570
1571 (define (module-call-observers m)
1572 (for-each (lambda (proc) (proc m)) (module-observers m))
1573
1574 ;; We assume that weak observers don't (un)register themselves as they are
1575 ;; called since this would preclude proper iteration over the hash table
1576 ;; elements.
1577 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1578
1579 \f
1580
1581 ;;; {Module Searching in General}
1582 ;;;
1583 ;;; We sometimes want to look for properties of a symbol
1584 ;;; just within the obarray of one module. If the property
1585 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1586 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1587 ;;;
1588 ;;;
1589 ;;; Other times, we want to test for a symbol property in the obarray
1590 ;;; of M and, if it is not found there, try each of the modules in the
1591 ;;; uses list of M. This is the normal way of testing for some
1592 ;;; property, so we state these properties without qualification as
1593 ;;; in: ``The symbol 'fnord is interned in module M because it is
1594 ;;; interned locally in module M2 which is a member of the uses list
1595 ;;; of M.''
1596 ;;;
1597
1598 ;; module-search fn m
1599 ;;
1600 ;; return the first non-#f result of FN applied to M and then to
1601 ;; the modules in the uses of m, and so on recursively. If all applications
1602 ;; return #f, then so does this function.
1603 ;;
1604 (define (module-search fn m v)
1605 (define (loop pos)
1606 (and (pair? pos)
1607 (or (module-search fn (car pos) v)
1608 (loop (cdr pos)))))
1609 (or (fn m v)
1610 (loop (module-uses m))))
1611
1612
1613 ;;; {Is a symbol bound in a module?}
1614 ;;;
1615 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1616 ;;; of S in M has been set to some well-defined value.
1617 ;;;
1618
1619 ;; module-locally-bound? module symbol
1620 ;;
1621 ;; Is a symbol bound (interned and defined) locally in a given module?
1622 ;;
1623 (define (module-locally-bound? m v)
1624 (let ((var (module-local-variable m v)))
1625 (and var
1626 (variable-bound? var))))
1627
1628 ;; module-bound? module symbol
1629 ;;
1630 ;; Is a symbol bound (interned and defined) anywhere in a given module
1631 ;; or its uses?
1632 ;;
1633 (define (module-bound? m v)
1634 (let ((var (module-variable m v)))
1635 (and var
1636 (variable-bound? var))))
1637
1638 ;;; {Is a symbol interned in a module?}
1639 ;;;
1640 ;;; Symbol S in Module M is interned if S occurs in
1641 ;;; of S in M has been set to some well-defined value.
1642 ;;;
1643 ;;; It is possible to intern a symbol in a module without providing
1644 ;;; an initial binding for the corresponding variable. This is done
1645 ;;; with:
1646 ;;; (module-add! module symbol (make-undefined-variable))
1647 ;;;
1648 ;;; In that case, the symbol is interned in the module, but not
1649 ;;; bound there. The unbound symbol shadows any binding for that
1650 ;;; symbol that might otherwise be inherited from a member of the uses list.
1651 ;;;
1652
1653 (define (module-obarray-get-handle ob key)
1654 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1655
1656 (define (module-obarray-ref ob key)
1657 ((if (symbol? key) hashq-ref hash-ref) ob key))
1658
1659 (define (module-obarray-set! ob key val)
1660 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1661
1662 (define (module-obarray-remove! ob key)
1663 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1664
1665 ;; module-symbol-locally-interned? module symbol
1666 ;;
1667 ;; is a symbol interned (not neccessarily defined) locally in a given module
1668 ;; or its uses? Interned symbols shadow inherited bindings even if
1669 ;; they are not themselves bound to a defined value.
1670 ;;
1671 (define (module-symbol-locally-interned? m v)
1672 (not (not (module-obarray-get-handle (module-obarray m) v))))
1673
1674 ;; module-symbol-interned? module symbol
1675 ;;
1676 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1677 ;; or its uses? Interned symbols shadow inherited bindings even if
1678 ;; they are not themselves bound to a defined value.
1679 ;;
1680 (define (module-symbol-interned? m v)
1681 (module-search module-symbol-locally-interned? m v))
1682
1683
1684 ;;; {Mapping modules x symbols --> variables}
1685 ;;;
1686
1687 ;; module-local-variable module symbol
1688 ;; return the local variable associated with a MODULE and SYMBOL.
1689 ;;
1690 ;;; This function is very important. It is the only function that can
1691 ;;; return a variable from a module other than the mutators that store
1692 ;;; new variables in modules. Therefore, this function is the location
1693 ;;; of the "lazy binder" hack.
1694 ;;;
1695 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1696 ;;; to a variable, return that variable object.
1697 ;;;
1698 ;;; If the symbols is not found at first, but the module has a lazy binder,
1699 ;;; then try the binder.
1700 ;;;
1701 ;;; If the symbol is not found at all, return #f.
1702 ;;;
1703 ;;; (This is now written in C, see `modules.c'.)
1704 ;;;
1705
1706 ;;; {Mapping modules x symbols --> bindings}
1707 ;;;
1708 ;;; These are similar to the mapping to variables, except that the
1709 ;;; variable is dereferenced.
1710 ;;;
1711
1712 ;; module-symbol-binding module symbol opt-value
1713 ;;
1714 ;; return the binding of a variable specified by name within
1715 ;; a given module, signalling an error if the variable is unbound.
1716 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1717 ;; return OPT-VALUE.
1718 ;;
1719 (define (module-symbol-local-binding m v . opt-val)
1720 (let ((var (module-local-variable m v)))
1721 (if (and var (variable-bound? var))
1722 (variable-ref var)
1723 (if (not (null? opt-val))
1724 (car opt-val)
1725 (error "Locally unbound variable." v)))))
1726
1727 ;; module-symbol-binding module symbol opt-value
1728 ;;
1729 ;; return the binding of a variable specified by name within
1730 ;; a given module, signalling an error if the variable is unbound.
1731 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1732 ;; return OPT-VALUE.
1733 ;;
1734 (define (module-symbol-binding m v . opt-val)
1735 (let ((var (module-variable m v)))
1736 (if (and var (variable-bound? var))
1737 (variable-ref var)
1738 (if (not (null? opt-val))
1739 (car opt-val)
1740 (error "Unbound variable." v)))))
1741
1742
1743 \f
1744
1745 ;;; {Adding Variables to Modules}
1746 ;;;
1747
1748 ;; module-make-local-var! module symbol
1749 ;;
1750 ;; ensure a variable for V in the local namespace of M.
1751 ;; If no variable was already there, then create a new and uninitialzied
1752 ;; variable.
1753 ;;
1754 ;; This function is used in modules.c.
1755 ;;
1756 (define (module-make-local-var! m v)
1757 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1758 (and (variable? b)
1759 (begin
1760 ;; Mark as modified since this function is called when
1761 ;; the standard eval closure defines a binding
1762 (module-modified m)
1763 b)))
1764
1765 ;; Create a new local variable.
1766 (let ((local-var (make-undefined-variable)))
1767 (module-add! m v local-var)
1768 local-var)))
1769
1770 ;; module-ensure-local-variable! module symbol
1771 ;;
1772 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1773 ;; there is no binding for SYMBOL, create a new uninitialized
1774 ;; variable. Return the local variable.
1775 ;;
1776 (define (module-ensure-local-variable! module symbol)
1777 (or (module-local-variable module symbol)
1778 (let ((var (make-undefined-variable)))
1779 (module-add! module symbol var)
1780 var)))
1781
1782 ;; module-add! module symbol var
1783 ;;
1784 ;; ensure a particular variable for V in the local namespace of M.
1785 ;;
1786 (define (module-add! m v var)
1787 (if (not (variable? var))
1788 (error "Bad variable to module-add!" var))
1789 (module-obarray-set! (module-obarray m) v var)
1790 (module-modified m))
1791
1792 ;; module-remove!
1793 ;;
1794 ;; make sure that a symbol is undefined in the local namespace of M.
1795 ;;
1796 (define (module-remove! m v)
1797 (module-obarray-remove! (module-obarray m) v)
1798 (module-modified m))
1799
1800 (define (module-clear! m)
1801 (hash-clear! (module-obarray m))
1802 (module-modified m))
1803
1804 ;; MODULE-FOR-EACH -- exported
1805 ;;
1806 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1807 ;;
1808 (define (module-for-each proc module)
1809 (hash-for-each proc (module-obarray module)))
1810
1811 (define (module-map proc module)
1812 (hash-map->list proc (module-obarray module)))
1813
1814 ;; Submodules
1815 ;;
1816 ;; Modules exist in a separate namespace from values, because you generally do
1817 ;; not want the name of a submodule, which you might not even use, to collide
1818 ;; with local variables that happen to be named the same as the submodule.
1819 ;;
1820 (define (module-ref-submodule module name)
1821 (or (hashq-ref (module-submodules module) name)
1822 (and (module-submodule-binder module)
1823 ((module-submodule-binder module) module name))))
1824
1825 (define (module-define-submodule! module name submodule)
1826 (hashq-set! (module-submodules module) name submodule))
1827
1828 ;; It used to be, however, that module names were also present in the
1829 ;; value namespace. When we enable deprecated code, we preserve this
1830 ;; legacy behavior.
1831 ;;
1832 ;; These shims are defined here instead of in deprecated.scm because we
1833 ;; need their definitions before loading other modules.
1834 ;;
1835 (begin-deprecated
1836 (define (module-ref-submodule module name)
1837 (or (hashq-ref (module-submodules module) name)
1838 (and (module-submodule-binder module)
1839 ((module-submodule-binder module) module name))
1840 (let ((var (module-local-variable module name)))
1841 (and var (variable-bound? var) (module? (variable-ref var))
1842 (begin
1843 (warn "module" module "not in submodules table")
1844 (variable-ref var))))))
1845
1846 (define (module-define-submodule! module name submodule)
1847 (let ((var (module-local-variable module name)))
1848 (if (and var
1849 (or (not (variable-bound? var))
1850 (not (module? (variable-ref var)))))
1851 (warn "defining module" module ": not overriding local definition" var)
1852 (module-define! module name submodule)))
1853 (hashq-set! (module-submodules module) name submodule)))
1854
1855 \f
1856
1857 ;;; {Module-based Loading}
1858 ;;;
1859
1860 (define (save-module-excursion thunk)
1861 (let ((inner-module (current-module))
1862 (outer-module #f))
1863 (dynamic-wind (lambda ()
1864 (set! outer-module (current-module))
1865 (set-current-module inner-module)
1866 (set! inner-module #f))
1867 thunk
1868 (lambda ()
1869 (set! inner-module (current-module))
1870 (set-current-module outer-module)
1871 (set! outer-module #f)))))
1872
1873 (define basic-load load)
1874
1875 (define* (load-module filename #:optional reader)
1876 (save-module-excursion
1877 (lambda ()
1878 (let ((oldname (and (current-load-port)
1879 (port-filename (current-load-port)))))
1880 (basic-load (if (and oldname
1881 (> (string-length filename) 0)
1882 (not (char=? (string-ref filename 0) #\/))
1883 (not (string=? (dirname oldname) ".")))
1884 (string-append (dirname oldname) "/" filename)
1885 filename)
1886 reader)))))
1887
1888
1889 \f
1890
1891 ;;; {MODULE-REF -- exported}
1892 ;;;
1893
1894 ;; Returns the value of a variable called NAME in MODULE or any of its
1895 ;; used modules. If there is no such variable, then if the optional third
1896 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1897 ;;
1898 (define (module-ref module name . rest)
1899 (let ((variable (module-variable module name)))
1900 (if (and variable (variable-bound? variable))
1901 (variable-ref variable)
1902 (if (null? rest)
1903 (error "No variable named" name 'in module)
1904 (car rest) ; default value
1905 ))))
1906
1907 ;; MODULE-SET! -- exported
1908 ;;
1909 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1910 ;; to VALUE; if there is no such variable, an error is signaled.
1911 ;;
1912 (define (module-set! module name value)
1913 (let ((variable (module-variable module name)))
1914 (if variable
1915 (variable-set! variable value)
1916 (error "No variable named" name 'in module))))
1917
1918 ;; MODULE-DEFINE! -- exported
1919 ;;
1920 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1921 ;; variable, it is added first.
1922 ;;
1923 (define (module-define! module name value)
1924 (let ((variable (module-local-variable module name)))
1925 (if variable
1926 (begin
1927 (variable-set! variable value)
1928 (module-modified module))
1929 (let ((variable (make-variable value)))
1930 (module-add! module name variable)))))
1931
1932 ;; MODULE-DEFINED? -- exported
1933 ;;
1934 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1935 ;; uses)
1936 ;;
1937 (define (module-defined? module name)
1938 (let ((variable (module-variable module name)))
1939 (and variable (variable-bound? variable))))
1940
1941 ;; MODULE-USE! module interface
1942 ;;
1943 ;; Add INTERFACE to the list of interfaces used by MODULE.
1944 ;;
1945 (define (module-use! module interface)
1946 (if (not (or (eq? module interface)
1947 (memq interface (module-uses module))))
1948 (begin
1949 ;; Newly used modules must be appended rather than consed, so that
1950 ;; `module-variable' traverses the use list starting from the first
1951 ;; used module.
1952 (set-module-uses! module
1953 (append (filter (lambda (m)
1954 (not
1955 (equal? (module-name m)
1956 (module-name interface))))
1957 (module-uses module))
1958 (list interface)))
1959 (hash-clear! (module-import-obarray module))
1960 (module-modified module))))
1961
1962 ;; MODULE-USE-INTERFACES! module interfaces
1963 ;;
1964 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1965 ;;
1966 (define (module-use-interfaces! module interfaces)
1967 (set-module-uses! module
1968 (append (module-uses module) interfaces))
1969 (hash-clear! (module-import-obarray module))
1970 (module-modified module))
1971
1972 \f
1973
1974 ;;; {Recursive Namespaces}
1975 ;;;
1976 ;;; A hierarchical namespace emerges if we consider some module to be
1977 ;;; root, and submodules of that module to be nested namespaces.
1978 ;;;
1979 ;;; The routines here manage variable names in hierarchical namespace.
1980 ;;; Each variable name is a list of elements, looked up in successively nested
1981 ;;; modules.
1982 ;;;
1983 ;;; (nested-ref some-root-module '(foo bar baz))
1984 ;;; => <value of a variable named baz in the submodule bar of
1985 ;;; the submodule foo of some-root-module>
1986 ;;;
1987 ;;;
1988 ;;; There are:
1989 ;;;
1990 ;;; ;; a-root is a module
1991 ;;; ;; name is a list of symbols
1992 ;;;
1993 ;;; nested-ref a-root name
1994 ;;; nested-set! a-root name val
1995 ;;; nested-define! a-root name val
1996 ;;; nested-remove! a-root name
1997 ;;;
1998 ;;; These functions manipulate values in namespaces. For referencing the
1999 ;;; namespaces themselves, use the following:
2000 ;;;
2001 ;;; nested-ref-module a-root name
2002 ;;; nested-define-module! a-root name mod
2003 ;;;
2004 ;;; (current-module) is a natural choice for a root so for convenience there are
2005 ;;; also:
2006 ;;;
2007 ;;; local-ref name == nested-ref (current-module) name
2008 ;;; local-set! name val == nested-set! (current-module) name val
2009 ;;; local-define name val == nested-define! (current-module) name val
2010 ;;; local-remove name == nested-remove! (current-module) name
2011 ;;; local-ref-module name == nested-ref-module (current-module) name
2012 ;;; local-define-module! name m == nested-define-module! (current-module) name m
2013 ;;;
2014
2015
2016 (define (nested-ref root names)
2017 (if (null? names)
2018 root
2019 (let loop ((cur root)
2020 (head (car names))
2021 (tail (cdr names)))
2022 (if (null? tail)
2023 (module-ref cur head #f)
2024 (let ((cur (module-ref-submodule cur head)))
2025 (and cur
2026 (loop cur (car tail) (cdr tail))))))))
2027
2028 (define (nested-set! root names val)
2029 (let loop ((cur root)
2030 (head (car names))
2031 (tail (cdr names)))
2032 (if (null? tail)
2033 (module-set! cur head val)
2034 (let ((cur (module-ref-submodule cur head)))
2035 (if (not cur)
2036 (error "failed to resolve module" names)
2037 (loop cur (car tail) (cdr tail)))))))
2038
2039 (define (nested-define! root names val)
2040 (let loop ((cur root)
2041 (head (car names))
2042 (tail (cdr names)))
2043 (if (null? tail)
2044 (module-define! cur head val)
2045 (let ((cur (module-ref-submodule cur head)))
2046 (if (not cur)
2047 (error "failed to resolve module" names)
2048 (loop cur (car tail) (cdr tail)))))))
2049
2050 (define (nested-remove! root names)
2051 (let loop ((cur root)
2052 (head (car names))
2053 (tail (cdr names)))
2054 (if (null? tail)
2055 (module-remove! cur head)
2056 (let ((cur (module-ref-submodule cur head)))
2057 (if (not cur)
2058 (error "failed to resolve module" names)
2059 (loop cur (car tail) (cdr tail)))))))
2060
2061
2062 (define (nested-ref-module root names)
2063 (let loop ((cur root)
2064 (names names))
2065 (if (null? names)
2066 cur
2067 (let ((cur (module-ref-submodule cur (car names))))
2068 (and cur
2069 (loop cur (cdr names)))))))
2070
2071 (define (nested-define-module! root names module)
2072 (if (null? names)
2073 (error "can't redefine root module" root module)
2074 (let loop ((cur root)
2075 (head (car names))
2076 (tail (cdr names)))
2077 (if (null? tail)
2078 (module-define-submodule! cur head module)
2079 (let ((cur (or (module-ref-submodule cur head)
2080 (let ((m (make-module 31)))
2081 (set-module-kind! m 'directory)
2082 (set-module-name! m (append (module-name cur)
2083 (list head)))
2084 (module-define-submodule! cur head m)
2085 m))))
2086 (loop cur (car tail) (cdr tail)))))))
2087
2088
2089 (define (local-ref names)
2090 (nested-ref (current-module) names))
2091
2092 (define (local-set! names val)
2093 (nested-set! (current-module) names val))
2094
2095 (define (local-define names val)
2096 (nested-define! (current-module) names val))
2097
2098 (define (local-remove names)
2099 (nested-remove! (current-module) names))
2100
2101 (define (local-ref-module names)
2102 (nested-ref-module (current-module) names))
2103
2104 (define (local-define-module names mod)
2105 (nested-define-module! (current-module) names mod))
2106
2107
2108
2109 \f
2110
2111 ;;; {The (guile) module}
2112 ;;;
2113 ;;; The standard module, which has the core Guile bindings. Also called the
2114 ;;; "root module", as it is imported by many other modules, but it is not
2115 ;;; necessarily the root of anything; and indeed, the module named '() might be
2116 ;;; better thought of as a root.
2117 ;;;
2118
2119 (define (set-system-module! m s)
2120 (set-procedure-property! (module-eval-closure m) 'system-module s))
2121
2122 ;; The root module uses the pre-modules-obarray as its obarray. This
2123 ;; special obarray accumulates all bindings that have been established
2124 ;; before the module system is fully booted.
2125 ;;
2126 ;; (The obarray continues to be used by code that has been closed over
2127 ;; before the module system has been booted.)
2128 ;;
2129 (define the-root-module
2130 (let ((m (make-module 0)))
2131 (set-module-obarray! m (%get-pre-modules-obarray))
2132 (set-module-name! m '(guile))
2133 (set-system-module! m #t)
2134 m))
2135
2136 ;; The root interface is a module that uses the same obarray as the
2137 ;; root module. It does not allow new definitions, tho.
2138 ;;
2139 (define the-scm-module
2140 (let ((m (make-module 0)))
2141 (set-module-obarray! m (%get-pre-modules-obarray))
2142 (set-module-eval-closure! m (standard-interface-eval-closure m))
2143 (set-module-name! m '(guile))
2144 (set-module-kind! m 'interface)
2145 (set-system-module! m #t)
2146 m))
2147
2148 (set-module-public-interface! the-root-module the-scm-module)
2149
2150 \f
2151
2152 ;; Now that we have a root module, even though modules aren't fully booted,
2153 ;; expand the definition of resolve-module.
2154 ;;
2155 (define (resolve-module name . args)
2156 (if (equal? name '(guile))
2157 the-root-module
2158 (error "unexpected module to resolve during module boot" name)))
2159
2160 ;; Cheat. These bindings are needed by modules.c, but we don't want
2161 ;; to move their real definition here because that would be unnatural.
2162 ;;
2163 (define define-module* #f)
2164 (define process-use-modules #f)
2165 (define module-export! #f)
2166 (define default-duplicate-binding-procedures #f)
2167
2168 ;; This boots the module system. All bindings needed by modules.c
2169 ;; must have been defined by now.
2170 ;;
2171 (set-current-module the-root-module)
2172
2173
2174 \f
2175
2176 ;; Now that modules are booted, give module-name its final definition.
2177 ;;
2178 (define module-name
2179 (let ((accessor (record-accessor module-type 'name)))
2180 (lambda (mod)
2181 (or (accessor mod)
2182 (let ((name (list (gensym))))
2183 ;; Name MOD and bind it in the module root so that it's visible to
2184 ;; `resolve-module'. This is important as `psyntax' stores module
2185 ;; names and relies on being able to `resolve-module' them.
2186 (set-module-name! mod name)
2187 (nested-define-module! (resolve-module '() #f) name mod)
2188 (accessor mod))))))
2189
2190 (define (make-modules-in module name)
2191 (or (nested-ref-module module name)
2192 (let ((m (make-module 31)))
2193 (set-module-kind! m 'directory)
2194 (set-module-name! m (append (module-name module) name))
2195 (nested-define-module! module name m)
2196 m)))
2197
2198 (define (beautify-user-module! module)
2199 (let ((interface (module-public-interface module)))
2200 (if (or (not interface)
2201 (eq? interface module))
2202 (let ((interface (make-module 31)))
2203 (set-module-name! interface (module-name module))
2204 (set-module-version! interface (module-version module))
2205 (set-module-kind! interface 'interface)
2206 (set-module-public-interface! module interface))))
2207 (if (and (not (memq the-scm-module (module-uses module)))
2208 (not (eq? module the-root-module)))
2209 ;; Import the default set of bindings (from the SCM module) in MODULE.
2210 (module-use! module the-scm-module)))
2211
2212 (define (version-matches? version-ref target)
2213 (define (sub-versions-match? v-refs t)
2214 (define (sub-version-matches? v-ref t)
2215 (let ((matches? (lambda (v) (sub-version-matches? v t))))
2216 (cond
2217 ((number? v-ref) (eqv? v-ref t))
2218 ((list? v-ref)
2219 (case (car v-ref)
2220 ((>=) (>= t (cadr v-ref)))
2221 ((<=) (<= t (cadr v-ref)))
2222 ((and) (and-map matches? (cdr v-ref)))
2223 ((or) (or-map matches? (cdr v-ref)))
2224 ((not) (not (matches? (cadr v-ref))))
2225 (else (error "Invalid sub-version reference" v-ref))))
2226 (else (error "Invalid sub-version reference" v-ref)))))
2227 (or (null? v-refs)
2228 (and (not (null? t))
2229 (sub-version-matches? (car v-refs) (car t))
2230 (sub-versions-match? (cdr v-refs) (cdr t)))))
2231
2232 (let ((matches? (lambda (v) (version-matches? v target))))
2233 (or (null? version-ref)
2234 (case (car version-ref)
2235 ((and) (and-map matches? (cdr version-ref)))
2236 ((or) (or-map matches? (cdr version-ref)))
2237 ((not) (not (matches? (cadr version-ref))))
2238 (else (sub-versions-match? version-ref target))))))
2239
2240 (define (make-fresh-user-module)
2241 (let ((m (make-module)))
2242 (beautify-user-module! m)
2243 m))
2244
2245 ;; NOTE: This binding is used in libguile/modules.c.
2246 ;;
2247 (define resolve-module
2248 (let ((root (make-module)))
2249 (set-module-name! root '())
2250 ;; Define the-root-module as '(guile).
2251 (module-define-submodule! root 'guile the-root-module)
2252
2253 (lambda* (name #:optional (autoload #t) (version #f) #:key (ensure #t))
2254 (let ((already (nested-ref-module root name)))
2255 (cond
2256 ((and already
2257 (or (not autoload) (module-public-interface already)))
2258 ;; A hit, a palpable hit.
2259 (if (and version
2260 (not (version-matches? version (module-version already))))
2261 (error "incompatible module version already loaded" name))
2262 already)
2263 (autoload
2264 ;; Try to autoload the module, and recurse.
2265 (try-load-module name version)
2266 (resolve-module name #f #:ensure ensure))
2267 (else
2268 ;; No module found (or if one was, it had no public interface), and
2269 ;; we're not autoloading. Make an empty module if #:ensure is true.
2270 (or already
2271 (and ensure
2272 (make-modules-in root name)))))))))
2273
2274
2275 (define (try-load-module name version)
2276 (try-module-autoload name version))
2277
2278 (define (reload-module m)
2279 "Revisit the source file corresponding to the module @var{m}."
2280 (let ((f (module-filename m)))
2281 (if f
2282 (save-module-excursion
2283 (lambda ()
2284 ;; Re-set the initial environment, as in try-module-autoload.
2285 (set-current-module (make-fresh-user-module))
2286 (primitive-load-path f)
2287 m))
2288 ;; Though we could guess, we *should* know it.
2289 (error "unknown file name for module" m))))
2290
2291 (define (purify-module! module)
2292 "Removes bindings in MODULE which are inherited from the (guile) module."
2293 (let ((use-list (module-uses module)))
2294 (if (and (pair? use-list)
2295 (eq? (car (last-pair use-list)) the-scm-module))
2296 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2297
2298 ;; Return a module that is an interface to the module designated by
2299 ;; NAME.
2300 ;;
2301 ;; `resolve-interface' takes four keyword arguments:
2302 ;;
2303 ;; #:select SELECTION
2304 ;;
2305 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
2306 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2307 ;; is the name in the used module and SEEN is the name in the using
2308 ;; module. Note that SEEN is also passed through RENAMER, below. The
2309 ;; default is to select all bindings. If you specify no selection but
2310 ;; a renamer, only the bindings that already exist in the used module
2311 ;; are made available in the interface. Bindings that are added later
2312 ;; are not picked up.
2313 ;;
2314 ;; #:hide BINDINGS
2315 ;;
2316 ;; BINDINGS is a list of bindings which should not be imported.
2317 ;;
2318 ;; #:prefix PREFIX
2319 ;;
2320 ;; PREFIX is a symbol that will be appended to each exported name.
2321 ;; The default is to not perform any renaming.
2322 ;;
2323 ;; #:renamer RENAMER
2324 ;;
2325 ;; RENAMER is a procedure that takes a symbol and returns its new
2326 ;; name. The default is not perform any renaming.
2327 ;;
2328 ;; Signal "no code for module" error if module name is not resolvable
2329 ;; or its public interface is not available. Signal "no binding"
2330 ;; error if selected binding does not exist in the used module.
2331 ;;
2332 (define* (resolve-interface name #:key
2333 (select #f)
2334 (hide '())
2335 (prefix #f)
2336 (renamer (if prefix
2337 (symbol-prefix-proc prefix)
2338 identity))
2339 version)
2340 (let* ((module (resolve-module name #t version #:ensure #f))
2341 (public-i (and module (module-public-interface module))))
2342 (and (or (not module) (not public-i))
2343 (error "no code for module" name))
2344 (if (and (not select) (null? hide) (eq? renamer identity))
2345 public-i
2346 (let ((selection (or select (module-map (lambda (sym var) sym)
2347 public-i)))
2348 (custom-i (make-module 31)))
2349 (set-module-kind! custom-i 'custom-interface)
2350 (set-module-name! custom-i name)
2351 ;; XXX - should use a lazy binder so that changes to the
2352 ;; used module are picked up automatically.
2353 (for-each (lambda (bspec)
2354 (let* ((direct? (symbol? bspec))
2355 (orig (if direct? bspec (car bspec)))
2356 (seen (if direct? bspec (cdr bspec)))
2357 (var (or (module-local-variable public-i orig)
2358 (module-local-variable module orig)
2359 (error
2360 ;; fixme: format manually for now
2361 (simple-format
2362 #f "no binding `~A' in module ~A"
2363 orig name)))))
2364 (if (memq orig hide)
2365 (set! hide (delq! orig hide))
2366 (module-add! custom-i
2367 (renamer seen)
2368 var))))
2369 selection)
2370 ;; Check that we are not hiding bindings which don't exist
2371 (for-each (lambda (binding)
2372 (if (not (module-local-variable public-i binding))
2373 (error
2374 (simple-format
2375 #f "no binding `~A' to hide in module ~A"
2376 binding name))))
2377 hide)
2378 custom-i))))
2379
2380 (define (symbol-prefix-proc prefix)
2381 (lambda (symbol)
2382 (symbol-append prefix symbol)))
2383
2384 ;; This function is called from "modules.c". If you change it, be
2385 ;; sure to update "modules.c" as well.
2386
2387 (define* (define-module* name
2388 #:key filename pure version (duplicates '())
2389 (imports '()) (exports '()) (replacements '())
2390 (re-exports '()) (autoloads '()) transformer)
2391 (define (list-of pred l)
2392 (or (null? l)
2393 (and (pair? l) (pred (car l)) (list-of pred (cdr l)))))
2394 (define (valid-export? x)
2395 (or (symbol? x) (and (pair? x) (symbol? (car x)) (symbol? (cdr x)))))
2396 (define (valid-autoload? x)
2397 (and (pair? x) (list-of symbol? (car x)) (list-of symbol? (cdr x))))
2398
2399 (define (resolve-imports imports)
2400 (define (resolve-import import-spec)
2401 (if (list? import-spec)
2402 (apply resolve-interface import-spec)
2403 (error "unexpected use-module specification" import-spec)))
2404 (let lp ((imports imports) (out '()))
2405 (cond
2406 ((null? imports) (reverse! out))
2407 ((pair? imports)
2408 (lp (cdr imports)
2409 (cons (resolve-import (car imports)) out)))
2410 (else (error "unexpected tail of imports list" imports)))))
2411
2412 ;; We could add a #:no-check arg, set by the define-module macro, if
2413 ;; these checks are taking too much time.
2414 ;;
2415 (let ((module (resolve-module name #f)))
2416 (beautify-user-module! module)
2417 (if filename
2418 (set-module-filename! module filename))
2419 (if pure
2420 (purify-module! module))
2421 (if version
2422 (begin
2423 (if (not (list-of integer? version))
2424 (error "expected list of integers for version"))
2425 (set-module-version! module version)
2426 (set-module-version! (module-public-interface module) version)))
2427 (if (pair? duplicates)
2428 (let ((handlers (lookup-duplicates-handlers duplicates)))
2429 (set-module-duplicates-handlers! module handlers)))
2430
2431 (let ((imports (resolve-imports imports)))
2432 (call-with-deferred-observers
2433 (lambda ()
2434 (if (pair? imports)
2435 (module-use-interfaces! module imports))
2436 (if (list-of valid-export? exports)
2437 (if (pair? exports)
2438 (module-export! module exports))
2439 (error "expected exports to be a list of symbols or symbol pairs"))
2440 (if (list-of valid-export? replacements)
2441 (if (pair? replacements)
2442 (module-replace! module replacements))
2443 (error "expected replacements to be a list of symbols or symbol pairs"))
2444 (if (list-of valid-export? re-exports)
2445 (if (pair? re-exports)
2446 (module-re-export! module re-exports))
2447 (error "expected re-exports to be a list of symbols or symbol pairs"))
2448 ;; FIXME
2449 (if (not (null? autoloads))
2450 (apply module-autoload! module autoloads)))))
2451
2452 (if transformer
2453 (if (and (pair? transformer) (list-of symbol? transformer))
2454 (let ((iface (resolve-interface transformer))
2455 (sym (car (last-pair transformer))))
2456 (set-module-transformer! module (module-ref iface sym)))
2457 (error "expected transformer to be a module name" transformer)))
2458
2459 (run-hook module-defined-hook module)
2460 module))
2461
2462 ;; `module-defined-hook' is a hook that is run whenever a new module
2463 ;; is defined. Its members are called with one argument, the new
2464 ;; module.
2465 (define module-defined-hook (make-hook 1))
2466
2467 \f
2468
2469 ;;; {Autoload}
2470 ;;;
2471
2472 (define (make-autoload-interface module name bindings)
2473 (let ((b (lambda (a sym definep)
2474 (and (memq sym bindings)
2475 (let ((i (module-public-interface (resolve-module name))))
2476 (if (not i)
2477 (error "missing interface for module" name))
2478 (let ((autoload (memq a (module-uses module))))
2479 ;; Replace autoload-interface with actual interface if
2480 ;; that has not happened yet.
2481 (if (pair? autoload)
2482 (set-car! autoload i)))
2483 (module-local-variable i sym))))))
2484 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2485 (make-hash-table 0) '() (make-weak-value-hash-table 31) #f
2486 (make-hash-table 0) #f #f #f)))
2487
2488 (define (module-autoload! module . args)
2489 "Have @var{module} automatically load the module named @var{name} when one
2490 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2491 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2492 module '(ice-9 q) '(make-q q-length))}."
2493 (let loop ((args args))
2494 (cond ((null? args)
2495 #t)
2496 ((null? (cdr args))
2497 (error "invalid name+binding autoload list" args))
2498 (else
2499 (let ((name (car args))
2500 (bindings (cadr args)))
2501 (module-use! module (make-autoload-interface module
2502 name bindings))
2503 (loop (cddr args)))))))
2504
2505
2506 \f
2507
2508 ;;; {Autoloading modules}
2509 ;;;
2510
2511 (define autoloads-in-progress '())
2512
2513 ;; This function is called from "modules.c". If you change it, be
2514 ;; sure to update "modules.c" as well.
2515
2516 (define* (try-module-autoload module-name #:optional version)
2517 (let* ((reverse-name (reverse module-name))
2518 (name (symbol->string (car reverse-name)))
2519 (dir-hint-module-name (reverse (cdr reverse-name)))
2520 (dir-hint (apply string-append
2521 (map (lambda (elt)
2522 (string-append (symbol->string elt) "/"))
2523 dir-hint-module-name))))
2524 (resolve-module dir-hint-module-name #f)
2525 (and (not (autoload-done-or-in-progress? dir-hint name))
2526 (let ((didit #f))
2527 (dynamic-wind
2528 (lambda () (autoload-in-progress! dir-hint name))
2529 (lambda ()
2530 (with-fluids ((current-reader #f))
2531 (save-module-excursion
2532 (lambda ()
2533 ;; The initial environment when loading a module is a fresh
2534 ;; user module.
2535 (set-current-module (make-fresh-user-module))
2536 ;; Here we could allow some other search strategy (other than
2537 ;; primitive-load-path), for example using versions encoded
2538 ;; into the file system -- but then we would have to figure
2539 ;; out how to locate the compiled file, do autocompilation,
2540 ;; etc. Punt for now, and don't use versions when locating
2541 ;; the file.
2542 (primitive-load-path (in-vicinity dir-hint name) #f)
2543 (set! didit #t)))))
2544 (lambda () (set-autoloaded! dir-hint name didit)))
2545 didit))))
2546
2547 \f
2548
2549 ;;; {Dynamic linking of modules}
2550 ;;;
2551
2552 (define autoloads-done '((guile . guile)))
2553
2554 (define (autoload-done-or-in-progress? p m)
2555 (let ((n (cons p m)))
2556 (->bool (or (member n autoloads-done)
2557 (member n autoloads-in-progress)))))
2558
2559 (define (autoload-done! p m)
2560 (let ((n (cons p m)))
2561 (set! autoloads-in-progress
2562 (delete! n autoloads-in-progress))
2563 (or (member n autoloads-done)
2564 (set! autoloads-done (cons n autoloads-done)))))
2565
2566 (define (autoload-in-progress! p m)
2567 (let ((n (cons p m)))
2568 (set! autoloads-done
2569 (delete! n autoloads-done))
2570 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2571
2572 (define (set-autoloaded! p m done?)
2573 (if done?
2574 (autoload-done! p m)
2575 (let ((n (cons p m)))
2576 (set! autoloads-done (delete! n autoloads-done))
2577 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2578
2579 \f
2580
2581 ;;; {Run-time options}
2582 ;;;
2583
2584 (define-syntax define-option-interface
2585 (syntax-rules ()
2586 ((_ (interface (options enable disable) (option-set!)))
2587 (begin
2588 (define options
2589 (case-lambda
2590 (() (interface))
2591 ((arg)
2592 (if (list? arg)
2593 (begin (interface arg) (interface))
2594 (for-each
2595 (lambda (option)
2596 (apply (lambda (name value documentation)
2597 (display name)
2598 (if (< (string-length (symbol->string name)) 8)
2599 (display #\tab))
2600 (display #\tab)
2601 (display value)
2602 (display #\tab)
2603 (display documentation)
2604 (newline))
2605 option))
2606 (interface #t))))))
2607 (define (enable . flags)
2608 (interface (append flags (interface)))
2609 (interface))
2610 (define (disable . flags)
2611 (let ((options (interface)))
2612 (for-each (lambda (flag) (set! options (delq! flag options)))
2613 flags)
2614 (interface options)
2615 (interface)))
2616 (define-syntax option-set!
2617 (syntax-rules ()
2618 ((_ opt val)
2619 (eval-when (eval load compile expand)
2620 (options (append (options) (list 'opt val)))))))))))
2621
2622 (define-option-interface
2623 (debug-options-interface
2624 (debug-options debug-enable debug-disable)
2625 (debug-set!)))
2626
2627 (define-option-interface
2628 (read-options-interface
2629 (read-options read-enable read-disable)
2630 (read-set!)))
2631
2632 (define-option-interface
2633 (print-options-interface
2634 (print-options print-enable print-disable)
2635 (print-set!)))
2636
2637 \f
2638
2639 ;;; {The Unspecified Value}
2640 ;;;
2641 ;;; Currently Guile represents unspecified values via one particular value,
2642 ;;; which may be obtained by evaluating (if #f #f). It would be nice in the
2643 ;;; future if we could replace this with a return of 0 values, though.
2644 ;;;
2645
2646 (define-syntax *unspecified*
2647 (identifier-syntax (if #f #f)))
2648
2649 (define (unspecified? v) (eq? v *unspecified*))
2650
2651
2652 \f
2653
2654 ;;; {Running Repls}
2655 ;;;
2656
2657 (define *repl-stack* (make-fluid))
2658
2659 ;; Programs can call `batch-mode?' to see if they are running as part of a
2660 ;; script or if they are running interactively. REPL implementations ensure that
2661 ;; `batch-mode?' returns #f during their extent.
2662 ;;
2663 (define (batch-mode?)
2664 (null? (or (fluid-ref *repl-stack*) '())))
2665
2666 ;; Programs can re-enter batch mode, for example after a fork, by calling
2667 ;; `ensure-batch-mode!'. It's not a great interface, though; it would be better
2668 ;; to abort to the outermost prompt, and call a thunk there.
2669 ;;
2670 (define (ensure-batch-mode!)
2671 (set! batch-mode? (lambda () #t)))
2672
2673 (define (quit . args)
2674 (apply throw 'quit args))
2675
2676 (define exit quit)
2677
2678 (define (gc-run-time)
2679 (cdr (assq 'gc-time-taken (gc-stats))))
2680
2681 (define abort-hook (make-hook))
2682 (define before-error-hook (make-hook))
2683 (define after-error-hook (make-hook))
2684 (define before-backtrace-hook (make-hook))
2685 (define after-backtrace-hook (make-hook))
2686
2687 (define before-read-hook (make-hook))
2688 (define after-read-hook (make-hook))
2689 (define before-eval-hook (make-hook 1))
2690 (define after-eval-hook (make-hook 1))
2691 (define before-print-hook (make-hook 1))
2692 (define after-print-hook (make-hook 1))
2693
2694 ;;; This hook is run at the very end of an interactive session.
2695 ;;;
2696 (define exit-hook (make-hook))
2697
2698 ;;; The default repl-reader function. We may override this if we've
2699 ;;; the readline library.
2700 (define repl-reader
2701 (lambda* (prompt #:optional (reader (fluid-ref current-reader)))
2702 (if (not (char-ready?))
2703 (display (if (string? prompt) prompt (prompt))))
2704 (force-output)
2705 (run-hook before-read-hook)
2706 ((or reader read) (current-input-port))))
2707
2708
2709 \f
2710
2711 ;;; {IOTA functions: generating lists of numbers}
2712 ;;;
2713
2714 (define (iota n)
2715 (let loop ((count (1- n)) (result '()))
2716 (if (< count 0) result
2717 (loop (1- count) (cons count result)))))
2718
2719 \f
2720
2721 ;;; {While}
2722 ;;;
2723 ;;; with `continue' and `break'.
2724 ;;;
2725
2726 ;; The inliner will remove the prompts at compile-time if it finds that
2727 ;; `continue' or `break' are not used.
2728 ;;
2729 (define-syntax while
2730 (lambda (x)
2731 (syntax-case x ()
2732 ((while cond body ...)
2733 #`(let ((break-tag (make-prompt-tag "break"))
2734 (continue-tag (make-prompt-tag "continue")))
2735 (call-with-prompt
2736 break-tag
2737 (lambda ()
2738 (define-syntax #,(datum->syntax #'while 'break)
2739 (lambda (x)
2740 (syntax-case x ()
2741 ((_)
2742 #'(abort-to-prompt break-tag))
2743 ((_ . args)
2744 (syntax-violation 'break "too many arguments" x))
2745 (_
2746 #'(lambda ()
2747 (abort-to-prompt break-tag))))))
2748 (let lp ()
2749 (call-with-prompt
2750 continue-tag
2751 (lambda ()
2752 (define-syntax #,(datum->syntax #'while 'continue)
2753 (lambda (x)
2754 (syntax-case x ()
2755 ((_)
2756 #'(abort-to-prompt continue-tag))
2757 ((_ . args)
2758 (syntax-violation 'continue "too many arguments" x))
2759 (_
2760 #'(lambda args
2761 (apply abort-to-prompt continue-tag args))))))
2762 (do () ((not cond)) body ...))
2763 (lambda (k) (lp)))))
2764 (lambda (k)
2765 #t)))))))
2766
2767
2768 \f
2769
2770 ;;; {Module System Macros}
2771 ;;;
2772
2773 ;; Return a list of expressions that evaluate to the appropriate
2774 ;; arguments for resolve-interface according to SPEC.
2775
2776 (eval-when (compile)
2777 (if (memq 'prefix (read-options))
2778 (error "boot-9 must be compiled with #:kw, not :kw")))
2779
2780 (define (keyword-like-symbol->keyword sym)
2781 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2782
2783 (define-syntax define-module
2784 (lambda (x)
2785 (define (keyword-like? stx)
2786 (let ((dat (syntax->datum stx)))
2787 (and (symbol? dat)
2788 (eqv? (string-ref (symbol->string dat) 0) #\:))))
2789 (define (->keyword sym)
2790 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2791
2792 (define (parse-iface args)
2793 (let loop ((in args) (out '()))
2794 (syntax-case in ()
2795 (() (reverse! out))
2796 ;; The user wanted #:foo, but wrote :foo. Fix it.
2797 ((sym . in) (keyword-like? #'sym)
2798 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
2799 ((kw . in) (not (keyword? (syntax->datum #'kw)))
2800 (syntax-violation 'define-module "expected keyword arg" x #'kw))
2801 ((#:renamer renamer . in)
2802 (loop #'in (cons* #',renamer #:renamer out)))
2803 ((kw val . in)
2804 (loop #'in (cons* #'val #'kw out))))))
2805
2806 (define (parse args imp exp rex rep aut)
2807 ;; Just quote everything except #:use-module and #:use-syntax. We
2808 ;; need to know about all arguments regardless since we want to turn
2809 ;; symbols that look like keywords into real keywords, and the
2810 ;; keyword args in a define-module form are not regular
2811 ;; (i.e. no-backtrace doesn't take a value).
2812 (syntax-case args ()
2813 (()
2814 (let ((imp (if (null? imp) '() #`(#:imports `#,imp)))
2815 (exp (if (null? exp) '() #`(#:exports '#,exp)))
2816 (rex (if (null? rex) '() #`(#:re-exports '#,rex)))
2817 (rep (if (null? rep) '() #`(#:replacements '#,rep)))
2818 (aut (if (null? aut) '() #`(#:autoloads '#,aut))))
2819 #`(#,@imp #,@exp #,@rex #,@rep #,@aut)))
2820 ;; The user wanted #:foo, but wrote :foo. Fix it.
2821 ((sym . args) (keyword-like? #'sym)
2822 (parse #`(#,(->keyword (syntax->datum #'sym)) . args)
2823 imp exp rex rep aut))
2824 ((kw . args) (not (keyword? (syntax->datum #'kw)))
2825 (syntax-violation 'define-module "expected keyword arg" x #'kw))
2826 ((#:no-backtrace . args)
2827 ;; Ignore this one.
2828 (parse #'args imp exp rex rep aut))
2829 ((#:pure . args)
2830 #`(#:pure #t . #,(parse #'args imp exp rex rep aut)))
2831 ((kw)
2832 (syntax-violation 'define-module "keyword arg without value" x #'kw))
2833 ((#:version (v ...) . args)
2834 #`(#:version '(v ...) . #,(parse #'args imp exp rex rep aut)))
2835 ((#:duplicates (d ...) . args)
2836 #`(#:duplicates '(d ...) . #,(parse #'args imp exp rex rep aut)))
2837 ((#:filename f . args)
2838 #`(#:filename 'f . #,(parse #'args imp exp rex rep aut)))
2839 ((#:use-module (name name* ...) . args)
2840 (and (and-map symbol? (syntax->datum #'(name name* ...))))
2841 (parse #'args (cons #'((name name* ...)) imp) exp rex rep aut))
2842 ((#:use-syntax (name name* ...) . args)
2843 (and (and-map symbol? (syntax->datum #'(name name* ...))))
2844 #`(#:transformer '(name name* ...)
2845 . #,(parse #'args (cons #'((name name* ...)) imp) exp rex rep aut)))
2846 ((#:use-module ((name name* ...) arg ...) . args)
2847 (and (and-map symbol? (syntax->datum #'(name name* ...))))
2848 (parse #'args
2849 (cons #`((name name* ...) #,@(parse-iface #'(arg ...))) imp)
2850 exp rex rep aut))
2851 ((#:export (ex ...) . args)
2852 (parse #'args imp #`(#,@exp ex ...) rex rep aut))
2853 ((#:export-syntax (ex ...) . args)
2854 (parse #'args imp #`(#,@exp ex ...) rex rep aut))
2855 ((#:re-export (re ...) . args)
2856 (parse #'args imp exp #`(#,@rex re ...) rep aut))
2857 ((#:re-export-syntax (re ...) . args)
2858 (parse #'args imp exp #`(#,@rex re ...) rep aut))
2859 ((#:replace (r ...) . args)
2860 (parse #'args imp exp rex #`(#,@rep r ...) aut))
2861 ((#:replace-syntax (r ...) . args)
2862 (parse #'args imp exp rex #`(#,@rep r ...) aut))
2863 ((#:autoload name bindings . args)
2864 (parse #'args imp exp rex rep #`(#,@aut name bindings)))
2865 ((kw val . args)
2866 (syntax-violation 'define-module "unknown keyword or bad argument"
2867 #'kw #'val))))
2868
2869 (syntax-case x ()
2870 ((_ (name name* ...) arg ...)
2871 (and-map symbol? (syntax->datum #'(name name* ...)))
2872 (with-syntax (((quoted-arg ...)
2873 (parse #'(arg ...) '() '() '() '() '()))
2874 (filename (assq-ref (or (syntax-source x) '())
2875 'filename)))
2876 #'(eval-when (eval load compile expand)
2877 (let ((m (define-module* '(name name* ...)
2878 #:filename filename quoted-arg ...)))
2879 (set-current-module m)
2880 m)))))))
2881
2882 ;; The guts of the use-modules macro. Add the interfaces of the named
2883 ;; modules to the use-list of the current module, in order.
2884
2885 ;; This function is called by "modules.c". If you change it, be sure
2886 ;; to change scm_c_use_module as well.
2887
2888 (define (process-use-modules module-interface-args)
2889 (let ((interfaces (map (lambda (mif-args)
2890 (or (apply resolve-interface mif-args)
2891 (error "no such module" mif-args)))
2892 module-interface-args)))
2893 (call-with-deferred-observers
2894 (lambda ()
2895 (module-use-interfaces! (current-module) interfaces)))))
2896
2897 (define-syntax use-modules
2898 (lambda (x)
2899 (define (keyword-like? stx)
2900 (let ((dat (syntax->datum stx)))
2901 (and (symbol? dat)
2902 (eqv? (string-ref (symbol->string dat) 0) #\:))))
2903 (define (->keyword sym)
2904 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2905
2906 (define (quotify-iface args)
2907 (let loop ((in args) (out '()))
2908 (syntax-case in ()
2909 (() (reverse! out))
2910 ;; The user wanted #:foo, but wrote :foo. Fix it.
2911 ((sym . in) (keyword-like? #'sym)
2912 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
2913 ((kw . in) (not (keyword? (syntax->datum #'kw)))
2914 (syntax-violation 'define-module "expected keyword arg" x #'kw))
2915 ((#:renamer renamer . in)
2916 (loop #'in (cons* #'renamer #:renamer out)))
2917 ((kw val . in)
2918 (loop #'in (cons* #''val #'kw out))))))
2919
2920 (define (quotify specs)
2921 (let lp ((in specs) (out '()))
2922 (syntax-case in ()
2923 (() (reverse out))
2924 (((name name* ...) . in)
2925 (and-map symbol? (syntax->datum #'(name name* ...)))
2926 (lp #'in (cons #''((name name* ...)) out)))
2927 ((((name name* ...) arg ...) . in)
2928 (and-map symbol? (syntax->datum #'(name name* ...)))
2929 (with-syntax (((quoted-arg ...) (quotify-iface #'(arg ...))))
2930 (lp #'in (cons #`(list '(name name* ...) quoted-arg ...)
2931 out)))))))
2932
2933 (syntax-case x ()
2934 ((_ spec ...)
2935 (with-syntax (((quoted-args ...) (quotify #'(spec ...))))
2936 #'(eval-when (eval load compile expand)
2937 (process-use-modules (list quoted-args ...))
2938 *unspecified*))))))
2939
2940 (define-syntax use-syntax
2941 (syntax-rules ()
2942 ((_ spec ...)
2943 (begin
2944 (eval-when (eval load compile expand)
2945 (issue-deprecation-warning
2946 "`use-syntax' is deprecated. Please contact guile-devel for more info."))
2947 (use-modules spec ...)))))
2948
2949 (include-from-path "ice-9/r6rs-libraries")
2950
2951 (define-syntax define-private
2952 (syntax-rules ()
2953 ((_ foo bar)
2954 (define foo bar))))
2955
2956 (define-syntax define-public
2957 (syntax-rules ()
2958 ((_ (name . args) . body)
2959 (define-public name (lambda args . body)))
2960 ((_ name val)
2961 (begin
2962 (define name val)
2963 (export name)))))
2964
2965 (define-syntax defmacro-public
2966 (syntax-rules ()
2967 ((_ name args . body)
2968 (begin
2969 (defmacro name args . body)
2970 (export-syntax name)))))
2971
2972 ;; And now for the most important macro.
2973 (define-syntax λ
2974 (syntax-rules ()
2975 ((_ formals body ...)
2976 (lambda formals body ...))))
2977
2978 \f
2979 ;; Export a local variable
2980
2981 ;; This function is called from "modules.c". If you change it, be
2982 ;; sure to update "modules.c" as well.
2983
2984 (define (module-export! m names)
2985 (let ((public-i (module-public-interface m)))
2986 (for-each (lambda (name)
2987 (let* ((internal-name (if (pair? name) (car name) name))
2988 (external-name (if (pair? name) (cdr name) name))
2989 (var (module-ensure-local-variable! m internal-name)))
2990 (module-add! public-i external-name var)))
2991 names)))
2992
2993 (define (module-replace! m names)
2994 (let ((public-i (module-public-interface m)))
2995 (for-each (lambda (name)
2996 (let* ((internal-name (if (pair? name) (car name) name))
2997 (external-name (if (pair? name) (cdr name) name))
2998 (var (module-ensure-local-variable! m internal-name)))
2999 (set-object-property! var 'replace #t)
3000 (module-add! public-i external-name var)))
3001 names)))
3002
3003 ;; Export all local variables from a module
3004 ;;
3005 (define (module-export-all! mod)
3006 (define (fresh-interface!)
3007 (let ((iface (make-module)))
3008 (set-module-name! iface (module-name mod))
3009 (set-module-version! iface (module-version mod))
3010 (set-module-kind! iface 'interface)
3011 (set-module-public-interface! mod iface)
3012 iface))
3013 (let ((iface (or (module-public-interface mod)
3014 (fresh-interface!))))
3015 (set-module-obarray! iface (module-obarray mod))))
3016
3017 ;; Re-export a imported variable
3018 ;;
3019 (define (module-re-export! m names)
3020 (let ((public-i (module-public-interface m)))
3021 (for-each (lambda (name)
3022 (let* ((internal-name (if (pair? name) (car name) name))
3023 (external-name (if (pair? name) (cdr name) name))
3024 (var (module-variable m internal-name)))
3025 (cond ((not var)
3026 (error "Undefined variable:" internal-name))
3027 ((eq? var (module-local-variable m internal-name))
3028 (error "re-exporting local variable:" internal-name))
3029 (else
3030 (module-add! public-i external-name var)))))
3031 names)))
3032
3033 (define-syntax export
3034 (syntax-rules ()
3035 ((_ name ...)
3036 (eval-when (eval load compile expand)
3037 (call-with-deferred-observers
3038 (lambda ()
3039 (module-export! (current-module) '(name ...))))))))
3040
3041 (define-syntax re-export
3042 (syntax-rules ()
3043 ((_ name ...)
3044 (eval-when (eval load compile expand)
3045 (call-with-deferred-observers
3046 (lambda ()
3047 (module-re-export! (current-module) '(name ...))))))))
3048
3049 (define-syntax export!
3050 (syntax-rules ()
3051 ((_ name ...)
3052 (eval-when (eval load compile expand)
3053 (call-with-deferred-observers
3054 (lambda ()
3055 (module-replace! (current-module) '(name ...))))))))
3056
3057 (define-syntax export-syntax
3058 (syntax-rules ()
3059 ((_ name ...)
3060 (export name ...))))
3061
3062 (define-syntax re-export-syntax
3063 (syntax-rules ()
3064 ((_ name ...)
3065 (re-export name ...))))
3066
3067 (define load load-module)
3068
3069 \f
3070
3071 ;;; {Parameters}
3072 ;;;
3073
3074 (define* (make-mutable-parameter init #:optional (converter identity))
3075 (let ((fluid (make-fluid)))
3076 (fluid-set! fluid (converter init))
3077 (case-lambda
3078 (() (fluid-ref fluid))
3079 ((val) (fluid-set! fluid (converter val))))))
3080
3081
3082 \f
3083
3084 ;;; {Handling of duplicate imported bindings}
3085 ;;;
3086
3087 ;; Duplicate handlers take the following arguments:
3088 ;;
3089 ;; module importing module
3090 ;; name conflicting name
3091 ;; int1 old interface where name occurs
3092 ;; val1 value of binding in old interface
3093 ;; int2 new interface where name occurs
3094 ;; val2 value of binding in new interface
3095 ;; var previous resolution or #f
3096 ;; val value of previous resolution
3097 ;;
3098 ;; A duplicate handler can take three alternative actions:
3099 ;;
3100 ;; 1. return #f => leave responsibility to next handler
3101 ;; 2. exit with an error
3102 ;; 3. return a variable resolving the conflict
3103 ;;
3104
3105 (define duplicate-handlers
3106 (let ((m (make-module 7)))
3107
3108 (define (check module name int1 val1 int2 val2 var val)
3109 (scm-error 'misc-error
3110 #f
3111 "~A: `~A' imported from both ~A and ~A"
3112 (list (module-name module)
3113 name
3114 (module-name int1)
3115 (module-name int2))
3116 #f))
3117
3118 (define (warn module name int1 val1 int2 val2 var val)
3119 (format (current-error-port)
3120 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3121 (module-name module)
3122 name
3123 (module-name int1)
3124 (module-name int2))
3125 #f)
3126
3127 (define (replace module name int1 val1 int2 val2 var val)
3128 (let ((old (or (and var (object-property var 'replace) var)
3129 (module-variable int1 name)))
3130 (new (module-variable int2 name)))
3131 (if (object-property old 'replace)
3132 (and (or (eq? old new)
3133 (not (object-property new 'replace)))
3134 old)
3135 (and (object-property new 'replace)
3136 new))))
3137
3138 (define (warn-override-core module name int1 val1 int2 val2 var val)
3139 (and (eq? int1 the-scm-module)
3140 (begin
3141 (format (current-error-port)
3142 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3143 (module-name module)
3144 (module-name int2)
3145 name)
3146 (module-local-variable int2 name))))
3147
3148 (define (first module name int1 val1 int2 val2 var val)
3149 (or var (module-local-variable int1 name)))
3150
3151 (define (last module name int1 val1 int2 val2 var val)
3152 (module-local-variable int2 name))
3153
3154 (define (noop module name int1 val1 int2 val2 var val)
3155 #f)
3156
3157 (set-module-name! m 'duplicate-handlers)
3158 (set-module-kind! m 'interface)
3159 (module-define! m 'check check)
3160 (module-define! m 'warn warn)
3161 (module-define! m 'replace replace)
3162 (module-define! m 'warn-override-core warn-override-core)
3163 (module-define! m 'first first)
3164 (module-define! m 'last last)
3165 (module-define! m 'merge-generics noop)
3166 (module-define! m 'merge-accessors noop)
3167 m))
3168
3169 (define (lookup-duplicates-handlers handler-names)
3170 (and handler-names
3171 (map (lambda (handler-name)
3172 (or (module-symbol-local-binding
3173 duplicate-handlers handler-name #f)
3174 (error "invalid duplicate handler name:"
3175 handler-name)))
3176 (if (list? handler-names)
3177 handler-names
3178 (list handler-names)))))
3179
3180 (define default-duplicate-binding-procedures
3181 (make-mutable-parameter #f))
3182
3183 (define default-duplicate-binding-handler
3184 (make-mutable-parameter '(replace warn-override-core warn last)
3185 (lambda (handler-names)
3186 (default-duplicate-binding-procedures
3187 (lookup-duplicates-handlers handler-names))
3188 handler-names)))
3189
3190 \f
3191
3192 ;;; {`cond-expand' for SRFI-0 support.}
3193 ;;;
3194 ;;; This syntactic form expands into different commands or
3195 ;;; definitions, depending on the features provided by the Scheme
3196 ;;; implementation.
3197 ;;;
3198 ;;; Syntax:
3199 ;;;
3200 ;;; <cond-expand>
3201 ;;; --> (cond-expand <cond-expand-clause>+)
3202 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3203 ;;; <cond-expand-clause>
3204 ;;; --> (<feature-requirement> <command-or-definition>*)
3205 ;;; <feature-requirement>
3206 ;;; --> <feature-identifier>
3207 ;;; | (and <feature-requirement>*)
3208 ;;; | (or <feature-requirement>*)
3209 ;;; | (not <feature-requirement>)
3210 ;;; <feature-identifier>
3211 ;;; --> <a symbol which is the name or alias of a SRFI>
3212 ;;;
3213 ;;; Additionally, this implementation provides the
3214 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3215 ;;; determine the implementation type and the supported standard.
3216 ;;;
3217 ;;; Currently, the following feature identifiers are supported:
3218 ;;;
3219 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3220 ;;;
3221 ;;; Remember to update the features list when adding more SRFIs.
3222 ;;;
3223
3224 (define %cond-expand-features
3225 ;; Adjust the above comment when changing this.
3226 '(guile
3227 guile-2
3228 r5rs
3229 srfi-0 ;; cond-expand itself
3230 srfi-4 ;; homogenous numeric vectors
3231 srfi-6 ;; open-input-string etc, in the guile core
3232 srfi-13 ;; string library
3233 srfi-14 ;; character sets
3234 srfi-55 ;; require-extension
3235 srfi-61 ;; general cond clause
3236 ))
3237
3238 ;; This table maps module public interfaces to the list of features.
3239 ;;
3240 (define %cond-expand-table (make-hash-table 31))
3241
3242 ;; Add one or more features to the `cond-expand' feature list of the
3243 ;; module `module'.
3244 ;;
3245 (define (cond-expand-provide module features)
3246 (let ((mod (module-public-interface module)))
3247 (and mod
3248 (hashq-set! %cond-expand-table mod
3249 (append (hashq-ref %cond-expand-table mod '())
3250 features)))))
3251
3252 (define-syntax cond-expand
3253 (lambda (x)
3254 (define (module-has-feature? mod sym)
3255 (or-map (lambda (mod)
3256 (memq sym (hashq-ref %cond-expand-table mod '())))
3257 (module-uses mod)))
3258
3259 (define (condition-matches? condition)
3260 (syntax-case condition (and or not)
3261 ((and c ...)
3262 (and-map condition-matches? #'(c ...)))
3263 ((or c ...)
3264 (or-map condition-matches? #'(c ...)))
3265 ((not c)
3266 (if (condition-matches? #'c) #f #t))
3267 (c
3268 (identifier? #'c)
3269 (let ((sym (syntax->datum #'c)))
3270 (if (memq sym %cond-expand-features)
3271 #t
3272 (module-has-feature? (current-module) sym))))))
3273
3274 (define (match clauses alternate)
3275 (syntax-case clauses ()
3276 (((condition form ...) . rest)
3277 (if (condition-matches? #'condition)
3278 #'(begin form ...)
3279 (match #'rest alternate)))
3280 (() (alternate))))
3281
3282 (syntax-case x (else)
3283 ((_ clause ... (else form ...))
3284 (match #'(clause ...)
3285 (lambda ()
3286 #'(begin form ...))))
3287 ((_ clause ...)
3288 (match #'(clause ...)
3289 (lambda ()
3290 (syntax-violation 'cond-expand "unfulfilled cond-expand" x)))))))
3291
3292 ;; This procedure gets called from the startup code with a list of
3293 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3294 ;;
3295 (define (use-srfis srfis)
3296 (process-use-modules
3297 (map (lambda (num)
3298 (list (list 'srfi (string->symbol
3299 (string-append "srfi-" (number->string num))))))
3300 srfis)))
3301
3302 \f
3303
3304 ;;; srfi-55: require-extension
3305 ;;;
3306
3307 (define-syntax require-extension
3308 (lambda (x)
3309 (syntax-case x (srfi)
3310 ((_ (srfi n ...))
3311 (and-map integer? (syntax->datum #'(n ...)))
3312 (with-syntax
3313 (((srfi-n ...)
3314 (map (lambda (n)
3315 (datum->syntax x (symbol-append 'srfi- n)))
3316 (map string->symbol
3317 (map number->string (syntax->datum #'(n ...)))))))
3318 #'(use-modules (srfi srfi-n) ...)))
3319 ((_ (type arg ...))
3320 (identifier? #'type)
3321 (syntax-violation 'require-extension "Not a recognized extension type"
3322 x)))))
3323
3324 \f
3325
3326 (define using-readline?
3327 (let ((using-readline? (make-fluid)))
3328 (make-procedure-with-setter
3329 (lambda () (fluid-ref using-readline?))
3330 (lambda (v) (fluid-set! using-readline? v)))))
3331
3332 \f
3333
3334 ;;; {Deprecated stuff}
3335 ;;;
3336
3337 (begin-deprecated
3338 (module-use! the-scm-module (resolve-interface '(ice-9 deprecated))))
3339
3340 \f
3341
3342 ;;; Place the user in the guile-user module.
3343 ;;;
3344
3345 ;; FIXME:
3346 (module-use! the-scm-module (resolve-interface '(srfi srfi-4)))
3347
3348 ;; Set filename to #f to prevent reload.
3349 (define-module (guile-user)
3350 #:autoload (system base compile) (compile compile-file)
3351 #:filename #f)
3352
3353 ;; Remain in the `(guile)' module at compilation-time so that the
3354 ;; `-Wunused-toplevel' warning works as expected.
3355 (eval-when (compile) (set-current-module the-root-module))
3356
3357 ;;; boot-9.scm ends here