Fix wait-condition-variable so that it doesn't leave asyncs blocked
[bpt/guile.git] / libguile / threads.c
1 /* Copyright (C) 1995,1996,1997,1998,2000,2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
2 *
3 * This library is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU Lesser General Public
5 * License as published by the Free Software Foundation; either
6 * version 2.1 of the License, or (at your option) any later version.
7 *
8 * This library is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
12 *
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
16 */
17
18
19 \f
20 #ifdef HAVE_CONFIG_H
21 # include <config.h>
22 #endif
23
24 #include "libguile/_scm.h"
25
26 #if HAVE_UNISTD_H
27 #include <unistd.h>
28 #endif
29 #include <stdio.h>
30 #include <assert.h>
31
32 #ifdef HAVE_STRING_H
33 #include <string.h> /* for memset used by FD_ZERO on Solaris 10 */
34 #endif
35
36 #if HAVE_SYS_TIME_H
37 #include <sys/time.h>
38 #endif
39
40 #include "libguile/validate.h"
41 #include "libguile/root.h"
42 #include "libguile/eval.h"
43 #include "libguile/async.h"
44 #include "libguile/ports.h"
45 #include "libguile/threads.h"
46 #include "libguile/dynwind.h"
47 #include "libguile/iselect.h"
48 #include "libguile/fluids.h"
49 #include "libguile/continuations.h"
50 #include "libguile/gc.h"
51 #include "libguile/init.h"
52 #include "libguile/scmsigs.h"
53 #include "libguile/strings.h"
54
55 #ifdef __MINGW32__
56 #ifndef ETIMEDOUT
57 # define ETIMEDOUT WSAETIMEDOUT
58 #endif
59 # include <fcntl.h>
60 # include <process.h>
61 # define pipe(fd) _pipe (fd, 256, O_BINARY)
62 #endif /* __MINGW32__ */
63
64 #include <full-read.h>
65
66 \f
67 static void
68 to_timespec (SCM t, scm_t_timespec *waittime)
69 {
70 if (scm_is_pair (t))
71 {
72 waittime->tv_sec = scm_to_ulong (SCM_CAR (t));
73 waittime->tv_nsec = scm_to_ulong (SCM_CDR (t)) * 1000;
74 }
75 else
76 {
77 double time = scm_to_double (t);
78 double sec = scm_c_truncate (time);
79
80 waittime->tv_sec = (long) sec;
81 waittime->tv_nsec = (long) ((time - sec) * 1000000000);
82 }
83 }
84
85 /*** Queues */
86
87 /* Make an empty queue data structure.
88 */
89 static SCM
90 make_queue ()
91 {
92 return scm_cons (SCM_EOL, SCM_EOL);
93 }
94
95 /* Put T at the back of Q and return a handle that can be used with
96 remqueue to remove T from Q again.
97 */
98 static SCM
99 enqueue (SCM q, SCM t)
100 {
101 SCM c = scm_cons (t, SCM_EOL);
102 SCM_CRITICAL_SECTION_START;
103 if (scm_is_null (SCM_CDR (q)))
104 SCM_SETCDR (q, c);
105 else
106 SCM_SETCDR (SCM_CAR (q), c);
107 SCM_SETCAR (q, c);
108 SCM_CRITICAL_SECTION_END;
109 return c;
110 }
111
112 /* Remove the element that the handle C refers to from the queue Q. C
113 must have been returned from a call to enqueue. The return value
114 is zero when the element referred to by C has already been removed.
115 Otherwise, 1 is returned.
116 */
117 static int
118 remqueue (SCM q, SCM c)
119 {
120 SCM p, prev = q;
121 SCM_CRITICAL_SECTION_START;
122 for (p = SCM_CDR (q); !scm_is_null (p); p = SCM_CDR (p))
123 {
124 if (scm_is_eq (p, c))
125 {
126 if (scm_is_eq (c, SCM_CAR (q)))
127 SCM_SETCAR (q, SCM_CDR (c));
128 SCM_SETCDR (prev, SCM_CDR (c));
129 SCM_CRITICAL_SECTION_END;
130 return 1;
131 }
132 prev = p;
133 }
134 SCM_CRITICAL_SECTION_END;
135 return 0;
136 }
137
138 /* Remove the front-most element from the queue Q and return it.
139 Return SCM_BOOL_F when Q is empty.
140 */
141 static SCM
142 dequeue (SCM q)
143 {
144 SCM c;
145 SCM_CRITICAL_SECTION_START;
146 c = SCM_CDR (q);
147 if (scm_is_null (c))
148 {
149 SCM_CRITICAL_SECTION_END;
150 return SCM_BOOL_F;
151 }
152 else
153 {
154 SCM_SETCDR (q, SCM_CDR (c));
155 if (scm_is_null (SCM_CDR (q)))
156 SCM_SETCAR (q, SCM_EOL);
157 SCM_CRITICAL_SECTION_END;
158 return SCM_CAR (c);
159 }
160 }
161
162 /*** Thread smob routines */
163
164 static SCM
165 thread_mark (SCM obj)
166 {
167 scm_i_thread *t = SCM_I_THREAD_DATA (obj);
168 scm_gc_mark (t->result);
169 scm_gc_mark (t->cleanup_handler);
170 scm_gc_mark (t->join_queue);
171 scm_gc_mark (t->mutexes);
172 scm_gc_mark (t->dynwinds);
173 scm_gc_mark (t->active_asyncs);
174 scm_gc_mark (t->continuation_root);
175 scm_gc_mark (t->vm);
176 return t->dynamic_state;
177 }
178
179 static int
180 thread_print (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
181 {
182 /* On a Gnu system pthread_t is an unsigned long, but on mingw it's a
183 struct. A cast like "(unsigned long) t->pthread" is a syntax error in
184 the struct case, hence we go via a union, and extract according to the
185 size of pthread_t. */
186 union {
187 scm_i_pthread_t p;
188 unsigned short us;
189 unsigned int ui;
190 unsigned long ul;
191 scm_t_uintmax um;
192 } u;
193 scm_i_thread *t = SCM_I_THREAD_DATA (exp);
194 scm_i_pthread_t p = t->pthread;
195 scm_t_uintmax id;
196 u.p = p;
197 if (sizeof (p) == sizeof (unsigned short))
198 id = u.us;
199 else if (sizeof (p) == sizeof (unsigned int))
200 id = u.ui;
201 else if (sizeof (p) == sizeof (unsigned long))
202 id = u.ul;
203 else
204 id = u.um;
205
206 scm_puts ("#<thread ", port);
207 scm_uintprint (id, 10, port);
208 scm_puts (" (", port);
209 scm_uintprint ((scm_t_bits)t, 16, port);
210 scm_puts (")>", port);
211 return 1;
212 }
213
214 static size_t
215 thread_free (SCM obj)
216 {
217 scm_i_thread *t = SCM_I_THREAD_DATA (obj);
218 assert (t->exited);
219 scm_gc_free (t, sizeof (*t), "thread");
220 return 0;
221 }
222
223 /*** Blocking on queues. */
224
225 /* See also scm_i_queue_async_cell for how such a block is
226 interrputed.
227 */
228
229 /* Put the current thread on QUEUE and go to sleep, waiting for it to
230 be woken up by a call to 'unblock_from_queue', or to be
231 interrupted. Upon return of this function, the current thread is
232 no longer on QUEUE, even when the sleep has been interrupted.
233
234 The caller of block_self must hold MUTEX. It will be atomically
235 unlocked while sleeping, just as with scm_i_pthread_cond_wait.
236
237 SLEEP_OBJECT is an arbitrary SCM value that is kept alive as long
238 as MUTEX is needed.
239
240 When WAITTIME is not NULL, the sleep will be aborted at that time.
241
242 The return value of block_self is an errno value. It will be zero
243 when the sleep has been successfully completed by a call to
244 unblock_from_queue, EINTR when it has been interrupted by the
245 delivery of a system async, and ETIMEDOUT when the timeout has
246 expired.
247
248 The system asyncs themselves are not executed by block_self.
249 */
250 static int
251 block_self (SCM queue, SCM sleep_object, scm_i_pthread_mutex_t *mutex,
252 const scm_t_timespec *waittime)
253 {
254 scm_i_thread *t = SCM_I_CURRENT_THREAD;
255 SCM q_handle;
256 int err;
257
258 if (scm_i_setup_sleep (t, sleep_object, mutex, -1))
259 err = EINTR;
260 else
261 {
262 t->block_asyncs++;
263 q_handle = enqueue (queue, t->handle);
264 if (waittime == NULL)
265 err = scm_i_scm_pthread_cond_wait (&t->sleep_cond, mutex);
266 else
267 err = scm_i_scm_pthread_cond_timedwait (&t->sleep_cond, mutex, waittime);
268
269 /* When we are still on QUEUE, we have been interrupted. We
270 report this only when no other error (such as a timeout) has
271 happened above.
272 */
273 if (remqueue (queue, q_handle) && err == 0)
274 err = EINTR;
275 t->block_asyncs--;
276 scm_i_reset_sleep (t);
277 }
278
279 return err;
280 }
281
282 /* Wake up the first thread on QUEUE, if any. The awoken thread is
283 returned, or #f if the queue was empty.
284 */
285 static SCM
286 unblock_from_queue (SCM queue)
287 {
288 SCM thread = dequeue (queue);
289 if (scm_is_true (thread))
290 scm_i_pthread_cond_signal (&SCM_I_THREAD_DATA(thread)->sleep_cond);
291 return thread;
292 }
293
294 /* Getting into and out of guile mode.
295 */
296
297 /* Ken Raeburn observes that the implementation of suspend and resume
298 (and the things that build on top of them) are very likely not
299 correct (see below). We will need fix this eventually, and that's
300 why scm_leave_guile/scm_enter_guile are not exported in the API.
301
302 Ken writes:
303
304 Consider this sequence:
305
306 Function foo, called in Guile mode, calls suspend (maybe indirectly
307 through scm_leave_guile), which does this:
308
309 // record top of stack for the GC
310 t->top = SCM_STACK_PTR (&t); // just takes address of automatic
311 var 't'
312 // save registers.
313 SCM_FLUSH_REGISTER_WINDOWS; // sparc only
314 setjmp (t->regs); // here's most of the magic
315
316 ... and returns.
317
318 Function foo has a SCM value X, a handle on a non-immediate object, in
319 a caller-saved register R, and it's the only reference to the object
320 currently.
321
322 The compiler wants to use R in suspend, so it pushes the current
323 value, X, into a stack slot which will be reloaded on exit from
324 suspend; then it loads stuff into R and goes about its business. The
325 setjmp call saves (some of) the current registers, including R, which
326 no longer contains X. (This isn't a problem for a normal
327 setjmp/longjmp situation, where longjmp would be called before
328 setjmp's caller returns; the old value for X would be loaded back from
329 the stack after the longjmp, before the function returned.)
330
331 So, suspend returns, loading X back into R (and invalidating the jump
332 buffer) in the process. The caller foo then goes off and calls a
333 bunch of other functions out of Guile mode, occasionally storing X on
334 the stack again, but, say, much deeper on the stack than suspend's
335 stack frame went, and the stack slot where suspend had written X has
336 long since been overwritten with other values.
337
338 Okay, nothing actively broken so far. Now, let garbage collection
339 run, triggered by another thread.
340
341 The thread calling foo is out of Guile mode at the time, so the
342 garbage collector just scans a range of stack addresses. Too bad that
343 X isn't stored there. So the pointed-to storage goes onto the free
344 list, and I think you can see where things go from there.
345
346 Is there anything I'm missing that'll prevent this scenario from
347 happening? I mean, aside from, "well, suspend and scm_leave_guile
348 don't have many local variables, so they probably won't need to save
349 any registers on most systems, so we hope everything will wind up in
350 the jump buffer and we'll just get away with it"?
351
352 (And, going the other direction, if scm_leave_guile and suspend push
353 the stack pointer over onto a new page, and foo doesn't make further
354 function calls and thus the stack pointer no longer includes that
355 page, are we guaranteed that the kernel cannot release the now-unused
356 stack page that contains the top-of-stack pointer we just saved? I
357 don't know if any OS actually does that. If it does, we could get
358 faults in garbage collection.)
359
360 I don't think scm_without_guile has to have this problem, as it gets
361 more control over the stack handling -- but it should call setjmp
362 itself. I'd probably try something like:
363
364 // record top of stack for the GC
365 t->top = SCM_STACK_PTR (&t);
366 // save registers.
367 SCM_FLUSH_REGISTER_WINDOWS;
368 setjmp (t->regs);
369 res = func(data);
370 scm_enter_guile (t);
371
372 ... though even that's making some assumptions about the stack
373 ordering of local variables versus caller-saved registers.
374
375 For something like scm_leave_guile to work, I don't think it can just
376 rely on invalidated jump buffers. A valid jump buffer, and a handle
377 on the stack state at the point when the jump buffer was initialized,
378 together, would work fine, but I think then we're talking about macros
379 invoking setjmp in the caller's stack frame, and requiring that the
380 caller of scm_leave_guile also call scm_enter_guile before returning,
381 kind of like pthread_cleanup_push/pop calls that have to be paired up
382 in a function. (In fact, the pthread ones have to be paired up
383 syntactically, as if they might expand to a compound statement
384 incorporating the user's code, and invoking a compiler's
385 exception-handling primitives. Which might be something to think
386 about for cases where Guile is used with C++ exceptions or
387 pthread_cancel.)
388 */
389
390 scm_i_pthread_key_t scm_i_thread_key;
391
392 static void
393 resume (scm_i_thread *t)
394 {
395 t->top = NULL;
396 if (t->clear_freelists_p)
397 {
398 *SCM_FREELIST_LOC (scm_i_freelist) = SCM_EOL;
399 *SCM_FREELIST_LOC (scm_i_freelist2) = SCM_EOL;
400 t->clear_freelists_p = 0;
401 }
402 }
403
404 typedef void* scm_t_guile_ticket;
405
406 static void
407 scm_enter_guile (scm_t_guile_ticket ticket)
408 {
409 scm_i_thread *t = (scm_i_thread *)ticket;
410 if (t)
411 {
412 scm_i_pthread_mutex_lock (&t->heap_mutex);
413 t->heap_mutex_locked_by_self = 1;
414 resume (t);
415 }
416 }
417
418 static scm_i_thread *
419 suspend (void)
420 {
421 scm_i_thread *t = SCM_I_CURRENT_THREAD;
422
423 /* record top of stack for the GC */
424 t->top = SCM_STACK_PTR (&t);
425 /* save registers. */
426 SCM_FLUSH_REGISTER_WINDOWS;
427 setjmp (t->regs);
428 return t;
429 }
430
431 static scm_t_guile_ticket
432 scm_leave_guile ()
433 {
434 scm_i_thread *t = suspend ();
435 if (t->heap_mutex_locked_by_self)
436 {
437 t->heap_mutex_locked_by_self = 0;
438 scm_i_pthread_mutex_unlock (&t->heap_mutex);
439 }
440 return (scm_t_guile_ticket) t;
441 }
442
443 static scm_i_pthread_mutex_t thread_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER;
444 static scm_i_thread *all_threads = NULL;
445 static int thread_count;
446
447 static SCM scm_i_default_dynamic_state;
448
449 /* Perform first stage of thread initialisation, in non-guile mode.
450 */
451 static void
452 guilify_self_1 (SCM_STACKITEM *base)
453 {
454 scm_i_thread *t = malloc (sizeof (scm_i_thread));
455
456 t->pthread = scm_i_pthread_self ();
457 t->handle = SCM_BOOL_F;
458 t->result = SCM_BOOL_F;
459 t->cleanup_handler = SCM_BOOL_F;
460 t->mutexes = SCM_EOL;
461 t->held_mutex = NULL;
462 t->join_queue = SCM_EOL;
463 t->dynamic_state = SCM_BOOL_F;
464 t->dynwinds = SCM_EOL;
465 t->active_asyncs = SCM_EOL;
466 t->block_asyncs = 1;
467 t->pending_asyncs = 1;
468 t->last_debug_frame = NULL;
469 t->base = base;
470 #ifdef __ia64__
471 /* Calculate and store off the base of this thread's register
472 backing store (RBS). Unfortunately our implementation(s) of
473 scm_ia64_register_backing_store_base are only reliable for the
474 main thread. For other threads, therefore, find out the current
475 top of the RBS, and use that as a maximum. */
476 t->register_backing_store_base = scm_ia64_register_backing_store_base ();
477 {
478 ucontext_t ctx;
479 void *bsp;
480 getcontext (&ctx);
481 bsp = scm_ia64_ar_bsp (&ctx);
482 if (t->register_backing_store_base > bsp)
483 t->register_backing_store_base = bsp;
484 }
485 #endif
486 t->continuation_root = SCM_EOL;
487 t->continuation_base = base;
488 scm_i_pthread_cond_init (&t->sleep_cond, NULL);
489 t->sleep_mutex = NULL;
490 t->sleep_object = SCM_BOOL_F;
491 t->sleep_fd = -1;
492
493 if (pipe (t->sleep_pipe) != 0)
494 /* FIXME: Error conditions during the initialization phase are handled
495 gracelessly since public functions such as `scm_init_guile ()'
496 currently have type `void'. */
497 abort ();
498
499 scm_i_pthread_mutex_init (&t->heap_mutex, NULL);
500 t->heap_mutex_locked_by_self = 0;
501 scm_i_pthread_mutex_init (&t->admin_mutex, NULL);
502 t->clear_freelists_p = 0;
503 t->gc_running_p = 0;
504 t->canceled = 0;
505 t->exited = 0;
506
507 t->freelist = SCM_EOL;
508 t->freelist2 = SCM_EOL;
509 SCM_SET_FREELIST_LOC (scm_i_freelist, &t->freelist);
510 SCM_SET_FREELIST_LOC (scm_i_freelist2, &t->freelist2);
511
512 scm_i_pthread_setspecific (scm_i_thread_key, t);
513
514 scm_i_pthread_mutex_lock (&t->heap_mutex);
515 t->heap_mutex_locked_by_self = 1;
516
517 scm_i_pthread_mutex_lock (&thread_admin_mutex);
518 t->next_thread = all_threads;
519 all_threads = t;
520 thread_count++;
521 scm_i_pthread_mutex_unlock (&thread_admin_mutex);
522 }
523
524 /* Perform second stage of thread initialisation, in guile mode.
525 */
526 static void
527 guilify_self_2 (SCM parent)
528 {
529 scm_i_thread *t = SCM_I_CURRENT_THREAD;
530
531 SCM_NEWSMOB (t->handle, scm_tc16_thread, t);
532 scm_gc_register_collectable_memory (t, sizeof (scm_i_thread), "thread");
533 t->continuation_root = scm_cons (t->handle, SCM_EOL);
534 t->continuation_base = t->base;
535 t->vm = SCM_BOOL_F;
536
537 if (scm_is_true (parent))
538 t->dynamic_state = scm_make_dynamic_state (parent);
539 else
540 t->dynamic_state = scm_i_make_initial_dynamic_state ();
541
542 t->join_queue = make_queue ();
543 t->block_asyncs = 0;
544 }
545
546 \f
547 /*** Fat mutexes */
548
549 /* We implement our own mutex type since we want them to be 'fair', we
550 want to do fancy things while waiting for them (like running
551 asyncs) and we might want to add things that are nice for
552 debugging.
553 */
554
555 typedef struct {
556 scm_i_pthread_mutex_t lock;
557 SCM owner;
558 int level; /* how much the owner owns us. <= 1 for non-recursive mutexes */
559
560 int recursive; /* allow recursive locking? */
561 int unchecked_unlock; /* is it an error to unlock an unlocked mutex? */
562 int allow_external_unlock; /* is it an error to unlock a mutex that is not
563 owned by the current thread? */
564
565 SCM waiting; /* the threads waiting for this mutex. */
566 } fat_mutex;
567
568 #define SCM_MUTEXP(x) SCM_SMOB_PREDICATE (scm_tc16_mutex, x)
569 #define SCM_MUTEX_DATA(x) ((fat_mutex *) SCM_SMOB_DATA (x))
570
571 /* Perform thread tear-down, in guile mode.
572 */
573 static void *
574 do_thread_exit (void *v)
575 {
576 scm_i_thread *t = (scm_i_thread *) v;
577
578 if (!scm_is_false (t->cleanup_handler))
579 {
580 SCM ptr = t->cleanup_handler;
581
582 t->cleanup_handler = SCM_BOOL_F;
583 t->result = scm_internal_catch (SCM_BOOL_T,
584 (scm_t_catch_body) scm_call_0, ptr,
585 scm_handle_by_message_noexit, NULL);
586 }
587
588 scm_i_scm_pthread_mutex_lock (&t->admin_mutex);
589
590 t->exited = 1;
591 close (t->sleep_pipe[0]);
592 close (t->sleep_pipe[1]);
593 while (scm_is_true (unblock_from_queue (t->join_queue)))
594 ;
595
596 while (!scm_is_null (t->mutexes))
597 {
598 SCM mutex = SCM_CAR (t->mutexes);
599 fat_mutex *m = SCM_MUTEX_DATA (mutex);
600 scm_i_pthread_mutex_lock (&m->lock);
601
602 unblock_from_queue (m->waiting);
603
604 scm_i_pthread_mutex_unlock (&m->lock);
605 t->mutexes = SCM_CDR (t->mutexes);
606 }
607
608 scm_i_pthread_mutex_unlock (&t->admin_mutex);
609
610 return NULL;
611 }
612
613 static void
614 on_thread_exit (void *v)
615 {
616 /* This handler is executed in non-guile mode. */
617 scm_i_thread *t = (scm_i_thread *) v, **tp;
618
619 /* If this thread was cancelled while doing a cond wait, it will
620 still have a mutex locked, so we unlock it here. */
621 if (t->held_mutex)
622 {
623 scm_i_pthread_mutex_unlock (t->held_mutex);
624 t->held_mutex = NULL;
625 }
626
627 scm_i_pthread_setspecific (scm_i_thread_key, v);
628
629 /* Ensure the signal handling thread has been launched, because we might be
630 shutting it down. */
631 scm_i_ensure_signal_delivery_thread ();
632
633 /* Unblocking the joining threads needs to happen in guile mode
634 since the queue is a SCM data structure. */
635 scm_with_guile (do_thread_exit, v);
636
637 /* Removing ourself from the list of all threads needs to happen in
638 non-guile mode since all SCM values on our stack become
639 unprotected once we are no longer in the list. */
640 scm_i_pthread_mutex_lock (&thread_admin_mutex);
641 for (tp = &all_threads; *tp; tp = &(*tp)->next_thread)
642 if (*tp == t)
643 {
644 *tp = t->next_thread;
645 break;
646 }
647 thread_count--;
648
649 /* If there's only one other thread, it could be the signal delivery
650 thread, so we need to notify it to shut down by closing its read pipe.
651 If it's not the signal delivery thread, then closing the read pipe isn't
652 going to hurt. */
653 if (thread_count <= 1)
654 scm_i_close_signal_pipe ();
655
656 scm_i_pthread_mutex_unlock (&thread_admin_mutex);
657
658 scm_i_pthread_setspecific (scm_i_thread_key, NULL);
659 }
660
661 static scm_i_pthread_once_t init_thread_key_once = SCM_I_PTHREAD_ONCE_INIT;
662
663 static void
664 init_thread_key (void)
665 {
666 scm_i_pthread_key_create (&scm_i_thread_key, on_thread_exit);
667 }
668
669 /* Perform any initializations necessary to bring the current thread
670 into guile mode, initializing Guile itself, if necessary.
671
672 BASE is the stack base to use with GC.
673
674 PARENT is the dynamic state to use as the parent, ot SCM_BOOL_F in
675 which case the default dynamic state is used.
676
677 Return zero when the thread was in guile mode already; otherwise
678 return 1.
679 */
680
681 static int
682 scm_i_init_thread_for_guile (SCM_STACKITEM *base, SCM parent)
683 {
684 scm_i_thread *t;
685
686 scm_i_pthread_once (&init_thread_key_once, init_thread_key);
687
688 if ((t = SCM_I_CURRENT_THREAD) == NULL)
689 {
690 /* This thread has not been guilified yet.
691 */
692
693 scm_i_pthread_mutex_lock (&scm_i_init_mutex);
694 if (scm_initialized_p == 0)
695 {
696 /* First thread ever to enter Guile. Run the full
697 initialization.
698 */
699 scm_i_init_guile (base);
700 scm_i_pthread_mutex_unlock (&scm_i_init_mutex);
701 }
702 else
703 {
704 /* Guile is already initialized, but this thread enters it for
705 the first time. Only initialize this thread.
706 */
707 scm_i_pthread_mutex_unlock (&scm_i_init_mutex);
708 guilify_self_1 (base);
709 guilify_self_2 (parent);
710 }
711 return 1;
712 }
713 else if (t->top)
714 {
715 /* This thread is already guilified but not in guile mode, just
716 resume it.
717
718 A user call to scm_with_guile() will lead us to here. This could
719 happen from anywhere on the stack, and in particular lower on the
720 stack than when it was when this thread was first guilified. Thus,
721 `base' must be updated. */
722 #if SCM_STACK_GROWS_UP
723 if (base < t->base)
724 t->base = base;
725 #else
726 if (base > t->base)
727 t->base = base;
728 #endif
729
730 scm_enter_guile ((scm_t_guile_ticket) t);
731 return 1;
732 }
733 else
734 {
735 /* Thread is already in guile mode. Nothing to do.
736 */
737 return 0;
738 }
739 }
740
741 #if SCM_USE_PTHREAD_THREADS
742
743 #if HAVE_PTHREAD_ATTR_GETSTACK && HAVE_PTHREAD_GETATTR_NP
744 /* This method for GNU/Linux and perhaps some other systems.
745 It's not for MacOS X or Solaris 10, since pthread_getattr_np is not
746 available on them. */
747 #define HAVE_GET_THREAD_STACK_BASE
748
749 static SCM_STACKITEM *
750 get_thread_stack_base ()
751 {
752 pthread_attr_t attr;
753 void *start, *end;
754 size_t size;
755
756 pthread_getattr_np (pthread_self (), &attr);
757 pthread_attr_getstack (&attr, &start, &size);
758 end = (char *)start + size;
759
760 /* XXX - pthread_getattr_np from LinuxThreads does not seem to work
761 for the main thread, but we can use scm_get_stack_base in that
762 case.
763 */
764
765 #ifndef PTHREAD_ATTR_GETSTACK_WORKS
766 if ((void *)&attr < start || (void *)&attr >= end)
767 return scm_get_stack_base ();
768 else
769 #endif
770 {
771 #if SCM_STACK_GROWS_UP
772 return start;
773 #else
774 return end;
775 #endif
776 }
777 }
778
779 #elif HAVE_PTHREAD_GET_STACKADDR_NP
780 /* This method for MacOS X.
781 It'd be nice if there was some documentation on pthread_get_stackaddr_np,
782 but as of 2006 there's nothing obvious at apple.com. */
783 #define HAVE_GET_THREAD_STACK_BASE
784 static SCM_STACKITEM *
785 get_thread_stack_base ()
786 {
787 return pthread_get_stackaddr_np (pthread_self ());
788 }
789
790 #elif defined (__MINGW32__)
791 /* This method for mingw. In mingw the basic scm_get_stack_base can be used
792 in any thread. We don't like hard-coding the name of a system, but there
793 doesn't seem to be a cleaner way of knowing scm_get_stack_base can
794 work. */
795 #define HAVE_GET_THREAD_STACK_BASE
796 static SCM_STACKITEM *
797 get_thread_stack_base ()
798 {
799 return scm_get_stack_base ();
800 }
801
802 #endif /* pthread methods of get_thread_stack_base */
803
804 #else /* !SCM_USE_PTHREAD_THREADS */
805
806 #define HAVE_GET_THREAD_STACK_BASE
807
808 static SCM_STACKITEM *
809 get_thread_stack_base ()
810 {
811 return scm_get_stack_base ();
812 }
813
814 #endif /* !SCM_USE_PTHREAD_THREADS */
815
816 #ifdef HAVE_GET_THREAD_STACK_BASE
817
818 void
819 scm_init_guile ()
820 {
821 scm_i_init_thread_for_guile (get_thread_stack_base (),
822 scm_i_default_dynamic_state);
823 }
824
825 #endif
826
827 void *
828 scm_with_guile (void *(*func)(void *), void *data)
829 {
830 return scm_i_with_guile_and_parent (func, data,
831 scm_i_default_dynamic_state);
832 }
833
834 SCM_UNUSED static void
835 scm_leave_guile_cleanup (void *x)
836 {
837 scm_leave_guile ();
838 }
839
840 void *
841 scm_i_with_guile_and_parent (void *(*func)(void *), void *data, SCM parent)
842 {
843 void *res;
844 int really_entered;
845 SCM_STACKITEM base_item;
846
847 really_entered = scm_i_init_thread_for_guile (&base_item, parent);
848 if (really_entered)
849 {
850 scm_i_pthread_cleanup_push (scm_leave_guile_cleanup, NULL);
851 res = scm_c_with_continuation_barrier (func, data);
852 scm_i_pthread_cleanup_pop (0);
853 scm_leave_guile ();
854 }
855 else
856 res = scm_c_with_continuation_barrier (func, data);
857
858 return res;
859 }
860
861 void *
862 scm_without_guile (void *(*func)(void *), void *data)
863 {
864 void *res;
865 scm_t_guile_ticket t;
866 t = scm_leave_guile ();
867 res = func (data);
868 scm_enter_guile (t);
869 return res;
870 }
871
872 /*** Thread creation */
873
874 typedef struct {
875 SCM parent;
876 SCM thunk;
877 SCM handler;
878 SCM thread;
879 scm_i_pthread_mutex_t mutex;
880 scm_i_pthread_cond_t cond;
881 } launch_data;
882
883 static void *
884 really_launch (void *d)
885 {
886 launch_data *data = (launch_data *)d;
887 SCM thunk = data->thunk, handler = data->handler;
888 scm_i_thread *t;
889
890 t = SCM_I_CURRENT_THREAD;
891
892 scm_i_scm_pthread_mutex_lock (&data->mutex);
893 data->thread = scm_current_thread ();
894 scm_i_pthread_cond_signal (&data->cond);
895 scm_i_pthread_mutex_unlock (&data->mutex);
896
897 if (SCM_UNBNDP (handler))
898 t->result = scm_call_0 (thunk);
899 else
900 t->result = scm_catch (SCM_BOOL_T, thunk, handler);
901
902 return 0;
903 }
904
905 static void *
906 launch_thread (void *d)
907 {
908 launch_data *data = (launch_data *)d;
909 scm_i_pthread_detach (scm_i_pthread_self ());
910 scm_i_with_guile_and_parent (really_launch, d, data->parent);
911 return NULL;
912 }
913
914 SCM_DEFINE (scm_call_with_new_thread, "call-with-new-thread", 1, 1, 0,
915 (SCM thunk, SCM handler),
916 "Call @code{thunk} in a new thread and with a new dynamic state,\n"
917 "returning a new thread object representing the thread. The procedure\n"
918 "@var{thunk} is called via @code{with-continuation-barrier}.\n"
919 "\n"
920 "When @var{handler} is specified, then @var{thunk} is called from\n"
921 "within a @code{catch} with tag @code{#t} that has @var{handler} as its\n"
922 "handler. This catch is established inside the continuation barrier.\n"
923 "\n"
924 "Once @var{thunk} or @var{handler} returns, the return value is made\n"
925 "the @emph{exit value} of the thread and the thread is terminated.")
926 #define FUNC_NAME s_scm_call_with_new_thread
927 {
928 launch_data data;
929 scm_i_pthread_t id;
930 int err;
931
932 SCM_ASSERT (scm_is_true (scm_thunk_p (thunk)), thunk, SCM_ARG1, FUNC_NAME);
933 SCM_ASSERT (SCM_UNBNDP (handler) || scm_is_true (scm_procedure_p (handler)),
934 handler, SCM_ARG2, FUNC_NAME);
935
936 data.parent = scm_current_dynamic_state ();
937 data.thunk = thunk;
938 data.handler = handler;
939 data.thread = SCM_BOOL_F;
940 scm_i_pthread_mutex_init (&data.mutex, NULL);
941 scm_i_pthread_cond_init (&data.cond, NULL);
942
943 scm_i_scm_pthread_mutex_lock (&data.mutex);
944 err = scm_i_pthread_create (&id, NULL, launch_thread, &data);
945 if (err)
946 {
947 scm_i_pthread_mutex_unlock (&data.mutex);
948 errno = err;
949 scm_syserror (NULL);
950 }
951 scm_i_scm_pthread_cond_wait (&data.cond, &data.mutex);
952 scm_i_pthread_mutex_unlock (&data.mutex);
953
954 return data.thread;
955 }
956 #undef FUNC_NAME
957
958 typedef struct {
959 SCM parent;
960 scm_t_catch_body body;
961 void *body_data;
962 scm_t_catch_handler handler;
963 void *handler_data;
964 SCM thread;
965 scm_i_pthread_mutex_t mutex;
966 scm_i_pthread_cond_t cond;
967 } spawn_data;
968
969 static void *
970 really_spawn (void *d)
971 {
972 spawn_data *data = (spawn_data *)d;
973 scm_t_catch_body body = data->body;
974 void *body_data = data->body_data;
975 scm_t_catch_handler handler = data->handler;
976 void *handler_data = data->handler_data;
977 scm_i_thread *t = SCM_I_CURRENT_THREAD;
978
979 scm_i_scm_pthread_mutex_lock (&data->mutex);
980 data->thread = scm_current_thread ();
981 scm_i_pthread_cond_signal (&data->cond);
982 scm_i_pthread_mutex_unlock (&data->mutex);
983
984 if (handler == NULL)
985 t->result = body (body_data);
986 else
987 t->result = scm_internal_catch (SCM_BOOL_T,
988 body, body_data,
989 handler, handler_data);
990
991 return 0;
992 }
993
994 static void *
995 spawn_thread (void *d)
996 {
997 spawn_data *data = (spawn_data *)d;
998 scm_i_pthread_detach (scm_i_pthread_self ());
999 scm_i_with_guile_and_parent (really_spawn, d, data->parent);
1000 return NULL;
1001 }
1002
1003 SCM
1004 scm_spawn_thread (scm_t_catch_body body, void *body_data,
1005 scm_t_catch_handler handler, void *handler_data)
1006 {
1007 spawn_data data;
1008 scm_i_pthread_t id;
1009 int err;
1010
1011 data.parent = scm_current_dynamic_state ();
1012 data.body = body;
1013 data.body_data = body_data;
1014 data.handler = handler;
1015 data.handler_data = handler_data;
1016 data.thread = SCM_BOOL_F;
1017 scm_i_pthread_mutex_init (&data.mutex, NULL);
1018 scm_i_pthread_cond_init (&data.cond, NULL);
1019
1020 scm_i_scm_pthread_mutex_lock (&data.mutex);
1021 err = scm_i_pthread_create (&id, NULL, spawn_thread, &data);
1022 if (err)
1023 {
1024 scm_i_pthread_mutex_unlock (&data.mutex);
1025 errno = err;
1026 scm_syserror (NULL);
1027 }
1028 scm_i_scm_pthread_cond_wait (&data.cond, &data.mutex);
1029 scm_i_pthread_mutex_unlock (&data.mutex);
1030
1031 return data.thread;
1032 }
1033
1034 SCM_DEFINE (scm_yield, "yield", 0, 0, 0,
1035 (),
1036 "Move the calling thread to the end of the scheduling queue.")
1037 #define FUNC_NAME s_scm_yield
1038 {
1039 return scm_from_bool (scm_i_sched_yield ());
1040 }
1041 #undef FUNC_NAME
1042
1043 SCM_DEFINE (scm_cancel_thread, "cancel-thread", 1, 0, 0,
1044 (SCM thread),
1045 "Asynchronously force the target @var{thread} to terminate. @var{thread} "
1046 "cannot be the current thread, and if @var{thread} has already terminated or "
1047 "been signaled to terminate, this function is a no-op.")
1048 #define FUNC_NAME s_scm_cancel_thread
1049 {
1050 scm_i_thread *t = NULL;
1051
1052 SCM_VALIDATE_THREAD (1, thread);
1053 t = SCM_I_THREAD_DATA (thread);
1054 scm_i_scm_pthread_mutex_lock (&t->admin_mutex);
1055 if (!t->canceled)
1056 {
1057 t->canceled = 1;
1058 scm_i_pthread_mutex_unlock (&t->admin_mutex);
1059 scm_i_pthread_cancel (t->pthread);
1060 }
1061 else
1062 scm_i_pthread_mutex_unlock (&t->admin_mutex);
1063
1064 return SCM_UNSPECIFIED;
1065 }
1066 #undef FUNC_NAME
1067
1068 SCM_DEFINE (scm_set_thread_cleanup_x, "set-thread-cleanup!", 2, 0, 0,
1069 (SCM thread, SCM proc),
1070 "Set the thunk @var{proc} as the cleanup handler for the thread @var{thread}. "
1071 "This handler will be called when the thread exits.")
1072 #define FUNC_NAME s_scm_set_thread_cleanup_x
1073 {
1074 scm_i_thread *t;
1075
1076 SCM_VALIDATE_THREAD (1, thread);
1077 if (!scm_is_false (proc))
1078 SCM_VALIDATE_THUNK (2, proc);
1079
1080 t = SCM_I_THREAD_DATA (thread);
1081 scm_i_pthread_mutex_lock (&t->admin_mutex);
1082
1083 if (!(t->exited || t->canceled))
1084 t->cleanup_handler = proc;
1085
1086 scm_i_pthread_mutex_unlock (&t->admin_mutex);
1087
1088 return SCM_UNSPECIFIED;
1089 }
1090 #undef FUNC_NAME
1091
1092 SCM_DEFINE (scm_thread_cleanup, "thread-cleanup", 1, 0, 0,
1093 (SCM thread),
1094 "Return the cleanup handler installed for the thread @var{thread}.")
1095 #define FUNC_NAME s_scm_thread_cleanup
1096 {
1097 scm_i_thread *t;
1098 SCM ret;
1099
1100 SCM_VALIDATE_THREAD (1, thread);
1101
1102 t = SCM_I_THREAD_DATA (thread);
1103 scm_i_pthread_mutex_lock (&t->admin_mutex);
1104 ret = (t->exited || t->canceled) ? SCM_BOOL_F : t->cleanup_handler;
1105 scm_i_pthread_mutex_unlock (&t->admin_mutex);
1106
1107 return ret;
1108 }
1109 #undef FUNC_NAME
1110
1111 SCM scm_join_thread (SCM thread)
1112 {
1113 return scm_join_thread_timed (thread, SCM_UNDEFINED, SCM_UNDEFINED);
1114 }
1115
1116 SCM_DEFINE (scm_join_thread_timed, "join-thread", 1, 2, 0,
1117 (SCM thread, SCM timeout, SCM timeoutval),
1118 "Suspend execution of the calling thread until the target @var{thread} "
1119 "terminates, unless the target @var{thread} has already terminated. ")
1120 #define FUNC_NAME s_scm_join_thread_timed
1121 {
1122 scm_i_thread *t;
1123 scm_t_timespec ctimeout, *timeout_ptr = NULL;
1124 SCM res = SCM_BOOL_F;
1125
1126 if (! (SCM_UNBNDP (timeoutval)))
1127 res = timeoutval;
1128
1129 SCM_VALIDATE_THREAD (1, thread);
1130 if (scm_is_eq (scm_current_thread (), thread))
1131 SCM_MISC_ERROR ("cannot join the current thread", SCM_EOL);
1132
1133 t = SCM_I_THREAD_DATA (thread);
1134 scm_i_scm_pthread_mutex_lock (&t->admin_mutex);
1135
1136 if (! SCM_UNBNDP (timeout))
1137 {
1138 to_timespec (timeout, &ctimeout);
1139 timeout_ptr = &ctimeout;
1140 }
1141
1142 if (t->exited)
1143 res = t->result;
1144 else
1145 {
1146 while (1)
1147 {
1148 int err = block_self (t->join_queue, thread, &t->admin_mutex,
1149 timeout_ptr);
1150 if (err == 0)
1151 {
1152 if (t->exited)
1153 {
1154 res = t->result;
1155 break;
1156 }
1157 }
1158 else if (err == ETIMEDOUT)
1159 break;
1160
1161 scm_i_pthread_mutex_unlock (&t->admin_mutex);
1162 SCM_TICK;
1163 scm_i_scm_pthread_mutex_lock (&t->admin_mutex);
1164 }
1165 }
1166
1167 scm_i_pthread_mutex_unlock (&t->admin_mutex);
1168
1169 return res;
1170 }
1171 #undef FUNC_NAME
1172
1173 SCM_DEFINE (scm_thread_p, "thread?", 1, 0, 0,
1174 (SCM obj),
1175 "Return @code{#t} if @var{obj} is a thread.")
1176 #define FUNC_NAME s_scm_thread_p
1177 {
1178 return SCM_I_IS_THREAD(obj) ? SCM_BOOL_T : SCM_BOOL_F;
1179 }
1180 #undef FUNC_NAME
1181
1182 static SCM
1183 fat_mutex_mark (SCM mx)
1184 {
1185 fat_mutex *m = SCM_MUTEX_DATA (mx);
1186 scm_gc_mark (m->owner);
1187 return m->waiting;
1188 }
1189
1190 static size_t
1191 fat_mutex_free (SCM mx)
1192 {
1193 fat_mutex *m = SCM_MUTEX_DATA (mx);
1194 scm_i_pthread_mutex_destroy (&m->lock);
1195 scm_gc_free (m, sizeof (fat_mutex), "mutex");
1196 return 0;
1197 }
1198
1199 static int
1200 fat_mutex_print (SCM mx, SCM port, scm_print_state *pstate SCM_UNUSED)
1201 {
1202 fat_mutex *m = SCM_MUTEX_DATA (mx);
1203 scm_puts ("#<mutex ", port);
1204 scm_uintprint ((scm_t_bits)m, 16, port);
1205 scm_puts (">", port);
1206 return 1;
1207 }
1208
1209 static SCM
1210 make_fat_mutex (int recursive, int unchecked_unlock, int external_unlock)
1211 {
1212 fat_mutex *m;
1213 SCM mx;
1214
1215 m = scm_gc_malloc (sizeof (fat_mutex), "mutex");
1216 scm_i_pthread_mutex_init (&m->lock, NULL);
1217 m->owner = SCM_BOOL_F;
1218 m->level = 0;
1219
1220 m->recursive = recursive;
1221 m->unchecked_unlock = unchecked_unlock;
1222 m->allow_external_unlock = external_unlock;
1223
1224 m->waiting = SCM_EOL;
1225 SCM_NEWSMOB (mx, scm_tc16_mutex, (scm_t_bits) m);
1226 m->waiting = make_queue ();
1227 return mx;
1228 }
1229
1230 SCM scm_make_mutex (void)
1231 {
1232 return scm_make_mutex_with_flags (SCM_EOL);
1233 }
1234
1235 SCM_SYMBOL (unchecked_unlock_sym, "unchecked-unlock");
1236 SCM_SYMBOL (allow_external_unlock_sym, "allow-external-unlock");
1237 SCM_SYMBOL (recursive_sym, "recursive");
1238
1239 SCM_DEFINE (scm_make_mutex_with_flags, "make-mutex", 0, 0, 1,
1240 (SCM flags),
1241 "Create a new mutex. ")
1242 #define FUNC_NAME s_scm_make_mutex_with_flags
1243 {
1244 int unchecked_unlock = 0, external_unlock = 0, recursive = 0;
1245
1246 SCM ptr = flags;
1247 while (! scm_is_null (ptr))
1248 {
1249 SCM flag = SCM_CAR (ptr);
1250 if (scm_is_eq (flag, unchecked_unlock_sym))
1251 unchecked_unlock = 1;
1252 else if (scm_is_eq (flag, allow_external_unlock_sym))
1253 external_unlock = 1;
1254 else if (scm_is_eq (flag, recursive_sym))
1255 recursive = 1;
1256 else
1257 SCM_MISC_ERROR ("unsupported mutex option: ~a", scm_list_1 (flag));
1258 ptr = SCM_CDR (ptr);
1259 }
1260 return make_fat_mutex (recursive, unchecked_unlock, external_unlock);
1261 }
1262 #undef FUNC_NAME
1263
1264 SCM_DEFINE (scm_make_recursive_mutex, "make-recursive-mutex", 0, 0, 0,
1265 (void),
1266 "Create a new recursive mutex. ")
1267 #define FUNC_NAME s_scm_make_recursive_mutex
1268 {
1269 return make_fat_mutex (1, 0, 0);
1270 }
1271 #undef FUNC_NAME
1272
1273 SCM_SYMBOL (scm_abandoned_mutex_error_key, "abandoned-mutex-error");
1274
1275 static SCM
1276 fat_mutex_lock (SCM mutex, scm_t_timespec *timeout, SCM owner, int *ret)
1277 {
1278 fat_mutex *m = SCM_MUTEX_DATA (mutex);
1279
1280 SCM new_owner = SCM_UNBNDP (owner) ? scm_current_thread() : owner;
1281 SCM err = SCM_BOOL_F;
1282
1283 struct timeval current_time;
1284
1285 scm_i_scm_pthread_mutex_lock (&m->lock);
1286
1287 while (1)
1288 {
1289 if (m->level == 0)
1290 {
1291 m->owner = new_owner;
1292 m->level++;
1293
1294 if (SCM_I_IS_THREAD (new_owner))
1295 {
1296 scm_i_thread *t = SCM_I_THREAD_DATA (new_owner);
1297 scm_i_pthread_mutex_lock (&t->admin_mutex);
1298 t->mutexes = scm_cons (mutex, t->mutexes);
1299 scm_i_pthread_mutex_unlock (&t->admin_mutex);
1300 }
1301 *ret = 1;
1302 break;
1303 }
1304 else if (SCM_I_IS_THREAD (m->owner) && scm_c_thread_exited_p (m->owner))
1305 {
1306 m->owner = new_owner;
1307 err = scm_cons (scm_abandoned_mutex_error_key,
1308 scm_from_locale_string ("lock obtained on abandoned "
1309 "mutex"));
1310 *ret = 1;
1311 break;
1312 }
1313 else if (scm_is_eq (m->owner, new_owner))
1314 {
1315 if (m->recursive)
1316 {
1317 m->level++;
1318 *ret = 1;
1319 }
1320 else
1321 {
1322 err = scm_cons (scm_misc_error_key,
1323 scm_from_locale_string ("mutex already locked "
1324 "by thread"));
1325 *ret = 0;
1326 }
1327 break;
1328 }
1329 else
1330 {
1331 if (timeout != NULL)
1332 {
1333 gettimeofday (&current_time, NULL);
1334 if (current_time.tv_sec > timeout->tv_sec ||
1335 (current_time.tv_sec == timeout->tv_sec &&
1336 current_time.tv_usec * 1000 > timeout->tv_nsec))
1337 {
1338 *ret = 0;
1339 break;
1340 }
1341 }
1342 block_self (m->waiting, mutex, &m->lock, timeout);
1343 scm_i_pthread_mutex_unlock (&m->lock);
1344 SCM_TICK;
1345 scm_i_scm_pthread_mutex_lock (&m->lock);
1346 }
1347 }
1348 scm_i_pthread_mutex_unlock (&m->lock);
1349 return err;
1350 }
1351
1352 SCM scm_lock_mutex (SCM mx)
1353 {
1354 return scm_lock_mutex_timed (mx, SCM_UNDEFINED, SCM_UNDEFINED);
1355 }
1356
1357 SCM_DEFINE (scm_lock_mutex_timed, "lock-mutex", 1, 2, 0,
1358 (SCM m, SCM timeout, SCM owner),
1359 "Lock @var{mutex}. If the mutex is already locked, the calling thread "
1360 "blocks until the mutex becomes available. The function returns when "
1361 "the calling thread owns the lock on @var{mutex}. Locking a mutex that "
1362 "a thread already owns will succeed right away and will not block the "
1363 "thread. That is, Guile's mutexes are @emph{recursive}. ")
1364 #define FUNC_NAME s_scm_lock_mutex_timed
1365 {
1366 SCM exception;
1367 int ret = 0;
1368 scm_t_timespec cwaittime, *waittime = NULL;
1369
1370 SCM_VALIDATE_MUTEX (1, m);
1371
1372 if (! SCM_UNBNDP (timeout) && ! scm_is_false (timeout))
1373 {
1374 to_timespec (timeout, &cwaittime);
1375 waittime = &cwaittime;
1376 }
1377
1378 exception = fat_mutex_lock (m, waittime, owner, &ret);
1379 if (!scm_is_false (exception))
1380 scm_ithrow (SCM_CAR (exception), scm_list_1 (SCM_CDR (exception)), 1);
1381 return ret ? SCM_BOOL_T : SCM_BOOL_F;
1382 }
1383 #undef FUNC_NAME
1384
1385 void
1386 scm_dynwind_lock_mutex (SCM mutex)
1387 {
1388 scm_dynwind_unwind_handler_with_scm ((void(*)(SCM))scm_unlock_mutex, mutex,
1389 SCM_F_WIND_EXPLICITLY);
1390 scm_dynwind_rewind_handler_with_scm ((void(*)(SCM))scm_lock_mutex, mutex,
1391 SCM_F_WIND_EXPLICITLY);
1392 }
1393
1394 SCM_DEFINE (scm_try_mutex, "try-mutex", 1, 0, 0,
1395 (SCM mutex),
1396 "Try to lock @var{mutex}. If the mutex is already locked by someone "
1397 "else, return @code{#f}. Else lock the mutex and return @code{#t}. ")
1398 #define FUNC_NAME s_scm_try_mutex
1399 {
1400 SCM exception;
1401 int ret = 0;
1402 scm_t_timespec cwaittime, *waittime = NULL;
1403
1404 SCM_VALIDATE_MUTEX (1, mutex);
1405
1406 to_timespec (scm_from_int(0), &cwaittime);
1407 waittime = &cwaittime;
1408
1409 exception = fat_mutex_lock (mutex, waittime, SCM_UNDEFINED, &ret);
1410 if (!scm_is_false (exception))
1411 scm_ithrow (SCM_CAR (exception), scm_list_1 (SCM_CDR (exception)), 1);
1412 return ret ? SCM_BOOL_T : SCM_BOOL_F;
1413 }
1414 #undef FUNC_NAME
1415
1416 /*** Fat condition variables */
1417
1418 typedef struct {
1419 scm_i_pthread_mutex_t lock;
1420 SCM waiting; /* the threads waiting for this condition. */
1421 } fat_cond;
1422
1423 #define SCM_CONDVARP(x) SCM_SMOB_PREDICATE (scm_tc16_condvar, x)
1424 #define SCM_CONDVAR_DATA(x) ((fat_cond *) SCM_SMOB_DATA (x))
1425
1426 static int
1427 fat_mutex_unlock (SCM mutex, SCM cond,
1428 const scm_t_timespec *waittime, int relock)
1429 {
1430 fat_mutex *m = SCM_MUTEX_DATA (mutex);
1431 fat_cond *c = NULL;
1432 scm_i_thread *t = SCM_I_CURRENT_THREAD;
1433 int err = 0, ret = 0;
1434
1435 scm_i_scm_pthread_mutex_lock (&m->lock);
1436
1437 SCM owner = m->owner;
1438
1439 if (!scm_is_eq (owner, scm_current_thread ()))
1440 {
1441 if (m->level == 0)
1442 {
1443 if (!m->unchecked_unlock)
1444 {
1445 scm_i_pthread_mutex_unlock (&m->lock);
1446 scm_misc_error (NULL, "mutex not locked", SCM_EOL);
1447 }
1448 owner = scm_current_thread ();
1449 }
1450 else if (!m->allow_external_unlock)
1451 {
1452 scm_i_pthread_mutex_unlock (&m->lock);
1453 scm_misc_error (NULL, "mutex not locked by current thread", SCM_EOL);
1454 }
1455 }
1456
1457 if (! (SCM_UNBNDP (cond)))
1458 {
1459 c = SCM_CONDVAR_DATA (cond);
1460 while (1)
1461 {
1462 int brk = 0;
1463
1464 if (m->level > 0)
1465 m->level--;
1466 if (m->level == 0)
1467 m->owner = unblock_from_queue (m->waiting);
1468
1469 t->block_asyncs++;
1470
1471 err = block_self (c->waiting, cond, &m->lock, waittime);
1472 scm_i_pthread_mutex_unlock (&m->lock);
1473
1474 if (err == 0)
1475 {
1476 ret = 1;
1477 brk = 1;
1478 }
1479 else if (err == ETIMEDOUT)
1480 {
1481 ret = 0;
1482 brk = 1;
1483 }
1484 else if (err != EINTR)
1485 {
1486 errno = err;
1487 scm_syserror (NULL);
1488 }
1489
1490 if (brk)
1491 {
1492 if (relock)
1493 scm_lock_mutex_timed (mutex, SCM_UNDEFINED, owner);
1494 t->block_asyncs--;
1495 break;
1496 }
1497
1498 t->block_asyncs--;
1499 scm_async_click ();
1500
1501 scm_remember_upto_here_2 (cond, mutex);
1502
1503 scm_i_scm_pthread_mutex_lock (&m->lock);
1504 }
1505 }
1506 else
1507 {
1508 if (m->level > 0)
1509 m->level--;
1510 if (m->level == 0)
1511 m->owner = unblock_from_queue (m->waiting);
1512
1513 scm_i_pthread_mutex_unlock (&m->lock);
1514 ret = 1;
1515 }
1516
1517 return ret;
1518 }
1519
1520 SCM scm_unlock_mutex (SCM mx)
1521 {
1522 return scm_unlock_mutex_timed (mx, SCM_UNDEFINED, SCM_UNDEFINED);
1523 }
1524
1525 SCM_DEFINE (scm_unlock_mutex_timed, "unlock-mutex", 1, 2, 0,
1526 (SCM mx, SCM cond, SCM timeout),
1527 "Unlocks @var{mutex} if the calling thread owns the lock on "
1528 "@var{mutex}. Calling unlock-mutex on a mutex not owned by the current "
1529 "thread results in undefined behaviour. Once a mutex has been unlocked, "
1530 "one thread blocked on @var{mutex} is awakened and grabs the mutex "
1531 "lock. Every call to @code{lock-mutex} by this thread must be matched "
1532 "with a call to @code{unlock-mutex}. Only the last call to "
1533 "@code{unlock-mutex} will actually unlock the mutex. ")
1534 #define FUNC_NAME s_scm_unlock_mutex_timed
1535 {
1536 scm_t_timespec cwaittime, *waittime = NULL;
1537
1538 SCM_VALIDATE_MUTEX (1, mx);
1539 if (! (SCM_UNBNDP (cond)))
1540 {
1541 SCM_VALIDATE_CONDVAR (2, cond);
1542
1543 if (! (SCM_UNBNDP (timeout)))
1544 {
1545 to_timespec (timeout, &cwaittime);
1546 waittime = &cwaittime;
1547 }
1548 }
1549
1550 return fat_mutex_unlock (mx, cond, waittime, 0) ? SCM_BOOL_T : SCM_BOOL_F;
1551 }
1552 #undef FUNC_NAME
1553
1554 SCM_DEFINE (scm_mutex_p, "mutex?", 1, 0, 0,
1555 (SCM obj),
1556 "Return @code{#t} if @var{obj} is a mutex.")
1557 #define FUNC_NAME s_scm_mutex_p
1558 {
1559 return SCM_MUTEXP (obj) ? SCM_BOOL_T : SCM_BOOL_F;
1560 }
1561 #undef FUNC_NAME
1562
1563 SCM_DEFINE (scm_mutex_owner, "mutex-owner", 1, 0, 0,
1564 (SCM mx),
1565 "Return the thread owning @var{mx}, or @code{#f}.")
1566 #define FUNC_NAME s_scm_mutex_owner
1567 {
1568 SCM owner;
1569 fat_mutex *m = NULL;
1570
1571 SCM_VALIDATE_MUTEX (1, mx);
1572 m = SCM_MUTEX_DATA (mx);
1573 scm_i_pthread_mutex_lock (&m->lock);
1574 owner = m->owner;
1575 scm_i_pthread_mutex_unlock (&m->lock);
1576
1577 return owner;
1578 }
1579 #undef FUNC_NAME
1580
1581 SCM_DEFINE (scm_mutex_level, "mutex-level", 1, 0, 0,
1582 (SCM mx),
1583 "Return the lock level of mutex @var{mx}.")
1584 #define FUNC_NAME s_scm_mutex_level
1585 {
1586 SCM_VALIDATE_MUTEX (1, mx);
1587 return scm_from_int (SCM_MUTEX_DATA(mx)->level);
1588 }
1589 #undef FUNC_NAME
1590
1591 SCM_DEFINE (scm_mutex_locked_p, "mutex-locked?", 1, 0, 0,
1592 (SCM mx),
1593 "Returns @code{#t} if the mutex @var{mx} is locked.")
1594 #define FUNC_NAME s_scm_mutex_locked_p
1595 {
1596 SCM_VALIDATE_MUTEX (1, mx);
1597 return SCM_MUTEX_DATA (mx)->level > 0 ? SCM_BOOL_T : SCM_BOOL_F;
1598 }
1599 #undef FUNC_NAME
1600
1601 static SCM
1602 fat_cond_mark (SCM cv)
1603 {
1604 fat_cond *c = SCM_CONDVAR_DATA (cv);
1605 return c->waiting;
1606 }
1607
1608 static size_t
1609 fat_cond_free (SCM mx)
1610 {
1611 fat_cond *c = SCM_CONDVAR_DATA (mx);
1612 scm_gc_free (c, sizeof (fat_cond), "condition-variable");
1613 return 0;
1614 }
1615
1616 static int
1617 fat_cond_print (SCM cv, SCM port, scm_print_state *pstate SCM_UNUSED)
1618 {
1619 fat_cond *c = SCM_CONDVAR_DATA (cv);
1620 scm_puts ("#<condition-variable ", port);
1621 scm_uintprint ((scm_t_bits)c, 16, port);
1622 scm_puts (">", port);
1623 return 1;
1624 }
1625
1626 SCM_DEFINE (scm_make_condition_variable, "make-condition-variable", 0, 0, 0,
1627 (void),
1628 "Make a new condition variable.")
1629 #define FUNC_NAME s_scm_make_condition_variable
1630 {
1631 fat_cond *c;
1632 SCM cv;
1633
1634 c = scm_gc_malloc (sizeof (fat_cond), "condition variable");
1635 c->waiting = SCM_EOL;
1636 SCM_NEWSMOB (cv, scm_tc16_condvar, (scm_t_bits) c);
1637 c->waiting = make_queue ();
1638 return cv;
1639 }
1640 #undef FUNC_NAME
1641
1642 SCM_DEFINE (scm_timed_wait_condition_variable, "wait-condition-variable", 2, 1, 0,
1643 (SCM cv, SCM mx, SCM t),
1644 "Wait until @var{cond-var} has been signalled. While waiting, "
1645 "@var{mutex} is atomically unlocked (as with @code{unlock-mutex}) and "
1646 "is locked again when this function returns. When @var{time} is given, "
1647 "it specifies a point in time where the waiting should be aborted. It "
1648 "can be either a integer as returned by @code{current-time} or a pair "
1649 "as returned by @code{gettimeofday}. When the waiting is aborted the "
1650 "mutex is locked and @code{#f} is returned. When the condition "
1651 "variable is in fact signalled, the mutex is also locked and @code{#t} "
1652 "is returned. ")
1653 #define FUNC_NAME s_scm_timed_wait_condition_variable
1654 {
1655 scm_t_timespec waittime, *waitptr = NULL;
1656
1657 SCM_VALIDATE_CONDVAR (1, cv);
1658 SCM_VALIDATE_MUTEX (2, mx);
1659
1660 if (!SCM_UNBNDP (t))
1661 {
1662 to_timespec (t, &waittime);
1663 waitptr = &waittime;
1664 }
1665
1666 return fat_mutex_unlock (mx, cv, waitptr, 1) ? SCM_BOOL_T : SCM_BOOL_F;
1667 }
1668 #undef FUNC_NAME
1669
1670 static void
1671 fat_cond_signal (fat_cond *c)
1672 {
1673 unblock_from_queue (c->waiting);
1674 }
1675
1676 SCM_DEFINE (scm_signal_condition_variable, "signal-condition-variable", 1, 0, 0,
1677 (SCM cv),
1678 "Wake up one thread that is waiting for @var{cv}")
1679 #define FUNC_NAME s_scm_signal_condition_variable
1680 {
1681 SCM_VALIDATE_CONDVAR (1, cv);
1682 fat_cond_signal (SCM_CONDVAR_DATA (cv));
1683 return SCM_BOOL_T;
1684 }
1685 #undef FUNC_NAME
1686
1687 static void
1688 fat_cond_broadcast (fat_cond *c)
1689 {
1690 while (scm_is_true (unblock_from_queue (c->waiting)))
1691 ;
1692 }
1693
1694 SCM_DEFINE (scm_broadcast_condition_variable, "broadcast-condition-variable", 1, 0, 0,
1695 (SCM cv),
1696 "Wake up all threads that are waiting for @var{cv}. ")
1697 #define FUNC_NAME s_scm_broadcast_condition_variable
1698 {
1699 SCM_VALIDATE_CONDVAR (1, cv);
1700 fat_cond_broadcast (SCM_CONDVAR_DATA (cv));
1701 return SCM_BOOL_T;
1702 }
1703 #undef FUNC_NAME
1704
1705 SCM_DEFINE (scm_condition_variable_p, "condition-variable?", 1, 0, 0,
1706 (SCM obj),
1707 "Return @code{#t} if @var{obj} is a condition variable.")
1708 #define FUNC_NAME s_scm_condition_variable_p
1709 {
1710 return SCM_CONDVARP(obj) ? SCM_BOOL_T : SCM_BOOL_F;
1711 }
1712 #undef FUNC_NAME
1713
1714 /*** Marking stacks */
1715
1716 /* XXX - what to do with this? Do we need to handle this for blocked
1717 threads as well?
1718 */
1719 #ifdef __ia64__
1720 # define SCM_MARK_BACKING_STORE() do { \
1721 ucontext_t ctx; \
1722 SCM_STACKITEM * top, * bot; \
1723 getcontext (&ctx); \
1724 scm_mark_locations ((SCM_STACKITEM *) &ctx.uc_mcontext, \
1725 ((size_t) (sizeof (SCM_STACKITEM) - 1 + sizeof ctx.uc_mcontext) \
1726 / sizeof (SCM_STACKITEM))); \
1727 bot = (SCM_STACKITEM *) SCM_I_CURRENT_THREAD->register_backing_store_base; \
1728 top = (SCM_STACKITEM *) scm_ia64_ar_bsp (&ctx); \
1729 scm_mark_locations (bot, top - bot); } while (0)
1730 #else
1731 # define SCM_MARK_BACKING_STORE()
1732 #endif
1733
1734 void
1735 scm_threads_mark_stacks (void)
1736 {
1737 scm_i_thread *t;
1738 for (t = all_threads; t; t = t->next_thread)
1739 {
1740 /* Check that thread has indeed been suspended.
1741 */
1742 assert (t->top);
1743
1744 scm_gc_mark (t->handle);
1745
1746 #if SCM_STACK_GROWS_UP
1747 scm_mark_locations (t->base, t->top - t->base);
1748 #else
1749 scm_mark_locations (t->top, t->base - t->top);
1750 #endif
1751 scm_mark_locations ((void *) &t->regs,
1752 ((size_t) sizeof(t->regs)
1753 / sizeof (SCM_STACKITEM)));
1754 }
1755
1756 SCM_MARK_BACKING_STORE ();
1757 }
1758
1759 /*** Select */
1760
1761 int
1762 scm_std_select (int nfds,
1763 SELECT_TYPE *readfds,
1764 SELECT_TYPE *writefds,
1765 SELECT_TYPE *exceptfds,
1766 struct timeval *timeout)
1767 {
1768 fd_set my_readfds;
1769 int res, eno, wakeup_fd;
1770 scm_i_thread *t = SCM_I_CURRENT_THREAD;
1771 scm_t_guile_ticket ticket;
1772
1773 if (readfds == NULL)
1774 {
1775 FD_ZERO (&my_readfds);
1776 readfds = &my_readfds;
1777 }
1778
1779 while (scm_i_setup_sleep (t, SCM_BOOL_F, NULL, t->sleep_pipe[1]))
1780 SCM_TICK;
1781
1782 wakeup_fd = t->sleep_pipe[0];
1783 ticket = scm_leave_guile ();
1784 FD_SET (wakeup_fd, readfds);
1785 if (wakeup_fd >= nfds)
1786 nfds = wakeup_fd+1;
1787 res = select (nfds, readfds, writefds, exceptfds, timeout);
1788 t->sleep_fd = -1;
1789 eno = errno;
1790 scm_enter_guile (ticket);
1791
1792 scm_i_reset_sleep (t);
1793
1794 if (res > 0 && FD_ISSET (wakeup_fd, readfds))
1795 {
1796 char dummy;
1797 full_read (wakeup_fd, &dummy, 1);
1798
1799 FD_CLR (wakeup_fd, readfds);
1800 res -= 1;
1801 if (res == 0)
1802 {
1803 eno = EINTR;
1804 res = -1;
1805 }
1806 }
1807 errno = eno;
1808 return res;
1809 }
1810
1811 /* Convenience API for blocking while in guile mode. */
1812
1813 #if SCM_USE_PTHREAD_THREADS
1814
1815 int
1816 scm_pthread_mutex_lock (scm_i_pthread_mutex_t *mutex)
1817 {
1818 scm_t_guile_ticket t = scm_leave_guile ();
1819 int res = scm_i_pthread_mutex_lock (mutex);
1820 scm_enter_guile (t);
1821 return res;
1822 }
1823
1824 static void
1825 do_unlock (void *data)
1826 {
1827 scm_i_pthread_mutex_unlock ((scm_i_pthread_mutex_t *)data);
1828 }
1829
1830 void
1831 scm_dynwind_pthread_mutex_lock (scm_i_pthread_mutex_t *mutex)
1832 {
1833 scm_i_scm_pthread_mutex_lock (mutex);
1834 scm_dynwind_unwind_handler (do_unlock, mutex, SCM_F_WIND_EXPLICITLY);
1835 }
1836
1837 int
1838 scm_pthread_cond_wait (scm_i_pthread_cond_t *cond, scm_i_pthread_mutex_t *mutex)
1839 {
1840 scm_t_guile_ticket t = scm_leave_guile ();
1841 ((scm_i_thread *)t)->held_mutex = mutex;
1842 int res = scm_i_pthread_cond_wait (cond, mutex);
1843 ((scm_i_thread *)t)->held_mutex = NULL;
1844 scm_enter_guile (t);
1845 return res;
1846 }
1847
1848 int
1849 scm_pthread_cond_timedwait (scm_i_pthread_cond_t *cond,
1850 scm_i_pthread_mutex_t *mutex,
1851 const scm_t_timespec *wt)
1852 {
1853 scm_t_guile_ticket t = scm_leave_guile ();
1854 ((scm_i_thread *)t)->held_mutex = mutex;
1855 int res = scm_i_pthread_cond_timedwait (cond, mutex, wt);
1856 ((scm_i_thread *)t)->held_mutex = NULL;
1857 scm_enter_guile (t);
1858 return res;
1859 }
1860
1861 #endif
1862
1863 unsigned long
1864 scm_std_usleep (unsigned long usecs)
1865 {
1866 struct timeval tv;
1867 tv.tv_usec = usecs % 1000000;
1868 tv.tv_sec = usecs / 1000000;
1869 scm_std_select (0, NULL, NULL, NULL, &tv);
1870 return tv.tv_sec * 1000000 + tv.tv_usec;
1871 }
1872
1873 unsigned int
1874 scm_std_sleep (unsigned int secs)
1875 {
1876 struct timeval tv;
1877 tv.tv_usec = 0;
1878 tv.tv_sec = secs;
1879 scm_std_select (0, NULL, NULL, NULL, &tv);
1880 return tv.tv_sec;
1881 }
1882
1883 /*** Misc */
1884
1885 SCM_DEFINE (scm_current_thread, "current-thread", 0, 0, 0,
1886 (void),
1887 "Return the thread that called this function.")
1888 #define FUNC_NAME s_scm_current_thread
1889 {
1890 return SCM_I_CURRENT_THREAD->handle;
1891 }
1892 #undef FUNC_NAME
1893
1894 static SCM
1895 scm_c_make_list (size_t n, SCM fill)
1896 {
1897 SCM res = SCM_EOL;
1898 while (n-- > 0)
1899 res = scm_cons (fill, res);
1900 return res;
1901 }
1902
1903 SCM_DEFINE (scm_all_threads, "all-threads", 0, 0, 0,
1904 (void),
1905 "Return a list of all threads.")
1906 #define FUNC_NAME s_scm_all_threads
1907 {
1908 /* We can not allocate while holding the thread_admin_mutex because
1909 of the way GC is done.
1910 */
1911 int n = thread_count;
1912 scm_i_thread *t;
1913 SCM list = scm_c_make_list (n, SCM_UNSPECIFIED), *l;
1914
1915 scm_i_pthread_mutex_lock (&thread_admin_mutex);
1916 l = &list;
1917 for (t = all_threads; t && n > 0; t = t->next_thread)
1918 {
1919 if (t != scm_i_signal_delivery_thread)
1920 {
1921 SCM_SETCAR (*l, t->handle);
1922 l = SCM_CDRLOC (*l);
1923 }
1924 n--;
1925 }
1926 *l = SCM_EOL;
1927 scm_i_pthread_mutex_unlock (&thread_admin_mutex);
1928 return list;
1929 }
1930 #undef FUNC_NAME
1931
1932 SCM_DEFINE (scm_thread_exited_p, "thread-exited?", 1, 0, 0,
1933 (SCM thread),
1934 "Return @code{#t} iff @var{thread} has exited.\n")
1935 #define FUNC_NAME s_scm_thread_exited_p
1936 {
1937 return scm_from_bool (scm_c_thread_exited_p (thread));
1938 }
1939 #undef FUNC_NAME
1940
1941 int
1942 scm_c_thread_exited_p (SCM thread)
1943 #define FUNC_NAME s_scm_thread_exited_p
1944 {
1945 scm_i_thread *t;
1946 SCM_VALIDATE_THREAD (1, thread);
1947 t = SCM_I_THREAD_DATA (thread);
1948 return t->exited;
1949 }
1950 #undef FUNC_NAME
1951
1952 static scm_i_pthread_cond_t wake_up_cond;
1953 int scm_i_thread_go_to_sleep;
1954 static int threads_initialized_p = 0;
1955
1956 void
1957 scm_i_thread_put_to_sleep ()
1958 {
1959 if (threads_initialized_p)
1960 {
1961 scm_i_thread *t;
1962
1963 scm_leave_guile ();
1964 scm_i_pthread_mutex_lock (&thread_admin_mutex);
1965
1966 /* Signal all threads to go to sleep
1967 */
1968 scm_i_thread_go_to_sleep = 1;
1969 for (t = all_threads; t; t = t->next_thread)
1970 scm_i_pthread_mutex_lock (&t->heap_mutex);
1971 scm_i_thread_go_to_sleep = 0;
1972 }
1973 }
1974
1975 void
1976 scm_i_thread_invalidate_freelists ()
1977 {
1978 /* thread_admin_mutex is already locked. */
1979
1980 scm_i_thread *t;
1981 for (t = all_threads; t; t = t->next_thread)
1982 if (t != SCM_I_CURRENT_THREAD)
1983 t->clear_freelists_p = 1;
1984 }
1985
1986 void
1987 scm_i_thread_wake_up ()
1988 {
1989 if (threads_initialized_p)
1990 {
1991 scm_i_thread *t;
1992
1993 scm_i_pthread_cond_broadcast (&wake_up_cond);
1994 for (t = all_threads; t; t = t->next_thread)
1995 scm_i_pthread_mutex_unlock (&t->heap_mutex);
1996 scm_i_pthread_mutex_unlock (&thread_admin_mutex);
1997 scm_enter_guile ((scm_t_guile_ticket) SCM_I_CURRENT_THREAD);
1998 }
1999 }
2000
2001 void
2002 scm_i_thread_sleep_for_gc ()
2003 {
2004 scm_i_thread *t = suspend ();
2005
2006 /* Don't put t->heap_mutex in t->held_mutex here, because if the
2007 thread is cancelled during the cond wait, the thread's cleanup
2008 function (scm_leave_guile_cleanup) will handle unlocking the
2009 heap_mutex, so we don't need to do that again in on_thread_exit.
2010 */
2011 scm_i_pthread_cond_wait (&wake_up_cond, &t->heap_mutex);
2012
2013 resume (t);
2014 }
2015
2016 /* This mutex is used by SCM_CRITICAL_SECTION_START/END.
2017 */
2018 scm_i_pthread_mutex_t scm_i_critical_section_mutex;
2019 int scm_i_critical_section_level = 0;
2020
2021 static SCM dynwind_critical_section_mutex;
2022
2023 void
2024 scm_dynwind_critical_section (SCM mutex)
2025 {
2026 if (scm_is_false (mutex))
2027 mutex = dynwind_critical_section_mutex;
2028 scm_dynwind_lock_mutex (mutex);
2029 scm_dynwind_block_asyncs ();
2030 }
2031
2032 /*** Initialization */
2033
2034 scm_i_pthread_key_t scm_i_freelist, scm_i_freelist2;
2035 scm_i_pthread_mutex_t scm_i_misc_mutex;
2036
2037 #if SCM_USE_PTHREAD_THREADS
2038 pthread_mutexattr_t scm_i_pthread_mutexattr_recursive[1];
2039 #endif
2040
2041 void
2042 scm_threads_prehistory (SCM_STACKITEM *base)
2043 {
2044 #if SCM_USE_PTHREAD_THREADS
2045 pthread_mutexattr_init (scm_i_pthread_mutexattr_recursive);
2046 pthread_mutexattr_settype (scm_i_pthread_mutexattr_recursive,
2047 PTHREAD_MUTEX_RECURSIVE);
2048 #endif
2049
2050 scm_i_pthread_mutex_init (&scm_i_critical_section_mutex,
2051 scm_i_pthread_mutexattr_recursive);
2052 scm_i_pthread_mutex_init (&scm_i_misc_mutex, NULL);
2053 scm_i_pthread_cond_init (&wake_up_cond, NULL);
2054 scm_i_pthread_key_create (&scm_i_freelist, NULL);
2055 scm_i_pthread_key_create (&scm_i_freelist2, NULL);
2056
2057 guilify_self_1 (base);
2058 }
2059
2060 scm_t_bits scm_tc16_thread;
2061 scm_t_bits scm_tc16_mutex;
2062 scm_t_bits scm_tc16_condvar;
2063
2064 void
2065 scm_init_threads ()
2066 {
2067 scm_tc16_thread = scm_make_smob_type ("thread", sizeof (scm_i_thread));
2068 scm_set_smob_mark (scm_tc16_thread, thread_mark);
2069 scm_set_smob_print (scm_tc16_thread, thread_print);
2070 scm_set_smob_free (scm_tc16_thread, thread_free);
2071
2072 scm_tc16_mutex = scm_make_smob_type ("mutex", sizeof (fat_mutex));
2073 scm_set_smob_mark (scm_tc16_mutex, fat_mutex_mark);
2074 scm_set_smob_print (scm_tc16_mutex, fat_mutex_print);
2075 scm_set_smob_free (scm_tc16_mutex, fat_mutex_free);
2076
2077 scm_tc16_condvar = scm_make_smob_type ("condition-variable",
2078 sizeof (fat_cond));
2079 scm_set_smob_mark (scm_tc16_condvar, fat_cond_mark);
2080 scm_set_smob_print (scm_tc16_condvar, fat_cond_print);
2081 scm_set_smob_free (scm_tc16_condvar, fat_cond_free);
2082
2083 scm_i_default_dynamic_state = SCM_BOOL_F;
2084 guilify_self_2 (SCM_BOOL_F);
2085 threads_initialized_p = 1;
2086
2087 dynwind_critical_section_mutex =
2088 scm_permanent_object (scm_make_recursive_mutex ());
2089 }
2090
2091 void
2092 scm_init_threads_default_dynamic_state ()
2093 {
2094 SCM state = scm_make_dynamic_state (scm_current_dynamic_state ());
2095 scm_i_default_dynamic_state = scm_permanent_object (state);
2096 }
2097
2098 void
2099 scm_init_thread_procs ()
2100 {
2101 #include "libguile/threads.x"
2102 }
2103
2104 /*
2105 Local Variables:
2106 c-file-style: "gnu"
2107 End:
2108 */