Automatic manual updates following libguile docstring changes
[bpt/guile.git] / doc / ref / api-data.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009
4 @c Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @page
8 @node Simple Data Types
9 @section Simple Generic Data Types
10
11 This chapter describes those of Guile's simple data types which are
12 primarily used for their role as items of generic data. By
13 @dfn{simple} we mean data types that are not primarily used as
14 containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
15 For the documentation of such @dfn{compound} data types, see
16 @ref{Compound Data Types}.
17
18 @c One of the great strengths of Scheme is that there is no straightforward
19 @c distinction between ``data'' and ``functionality''. For example,
20 @c Guile's support for dynamic linking could be described:
21
22 @c @itemize @bullet
23 @c @item
24 @c either in a ``data-centric'' way, as the behaviour and properties of the
25 @c ``dynamically linked object'' data type, and the operations that may be
26 @c applied to instances of this type
27
28 @c @item
29 @c or in a ``functionality-centric'' way, as the set of procedures that
30 @c constitute Guile's support for dynamic linking, in the context of the
31 @c module system.
32 @c @end itemize
33
34 @c The contents of this chapter are, therefore, a matter of judgment. By
35 @c @dfn{generic}, we mean to select those data types whose typical use as
36 @c @emph{data} in a wide variety of programming contexts is more important
37 @c than their use in the implementation of a particular piece of
38 @c @emph{functionality}. The last section of this chapter provides
39 @c references for all the data types that are documented not here but in a
40 @c ``functionality-centric'' way elsewhere in the manual.
41
42 @menu
43 * Booleans:: True/false values.
44 * Numbers:: Numerical data types.
45 * Characters:: Single characters.
46 * Character Sets:: Sets of characters.
47 * Strings:: Sequences of characters.
48 * Bytevectors:: Sequences of bytes.
49 * Regular Expressions:: Pattern matching and substitution.
50 * Symbols:: Symbols.
51 * Keywords:: Self-quoting, customizable display keywords.
52 * Other Types:: "Functionality-centric" data types.
53 @end menu
54
55
56 @node Booleans
57 @subsection Booleans
58 @tpindex Booleans
59
60 The two boolean values are @code{#t} for true and @code{#f} for false.
61
62 Boolean values are returned by predicate procedures, such as the general
63 equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
64 (@pxref{Equality}) and numerical and string comparison operators like
65 @code{string=?} (@pxref{String Comparison}) and @code{<=}
66 (@pxref{Comparison}).
67
68 @lisp
69 (<= 3 8)
70 @result{} #t
71
72 (<= 3 -3)
73 @result{} #f
74
75 (equal? "house" "houses")
76 @result{} #f
77
78 (eq? #f #f)
79 @result{}
80 #t
81 @end lisp
82
83 In test condition contexts like @code{if} and @code{cond} (@pxref{if
84 cond case}), where a group of subexpressions will be evaluated only if a
85 @var{condition} expression evaluates to ``true'', ``true'' means any
86 value at all except @code{#f}.
87
88 @lisp
89 (if #t "yes" "no")
90 @result{} "yes"
91
92 (if 0 "yes" "no")
93 @result{} "yes"
94
95 (if #f "yes" "no")
96 @result{} "no"
97 @end lisp
98
99 A result of this asymmetry is that typical Scheme source code more often
100 uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
101 represent an @code{if} or @code{cond} false value, whereas @code{#t} is
102 not necessary to represent an @code{if} or @code{cond} true value.
103
104 It is important to note that @code{#f} is @strong{not} equivalent to any
105 other Scheme value. In particular, @code{#f} is not the same as the
106 number 0 (like in C and C++), and not the same as the ``empty list''
107 (like in some Lisp dialects).
108
109 In C, the two Scheme boolean values are available as the two constants
110 @code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
111 Care must be taken with the false value @code{SCM_BOOL_F}: it is not
112 false when used in C conditionals. In order to test for it, use
113 @code{scm_is_false} or @code{scm_is_true}.
114
115 @rnindex not
116 @deffn {Scheme Procedure} not x
117 @deffnx {C Function} scm_not (x)
118 Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
119 @end deffn
120
121 @rnindex boolean?
122 @deffn {Scheme Procedure} boolean? obj
123 @deffnx {C Function} scm_boolean_p (obj)
124 Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
125 return @code{#f}.
126 @end deffn
127
128 @deftypevr {C Macro} SCM SCM_BOOL_T
129 The @code{SCM} representation of the Scheme object @code{#t}.
130 @end deftypevr
131
132 @deftypevr {C Macro} SCM SCM_BOOL_F
133 The @code{SCM} representation of the Scheme object @code{#f}.
134 @end deftypevr
135
136 @deftypefn {C Function} int scm_is_true (SCM obj)
137 Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
138 @end deftypefn
139
140 @deftypefn {C Function} int scm_is_false (SCM obj)
141 Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
142 @end deftypefn
143
144 @deftypefn {C Function} int scm_is_bool (SCM obj)
145 Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
146 return @code{0}.
147 @end deftypefn
148
149 @deftypefn {C Function} SCM scm_from_bool (int val)
150 Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
151 @end deftypefn
152
153 @deftypefn {C Function} int scm_to_bool (SCM val)
154 Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
155 when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
156
157 You should probably use @code{scm_is_true} instead of this function
158 when you just want to test a @code{SCM} value for trueness.
159 @end deftypefn
160
161 @node Numbers
162 @subsection Numerical data types
163 @tpindex Numbers
164
165 Guile supports a rich ``tower'' of numerical types --- integer,
166 rational, real and complex --- and provides an extensive set of
167 mathematical and scientific functions for operating on numerical
168 data. This section of the manual documents those types and functions.
169
170 You may also find it illuminating to read R5RS's presentation of numbers
171 in Scheme, which is particularly clear and accessible: see
172 @ref{Numbers,,,r5rs,R5RS}.
173
174 @menu
175 * Numerical Tower:: Scheme's numerical "tower".
176 * Integers:: Whole numbers.
177 * Reals and Rationals:: Real and rational numbers.
178 * Complex Numbers:: Complex numbers.
179 * Exactness:: Exactness and inexactness.
180 * Number Syntax:: Read syntax for numerical data.
181 * Integer Operations:: Operations on integer values.
182 * Comparison:: Comparison predicates.
183 * Conversion:: Converting numbers to and from strings.
184 * Complex:: Complex number operations.
185 * Arithmetic:: Arithmetic functions.
186 * Scientific:: Scientific functions.
187 * Bitwise Operations:: Logical AND, OR, NOT, and so on.
188 * Random:: Random number generation.
189 @end menu
190
191
192 @node Numerical Tower
193 @subsubsection Scheme's Numerical ``Tower''
194 @rnindex number?
195
196 Scheme's numerical ``tower'' consists of the following categories of
197 numbers:
198
199 @table @dfn
200 @item integers
201 Whole numbers, positive or negative; e.g.@: --5, 0, 18.
202
203 @item rationals
204 The set of numbers that can be expressed as @math{@var{p}/@var{q}}
205 where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
206 pi (an irrational number) doesn't. These include integers
207 (@math{@var{n}/1}).
208
209 @item real numbers
210 The set of numbers that describes all possible positions along a
211 one-dimensional line. This includes rationals as well as irrational
212 numbers.
213
214 @item complex numbers
215 The set of numbers that describes all possible positions in a two
216 dimensional space. This includes real as well as imaginary numbers
217 (@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
218 @var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
219 @minus{}1.)
220 @end table
221
222 It is called a tower because each category ``sits on'' the one that
223 follows it, in the sense that every integer is also a rational, every
224 rational is also real, and every real number is also a complex number
225 (but with zero imaginary part).
226
227 In addition to the classification into integers, rationals, reals and
228 complex numbers, Scheme also distinguishes between whether a number is
229 represented exactly or not. For example, the result of
230 @m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
231 can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
232 Instead, it stores an inexact approximation, using the C type
233 @code{double}.
234
235 Guile can represent exact rationals of any magnitude, inexact
236 rationals that fit into a C @code{double}, and inexact complex numbers
237 with @code{double} real and imaginary parts.
238
239 The @code{number?} predicate may be applied to any Scheme value to
240 discover whether the value is any of the supported numerical types.
241
242 @deffn {Scheme Procedure} number? obj
243 @deffnx {C Function} scm_number_p (obj)
244 Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
245 @end deffn
246
247 For example:
248
249 @lisp
250 (number? 3)
251 @result{} #t
252
253 (number? "hello there!")
254 @result{} #f
255
256 (define pi 3.141592654)
257 (number? pi)
258 @result{} #t
259 @end lisp
260
261 @deftypefn {C Function} int scm_is_number (SCM obj)
262 This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
263 @end deftypefn
264
265 The next few subsections document each of Guile's numerical data types
266 in detail.
267
268 @node Integers
269 @subsubsection Integers
270
271 @tpindex Integer numbers
272
273 @rnindex integer?
274
275 Integers are whole numbers, that is numbers with no fractional part,
276 such as 2, 83, and @minus{}3789.
277
278 Integers in Guile can be arbitrarily big, as shown by the following
279 example.
280
281 @lisp
282 (define (factorial n)
283 (let loop ((n n) (product 1))
284 (if (= n 0)
285 product
286 (loop (- n 1) (* product n)))))
287
288 (factorial 3)
289 @result{} 6
290
291 (factorial 20)
292 @result{} 2432902008176640000
293
294 (- (factorial 45))
295 @result{} -119622220865480194561963161495657715064383733760000000000
296 @end lisp
297
298 Readers whose background is in programming languages where integers are
299 limited by the need to fit into just 4 or 8 bytes of memory may find
300 this surprising, or suspect that Guile's representation of integers is
301 inefficient. In fact, Guile achieves a near optimal balance of
302 convenience and efficiency by using the host computer's native
303 representation of integers where possible, and a more general
304 representation where the required number does not fit in the native
305 form. Conversion between these two representations is automatic and
306 completely invisible to the Scheme level programmer.
307
308 The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
309 inexact integers. They are explained in detail in the next section,
310 together with reals and rationals.
311
312 C has a host of different integer types, and Guile offers a host of
313 functions to convert between them and the @code{SCM} representation.
314 For example, a C @code{int} can be handled with @code{scm_to_int} and
315 @code{scm_from_int}. Guile also defines a few C integer types of its
316 own, to help with differences between systems.
317
318 C integer types that are not covered can be handled with the generic
319 @code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
320 signed types, or with @code{scm_to_unsigned_integer} and
321 @code{scm_from_unsigned_integer} for unsigned types.
322
323 Scheme integers can be exact and inexact. For example, a number
324 written as @code{3.0} with an explicit decimal-point is inexact, but
325 it is also an integer. The functions @code{integer?} and
326 @code{scm_is_integer} report true for such a number, but the functions
327 @code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
328 allow exact integers and thus report false. Likewise, the conversion
329 functions like @code{scm_to_signed_integer} only accept exact
330 integers.
331
332 The motivation for this behavior is that the inexactness of a number
333 should not be lost silently. If you want to allow inexact integers,
334 you can explicitly insert a call to @code{inexact->exact} or to its C
335 equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
336 be converted by this call into exact integers; inexact non-integers
337 will become exact fractions.)
338
339 @deffn {Scheme Procedure} integer? x
340 @deffnx {C Function} scm_integer_p (x)
341 Return @code{#t} if @var{x} is an exact or inexact integer number, else
342 @code{#f}.
343
344 @lisp
345 (integer? 487)
346 @result{} #t
347
348 (integer? 3.0)
349 @result{} #t
350
351 (integer? -3.4)
352 @result{} #f
353
354 (integer? +inf.0)
355 @result{} #t
356 @end lisp
357 @end deffn
358
359 @deftypefn {C Function} int scm_is_integer (SCM x)
360 This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
361 @end deftypefn
362
363 @defvr {C Type} scm_t_int8
364 @defvrx {C Type} scm_t_uint8
365 @defvrx {C Type} scm_t_int16
366 @defvrx {C Type} scm_t_uint16
367 @defvrx {C Type} scm_t_int32
368 @defvrx {C Type} scm_t_uint32
369 @defvrx {C Type} scm_t_int64
370 @defvrx {C Type} scm_t_uint64
371 @defvrx {C Type} scm_t_intmax
372 @defvrx {C Type} scm_t_uintmax
373 The C types are equivalent to the corresponding ISO C types but are
374 defined on all platforms, with the exception of @code{scm_t_int64} and
375 @code{scm_t_uint64}, which are only defined when a 64-bit type is
376 available. For example, @code{scm_t_int8} is equivalent to
377 @code{int8_t}.
378
379 You can regard these definitions as a stop-gap measure until all
380 platforms provide these types. If you know that all the platforms
381 that you are interested in already provide these types, it is better
382 to use them directly instead of the types provided by Guile.
383 @end defvr
384
385 @deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
386 @deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
387 Return @code{1} when @var{x} represents an exact integer that is
388 between @var{min} and @var{max}, inclusive.
389
390 These functions can be used to check whether a @code{SCM} value will
391 fit into a given range, such as the range of a given C integer type.
392 If you just want to convert a @code{SCM} value to a given C integer
393 type, use one of the conversion functions directly.
394 @end deftypefn
395
396 @deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
397 @deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
398 When @var{x} represents an exact integer that is between @var{min} and
399 @var{max} inclusive, return that integer. Else signal an error,
400 either a `wrong-type' error when @var{x} is not an exact integer, or
401 an `out-of-range' error when it doesn't fit the given range.
402 @end deftypefn
403
404 @deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
405 @deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
406 Return the @code{SCM} value that represents the integer @var{x}. This
407 function will always succeed and will always return an exact number.
408 @end deftypefn
409
410 @deftypefn {C Function} char scm_to_char (SCM x)
411 @deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
412 @deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
413 @deftypefnx {C Function} short scm_to_short (SCM x)
414 @deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
415 @deftypefnx {C Function} int scm_to_int (SCM x)
416 @deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
417 @deftypefnx {C Function} long scm_to_long (SCM x)
418 @deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
419 @deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
420 @deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
421 @deftypefnx {C Function} size_t scm_to_size_t (SCM x)
422 @deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
423 @deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
424 @deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
425 @deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
426 @deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
427 @deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
428 @deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
429 @deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
430 @deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
431 @deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
432 @deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
433 When @var{x} represents an exact integer that fits into the indicated
434 C type, return that integer. Else signal an error, either a
435 `wrong-type' error when @var{x} is not an exact integer, or an
436 `out-of-range' error when it doesn't fit the given range.
437
438 The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
439 @code{scm_to_int64}, and @code{scm_to_uint64} are only available when
440 the corresponding types are.
441 @end deftypefn
442
443 @deftypefn {C Function} SCM scm_from_char (char x)
444 @deftypefnx {C Function} SCM scm_from_schar (signed char x)
445 @deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
446 @deftypefnx {C Function} SCM scm_from_short (short x)
447 @deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
448 @deftypefnx {C Function} SCM scm_from_int (int x)
449 @deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
450 @deftypefnx {C Function} SCM scm_from_long (long x)
451 @deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
452 @deftypefnx {C Function} SCM scm_from_long_long (long long x)
453 @deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
454 @deftypefnx {C Function} SCM scm_from_size_t (size_t x)
455 @deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
456 @deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
457 @deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
458 @deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
459 @deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
460 @deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
461 @deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
462 @deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
463 @deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
464 @deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
465 @deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
466 Return the @code{SCM} value that represents the integer @var{x}.
467 These functions will always succeed and will always return an exact
468 number.
469 @end deftypefn
470
471 @deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
472 Assign @var{val} to the multiple precision integer @var{rop}.
473 @var{val} must be an exact integer, otherwise an error will be
474 signalled. @var{rop} must have been initialized with @code{mpz_init}
475 before this function is called. When @var{rop} is no longer needed
476 the occupied space must be freed with @code{mpz_clear}.
477 @xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
478 @end deftypefn
479
480 @deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
481 Return the @code{SCM} value that represents @var{val}.
482 @end deftypefn
483
484 @node Reals and Rationals
485 @subsubsection Real and Rational Numbers
486 @tpindex Real numbers
487 @tpindex Rational numbers
488
489 @rnindex real?
490 @rnindex rational?
491
492 Mathematically, the real numbers are the set of numbers that describe
493 all possible points along a continuous, infinite, one-dimensional line.
494 The rational numbers are the set of all numbers that can be written as
495 fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
496 All rational numbers are also real, but there are real numbers that
497 are not rational, for example @m{\sqrt2, the square root of 2}, and
498 @m{\pi,pi}.
499
500 Guile can represent both exact and inexact rational numbers, but it
501 can not represent irrational numbers. Exact rationals are represented
502 by storing the numerator and denominator as two exact integers.
503 Inexact rationals are stored as floating point numbers using the C
504 type @code{double}.
505
506 Exact rationals are written as a fraction of integers. There must be
507 no whitespace around the slash:
508
509 @lisp
510 1/2
511 -22/7
512 @end lisp
513
514 Even though the actual encoding of inexact rationals is in binary, it
515 may be helpful to think of it as a decimal number with a limited
516 number of significant figures and a decimal point somewhere, since
517 this corresponds to the standard notation for non-whole numbers. For
518 example:
519
520 @lisp
521 0.34
522 -0.00000142857931198
523 -5648394822220000000000.0
524 4.0
525 @end lisp
526
527 The limited precision of Guile's encoding means that any ``real'' number
528 in Guile can be written in a rational form, by multiplying and then dividing
529 by sufficient powers of 10 (or in fact, 2). For example,
530 @samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
531 100000000000000000. In Guile's current incarnation, therefore, the
532 @code{rational?} and @code{real?} predicates are equivalent.
533
534
535 Dividing by an exact zero leads to a error message, as one might
536 expect. However, dividing by an inexact zero does not produce an
537 error. Instead, the result of the division is either plus or minus
538 infinity, depending on the sign of the divided number.
539
540 The infinities are written @samp{+inf.0} and @samp{-inf.0},
541 respectively. This syntax is also recognized by @code{read} as an
542 extension to the usual Scheme syntax.
543
544 Dividing zero by zero yields something that is not a number at all:
545 @samp{+nan.0}. This is the special `not a number' value.
546
547 On platforms that follow @acronym{IEEE} 754 for their floating point
548 arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
549 are implemented using the corresponding @acronym{IEEE} 754 values.
550 They behave in arithmetic operations like @acronym{IEEE} 754 describes
551 it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
552
553 The infinities are inexact integers and are considered to be both even
554 and odd. While @samp{+nan.0} is not @code{=} to itself, it is
555 @code{eqv?} to itself.
556
557 To test for the special values, use the functions @code{inf?} and
558 @code{nan?}.
559
560 @deffn {Scheme Procedure} real? obj
561 @deffnx {C Function} scm_real_p (obj)
562 Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
563 that the sets of integer and rational values form subsets of the set
564 of real numbers, so the predicate will also be fulfilled if @var{obj}
565 is an integer number or a rational number.
566 @end deffn
567
568 @deffn {Scheme Procedure} rational? x
569 @deffnx {C Function} scm_rational_p (x)
570 Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
571 Note that the set of integer values forms a subset of the set of
572 rational numbers, i. e. the predicate will also be fulfilled if
573 @var{x} is an integer number.
574
575 Since Guile can not represent irrational numbers, every number
576 satisfying @code{real?} also satisfies @code{rational?} in Guile.
577 @end deffn
578
579 @deffn {Scheme Procedure} rationalize x eps
580 @deffnx {C Function} scm_rationalize (x, eps)
581 Returns the @emph{simplest} rational number differing
582 from @var{x} by no more than @var{eps}.
583
584 As required by @acronym{R5RS}, @code{rationalize} only returns an
585 exact result when both its arguments are exact. Thus, you might need
586 to use @code{inexact->exact} on the arguments.
587
588 @lisp
589 (rationalize (inexact->exact 1.2) 1/100)
590 @result{} 6/5
591 @end lisp
592
593 @end deffn
594
595 @deffn {Scheme Procedure} inf? x
596 @deffnx {C Function} scm_inf_p (x)
597 Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
598 @code{#f} otherwise.
599 @end deffn
600
601 @deffn {Scheme Procedure} nan? x
602 @deffnx {C Function} scm_nan_p (x)
603 Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
604 @end deffn
605
606 @deffn {Scheme Procedure} nan
607 @deffnx {C Function} scm_nan ()
608 Return NaN.
609 @end deffn
610
611 @deffn {Scheme Procedure} inf
612 @deffnx {C Function} scm_inf ()
613 Return Inf.
614 @end deffn
615
616 @deffn {Scheme Procedure} numerator x
617 @deffnx {C Function} scm_numerator (x)
618 Return the numerator of the rational number @var{x}.
619 @end deffn
620
621 @deffn {Scheme Procedure} denominator x
622 @deffnx {C Function} scm_denominator (x)
623 Return the denominator of the rational number @var{x}.
624 @end deffn
625
626 @deftypefn {C Function} int scm_is_real (SCM val)
627 @deftypefnx {C Function} int scm_is_rational (SCM val)
628 Equivalent to @code{scm_is_true (scm_real_p (val))} and
629 @code{scm_is_true (scm_rational_p (val))}, respectively.
630 @end deftypefn
631
632 @deftypefn {C Function} double scm_to_double (SCM val)
633 Returns the number closest to @var{val} that is representable as a
634 @code{double}. Returns infinity for a @var{val} that is too large in
635 magnitude. The argument @var{val} must be a real number.
636 @end deftypefn
637
638 @deftypefn {C Function} SCM scm_from_double (double val)
639 Return the @code{SCM} value that represents @var{val}. The returned
640 value is inexact according to the predicate @code{inexact?}, but it
641 will be exactly equal to @var{val}.
642 @end deftypefn
643
644 @node Complex Numbers
645 @subsubsection Complex Numbers
646 @tpindex Complex numbers
647
648 @rnindex complex?
649
650 Complex numbers are the set of numbers that describe all possible points
651 in a two-dimensional space. The two coordinates of a particular point
652 in this space are known as the @dfn{real} and @dfn{imaginary} parts of
653 the complex number that describes that point.
654
655 In Guile, complex numbers are written in rectangular form as the sum of
656 their real and imaginary parts, using the symbol @code{i} to indicate
657 the imaginary part.
658
659 @lisp
660 3+4i
661 @result{}
662 3.0+4.0i
663
664 (* 3-8i 2.3+0.3i)
665 @result{}
666 9.3-17.5i
667 @end lisp
668
669 @cindex polar form
670 @noindent
671 Polar form can also be used, with an @samp{@@} between magnitude and
672 angle,
673
674 @lisp
675 1@@3.141592 @result{} -1.0 (approx)
676 -1@@1.57079 @result{} 0.0-1.0i (approx)
677 @end lisp
678
679 Guile represents a complex number with a non-zero imaginary part as a
680 pair of inexact rationals, so the real and imaginary parts of a
681 complex number have the same properties of inexactness and limited
682 precision as single inexact rational numbers. Guile can not represent
683 exact complex numbers with non-zero imaginary parts.
684
685 @deffn {Scheme Procedure} complex? z
686 @deffnx {C Function} scm_complex_p (z)
687 Return @code{#t} if @var{x} is a complex number, @code{#f}
688 otherwise. Note that the sets of real, rational and integer
689 values form subsets of the set of complex numbers, i. e. the
690 predicate will also be fulfilled if @var{x} is a real,
691 rational or integer number.
692 @end deffn
693
694 @deftypefn {C Function} int scm_is_complex (SCM val)
695 Equivalent to @code{scm_is_true (scm_complex_p (val))}.
696 @end deftypefn
697
698 @node Exactness
699 @subsubsection Exact and Inexact Numbers
700 @tpindex Exact numbers
701 @tpindex Inexact numbers
702
703 @rnindex exact?
704 @rnindex inexact?
705 @rnindex exact->inexact
706 @rnindex inexact->exact
707
708 R5RS requires that a calculation involving inexact numbers always
709 produces an inexact result. To meet this requirement, Guile
710 distinguishes between an exact integer value such as @samp{5} and the
711 corresponding inexact real value which, to the limited precision
712 available, has no fractional part, and is printed as @samp{5.0}. Guile
713 will only convert the latter value to the former when forced to do so by
714 an invocation of the @code{inexact->exact} procedure.
715
716 @deffn {Scheme Procedure} exact? z
717 @deffnx {C Function} scm_exact_p (z)
718 Return @code{#t} if the number @var{z} is exact, @code{#f}
719 otherwise.
720
721 @lisp
722 (exact? 2)
723 @result{} #t
724
725 (exact? 0.5)
726 @result{} #f
727
728 (exact? (/ 2))
729 @result{} #t
730 @end lisp
731
732 @end deffn
733
734 @deffn {Scheme Procedure} inexact? z
735 @deffnx {C Function} scm_inexact_p (z)
736 Return @code{#t} if the number @var{z} is inexact, @code{#f}
737 else.
738 @end deffn
739
740 @deffn {Scheme Procedure} inexact->exact z
741 @deffnx {C Function} scm_inexact_to_exact (z)
742 Return an exact number that is numerically closest to @var{z}, when
743 there is one. For inexact rationals, Guile returns the exact rational
744 that is numerically equal to the inexact rational. Inexact complex
745 numbers with a non-zero imaginary part can not be made exact.
746
747 @lisp
748 (inexact->exact 0.5)
749 @result{} 1/2
750 @end lisp
751
752 The following happens because 12/10 is not exactly representable as a
753 @code{double} (on most platforms). However, when reading a decimal
754 number that has been marked exact with the ``#e'' prefix, Guile is
755 able to represent it correctly.
756
757 @lisp
758 (inexact->exact 1.2)
759 @result{} 5404319552844595/4503599627370496
760
761 #e1.2
762 @result{} 6/5
763 @end lisp
764
765 @end deffn
766
767 @c begin (texi-doc-string "guile" "exact->inexact")
768 @deffn {Scheme Procedure} exact->inexact z
769 @deffnx {C Function} scm_exact_to_inexact (z)
770 Convert the number @var{z} to its inexact representation.
771 @end deffn
772
773
774 @node Number Syntax
775 @subsubsection Read Syntax for Numerical Data
776
777 The read syntax for integers is a string of digits, optionally
778 preceded by a minus or plus character, a code indicating the
779 base in which the integer is encoded, and a code indicating whether
780 the number is exact or inexact. The supported base codes are:
781
782 @table @code
783 @item #b
784 @itemx #B
785 the integer is written in binary (base 2)
786
787 @item #o
788 @itemx #O
789 the integer is written in octal (base 8)
790
791 @item #d
792 @itemx #D
793 the integer is written in decimal (base 10)
794
795 @item #x
796 @itemx #X
797 the integer is written in hexadecimal (base 16)
798 @end table
799
800 If the base code is omitted, the integer is assumed to be decimal. The
801 following examples show how these base codes are used.
802
803 @lisp
804 -13
805 @result{} -13
806
807 #d-13
808 @result{} -13
809
810 #x-13
811 @result{} -19
812
813 #b+1101
814 @result{} 13
815
816 #o377
817 @result{} 255
818 @end lisp
819
820 The codes for indicating exactness (which can, incidentally, be applied
821 to all numerical values) are:
822
823 @table @code
824 @item #e
825 @itemx #E
826 the number is exact
827
828 @item #i
829 @itemx #I
830 the number is inexact.
831 @end table
832
833 If the exactness indicator is omitted, the number is exact unless it
834 contains a radix point. Since Guile can not represent exact complex
835 numbers, an error is signalled when asking for them.
836
837 @lisp
838 (exact? 1.2)
839 @result{} #f
840
841 (exact? #e1.2)
842 @result{} #t
843
844 (exact? #e+1i)
845 ERROR: Wrong type argument
846 @end lisp
847
848 Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
849 plus and minus infinity, respectively. The value must be written
850 exactly as shown, that is, they always must have a sign and exactly
851 one zero digit after the decimal point. It also understands
852 @samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
853 The sign is ignored for `not-a-number' and the value is always printed
854 as @samp{+nan.0}.
855
856 @node Integer Operations
857 @subsubsection Operations on Integer Values
858 @rnindex odd?
859 @rnindex even?
860 @rnindex quotient
861 @rnindex remainder
862 @rnindex modulo
863 @rnindex gcd
864 @rnindex lcm
865
866 @deffn {Scheme Procedure} odd? n
867 @deffnx {C Function} scm_odd_p (n)
868 Return @code{#t} if @var{n} is an odd number, @code{#f}
869 otherwise.
870 @end deffn
871
872 @deffn {Scheme Procedure} even? n
873 @deffnx {C Function} scm_even_p (n)
874 Return @code{#t} if @var{n} is an even number, @code{#f}
875 otherwise.
876 @end deffn
877
878 @c begin (texi-doc-string "guile" "quotient")
879 @c begin (texi-doc-string "guile" "remainder")
880 @deffn {Scheme Procedure} quotient n d
881 @deffnx {Scheme Procedure} remainder n d
882 @deffnx {C Function} scm_quotient (n, d)
883 @deffnx {C Function} scm_remainder (n, d)
884 Return the quotient or remainder from @var{n} divided by @var{d}. The
885 quotient is rounded towards zero, and the remainder will have the same
886 sign as @var{n}. In all cases quotient and remainder satisfy
887 @math{@var{n} = @var{q}*@var{d} + @var{r}}.
888
889 @lisp
890 (remainder 13 4) @result{} 1
891 (remainder -13 4) @result{} -1
892 @end lisp
893 @end deffn
894
895 @c begin (texi-doc-string "guile" "modulo")
896 @deffn {Scheme Procedure} modulo n d
897 @deffnx {C Function} scm_modulo (n, d)
898 Return the remainder from @var{n} divided by @var{d}, with the same
899 sign as @var{d}.
900
901 @lisp
902 (modulo 13 4) @result{} 1
903 (modulo -13 4) @result{} 3
904 (modulo 13 -4) @result{} -3
905 (modulo -13 -4) @result{} -1
906 @end lisp
907 @end deffn
908
909 @c begin (texi-doc-string "guile" "gcd")
910 @deffn {Scheme Procedure} gcd x@dots{}
911 @deffnx {C Function} scm_gcd (x, y)
912 Return the greatest common divisor of all arguments.
913 If called without arguments, 0 is returned.
914
915 The C function @code{scm_gcd} always takes two arguments, while the
916 Scheme function can take an arbitrary number.
917 @end deffn
918
919 @c begin (texi-doc-string "guile" "lcm")
920 @deffn {Scheme Procedure} lcm x@dots{}
921 @deffnx {C Function} scm_lcm (x, y)
922 Return the least common multiple of the arguments.
923 If called without arguments, 1 is returned.
924
925 The C function @code{scm_lcm} always takes two arguments, while the
926 Scheme function can take an arbitrary number.
927 @end deffn
928
929 @deffn {Scheme Procedure} modulo-expt n k m
930 @deffnx {C Function} scm_modulo_expt (n, k, m)
931 Return @var{n} raised to the integer exponent
932 @var{k}, modulo @var{m}.
933
934 @lisp
935 (modulo-expt 2 3 5)
936 @result{} 3
937 @end lisp
938 @end deffn
939
940 @node Comparison
941 @subsubsection Comparison Predicates
942 @rnindex zero?
943 @rnindex positive?
944 @rnindex negative?
945
946 The C comparison functions below always takes two arguments, while the
947 Scheme functions can take an arbitrary number. Also keep in mind that
948 the C functions return one of the Scheme boolean values
949 @code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
950 is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
951 y))} when testing the two Scheme numbers @code{x} and @code{y} for
952 equality, for example.
953
954 @c begin (texi-doc-string "guile" "=")
955 @deffn {Scheme Procedure} =
956 @deffnx {C Function} scm_num_eq_p (x, y)
957 Return @code{#t} if all parameters are numerically equal.
958 @end deffn
959
960 @c begin (texi-doc-string "guile" "<")
961 @deffn {Scheme Procedure} <
962 @deffnx {C Function} scm_less_p (x, y)
963 Return @code{#t} if the list of parameters is monotonically
964 increasing.
965 @end deffn
966
967 @c begin (texi-doc-string "guile" ">")
968 @deffn {Scheme Procedure} >
969 @deffnx {C Function} scm_gr_p (x, y)
970 Return @code{#t} if the list of parameters is monotonically
971 decreasing.
972 @end deffn
973
974 @c begin (texi-doc-string "guile" "<=")
975 @deffn {Scheme Procedure} <=
976 @deffnx {C Function} scm_leq_p (x, y)
977 Return @code{#t} if the list of parameters is monotonically
978 non-decreasing.
979 @end deffn
980
981 @c begin (texi-doc-string "guile" ">=")
982 @deffn {Scheme Procedure} >=
983 @deffnx {C Function} scm_geq_p (x, y)
984 Return @code{#t} if the list of parameters is monotonically
985 non-increasing.
986 @end deffn
987
988 @c begin (texi-doc-string "guile" "zero?")
989 @deffn {Scheme Procedure} zero? z
990 @deffnx {C Function} scm_zero_p (z)
991 Return @code{#t} if @var{z} is an exact or inexact number equal to
992 zero.
993 @end deffn
994
995 @c begin (texi-doc-string "guile" "positive?")
996 @deffn {Scheme Procedure} positive? x
997 @deffnx {C Function} scm_positive_p (x)
998 Return @code{#t} if @var{x} is an exact or inexact number greater than
999 zero.
1000 @end deffn
1001
1002 @c begin (texi-doc-string "guile" "negative?")
1003 @deffn {Scheme Procedure} negative? x
1004 @deffnx {C Function} scm_negative_p (x)
1005 Return @code{#t} if @var{x} is an exact or inexact number less than
1006 zero.
1007 @end deffn
1008
1009
1010 @node Conversion
1011 @subsubsection Converting Numbers To and From Strings
1012 @rnindex number->string
1013 @rnindex string->number
1014
1015 The following procedures read and write numbers according to their
1016 external representation as defined by R5RS (@pxref{Lexical structure,
1017 R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
1018 Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
1019 i18n)} module}, for locale-dependent number parsing.
1020
1021 @deffn {Scheme Procedure} number->string n [radix]
1022 @deffnx {C Function} scm_number_to_string (n, radix)
1023 Return a string holding the external representation of the
1024 number @var{n} in the given @var{radix}. If @var{n} is
1025 inexact, a radix of 10 will be used.
1026 @end deffn
1027
1028 @deffn {Scheme Procedure} string->number string [radix]
1029 @deffnx {C Function} scm_string_to_number (string, radix)
1030 Return a number of the maximally precise representation
1031 expressed by the given @var{string}. @var{radix} must be an
1032 exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1033 is a default radix that may be overridden by an explicit radix
1034 prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
1035 supplied, then the default radix is 10. If string is not a
1036 syntactically valid notation for a number, then
1037 @code{string->number} returns @code{#f}.
1038 @end deffn
1039
1040 @deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1041 As per @code{string->number} above, but taking a C string, as pointer
1042 and length. The string characters should be in the current locale
1043 encoding (@code{locale} in the name refers only to that, there's no
1044 locale-dependent parsing).
1045 @end deftypefn
1046
1047
1048 @node Complex
1049 @subsubsection Complex Number Operations
1050 @rnindex make-rectangular
1051 @rnindex make-polar
1052 @rnindex real-part
1053 @rnindex imag-part
1054 @rnindex magnitude
1055 @rnindex angle
1056
1057 @deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1058 @deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1059 Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
1060 @end deffn
1061
1062 @deffn {Scheme Procedure} make-polar x y
1063 @deffnx {C Function} scm_make_polar (x, y)
1064 @cindex polar form
1065 Return the complex number @var{x} * e^(i * @var{y}).
1066 @end deffn
1067
1068 @c begin (texi-doc-string "guile" "real-part")
1069 @deffn {Scheme Procedure} real-part z
1070 @deffnx {C Function} scm_real_part (z)
1071 Return the real part of the number @var{z}.
1072 @end deffn
1073
1074 @c begin (texi-doc-string "guile" "imag-part")
1075 @deffn {Scheme Procedure} imag-part z
1076 @deffnx {C Function} scm_imag_part (z)
1077 Return the imaginary part of the number @var{z}.
1078 @end deffn
1079
1080 @c begin (texi-doc-string "guile" "magnitude")
1081 @deffn {Scheme Procedure} magnitude z
1082 @deffnx {C Function} scm_magnitude (z)
1083 Return the magnitude of the number @var{z}. This is the same as
1084 @code{abs} for real arguments, but also allows complex numbers.
1085 @end deffn
1086
1087 @c begin (texi-doc-string "guile" "angle")
1088 @deffn {Scheme Procedure} angle z
1089 @deffnx {C Function} scm_angle (z)
1090 Return the angle of the complex number @var{z}.
1091 @end deffn
1092
1093 @deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1094 @deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1095 Like @code{scm_make_rectangular} or @code{scm_make_polar},
1096 respectively, but these functions take @code{double}s as their
1097 arguments.
1098 @end deftypefn
1099
1100 @deftypefn {C Function} double scm_c_real_part (z)
1101 @deftypefnx {C Function} double scm_c_imag_part (z)
1102 Returns the real or imaginary part of @var{z} as a @code{double}.
1103 @end deftypefn
1104
1105 @deftypefn {C Function} double scm_c_magnitude (z)
1106 @deftypefnx {C Function} double scm_c_angle (z)
1107 Returns the magnitude or angle of @var{z} as a @code{double}.
1108 @end deftypefn
1109
1110
1111 @node Arithmetic
1112 @subsubsection Arithmetic Functions
1113 @rnindex max
1114 @rnindex min
1115 @rnindex +
1116 @rnindex *
1117 @rnindex -
1118 @rnindex /
1119 @findex 1+
1120 @findex 1-
1121 @rnindex abs
1122 @rnindex floor
1123 @rnindex ceiling
1124 @rnindex truncate
1125 @rnindex round
1126
1127 The C arithmetic functions below always takes two arguments, while the
1128 Scheme functions can take an arbitrary number. When you need to
1129 invoke them with just one argument, for example to compute the
1130 equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1131 one: @code{scm_difference (x, SCM_UNDEFINED)}.
1132
1133 @c begin (texi-doc-string "guile" "+")
1134 @deffn {Scheme Procedure} + z1 @dots{}
1135 @deffnx {C Function} scm_sum (z1, z2)
1136 Return the sum of all parameter values. Return 0 if called without any
1137 parameters.
1138 @end deffn
1139
1140 @c begin (texi-doc-string "guile" "-")
1141 @deffn {Scheme Procedure} - z1 z2 @dots{}
1142 @deffnx {C Function} scm_difference (z1, z2)
1143 If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1144 the sum of all but the first argument are subtracted from the first
1145 argument.
1146 @end deffn
1147
1148 @c begin (texi-doc-string "guile" "*")
1149 @deffn {Scheme Procedure} * z1 @dots{}
1150 @deffnx {C Function} scm_product (z1, z2)
1151 Return the product of all arguments. If called without arguments, 1 is
1152 returned.
1153 @end deffn
1154
1155 @c begin (texi-doc-string "guile" "/")
1156 @deffn {Scheme Procedure} / z1 z2 @dots{}
1157 @deffnx {C Function} scm_divide (z1, z2)
1158 Divide the first argument by the product of the remaining arguments. If
1159 called with one argument @var{z1}, 1/@var{z1} is returned.
1160 @end deffn
1161
1162 @deffn {Scheme Procedure} 1+ z
1163 @deffnx {C Function} scm_oneplus (z)
1164 Return @math{@var{z} + 1}.
1165 @end deffn
1166
1167 @deffn {Scheme Procedure} 1- z
1168 @deffnx {C function} scm_oneminus (z)
1169 Return @math{@var{z} - 1}.
1170 @end deffn
1171
1172 @c begin (texi-doc-string "guile" "abs")
1173 @deffn {Scheme Procedure} abs x
1174 @deffnx {C Function} scm_abs (x)
1175 Return the absolute value of @var{x}.
1176
1177 @var{x} must be a number with zero imaginary part. To calculate the
1178 magnitude of a complex number, use @code{magnitude} instead.
1179 @end deffn
1180
1181 @c begin (texi-doc-string "guile" "max")
1182 @deffn {Scheme Procedure} max x1 x2 @dots{}
1183 @deffnx {C Function} scm_max (x1, x2)
1184 Return the maximum of all parameter values.
1185 @end deffn
1186
1187 @c begin (texi-doc-string "guile" "min")
1188 @deffn {Scheme Procedure} min x1 x2 @dots{}
1189 @deffnx {C Function} scm_min (x1, x2)
1190 Return the minimum of all parameter values.
1191 @end deffn
1192
1193 @c begin (texi-doc-string "guile" "truncate")
1194 @deffn {Scheme Procedure} truncate x
1195 @deffnx {C Function} scm_truncate_number (x)
1196 Round the inexact number @var{x} towards zero.
1197 @end deffn
1198
1199 @c begin (texi-doc-string "guile" "round")
1200 @deffn {Scheme Procedure} round x
1201 @deffnx {C Function} scm_round_number (x)
1202 Round the inexact number @var{x} to the nearest integer. When exactly
1203 halfway between two integers, round to the even one.
1204 @end deffn
1205
1206 @c begin (texi-doc-string "guile" "floor")
1207 @deffn {Scheme Procedure} floor x
1208 @deffnx {C Function} scm_floor (x)
1209 Round the number @var{x} towards minus infinity.
1210 @end deffn
1211
1212 @c begin (texi-doc-string "guile" "ceiling")
1213 @deffn {Scheme Procedure} ceiling x
1214 @deffnx {C Function} scm_ceiling (x)
1215 Round the number @var{x} towards infinity.
1216 @end deffn
1217
1218 @deftypefn {C Function} double scm_c_truncate (double x)
1219 @deftypefnx {C Function} double scm_c_round (double x)
1220 Like @code{scm_truncate_number} or @code{scm_round_number},
1221 respectively, but these functions take and return @code{double}
1222 values.
1223 @end deftypefn
1224
1225 @node Scientific
1226 @subsubsection Scientific Functions
1227
1228 The following procedures accept any kind of number as arguments,
1229 including complex numbers.
1230
1231 @rnindex sqrt
1232 @c begin (texi-doc-string "guile" "sqrt")
1233 @deffn {Scheme Procedure} sqrt z
1234 Return the square root of @var{z}. Of the two possible roots
1235 (positive and negative), the one with the a positive real part is
1236 returned, or if that's zero then a positive imaginary part. Thus,
1237
1238 @example
1239 (sqrt 9.0) @result{} 3.0
1240 (sqrt -9.0) @result{} 0.0+3.0i
1241 (sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1242 (sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1243 @end example
1244 @end deffn
1245
1246 @rnindex expt
1247 @c begin (texi-doc-string "guile" "expt")
1248 @deffn {Scheme Procedure} expt z1 z2
1249 Return @var{z1} raised to the power of @var{z2}.
1250 @end deffn
1251
1252 @rnindex sin
1253 @c begin (texi-doc-string "guile" "sin")
1254 @deffn {Scheme Procedure} sin z
1255 Return the sine of @var{z}.
1256 @end deffn
1257
1258 @rnindex cos
1259 @c begin (texi-doc-string "guile" "cos")
1260 @deffn {Scheme Procedure} cos z
1261 Return the cosine of @var{z}.
1262 @end deffn
1263
1264 @rnindex tan
1265 @c begin (texi-doc-string "guile" "tan")
1266 @deffn {Scheme Procedure} tan z
1267 Return the tangent of @var{z}.
1268 @end deffn
1269
1270 @rnindex asin
1271 @c begin (texi-doc-string "guile" "asin")
1272 @deffn {Scheme Procedure} asin z
1273 Return the arcsine of @var{z}.
1274 @end deffn
1275
1276 @rnindex acos
1277 @c begin (texi-doc-string "guile" "acos")
1278 @deffn {Scheme Procedure} acos z
1279 Return the arccosine of @var{z}.
1280 @end deffn
1281
1282 @rnindex atan
1283 @c begin (texi-doc-string "guile" "atan")
1284 @deffn {Scheme Procedure} atan z
1285 @deffnx {Scheme Procedure} atan y x
1286 Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1287 @end deffn
1288
1289 @rnindex exp
1290 @c begin (texi-doc-string "guile" "exp")
1291 @deffn {Scheme Procedure} exp z
1292 Return e to the power of @var{z}, where e is the base of natural
1293 logarithms (2.71828@dots{}).
1294 @end deffn
1295
1296 @rnindex log
1297 @c begin (texi-doc-string "guile" "log")
1298 @deffn {Scheme Procedure} log z
1299 Return the natural logarithm of @var{z}.
1300 @end deffn
1301
1302 @c begin (texi-doc-string "guile" "log10")
1303 @deffn {Scheme Procedure} log10 z
1304 Return the base 10 logarithm of @var{z}.
1305 @end deffn
1306
1307 @c begin (texi-doc-string "guile" "sinh")
1308 @deffn {Scheme Procedure} sinh z
1309 Return the hyperbolic sine of @var{z}.
1310 @end deffn
1311
1312 @c begin (texi-doc-string "guile" "cosh")
1313 @deffn {Scheme Procedure} cosh z
1314 Return the hyperbolic cosine of @var{z}.
1315 @end deffn
1316
1317 @c begin (texi-doc-string "guile" "tanh")
1318 @deffn {Scheme Procedure} tanh z
1319 Return the hyperbolic tangent of @var{z}.
1320 @end deffn
1321
1322 @c begin (texi-doc-string "guile" "asinh")
1323 @deffn {Scheme Procedure} asinh z
1324 Return the hyperbolic arcsine of @var{z}.
1325 @end deffn
1326
1327 @c begin (texi-doc-string "guile" "acosh")
1328 @deffn {Scheme Procedure} acosh z
1329 Return the hyperbolic arccosine of @var{z}.
1330 @end deffn
1331
1332 @c begin (texi-doc-string "guile" "atanh")
1333 @deffn {Scheme Procedure} atanh z
1334 Return the hyperbolic arctangent of @var{z}.
1335 @end deffn
1336
1337
1338 @node Bitwise Operations
1339 @subsubsection Bitwise Operations
1340
1341 For the following bitwise functions, negative numbers are treated as
1342 infinite precision twos-complements. For instance @math{-6} is bits
1343 @math{@dots{}111010}, with infinitely many ones on the left. It can
1344 be seen that adding 6 (binary 110) to such a bit pattern gives all
1345 zeros.
1346
1347 @deffn {Scheme Procedure} logand n1 n2 @dots{}
1348 @deffnx {C Function} scm_logand (n1, n2)
1349 Return the bitwise @sc{and} of the integer arguments.
1350
1351 @lisp
1352 (logand) @result{} -1
1353 (logand 7) @result{} 7
1354 (logand #b111 #b011 #b001) @result{} 1
1355 @end lisp
1356 @end deffn
1357
1358 @deffn {Scheme Procedure} logior n1 n2 @dots{}
1359 @deffnx {C Function} scm_logior (n1, n2)
1360 Return the bitwise @sc{or} of the integer arguments.
1361
1362 @lisp
1363 (logior) @result{} 0
1364 (logior 7) @result{} 7
1365 (logior #b000 #b001 #b011) @result{} 3
1366 @end lisp
1367 @end deffn
1368
1369 @deffn {Scheme Procedure} logxor n1 n2 @dots{}
1370 @deffnx {C Function} scm_loxor (n1, n2)
1371 Return the bitwise @sc{xor} of the integer arguments. A bit is
1372 set in the result if it is set in an odd number of arguments.
1373
1374 @lisp
1375 (logxor) @result{} 0
1376 (logxor 7) @result{} 7
1377 (logxor #b000 #b001 #b011) @result{} 2
1378 (logxor #b000 #b001 #b011 #b011) @result{} 1
1379 @end lisp
1380 @end deffn
1381
1382 @deffn {Scheme Procedure} lognot n
1383 @deffnx {C Function} scm_lognot (n)
1384 Return the integer which is the ones-complement of the integer
1385 argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1386
1387 @lisp
1388 (number->string (lognot #b10000000) 2)
1389 @result{} "-10000001"
1390 (number->string (lognot #b0) 2)
1391 @result{} "-1"
1392 @end lisp
1393 @end deffn
1394
1395 @deffn {Scheme Procedure} logtest j k
1396 @deffnx {C Function} scm_logtest (j, k)
1397 Test whether @var{j} and @var{k} have any 1 bits in common. This is
1398 equivalent to @code{(not (zero? (logand j k)))}, but without actually
1399 calculating the @code{logand}, just testing for non-zero.
1400
1401 @lisp
1402 (logtest #b0100 #b1011) @result{} #f
1403 (logtest #b0100 #b0111) @result{} #t
1404 @end lisp
1405 @end deffn
1406
1407 @deffn {Scheme Procedure} logbit? index j
1408 @deffnx {C Function} scm_logbit_p (index, j)
1409 Test whether bit number @var{index} in @var{j} is set. @var{index}
1410 starts from 0 for the least significant bit.
1411
1412 @lisp
1413 (logbit? 0 #b1101) @result{} #t
1414 (logbit? 1 #b1101) @result{} #f
1415 (logbit? 2 #b1101) @result{} #t
1416 (logbit? 3 #b1101) @result{} #t
1417 (logbit? 4 #b1101) @result{} #f
1418 @end lisp
1419 @end deffn
1420
1421 @deffn {Scheme Procedure} ash n cnt
1422 @deffnx {C Function} scm_ash (n, cnt)
1423 Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1424 @var{cnt} is negative. This is an ``arithmetic'' shift.
1425
1426 This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1427 when @var{cnt} is negative it's a division, rounded towards negative
1428 infinity. (Note that this is not the same rounding as @code{quotient}
1429 does.)
1430
1431 With @var{n} viewed as an infinite precision twos complement,
1432 @code{ash} means a left shift introducing zero bits, or a right shift
1433 dropping bits.
1434
1435 @lisp
1436 (number->string (ash #b1 3) 2) @result{} "1000"
1437 (number->string (ash #b1010 -1) 2) @result{} "101"
1438
1439 ;; -23 is bits ...11101001, -6 is bits ...111010
1440 (ash -23 -2) @result{} -6
1441 @end lisp
1442 @end deffn
1443
1444 @deffn {Scheme Procedure} logcount n
1445 @deffnx {C Function} scm_logcount (n)
1446 Return the number of bits in integer @var{n}. If @var{n} is
1447 positive, the 1-bits in its binary representation are counted.
1448 If negative, the 0-bits in its two's-complement binary
1449 representation are counted. If zero, 0 is returned.
1450
1451 @lisp
1452 (logcount #b10101010)
1453 @result{} 4
1454 (logcount 0)
1455 @result{} 0
1456 (logcount -2)
1457 @result{} 1
1458 @end lisp
1459 @end deffn
1460
1461 @deffn {Scheme Procedure} integer-length n
1462 @deffnx {C Function} scm_integer_length (n)
1463 Return the number of bits necessary to represent @var{n}.
1464
1465 For positive @var{n} this is how many bits to the most significant one
1466 bit. For negative @var{n} it's how many bits to the most significant
1467 zero bit in twos complement form.
1468
1469 @lisp
1470 (integer-length #b10101010) @result{} 8
1471 (integer-length #b1111) @result{} 4
1472 (integer-length 0) @result{} 0
1473 (integer-length -1) @result{} 0
1474 (integer-length -256) @result{} 8
1475 (integer-length -257) @result{} 9
1476 @end lisp
1477 @end deffn
1478
1479 @deffn {Scheme Procedure} integer-expt n k
1480 @deffnx {C Function} scm_integer_expt (n, k)
1481 Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1482 integer, @var{n} can be any number.
1483
1484 Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1485 in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1486 @math{0^0} is 1.
1487
1488 @lisp
1489 (integer-expt 2 5) @result{} 32
1490 (integer-expt -3 3) @result{} -27
1491 (integer-expt 5 -3) @result{} 1/125
1492 (integer-expt 0 0) @result{} 1
1493 @end lisp
1494 @end deffn
1495
1496 @deffn {Scheme Procedure} bit-extract n start end
1497 @deffnx {C Function} scm_bit_extract (n, start, end)
1498 Return the integer composed of the @var{start} (inclusive)
1499 through @var{end} (exclusive) bits of @var{n}. The
1500 @var{start}th bit becomes the 0-th bit in the result.
1501
1502 @lisp
1503 (number->string (bit-extract #b1101101010 0 4) 2)
1504 @result{} "1010"
1505 (number->string (bit-extract #b1101101010 4 9) 2)
1506 @result{} "10110"
1507 @end lisp
1508 @end deffn
1509
1510
1511 @node Random
1512 @subsubsection Random Number Generation
1513
1514 Pseudo-random numbers are generated from a random state object, which
1515 can be created with @code{seed->random-state}. The @var{state}
1516 parameter to the various functions below is optional, it defaults to
1517 the state object in the @code{*random-state*} variable.
1518
1519 @deffn {Scheme Procedure} copy-random-state [state]
1520 @deffnx {C Function} scm_copy_random_state (state)
1521 Return a copy of the random state @var{state}.
1522 @end deffn
1523
1524 @deffn {Scheme Procedure} random n [state]
1525 @deffnx {C Function} scm_random (n, state)
1526 Return a number in [0, @var{n}).
1527
1528 Accepts a positive integer or real n and returns a
1529 number of the same type between zero (inclusive) and
1530 @var{n} (exclusive). The values returned have a uniform
1531 distribution.
1532 @end deffn
1533
1534 @deffn {Scheme Procedure} random:exp [state]
1535 @deffnx {C Function} scm_random_exp (state)
1536 Return an inexact real in an exponential distribution with mean
1537 1. For an exponential distribution with mean @var{u} use @code{(*
1538 @var{u} (random:exp))}.
1539 @end deffn
1540
1541 @deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1542 @deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1543 Fills @var{vect} with inexact real random numbers the sum of whose
1544 squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1545 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1546 the coordinates are uniformly distributed over the surface of the unit
1547 n-sphere.
1548 @end deffn
1549
1550 @deffn {Scheme Procedure} random:normal [state]
1551 @deffnx {C Function} scm_random_normal (state)
1552 Return an inexact real in a normal distribution. The distribution
1553 used has mean 0 and standard deviation 1. For a normal distribution
1554 with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1555 (* @var{d} (random:normal)))}.
1556 @end deffn
1557
1558 @deffn {Scheme Procedure} random:normal-vector! vect [state]
1559 @deffnx {C Function} scm_random_normal_vector_x (vect, state)
1560 Fills @var{vect} with inexact real random numbers that are
1561 independent and standard normally distributed
1562 (i.e., with mean 0 and variance 1).
1563 @end deffn
1564
1565 @deffn {Scheme Procedure} random:solid-sphere! vect [state]
1566 @deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1567 Fills @var{vect} with inexact real random numbers the sum of whose
1568 squares is less than 1.0. Thinking of @var{vect} as coordinates in
1569 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1570 the coordinates are uniformly distributed within the unit
1571 @var{n}-sphere.
1572 @c FIXME: What does this mean, particularly the n-sphere part?
1573 @end deffn
1574
1575 @deffn {Scheme Procedure} random:uniform [state]
1576 @deffnx {C Function} scm_random_uniform (state)
1577 Return a uniformly distributed inexact real random number in
1578 [0,1).
1579 @end deffn
1580
1581 @deffn {Scheme Procedure} seed->random-state seed
1582 @deffnx {C Function} scm_seed_to_random_state (seed)
1583 Return a new random state using @var{seed}.
1584 @end deffn
1585
1586 @defvar *random-state*
1587 The global random state used by the above functions when the
1588 @var{state} parameter is not given.
1589 @end defvar
1590
1591 Note that the initial value of @code{*random-state*} is the same every
1592 time Guile starts up. Therefore, if you don't pass a @var{state}
1593 parameter to the above procedures, and you don't set
1594 @code{*random-state*} to @code{(seed->random-state your-seed)}, where
1595 @code{your-seed} is something that @emph{isn't} the same every time,
1596 you'll get the same sequence of ``random'' numbers on every run.
1597
1598 For example, unless the relevant source code has changed, @code{(map
1599 random (cdr (iota 30)))}, if the first use of random numbers since
1600 Guile started up, will always give:
1601
1602 @lisp
1603 (map random (cdr (iota 19)))
1604 @result{}
1605 (0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1606 @end lisp
1607
1608 To use the time of day as the random seed, you can use code like this:
1609
1610 @lisp
1611 (let ((time (gettimeofday)))
1612 (set! *random-state*
1613 (seed->random-state (+ (car time)
1614 (cdr time)))))
1615 @end lisp
1616
1617 @noindent
1618 And then (depending on the time of day, of course):
1619
1620 @lisp
1621 (map random (cdr (iota 19)))
1622 @result{}
1623 (0 0 1 0 2 4 5 4 5 5 9 3 10 1 8 3 14 17)
1624 @end lisp
1625
1626 For security applications, such as password generation, you should use
1627 more bits of seed. Otherwise an open source password generator could
1628 be attacked by guessing the seed@dots{} but that's a subject for
1629 another manual.
1630
1631
1632 @node Characters
1633 @subsection Characters
1634 @tpindex Characters
1635
1636 In Scheme, there is a data type to describe a single character.
1637
1638 Defining what exactly a character @emph{is} can be more complicated
1639 than it seems. Guile follows the advice of R6RS and uses The Unicode
1640 Standard to help define what a character is. So, for Guile, a
1641 character is anything in the Unicode Character Database.
1642
1643 @cindex code point
1644 @cindex Unicode code point
1645
1646 The Unicode Character Database is basically a table of characters
1647 indexed using integers called 'code points'. Valid code points are in
1648 the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1649 @code{#x10FFFF} inclusive, which is about 1.1 million code points.
1650
1651 @cindex designated code point
1652 @cindex code point, designated
1653
1654 Any code point that has been assigned to a character or that has
1655 otherwise been given a meaning by Unicode is called a 'designated code
1656 point'. Most of the designated code points, about 200,000 of them,
1657 indicate characters, accents or other combining marks that modify
1658 other characters, symbols, whitespace, and control characters. Some
1659 are not characters but indicators that suggest how to format or
1660 display neighboring characters.
1661
1662 @cindex reserved code point
1663 @cindex code point, reserved
1664
1665 If a code point is not a designated code point -- if it has not been
1666 assigned to a character by The Unicode Standard -- it is a 'reserved
1667 code point', meaning that they are reserved for future use. Most of
1668 the code points, about 800,000, are 'reserved code points'.
1669
1670 By convention, a Unicode code point is written as
1671 ``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1672 this convenient notation is not valid code. Guile does not interpret
1673 ``U+XXXX'' as a character.
1674
1675 In Scheme, a character literal is written as @code{#\@var{name}} where
1676 @var{name} is the name of the character that you want. Printable
1677 characters have their usual single character name; for example,
1678 @code{#\a} is a lower case @code{a}.
1679
1680 Some of the code points are 'combining characters' that are not meant
1681 to be printed by themselves but are instead meant to modify the
1682 appearance of the previous character. For combining characters, an
1683 alternate form of the character literal is @code{#\} followed by
1684 U+25CC (a small, dotted circle), followed by the combining character.
1685 This allows the combining character to be drawn on the circle, not on
1686 the backslash of @code{#\}.
1687
1688 Many of the non-printing characters, such as whitespace characters and
1689 control characters, also have names.
1690
1691 The most commonly used non-printing characters are space and
1692 newline. Their character names are @code{#\space} and
1693 @code{#\newline}. There are also names for all of the ``C0 control
1694 characters'' (those with code points below 32). The following table
1695 describes the names for each character.
1696
1697 @multitable @columnfractions .25 .25 .25 .25
1698 @item 0 = @code{#\nul}
1699 @tab 1 = @code{#\soh}
1700 @tab 2 = @code{#\stx}
1701 @tab 3 = @code{#\etx}
1702 @item 4 = @code{#\eot}
1703 @tab 5 = @code{#\enq}
1704 @tab 6 = @code{#\ack}
1705 @tab 7 = @code{#\bel}
1706 @item 8 = @code{#\bs}
1707 @tab 9 = @code{#\ht}
1708 @tab 10 = @code{#\lf}
1709 @tab 11 = @code{#\vt}
1710 @item 12 = @code{#\ff}
1711 @tab 13 = @code{#\cr}
1712 @tab 14 = @code{#\so}
1713 @tab 15 = @code{#\si}
1714 @item 16 = @code{#\dle}
1715 @tab 17 = @code{#\dc1}
1716 @tab 18 = @code{#\dc2}
1717 @tab 19 = @code{#\dc3}
1718 @item 20 = @code{#\dc4}
1719 @tab 21 = @code{#\nak}
1720 @tab 22 = @code{#\syn}
1721 @tab 23 = @code{#\etb}
1722 @item 24 = @code{#\can}
1723 @tab 25 = @code{#\em}
1724 @tab 26 = @code{#\sub}
1725 @tab 27 = @code{#\esc}
1726 @item 28 = @code{#\fs}
1727 @tab 29 = @code{#\gs}
1728 @tab 30 = @code{#\rs}
1729 @tab 31 = @code{#\us}
1730 @item 32 = @code{#\sp}
1731 @end multitable
1732
1733 The ``delete'' character (code point U+007F) may be referred to with the
1734 name @code{#\del}.
1735
1736 One might note that the space character has two names --
1737 @code{#\space} and @code{#\sp} -- as does the newline character.
1738 Several other non-printing characters have more than one name, for the
1739 sake of compatibility with previous versions.
1740
1741 @multitable {@code{#\backspace}} {Preferred}
1742 @item Alternate @tab Standard
1743 @item @code{#\sp} @tab @code{#\space}
1744 @item @code{#\nl} @tab @code{#\newline}
1745 @item @code{#\lf} @tab @code{#\newline}
1746 @item @code{#\tab} @tab @code{#\ht}
1747 @item @code{#\backspace} @tab @code{#\bs}
1748 @item @code{#\return} @tab @code{#\cr}
1749 @item @code{#\page} @tab @code{#\ff}
1750 @item @code{#\np} @tab @code{#\ff}
1751 @item @code{#\null} @tab @code{#\nul}
1752 @end multitable
1753
1754 Characters may also be written using their code point values. They can
1755 be written with as an octal number, such as @code{#\10} for
1756 @code{#\bs} or @code{#\177} for @code{#\del}.
1757
1758 @rnindex char?
1759 @deffn {Scheme Procedure} char? x
1760 @deffnx {C Function} scm_char_p (x)
1761 Return @code{#t} iff @var{x} is a character, else @code{#f}.
1762 @end deffn
1763
1764 Fundamentally, the character comparison operations below are
1765 numeric comparisons of the character's code points.
1766
1767 @rnindex char=?
1768 @deffn {Scheme Procedure} char=? x y
1769 Return @code{#t} iff code point of @var{x} is equal to the code point
1770 of @var{y}, else @code{#f}.
1771 @end deffn
1772
1773 @rnindex char<?
1774 @deffn {Scheme Procedure} char<? x y
1775 Return @code{#t} iff the code point of @var{x} is less than the code
1776 point of @var{y}, else @code{#f}.
1777 @end deffn
1778
1779 @rnindex char<=?
1780 @deffn {Scheme Procedure} char<=? x y
1781 Return @code{#t} iff the code point of @var{x} is less than or equal
1782 to the code point of @var{y}, else @code{#f}.
1783 @end deffn
1784
1785 @rnindex char>?
1786 @deffn {Scheme Procedure} char>? x y
1787 Return @code{#t} iff the code point of @var{x} is greater than the
1788 code point of @var{y}, else @code{#f}.
1789 @end deffn
1790
1791 @rnindex char>=?
1792 @deffn {Scheme Procedure} char>=? x y
1793 Return @code{#t} iff the code point of @var{x} is greater than or
1794 equal to the code point of @var{y}, else @code{#f}.
1795 @end deffn
1796
1797 @cindex case folding
1798
1799 Case-insensitive character comparisons use @emph{Unicode case
1800 folding}. In case folding comparisons, if a character is lowercase
1801 and has an uppercase form that can be expressed as a single character,
1802 it is converted to uppercase before comparison. All other characters
1803 undergo no conversion before the comparison occurs. This includes the
1804 German sharp S (Eszett) which is not uppercased before conversion
1805 because its uppercase form has two characters. Unicode case folding
1806 is language independent: it uses rules that are generally true, but,
1807 it cannot cover all cases for all languages.
1808
1809 @rnindex char-ci=?
1810 @deffn {Scheme Procedure} char-ci=? x y
1811 Return @code{#t} iff the case-folded code point of @var{x} is the same
1812 as the case-folded code point of @var{y}, else @code{#f}.
1813 @end deffn
1814
1815 @rnindex char-ci<?
1816 @deffn {Scheme Procedure} char-ci<? x y
1817 Return @code{#t} iff the case-folded code point of @var{x} is less
1818 than the case-folded code point of @var{y}, else @code{#f}.
1819 @end deffn
1820
1821 @rnindex char-ci<=?
1822 @deffn {Scheme Procedure} char-ci<=? x y
1823 Return @code{#t} iff the case-folded code point of @var{x} is less
1824 than or equal to the case-folded code point of @var{y}, else
1825 @code{#f}.
1826 @end deffn
1827
1828 @rnindex char-ci>?
1829 @deffn {Scheme Procedure} char-ci>? x y
1830 Return @code{#t} iff the case-folded code point of @var{x} is greater
1831 than the case-folded code point of @var{y}, else @code{#f}.
1832 @end deffn
1833
1834 @rnindex char-ci>=?
1835 @deffn {Scheme Procedure} char-ci>=? x y
1836 Return @code{#t} iff the case-folded code point of @var{x} is greater
1837 than or equal to the case-folded code point of @var{y}, else
1838 @code{#f}.
1839 @end deffn
1840
1841 @rnindex char-alphabetic?
1842 @deffn {Scheme Procedure} char-alphabetic? chr
1843 @deffnx {C Function} scm_char_alphabetic_p (chr)
1844 Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
1845 @end deffn
1846
1847 @rnindex char-numeric?
1848 @deffn {Scheme Procedure} char-numeric? chr
1849 @deffnx {C Function} scm_char_numeric_p (chr)
1850 Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
1851 @end deffn
1852
1853 @rnindex char-whitespace?
1854 @deffn {Scheme Procedure} char-whitespace? chr
1855 @deffnx {C Function} scm_char_whitespace_p (chr)
1856 Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
1857 @end deffn
1858
1859 @rnindex char-upper-case?
1860 @deffn {Scheme Procedure} char-upper-case? chr
1861 @deffnx {C Function} scm_char_upper_case_p (chr)
1862 Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
1863 @end deffn
1864
1865 @rnindex char-lower-case?
1866 @deffn {Scheme Procedure} char-lower-case? chr
1867 @deffnx {C Function} scm_char_lower_case_p (chr)
1868 Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
1869 @end deffn
1870
1871 @deffn {Scheme Procedure} char-is-both? chr
1872 @deffnx {C Function} scm_char_is_both_p (chr)
1873 Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
1874 @code{#f}.
1875 @end deffn
1876
1877 @deffn {Scheme Procedure} char-general-category chr
1878 @deffnx {C Function} scm_char_general_category (chr)
1879 Return a symbol giving the two-letter name of the Unicode general
1880 category assigned to @var{chr} or @code{#f} if no named category is
1881 assigned. The following table provides a list of category names along
1882 with their meanings.
1883
1884 @multitable @columnfractions .1 .4 .1 .4
1885 @item Lu
1886 @tab Uppercase letter
1887 @tab Pf
1888 @tab Final quote punctuation
1889 @item Ll
1890 @tab Lowercase letter
1891 @tab Po
1892 @tab Other punctuation
1893 @item Lt
1894 @tab Titlecase letter
1895 @tab Sm
1896 @tab Math symbol
1897 @item Lm
1898 @tab Modifier letter
1899 @tab Sc
1900 @tab Currency symbol
1901 @item Lo
1902 @tab Other letter
1903 @tab Sk
1904 @tab Modifier symbol
1905 @item Mn
1906 @tab Non-spacing mark
1907 @tab So
1908 @tab Other symbol
1909 @item Mc
1910 @tab Combining spacing mark
1911 @tab Zs
1912 @tab Space separator
1913 @item Me
1914 @tab Enclosing mark
1915 @tab Zl
1916 @tab Line separator
1917 @item Nd
1918 @tab Decimal digit number
1919 @tab Zp
1920 @tab Paragraph separator
1921 @item Nl
1922 @tab Letter number
1923 @tab Cc
1924 @tab Control
1925 @item No
1926 @tab Other number
1927 @tab Cf
1928 @tab Format
1929 @item Pc
1930 @tab Connector punctuation
1931 @tab Cs
1932 @tab Surrogate
1933 @item Pd
1934 @tab Dash punctuation
1935 @tab Co
1936 @tab Private use
1937 @item Ps
1938 @tab Open punctuation
1939 @tab Cn
1940 @tab Unassigned
1941 @item Pe
1942 @tab Close punctuation
1943 @tab
1944 @tab
1945 @item Pi
1946 @tab Initial quote punctuation
1947 @tab
1948 @tab
1949 @end multitable
1950 @end deffn
1951
1952 @rnindex char->integer
1953 @deffn {Scheme Procedure} char->integer chr
1954 @deffnx {C Function} scm_char_to_integer (chr)
1955 Return the code point of @var{chr}.
1956 @end deffn
1957
1958 @rnindex integer->char
1959 @deffn {Scheme Procedure} integer->char n
1960 @deffnx {C Function} scm_integer_to_char (n)
1961 Return the character that has code point @var{n}. The integer @var{n}
1962 must be a valid code point. Valid code points are in the ranges 0 to
1963 @code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
1964 @end deffn
1965
1966 @rnindex char-upcase
1967 @deffn {Scheme Procedure} char-upcase chr
1968 @deffnx {C Function} scm_char_upcase (chr)
1969 Return the uppercase character version of @var{chr}.
1970 @end deffn
1971
1972 @rnindex char-downcase
1973 @deffn {Scheme Procedure} char-downcase chr
1974 @deffnx {C Function} scm_char_downcase (chr)
1975 Return the lowercase character version of @var{chr}.
1976 @end deffn
1977
1978 @rnindex char-titlecase
1979 @deffn {Scheme Procedure} char-titlecase chr
1980 @deffnx {C Function} scm_char_titlecase (chr)
1981 Return the titlecase character version of @var{chr} if one exists;
1982 otherwise return the uppercase version.
1983
1984 For most characters these will be the same, but the Unicode Standard
1985 includes certain digraph compatibility characters, such as @code{U+01F3}
1986 ``dz'', for which the uppercase and titlecase characters are different
1987 (@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
1988 respectively).
1989 @end deffn
1990
1991 @node Character Sets
1992 @subsection Character Sets
1993
1994 The features described in this section correspond directly to SRFI-14.
1995
1996 The data type @dfn{charset} implements sets of characters
1997 (@pxref{Characters}). Because the internal representation of
1998 character sets is not visible to the user, a lot of procedures for
1999 handling them are provided.
2000
2001 Character sets can be created, extended, tested for the membership of a
2002 characters and be compared to other character sets.
2003
2004 @menu
2005 * Character Set Predicates/Comparison::
2006 * Iterating Over Character Sets:: Enumerate charset elements.
2007 * Creating Character Sets:: Making new charsets.
2008 * Querying Character Sets:: Test charsets for membership etc.
2009 * Character-Set Algebra:: Calculating new charsets.
2010 * Standard Character Sets:: Variables containing predefined charsets.
2011 @end menu
2012
2013 @node Character Set Predicates/Comparison
2014 @subsubsection Character Set Predicates/Comparison
2015
2016 Use these procedures for testing whether an object is a character set,
2017 or whether several character sets are equal or subsets of each other.
2018 @code{char-set-hash} can be used for calculating a hash value, maybe for
2019 usage in fast lookup procedures.
2020
2021 @deffn {Scheme Procedure} char-set? obj
2022 @deffnx {C Function} scm_char_set_p (obj)
2023 Return @code{#t} if @var{obj} is a character set, @code{#f}
2024 otherwise.
2025 @end deffn
2026
2027 @deffn {Scheme Procedure} char-set= . char_sets
2028 @deffnx {C Function} scm_char_set_eq (char_sets)
2029 Return @code{#t} if all given character sets are equal.
2030 @end deffn
2031
2032 @deffn {Scheme Procedure} char-set<= . char_sets
2033 @deffnx {C Function} scm_char_set_leq (char_sets)
2034 Return @code{#t} if every character set @var{cs}i is a subset
2035 of character set @var{cs}i+1.
2036 @end deffn
2037
2038 @deffn {Scheme Procedure} char-set-hash cs [bound]
2039 @deffnx {C Function} scm_char_set_hash (cs, bound)
2040 Compute a hash value for the character set @var{cs}. If
2041 @var{bound} is given and non-zero, it restricts the
2042 returned value to the range 0 @dots{} @var{bound - 1}.
2043 @end deffn
2044
2045 @c ===================================================================
2046
2047 @node Iterating Over Character Sets
2048 @subsubsection Iterating Over Character Sets
2049
2050 Character set cursors are a means for iterating over the members of a
2051 character sets. After creating a character set cursor with
2052 @code{char-set-cursor}, a cursor can be dereferenced with
2053 @code{char-set-ref}, advanced to the next member with
2054 @code{char-set-cursor-next}. Whether a cursor has passed past the last
2055 element of the set can be checked with @code{end-of-char-set?}.
2056
2057 Additionally, mapping and (un-)folding procedures for character sets are
2058 provided.
2059
2060 @deffn {Scheme Procedure} char-set-cursor cs
2061 @deffnx {C Function} scm_char_set_cursor (cs)
2062 Return a cursor into the character set @var{cs}.
2063 @end deffn
2064
2065 @deffn {Scheme Procedure} char-set-ref cs cursor
2066 @deffnx {C Function} scm_char_set_ref (cs, cursor)
2067 Return the character at the current cursor position
2068 @var{cursor} in the character set @var{cs}. It is an error to
2069 pass a cursor for which @code{end-of-char-set?} returns true.
2070 @end deffn
2071
2072 @deffn {Scheme Procedure} char-set-cursor-next cs cursor
2073 @deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2074 Advance the character set cursor @var{cursor} to the next
2075 character in the character set @var{cs}. It is an error if the
2076 cursor given satisfies @code{end-of-char-set?}.
2077 @end deffn
2078
2079 @deffn {Scheme Procedure} end-of-char-set? cursor
2080 @deffnx {C Function} scm_end_of_char_set_p (cursor)
2081 Return @code{#t} if @var{cursor} has reached the end of a
2082 character set, @code{#f} otherwise.
2083 @end deffn
2084
2085 @deffn {Scheme Procedure} char-set-fold kons knil cs
2086 @deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2087 Fold the procedure @var{kons} over the character set @var{cs},
2088 initializing it with @var{knil}.
2089 @end deffn
2090
2091 @deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2092 @deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2093 This is a fundamental constructor for character sets.
2094 @itemize @bullet
2095 @item @var{g} is used to generate a series of ``seed'' values
2096 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2097 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2098 @item @var{p} tells us when to stop -- when it returns true
2099 when applied to one of the seed values.
2100 @item @var{f} maps each seed value to a character. These
2101 characters are added to the base character set @var{base_cs} to
2102 form the result; @var{base_cs} defaults to the empty set.
2103 @end itemize
2104 @end deffn
2105
2106 @deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2107 @deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2108 This is a fundamental constructor for character sets.
2109 @itemize @bullet
2110 @item @var{g} is used to generate a series of ``seed'' values
2111 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2112 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2113 @item @var{p} tells us when to stop -- when it returns true
2114 when applied to one of the seed values.
2115 @item @var{f} maps each seed value to a character. These
2116 characters are added to the base character set @var{base_cs} to
2117 form the result; @var{base_cs} defaults to the empty set.
2118 @end itemize
2119 @end deffn
2120
2121 @deffn {Scheme Procedure} char-set-for-each proc cs
2122 @deffnx {C Function} scm_char_set_for_each (proc, cs)
2123 Apply @var{proc} to every character in the character set
2124 @var{cs}. The return value is not specified.
2125 @end deffn
2126
2127 @deffn {Scheme Procedure} char-set-map proc cs
2128 @deffnx {C Function} scm_char_set_map (proc, cs)
2129 Map the procedure @var{proc} over every character in @var{cs}.
2130 @var{proc} must be a character -> character procedure.
2131 @end deffn
2132
2133 @c ===================================================================
2134
2135 @node Creating Character Sets
2136 @subsubsection Creating Character Sets
2137
2138 New character sets are produced with these procedures.
2139
2140 @deffn {Scheme Procedure} char-set-copy cs
2141 @deffnx {C Function} scm_char_set_copy (cs)
2142 Return a newly allocated character set containing all
2143 characters in @var{cs}.
2144 @end deffn
2145
2146 @deffn {Scheme Procedure} char-set . rest
2147 @deffnx {C Function} scm_char_set (rest)
2148 Return a character set containing all given characters.
2149 @end deffn
2150
2151 @deffn {Scheme Procedure} list->char-set list [base_cs]
2152 @deffnx {C Function} scm_list_to_char_set (list, base_cs)
2153 Convert the character list @var{list} to a character set. If
2154 the character set @var{base_cs} is given, the character in this
2155 set are also included in the result.
2156 @end deffn
2157
2158 @deffn {Scheme Procedure} list->char-set! list base_cs
2159 @deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2160 Convert the character list @var{list} to a character set. The
2161 characters are added to @var{base_cs} and @var{base_cs} is
2162 returned.
2163 @end deffn
2164
2165 @deffn {Scheme Procedure} string->char-set str [base_cs]
2166 @deffnx {C Function} scm_string_to_char_set (str, base_cs)
2167 Convert the string @var{str} to a character set. If the
2168 character set @var{base_cs} is given, the characters in this
2169 set are also included in the result.
2170 @end deffn
2171
2172 @deffn {Scheme Procedure} string->char-set! str base_cs
2173 @deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2174 Convert the string @var{str} to a character set. The
2175 characters from the string are added to @var{base_cs}, and
2176 @var{base_cs} is returned.
2177 @end deffn
2178
2179 @deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2180 @deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2181 Return a character set containing every character from @var{cs}
2182 so that it satisfies @var{pred}. If provided, the characters
2183 from @var{base_cs} are added to the result.
2184 @end deffn
2185
2186 @deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2187 @deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2188 Return a character set containing every character from @var{cs}
2189 so that it satisfies @var{pred}. The characters are added to
2190 @var{base_cs} and @var{base_cs} is returned.
2191 @end deffn
2192
2193 @deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2194 @deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2195 Return a character set containing all characters whose
2196 character codes lie in the half-open range
2197 [@var{lower},@var{upper}).
2198
2199 If @var{error} is a true value, an error is signalled if the
2200 specified range contains characters which are not contained in
2201 the implemented character range. If @var{error} is @code{#f},
2202 these characters are silently left out of the resulting
2203 character set.
2204
2205 The characters in @var{base_cs} are added to the result, if
2206 given.
2207 @end deffn
2208
2209 @deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2210 @deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2211 Return a character set containing all characters whose
2212 character codes lie in the half-open range
2213 [@var{lower},@var{upper}).
2214
2215 If @var{error} is a true value, an error is signalled if the
2216 specified range contains characters which are not contained in
2217 the implemented character range. If @var{error} is @code{#f},
2218 these characters are silently left out of the resulting
2219 character set.
2220
2221 The characters are added to @var{base_cs} and @var{base_cs} is
2222 returned.
2223 @end deffn
2224
2225 @deffn {Scheme Procedure} ->char-set x
2226 @deffnx {C Function} scm_to_char_set (x)
2227 Coerces x into a char-set. @var{x} may be a string, character or
2228 char-set. A string is converted to the set of its constituent
2229 characters; a character is converted to a singleton set; a char-set is
2230 returned as-is.
2231 @end deffn
2232
2233 @c ===================================================================
2234
2235 @node Querying Character Sets
2236 @subsubsection Querying Character Sets
2237
2238 Access the elements and other information of a character set with these
2239 procedures.
2240
2241 @deffn {Scheme Procedure} %char-set-dump cs
2242 Returns an association list containing debugging information
2243 for @var{cs}. The association list has the following entries.
2244 @table @code
2245 @item char-set
2246 The char-set itself
2247 @item len
2248 The number of groups of contiguous code points the char-set
2249 contains
2250 @item ranges
2251 A list of lists where each sublist is a range of code points
2252 and their associated characters
2253 @end table
2254 The return value of this function cannot be relied upon to be
2255 consistent between versions of Guile and should not be used in code.
2256 @end deffn
2257
2258 @deffn {Scheme Procedure} char-set-size cs
2259 @deffnx {C Function} scm_char_set_size (cs)
2260 Return the number of elements in character set @var{cs}.
2261 @end deffn
2262
2263 @deffn {Scheme Procedure} char-set-count pred cs
2264 @deffnx {C Function} scm_char_set_count (pred, cs)
2265 Return the number of the elements int the character set
2266 @var{cs} which satisfy the predicate @var{pred}.
2267 @end deffn
2268
2269 @deffn {Scheme Procedure} char-set->list cs
2270 @deffnx {C Function} scm_char_set_to_list (cs)
2271 Return a list containing the elements of the character set
2272 @var{cs}.
2273 @end deffn
2274
2275 @deffn {Scheme Procedure} char-set->string cs
2276 @deffnx {C Function} scm_char_set_to_string (cs)
2277 Return a string containing the elements of the character set
2278 @var{cs}. The order in which the characters are placed in the
2279 string is not defined.
2280 @end deffn
2281
2282 @deffn {Scheme Procedure} char-set-contains? cs ch
2283 @deffnx {C Function} scm_char_set_contains_p (cs, ch)
2284 Return @code{#t} iff the character @var{ch} is contained in the
2285 character set @var{cs}.
2286 @end deffn
2287
2288 @deffn {Scheme Procedure} char-set-every pred cs
2289 @deffnx {C Function} scm_char_set_every (pred, cs)
2290 Return a true value if every character in the character set
2291 @var{cs} satisfies the predicate @var{pred}.
2292 @end deffn
2293
2294 @deffn {Scheme Procedure} char-set-any pred cs
2295 @deffnx {C Function} scm_char_set_any (pred, cs)
2296 Return a true value if any character in the character set
2297 @var{cs} satisfies the predicate @var{pred}.
2298 @end deffn
2299
2300 @c ===================================================================
2301
2302 @node Character-Set Algebra
2303 @subsubsection Character-Set Algebra
2304
2305 Character sets can be manipulated with the common set algebra operation,
2306 such as union, complement, intersection etc. All of these procedures
2307 provide side-effecting variants, which modify their character set
2308 argument(s).
2309
2310 @deffn {Scheme Procedure} char-set-adjoin cs . rest
2311 @deffnx {C Function} scm_char_set_adjoin (cs, rest)
2312 Add all character arguments to the first argument, which must
2313 be a character set.
2314 @end deffn
2315
2316 @deffn {Scheme Procedure} char-set-delete cs . rest
2317 @deffnx {C Function} scm_char_set_delete (cs, rest)
2318 Delete all character arguments from the first argument, which
2319 must be a character set.
2320 @end deffn
2321
2322 @deffn {Scheme Procedure} char-set-adjoin! cs . rest
2323 @deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
2324 Add all character arguments to the first argument, which must
2325 be a character set.
2326 @end deffn
2327
2328 @deffn {Scheme Procedure} char-set-delete! cs . rest
2329 @deffnx {C Function} scm_char_set_delete_x (cs, rest)
2330 Delete all character arguments from the first argument, which
2331 must be a character set.
2332 @end deffn
2333
2334 @deffn {Scheme Procedure} char-set-complement cs
2335 @deffnx {C Function} scm_char_set_complement (cs)
2336 Return the complement of the character set @var{cs}.
2337 @end deffn
2338
2339 Note that the complement of a character set is likely to contain many
2340 reserved code points (code points that are not associated with
2341 characters). It may be helpful to modify the output of
2342 @code{char-set-complement} by computing its intersection with the set
2343 of designated code points, @code{char-set:designated}.
2344
2345 @deffn {Scheme Procedure} char-set-union . rest
2346 @deffnx {C Function} scm_char_set_union (rest)
2347 Return the union of all argument character sets.
2348 @end deffn
2349
2350 @deffn {Scheme Procedure} char-set-intersection . rest
2351 @deffnx {C Function} scm_char_set_intersection (rest)
2352 Return the intersection of all argument character sets.
2353 @end deffn
2354
2355 @deffn {Scheme Procedure} char-set-difference cs1 . rest
2356 @deffnx {C Function} scm_char_set_difference (cs1, rest)
2357 Return the difference of all argument character sets.
2358 @end deffn
2359
2360 @deffn {Scheme Procedure} char-set-xor . rest
2361 @deffnx {C Function} scm_char_set_xor (rest)
2362 Return the exclusive-or of all argument character sets.
2363 @end deffn
2364
2365 @deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
2366 @deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
2367 Return the difference and the intersection of all argument
2368 character sets.
2369 @end deffn
2370
2371 @deffn {Scheme Procedure} char-set-complement! cs
2372 @deffnx {C Function} scm_char_set_complement_x (cs)
2373 Return the complement of the character set @var{cs}.
2374 @end deffn
2375
2376 @deffn {Scheme Procedure} char-set-union! cs1 . rest
2377 @deffnx {C Function} scm_char_set_union_x (cs1, rest)
2378 Return the union of all argument character sets.
2379 @end deffn
2380
2381 @deffn {Scheme Procedure} char-set-intersection! cs1 . rest
2382 @deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
2383 Return the intersection of all argument character sets.
2384 @end deffn
2385
2386 @deffn {Scheme Procedure} char-set-difference! cs1 . rest
2387 @deffnx {C Function} scm_char_set_difference_x (cs1, rest)
2388 Return the difference of all argument character sets.
2389 @end deffn
2390
2391 @deffn {Scheme Procedure} char-set-xor! cs1 . rest
2392 @deffnx {C Function} scm_char_set_xor_x (cs1, rest)
2393 Return the exclusive-or of all argument character sets.
2394 @end deffn
2395
2396 @deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
2397 @deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
2398 Return the difference and the intersection of all argument
2399 character sets.
2400 @end deffn
2401
2402 @c ===================================================================
2403
2404 @node Standard Character Sets
2405 @subsubsection Standard Character Sets
2406
2407 In order to make the use of the character set data type and procedures
2408 useful, several predefined character set variables exist.
2409
2410 @cindex codeset
2411 @cindex charset
2412 @cindex locale
2413
2414 These character sets are locale independent and are not recomputed
2415 upon a @code{setlocale} call. They contain characters from the whole
2416 range of Unicode code points. For instance, @code{char-set:letter}
2417 contains about 94,000 characters.
2418
2419 @defvr {Scheme Variable} char-set:lower-case
2420 @defvrx {C Variable} scm_char_set_lower_case
2421 All lower-case characters.
2422 @end defvr
2423
2424 @defvr {Scheme Variable} char-set:upper-case
2425 @defvrx {C Variable} scm_char_set_upper_case
2426 All upper-case characters.
2427 @end defvr
2428
2429 @defvr {Scheme Variable} char-set:title-case
2430 @defvrx {C Variable} scm_char_set_title_case
2431 All single characters that function as if they were an upper-case
2432 letter followed by a lower-case letter.
2433 @end defvr
2434
2435 @defvr {Scheme Variable} char-set:letter
2436 @defvrx {C Variable} scm_char_set_letter
2437 All letters. This includes @code{char-set:lower-case},
2438 @code{char-set:upper-case}, @code{char-set:title-case}, and many
2439 letters that have no case at all. For example, Chinese and Japanese
2440 characters typically have no concept of case.
2441 @end defvr
2442
2443 @defvr {Scheme Variable} char-set:digit
2444 @defvrx {C Variable} scm_char_set_digit
2445 All digits.
2446 @end defvr
2447
2448 @defvr {Scheme Variable} char-set:letter+digit
2449 @defvrx {C Variable} scm_char_set_letter_and_digit
2450 The union of @code{char-set:letter} and @code{char-set:digit}.
2451 @end defvr
2452
2453 @defvr {Scheme Variable} char-set:graphic
2454 @defvrx {C Variable} scm_char_set_graphic
2455 All characters which would put ink on the paper.
2456 @end defvr
2457
2458 @defvr {Scheme Variable} char-set:printing
2459 @defvrx {C Variable} scm_char_set_printing
2460 The union of @code{char-set:graphic} and @code{char-set:whitespace}.
2461 @end defvr
2462
2463 @defvr {Scheme Variable} char-set:whitespace
2464 @defvrx {C Variable} scm_char_set_whitespace
2465 All whitespace characters.
2466 @end defvr
2467
2468 @defvr {Scheme Variable} char-set:blank
2469 @defvrx {C Variable} scm_char_set_blank
2470 All horizontal whitespace characters, which notably includes
2471 @code{#\space} and @code{#\tab}.
2472 @end defvr
2473
2474 @defvr {Scheme Variable} char-set:iso-control
2475 @defvrx {C Variable} scm_char_set_iso_control
2476 The ISO control characters are the C0 control characters (U+0000 to
2477 U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2478 U+009F).
2479 @end defvr
2480
2481 @defvr {Scheme Variable} char-set:punctuation
2482 @defvrx {C Variable} scm_char_set_punctuation
2483 All punctuation characters, such as the characters
2484 @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
2485 @end defvr
2486
2487 @defvr {Scheme Variable} char-set:symbol
2488 @defvrx {C Variable} scm_char_set_symbol
2489 All symbol characters, such as the characters @code{$+<=>^`|~}.
2490 @end defvr
2491
2492 @defvr {Scheme Variable} char-set:hex-digit
2493 @defvrx {C Variable} scm_char_set_hex_digit
2494 The hexadecimal digits @code{0123456789abcdefABCDEF}.
2495 @end defvr
2496
2497 @defvr {Scheme Variable} char-set:ascii
2498 @defvrx {C Variable} scm_char_set_ascii
2499 All ASCII characters.
2500 @end defvr
2501
2502 @defvr {Scheme Variable} char-set:empty
2503 @defvrx {C Variable} scm_char_set_empty
2504 The empty character set.
2505 @end defvr
2506
2507 @defvr {Scheme Variable} char-set:designated
2508 @defvrx {C Variable} scm_char_set_designated
2509 This character set contains all designated code points. This includes
2510 all the code points to which Unicode has assigned a character or other
2511 meaning.
2512 @end defvr
2513
2514 @defvr {Scheme Variable} char-set:full
2515 @defvrx {C Variable} scm_char_set_full
2516 This character set contains all possible code points. This includes
2517 both designated and reserved code points.
2518 @end defvr
2519
2520 @node Strings
2521 @subsection Strings
2522 @tpindex Strings
2523
2524 Strings are fixed-length sequences of characters. They can be created
2525 by calling constructor procedures, but they can also literally get
2526 entered at the @acronym{REPL} or in Scheme source files.
2527
2528 @c Guile provides a rich set of string processing procedures, because text
2529 @c handling is very important when Guile is used as a scripting language.
2530
2531 Strings always carry the information about how many characters they are
2532 composed of with them, so there is no special end-of-string character,
2533 like in C. That means that Scheme strings can contain any character,
2534 even the @samp{#\nul} character @samp{\0}.
2535
2536 To use strings efficiently, you need to know a bit about how Guile
2537 implements them. In Guile, a string consists of two parts, a head and
2538 the actual memory where the characters are stored. When a string (or
2539 a substring of it) is copied, only a new head gets created, the memory
2540 is usually not copied. The two heads start out pointing to the same
2541 memory.
2542
2543 When one of these two strings is modified, as with @code{string-set!},
2544 their common memory does get copied so that each string has its own
2545 memory and modifying one does not accidentally modify the other as well.
2546 Thus, Guile's strings are `copy on write'; the actual copying of their
2547 memory is delayed until one string is written to.
2548
2549 This implementation makes functions like @code{substring} very
2550 efficient in the common case that no modifications are done to the
2551 involved strings.
2552
2553 If you do know that your strings are getting modified right away, you
2554 can use @code{substring/copy} instead of @code{substring}. This
2555 function performs the copy immediately at the time of creation. This
2556 is more efficient, especially in a multi-threaded program. Also,
2557 @code{substring/copy} can avoid the problem that a short substring
2558 holds on to the memory of a very large original string that could
2559 otherwise be recycled.
2560
2561 If you want to avoid the copy altogether, so that modifications of one
2562 string show up in the other, you can use @code{substring/shared}. The
2563 strings created by this procedure are called @dfn{mutation sharing
2564 substrings} since the substring and the original string share
2565 modifications to each other.
2566
2567 If you want to prevent modifications, use @code{substring/read-only}.
2568
2569 Guile provides all procedures of SRFI-13 and a few more.
2570
2571 @menu
2572 * String Syntax:: Read syntax for strings.
2573 * String Predicates:: Testing strings for certain properties.
2574 * String Constructors:: Creating new string objects.
2575 * List/String Conversion:: Converting from/to lists of characters.
2576 * String Selection:: Select portions from strings.
2577 * String Modification:: Modify parts or whole strings.
2578 * String Comparison:: Lexicographic ordering predicates.
2579 * String Searching:: Searching in strings.
2580 * Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2581 * Reversing and Appending Strings:: Appending strings to form a new string.
2582 * Mapping Folding and Unfolding:: Iterating over strings.
2583 * Miscellaneous String Operations:: Replicating, insertion, parsing, ...
2584 * Conversion to/from C::
2585 @end menu
2586
2587 @node String Syntax
2588 @subsubsection String Read Syntax
2589
2590 @c In the following @code is used to get a good font in TeX etc, but
2591 @c is omitted for Info format, so as not to risk any confusion over
2592 @c whether surrounding ` ' quotes are part of the escape or are
2593 @c special in a string (they're not).
2594
2595 The read syntax for strings is an arbitrarily long sequence of
2596 characters enclosed in double quotes (@nicode{"}).
2597
2598 Backslash is an escape character and can be used to insert the
2599 following special characters. @nicode{\"} and @nicode{\\} are R5RS
2600 standard, the rest are Guile extensions, notice they follow C string
2601 syntax.
2602
2603 @table @asis
2604 @item @nicode{\\}
2605 Backslash character.
2606
2607 @item @nicode{\"}
2608 Double quote character (an unescaped @nicode{"} is otherwise the end
2609 of the string).
2610
2611 @item @nicode{\0}
2612 NUL character (ASCII 0).
2613
2614 @item @nicode{\a}
2615 Bell character (ASCII 7).
2616
2617 @item @nicode{\f}
2618 Formfeed character (ASCII 12).
2619
2620 @item @nicode{\n}
2621 Newline character (ASCII 10).
2622
2623 @item @nicode{\r}
2624 Carriage return character (ASCII 13).
2625
2626 @item @nicode{\t}
2627 Tab character (ASCII 9).
2628
2629 @item @nicode{\v}
2630 Vertical tab character (ASCII 11).
2631
2632 @item @nicode{\xHH}
2633 Character code given by two hexadecimal digits. For example
2634 @nicode{\x7f} for an ASCII DEL (127).
2635
2636 @item @nicode{\uHHHH}
2637 Character code given by four hexadecimal digits. For example
2638 @nicode{\u0100} for a capital A with macron (U+0100).
2639
2640 @item @nicode{\UHHHHHH}
2641 Character code given by six hexadecimal digits. For example
2642 @nicode{\U010402}.
2643 @end table
2644
2645 @noindent
2646 The following are examples of string literals:
2647
2648 @lisp
2649 "foo"
2650 "bar plonk"
2651 "Hello World"
2652 "\"Hi\", he said."
2653 @end lisp
2654
2655
2656 @node String Predicates
2657 @subsubsection String Predicates
2658
2659 The following procedures can be used to check whether a given string
2660 fulfills some specified property.
2661
2662 @rnindex string?
2663 @deffn {Scheme Procedure} string? obj
2664 @deffnx {C Function} scm_string_p (obj)
2665 Return @code{#t} if @var{obj} is a string, else @code{#f}.
2666 @end deffn
2667
2668 @deftypefn {C Function} int scm_is_string (SCM obj)
2669 Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
2670 @end deftypefn
2671
2672 @deffn {Scheme Procedure} string-null? str
2673 @deffnx {C Function} scm_string_null_p (str)
2674 Return @code{#t} if @var{str}'s length is zero, and
2675 @code{#f} otherwise.
2676 @lisp
2677 (string-null? "") @result{} #t
2678 y @result{} "foo"
2679 (string-null? y) @result{} #f
2680 @end lisp
2681 @end deffn
2682
2683 @deffn {Scheme Procedure} string-any char_pred s [start [end]]
2684 @deffnx {C Function} scm_string_any (char_pred, s, start, end)
2685 Check if @var{char_pred} is true for any character in string @var{s}.
2686
2687 @var{char_pred} can be a character to check for any equal to that, or
2688 a character set (@pxref{Character Sets}) to check for any in that set,
2689 or a predicate procedure to call.
2690
2691 For a procedure, calls @code{(@var{char_pred} c)} are made
2692 successively on the characters from @var{start} to @var{end}. If
2693 @var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
2694 stops and that return value is the return from @code{string-any}. The
2695 call on the last character (ie.@: at @math{@var{end}-1}), if that
2696 point is reached, is a tail call.
2697
2698 If there are no characters in @var{s} (ie.@: @var{start} equals
2699 @var{end}) then the return is @code{#f}.
2700 @end deffn
2701
2702 @deffn {Scheme Procedure} string-every char_pred s [start [end]]
2703 @deffnx {C Function} scm_string_every (char_pred, s, start, end)
2704 Check if @var{char_pred} is true for every character in string
2705 @var{s}.
2706
2707 @var{char_pred} can be a character to check for every character equal
2708 to that, or a character set (@pxref{Character Sets}) to check for
2709 every character being in that set, or a predicate procedure to call.
2710
2711 For a procedure, calls @code{(@var{char_pred} c)} are made
2712 successively on the characters from @var{start} to @var{end}. If
2713 @var{char_pred} returns @code{#f}, @code{string-every} stops and
2714 returns @code{#f}. The call on the last character (ie.@: at
2715 @math{@var{end}-1}), if that point is reached, is a tail call and the
2716 return from that call is the return from @code{string-every}.
2717
2718 If there are no characters in @var{s} (ie.@: @var{start} equals
2719 @var{end}) then the return is @code{#t}.
2720 @end deffn
2721
2722 @node String Constructors
2723 @subsubsection String Constructors
2724
2725 The string constructor procedures create new string objects, possibly
2726 initializing them with some specified character data. See also
2727 @xref{String Selection}, for ways to create strings from existing
2728 strings.
2729
2730 @c FIXME::martin: list->string belongs into `List/String Conversion'
2731
2732 @deffn {Scheme Procedure} string char@dots{}
2733 @rnindex string
2734 Return a newly allocated string made from the given character
2735 arguments.
2736
2737 @example
2738 (string #\x #\y #\z) @result{} "xyz"
2739 (string) @result{} ""
2740 @end example
2741 @end deffn
2742
2743 @deffn {Scheme Procedure} list->string lst
2744 @deffnx {C Function} scm_string (lst)
2745 @rnindex list->string
2746 Return a newly allocated string made from a list of characters.
2747
2748 @example
2749 (list->string '(#\a #\b #\c)) @result{} "abc"
2750 @end example
2751 @end deffn
2752
2753 @deffn {Scheme Procedure} reverse-list->string lst
2754 @deffnx {C Function} scm_reverse_list_to_string (lst)
2755 Return a newly allocated string made from a list of characters, in
2756 reverse order.
2757
2758 @example
2759 (reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
2760 @end example
2761 @end deffn
2762
2763 @rnindex make-string
2764 @deffn {Scheme Procedure} make-string k [chr]
2765 @deffnx {C Function} scm_make_string (k, chr)
2766 Return a newly allocated string of
2767 length @var{k}. If @var{chr} is given, then all elements of
2768 the string are initialized to @var{chr}, otherwise the contents
2769 of the @var{string} are unspecified.
2770 @end deffn
2771
2772 @deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
2773 Like @code{scm_make_string}, but expects the length as a
2774 @code{size_t}.
2775 @end deftypefn
2776
2777 @deffn {Scheme Procedure} string-tabulate proc len
2778 @deffnx {C Function} scm_string_tabulate (proc, len)
2779 @var{proc} is an integer->char procedure. Construct a string
2780 of size @var{len} by applying @var{proc} to each index to
2781 produce the corresponding string element. The order in which
2782 @var{proc} is applied to the indices is not specified.
2783 @end deffn
2784
2785 @deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
2786 @deffnx {C Function} scm_string_join (ls, delimiter, grammar)
2787 Append the string in the string list @var{ls}, using the string
2788 @var{delim} as a delimiter between the elements of @var{ls}.
2789 @var{grammar} is a symbol which specifies how the delimiter is
2790 placed between the strings, and defaults to the symbol
2791 @code{infix}.
2792
2793 @table @code
2794 @item infix
2795 Insert the separator between list elements. An empty string
2796 will produce an empty list.
2797 @item string-infix
2798 Like @code{infix}, but will raise an error if given the empty
2799 list.
2800 @item suffix
2801 Insert the separator after every list element.
2802 @item prefix
2803 Insert the separator before each list element.
2804 @end table
2805 @end deffn
2806
2807 @node List/String Conversion
2808 @subsubsection List/String conversion
2809
2810 When processing strings, it is often convenient to first convert them
2811 into a list representation by using the procedure @code{string->list},
2812 work with the resulting list, and then convert it back into a string.
2813 These procedures are useful for similar tasks.
2814
2815 @rnindex string->list
2816 @deffn {Scheme Procedure} string->list str [start [end]]
2817 @deffnx {C Function} scm_substring_to_list (str, start, end)
2818 @deffnx {C Function} scm_string_to_list (str)
2819 Convert the string @var{str} into a list of characters.
2820 @end deffn
2821
2822 @deffn {Scheme Procedure} string-split str chr
2823 @deffnx {C Function} scm_string_split (str, chr)
2824 Split the string @var{str} into the a list of the substrings delimited
2825 by appearances of the character @var{chr}. Note that an empty substring
2826 between separator characters will result in an empty string in the
2827 result list.
2828
2829 @lisp
2830 (string-split "root:x:0:0:root:/root:/bin/bash" #\:)
2831 @result{}
2832 ("root" "x" "0" "0" "root" "/root" "/bin/bash")
2833
2834 (string-split "::" #\:)
2835 @result{}
2836 ("" "" "")
2837
2838 (string-split "" #\:)
2839 @result{}
2840 ("")
2841 @end lisp
2842 @end deffn
2843
2844
2845 @node String Selection
2846 @subsubsection String Selection
2847
2848 Portions of strings can be extracted by these procedures.
2849 @code{string-ref} delivers individual characters whereas
2850 @code{substring} can be used to extract substrings from longer strings.
2851
2852 @rnindex string-length
2853 @deffn {Scheme Procedure} string-length string
2854 @deffnx {C Function} scm_string_length (string)
2855 Return the number of characters in @var{string}.
2856 @end deffn
2857
2858 @deftypefn {C Function} size_t scm_c_string_length (SCM str)
2859 Return the number of characters in @var{str} as a @code{size_t}.
2860 @end deftypefn
2861
2862 @rnindex string-ref
2863 @deffn {Scheme Procedure} string-ref str k
2864 @deffnx {C Function} scm_string_ref (str, k)
2865 Return character @var{k} of @var{str} using zero-origin
2866 indexing. @var{k} must be a valid index of @var{str}.
2867 @end deffn
2868
2869 @deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
2870 Return character @var{k} of @var{str} using zero-origin
2871 indexing. @var{k} must be a valid index of @var{str}.
2872 @end deftypefn
2873
2874 @rnindex string-copy
2875 @deffn {Scheme Procedure} string-copy str [start [end]]
2876 @deffnx {C Function} scm_substring_copy (str, start, end)
2877 @deffnx {C Function} scm_string_copy (str)
2878 Return a copy of the given string @var{str}.
2879
2880 The returned string shares storage with @var{str} initially, but it is
2881 copied as soon as one of the two strings is modified.
2882 @end deffn
2883
2884 @rnindex substring
2885 @deffn {Scheme Procedure} substring str start [end]
2886 @deffnx {C Function} scm_substring (str, start, end)
2887 Return a new string formed from the characters
2888 of @var{str} beginning with index @var{start} (inclusive) and
2889 ending with index @var{end} (exclusive).
2890 @var{str} must be a string, @var{start} and @var{end} must be
2891 exact integers satisfying:
2892
2893 0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
2894
2895 The returned string shares storage with @var{str} initially, but it is
2896 copied as soon as one of the two strings is modified.
2897 @end deffn
2898
2899 @deffn {Scheme Procedure} substring/shared str start [end]
2900 @deffnx {C Function} scm_substring_shared (str, start, end)
2901 Like @code{substring}, but the strings continue to share their storage
2902 even if they are modified. Thus, modifications to @var{str} show up
2903 in the new string, and vice versa.
2904 @end deffn
2905
2906 @deffn {Scheme Procedure} substring/copy str start [end]
2907 @deffnx {C Function} scm_substring_copy (str, start, end)
2908 Like @code{substring}, but the storage for the new string is copied
2909 immediately.
2910 @end deffn
2911
2912 @deffn {Scheme Procedure} substring/read-only str start [end]
2913 @deffnx {C Function} scm_substring_read_only (str, start, end)
2914 Like @code{substring}, but the resulting string can not be modified.
2915 @end deffn
2916
2917 @deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
2918 @deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
2919 @deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
2920 @deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
2921 Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
2922 @end deftypefn
2923
2924 @deffn {Scheme Procedure} string-take s n
2925 @deffnx {C Function} scm_string_take (s, n)
2926 Return the @var{n} first characters of @var{s}.
2927 @end deffn
2928
2929 @deffn {Scheme Procedure} string-drop s n
2930 @deffnx {C Function} scm_string_drop (s, n)
2931 Return all but the first @var{n} characters of @var{s}.
2932 @end deffn
2933
2934 @deffn {Scheme Procedure} string-take-right s n
2935 @deffnx {C Function} scm_string_take_right (s, n)
2936 Return the @var{n} last characters of @var{s}.
2937 @end deffn
2938
2939 @deffn {Scheme Procedure} string-drop-right s n
2940 @deffnx {C Function} scm_string_drop_right (s, n)
2941 Return all but the last @var{n} characters of @var{s}.
2942 @end deffn
2943
2944 @deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
2945 @deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
2946 @deffnx {C Function} scm_string_pad (s, len, chr, start, end)
2947 @deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
2948 Take characters @var{start} to @var{end} from the string @var{s} and
2949 either pad with @var{char} or truncate them to give @var{len}
2950 characters.
2951
2952 @code{string-pad} pads or truncates on the left, so for example
2953
2954 @example
2955 (string-pad "x" 3) @result{} " x"
2956 (string-pad "abcde" 3) @result{} "cde"
2957 @end example
2958
2959 @code{string-pad-right} pads or truncates on the right, so for example
2960
2961 @example
2962 (string-pad-right "x" 3) @result{} "x "
2963 (string-pad-right "abcde" 3) @result{} "abc"
2964 @end example
2965 @end deffn
2966
2967 @deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
2968 @deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
2969 @deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
2970 @deffnx {C Function} scm_string_trim (s, char_pred, start, end)
2971 @deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
2972 @deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
2973 Trim occurrences of @var{char_pred} from the ends of @var{s}.
2974
2975 @code{string-trim} trims @var{char_pred} characters from the left
2976 (start) of the string, @code{string-trim-right} trims them from the
2977 right (end) of the string, @code{string-trim-both} trims from both
2978 ends.
2979
2980 @var{char_pred} can be a character, a character set, or a predicate
2981 procedure to call on each character. If @var{char_pred} is not given
2982 the default is whitespace as per @code{char-set:whitespace}
2983 (@pxref{Standard Character Sets}).
2984
2985 @example
2986 (string-trim " x ") @result{} "x "
2987 (string-trim-right "banana" #\a) @result{} "banan"
2988 (string-trim-both ".,xy:;" char-set:punctuation)
2989 @result{} "xy"
2990 (string-trim-both "xyzzy" (lambda (c)
2991 (or (eqv? c #\x)
2992 (eqv? c #\y))))
2993 @result{} "zz"
2994 @end example
2995 @end deffn
2996
2997 @node String Modification
2998 @subsubsection String Modification
2999
3000 These procedures are for modifying strings in-place. This means that the
3001 result of the operation is not a new string; instead, the original string's
3002 memory representation is modified.
3003
3004 @rnindex string-set!
3005 @deffn {Scheme Procedure} string-set! str k chr
3006 @deffnx {C Function} scm_string_set_x (str, k, chr)
3007 Store @var{chr} in element @var{k} of @var{str} and return
3008 an unspecified value. @var{k} must be a valid index of
3009 @var{str}.
3010 @end deffn
3011
3012 @deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3013 Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3014 @end deftypefn
3015
3016 @rnindex string-fill!
3017 @deffn {Scheme Procedure} string-fill! str chr [start [end]]
3018 @deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
3019 @deffnx {C Function} scm_string_fill_x (str, chr)
3020 Stores @var{chr} in every element of the given @var{str} and
3021 returns an unspecified value.
3022 @end deffn
3023
3024 @deffn {Scheme Procedure} substring-fill! str start end fill
3025 @deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3026 Change every character in @var{str} between @var{start} and
3027 @var{end} to @var{fill}.
3028
3029 @lisp
3030 (define y "abcdefg")
3031 (substring-fill! y 1 3 #\r)
3032 y
3033 @result{} "arrdefg"
3034 @end lisp
3035 @end deffn
3036
3037 @deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3038 @deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3039 Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3040 into @var{str2} beginning at position @var{start2}.
3041 @var{str1} and @var{str2} can be the same string.
3042 @end deffn
3043
3044 @deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3045 @deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3046 Copy the sequence of characters from index range [@var{start},
3047 @var{end}) in string @var{s} to string @var{target}, beginning
3048 at index @var{tstart}. The characters are copied left-to-right
3049 or right-to-left as needed -- the copy is guaranteed to work,
3050 even if @var{target} and @var{s} are the same string. It is an
3051 error if the copy operation runs off the end of the target
3052 string.
3053 @end deffn
3054
3055
3056 @node String Comparison
3057 @subsubsection String Comparison
3058
3059 The procedures in this section are similar to the character ordering
3060 predicates (@pxref{Characters}), but are defined on character sequences.
3061
3062 The first set is specified in R5RS and has names that end in @code{?}.
3063 The second set is specified in SRFI-13 and the names have not ending
3064 @code{?}.
3065
3066 The predicates ending in @code{-ci} ignore the character case
3067 when comparing strings. For now, case-insensitive comparison is done
3068 using the R5RS rules, where every lower-case character that has a
3069 single character upper-case form is converted to uppercase before
3070 comparison. See @xref{Text Collation, the @code{(ice-9
3071 i18n)} module}, for locale-dependent string comparison.
3072
3073 @rnindex string=?
3074 @deffn {Scheme Procedure} string=? [s1 [s2 . rest]]
3075 @deffnx {C Function} scm_i_string_equal_p (s1, s2, rest)
3076 Lexicographic equality predicate; return @code{#t} if the two
3077 strings are the same length and contain the same characters in
3078 the same positions, otherwise return @code{#f}.
3079
3080 The procedure @code{string-ci=?} treats upper and lower case
3081 letters as though they were the same character, but
3082 @code{string=?} treats upper and lower case as distinct
3083 characters.
3084 @end deffn
3085
3086 @rnindex string<?
3087 @deffn {Scheme Procedure} string<? [s1 [s2 . rest]]
3088 @deffnx {C Function} scm_i_string_less_p (s1, s2, rest)
3089 Lexicographic ordering predicate; return @code{#t} if @var{s1}
3090 is lexicographically less than @var{s2}.
3091 @end deffn
3092
3093 @rnindex string<=?
3094 @deffn {Scheme Procedure} string<=? [s1 [s2 . rest]]
3095 @deffnx {C Function} scm_i_string_leq_p (s1, s2, rest)
3096 Lexicographic ordering predicate; return @code{#t} if @var{s1}
3097 is lexicographically less than or equal to @var{s2}.
3098 @end deffn
3099
3100 @rnindex string>?
3101 @deffn {Scheme Procedure} string>? [s1 [s2 . rest]]
3102 @deffnx {C Function} scm_i_string_gr_p (s1, s2, rest)
3103 Lexicographic ordering predicate; return @code{#t} if @var{s1}
3104 is lexicographically greater than @var{s2}.
3105 @end deffn
3106
3107 @rnindex string>=?
3108 @deffn {Scheme Procedure} string>=? [s1 [s2 . rest]]
3109 @deffnx {C Function} scm_i_string_geq_p (s1, s2, rest)
3110 Lexicographic ordering predicate; return @code{#t} if @var{s1}
3111 is lexicographically greater than or equal to @var{s2}.
3112 @end deffn
3113
3114 @rnindex string-ci=?
3115 @deffn {Scheme Procedure} string-ci=? [s1 [s2 . rest]]
3116 @deffnx {C Function} scm_i_string_ci_equal_p (s1, s2, rest)
3117 Case-insensitive string equality predicate; return @code{#t} if
3118 the two strings are the same length and their component
3119 characters match (ignoring case) at each position; otherwise
3120 return @code{#f}.
3121 @end deffn
3122
3123 @rnindex string-ci<?
3124 @deffn {Scheme Procedure} string-ci<? [s1 [s2 . rest]]
3125 @deffnx {C Function} scm_i_string_ci_less_p (s1, s2, rest)
3126 Case insensitive lexicographic ordering predicate; return
3127 @code{#t} if @var{s1} is lexicographically less than @var{s2}
3128 regardless of case.
3129 @end deffn
3130
3131 @rnindex string<=?
3132 @deffn {Scheme Procedure} string-ci<=? [s1 [s2 . rest]]
3133 @deffnx {C Function} scm_i_string_ci_leq_p (s1, s2, rest)
3134 Case insensitive lexicographic ordering predicate; return
3135 @code{#t} if @var{s1} is lexicographically less than or equal
3136 to @var{s2} regardless of case.
3137 @end deffn
3138
3139 @rnindex string-ci>?
3140 @deffn {Scheme Procedure} string-ci>? [s1 [s2 . rest]]
3141 @deffnx {C Function} scm_i_string_ci_gr_p (s1, s2, rest)
3142 Case insensitive lexicographic ordering predicate; return
3143 @code{#t} if @var{s1} is lexicographically greater than
3144 @var{s2} regardless of case.
3145 @end deffn
3146
3147 @rnindex string-ci>=?
3148 @deffn {Scheme Procedure} string-ci>=? [s1 [s2 . rest]]
3149 @deffnx {C Function} scm_i_string_ci_geq_p (s1, s2, rest)
3150 Case insensitive lexicographic ordering predicate; return
3151 @code{#t} if @var{s1} is lexicographically greater than or
3152 equal to @var{s2} regardless of case.
3153 @end deffn
3154
3155 @deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3156 @deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3157 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3158 mismatch index, depending upon whether @var{s1} is less than,
3159 equal to, or greater than @var{s2}. The mismatch index is the
3160 largest index @var{i} such that for every 0 <= @var{j} <
3161 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3162 @var{i} is the first position that does not match.
3163 @end deffn
3164
3165 @deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3166 @deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3167 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3168 mismatch index, depending upon whether @var{s1} is less than,
3169 equal to, or greater than @var{s2}. The mismatch index is the
3170 largest index @var{i} such that for every 0 <= @var{j} <
3171 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3172 @var{i} is the first position where the lowercased letters
3173 do not match.
3174
3175 @end deffn
3176
3177 @deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3178 @deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3179 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3180 value otherwise.
3181 @end deffn
3182
3183 @deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3184 @deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3185 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3186 value otherwise.
3187 @end deffn
3188
3189 @deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3190 @deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3191 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3192 true value otherwise.
3193 @end deffn
3194
3195 @deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3196 @deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3197 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3198 true value otherwise.
3199 @end deffn
3200
3201 @deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3202 @deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3203 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3204 value otherwise.
3205 @end deffn
3206
3207 @deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3208 @deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3209 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3210 otherwise.
3211 @end deffn
3212
3213 @deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3214 @deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3215 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3216 value otherwise. The character comparison is done
3217 case-insensitively.
3218 @end deffn
3219
3220 @deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3221 @deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3222 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3223 value otherwise. The character comparison is done
3224 case-insensitively.
3225 @end deffn
3226
3227 @deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3228 @deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3229 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3230 true value otherwise. The character comparison is done
3231 case-insensitively.
3232 @end deffn
3233
3234 @deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3235 @deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3236 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3237 true value otherwise. The character comparison is done
3238 case-insensitively.
3239 @end deffn
3240
3241 @deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3242 @deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3243 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3244 value otherwise. The character comparison is done
3245 case-insensitively.
3246 @end deffn
3247
3248 @deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3249 @deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3250 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3251 otherwise. The character comparison is done
3252 case-insensitively.
3253 @end deffn
3254
3255 @deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3256 @deffnx {C Function} scm_substring_hash (s, bound, start, end)
3257 Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3258 @end deffn
3259
3260 @deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3261 @deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3262 Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3263 @end deffn
3264
3265 @node String Searching
3266 @subsubsection String Searching
3267
3268 @deffn {Scheme Procedure} string-index s char_pred [start [end]]
3269 @deffnx {C Function} scm_string_index (s, char_pred, start, end)
3270 Search through the string @var{s} from left to right, returning
3271 the index of the first occurrence of a character which
3272
3273 @itemize @bullet
3274 @item
3275 equals @var{char_pred}, if it is character,
3276
3277 @item
3278 satisfies the predicate @var{char_pred}, if it is a procedure,
3279
3280 @item
3281 is in the set @var{char_pred}, if it is a character set.
3282 @end itemize
3283 @end deffn
3284
3285 @deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3286 @deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3287 Search through the string @var{s} from right to left, returning
3288 the index of the last occurrence of a character which
3289
3290 @itemize @bullet
3291 @item
3292 equals @var{char_pred}, if it is character,
3293
3294 @item
3295 satisfies the predicate @var{char_pred}, if it is a procedure,
3296
3297 @item
3298 is in the set if @var{char_pred} is a character set.
3299 @end itemize
3300 @end deffn
3301
3302 @deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3303 @deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3304 Return the length of the longest common prefix of the two
3305 strings.
3306 @end deffn
3307
3308 @deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3309 @deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3310 Return the length of the longest common prefix of the two
3311 strings, ignoring character case.
3312 @end deffn
3313
3314 @deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3315 @deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3316 Return the length of the longest common suffix of the two
3317 strings.
3318 @end deffn
3319
3320 @deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3321 @deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3322 Return the length of the longest common suffix of the two
3323 strings, ignoring character case.
3324 @end deffn
3325
3326 @deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3327 @deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3328 Is @var{s1} a prefix of @var{s2}?
3329 @end deffn
3330
3331 @deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3332 @deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3333 Is @var{s1} a prefix of @var{s2}, ignoring character case?
3334 @end deffn
3335
3336 @deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3337 @deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3338 Is @var{s1} a suffix of @var{s2}?
3339 @end deffn
3340
3341 @deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3342 @deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3343 Is @var{s1} a suffix of @var{s2}, ignoring character case?
3344 @end deffn
3345
3346 @deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3347 @deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3348 Search through the string @var{s} from right to left, returning
3349 the index of the last occurrence of a character which
3350
3351 @itemize @bullet
3352 @item
3353 equals @var{char_pred}, if it is character,
3354
3355 @item
3356 satisfies the predicate @var{char_pred}, if it is a procedure,
3357
3358 @item
3359 is in the set if @var{char_pred} is a character set.
3360 @end itemize
3361 @end deffn
3362
3363 @deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3364 @deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3365 Search through the string @var{s} from left to right, returning
3366 the index of the first occurrence of a character which
3367
3368 @itemize @bullet
3369 @item
3370 does not equal @var{char_pred}, if it is character,
3371
3372 @item
3373 does not satisfy the predicate @var{char_pred}, if it is a
3374 procedure,
3375
3376 @item
3377 is not in the set if @var{char_pred} is a character set.
3378 @end itemize
3379 @end deffn
3380
3381 @deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3382 @deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3383 Search through the string @var{s} from right to left, returning
3384 the index of the last occurrence of a character which
3385
3386 @itemize @bullet
3387 @item
3388 does not equal @var{char_pred}, if it is character,
3389
3390 @item
3391 does not satisfy the predicate @var{char_pred}, if it is a
3392 procedure,
3393
3394 @item
3395 is not in the set if @var{char_pred} is a character set.
3396 @end itemize
3397 @end deffn
3398
3399 @deffn {Scheme Procedure} string-count s char_pred [start [end]]
3400 @deffnx {C Function} scm_string_count (s, char_pred, start, end)
3401 Return the count of the number of characters in the string
3402 @var{s} which
3403
3404 @itemize @bullet
3405 @item
3406 equals @var{char_pred}, if it is character,
3407
3408 @item
3409 satisfies the predicate @var{char_pred}, if it is a procedure.
3410
3411 @item
3412 is in the set @var{char_pred}, if it is a character set.
3413 @end itemize
3414 @end deffn
3415
3416 @deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3417 @deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3418 Does string @var{s1} contain string @var{s2}? Return the index
3419 in @var{s1} where @var{s2} occurs as a substring, or false.
3420 The optional start/end indices restrict the operation to the
3421 indicated substrings.
3422 @end deffn
3423
3424 @deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3425 @deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3426 Does string @var{s1} contain string @var{s2}? Return the index
3427 in @var{s1} where @var{s2} occurs as a substring, or false.
3428 The optional start/end indices restrict the operation to the
3429 indicated substrings. Character comparison is done
3430 case-insensitively.
3431 @end deffn
3432
3433 @node Alphabetic Case Mapping
3434 @subsubsection Alphabetic Case Mapping
3435
3436 These are procedures for mapping strings to their upper- or lower-case
3437 equivalents, respectively, or for capitalizing strings.
3438
3439 @deffn {Scheme Procedure} string-upcase str [start [end]]
3440 @deffnx {C Function} scm_substring_upcase (str, start, end)
3441 @deffnx {C Function} scm_string_upcase (str)
3442 Upcase every character in @code{str}.
3443 @end deffn
3444
3445 @deffn {Scheme Procedure} string-upcase! str [start [end]]
3446 @deffnx {C Function} scm_substring_upcase_x (str, start, end)
3447 @deffnx {C Function} scm_string_upcase_x (str)
3448 Destructively upcase every character in @code{str}.
3449
3450 @lisp
3451 (string-upcase! y)
3452 @result{} "ARRDEFG"
3453 y
3454 @result{} "ARRDEFG"
3455 @end lisp
3456 @end deffn
3457
3458 @deffn {Scheme Procedure} string-downcase str [start [end]]
3459 @deffnx {C Function} scm_substring_downcase (str, start, end)
3460 @deffnx {C Function} scm_string_downcase (str)
3461 Downcase every character in @var{str}.
3462 @end deffn
3463
3464 @deffn {Scheme Procedure} string-downcase! str [start [end]]
3465 @deffnx {C Function} scm_substring_downcase_x (str, start, end)
3466 @deffnx {C Function} scm_string_downcase_x (str)
3467 Destructively downcase every character in @var{str}.
3468
3469 @lisp
3470 y
3471 @result{} "ARRDEFG"
3472 (string-downcase! y)
3473 @result{} "arrdefg"
3474 y
3475 @result{} "arrdefg"
3476 @end lisp
3477 @end deffn
3478
3479 @deffn {Scheme Procedure} string-capitalize str
3480 @deffnx {C Function} scm_string_capitalize (str)
3481 Return a freshly allocated string with the characters in
3482 @var{str}, where the first character of every word is
3483 capitalized.
3484 @end deffn
3485
3486 @deffn {Scheme Procedure} string-capitalize! str
3487 @deffnx {C Function} scm_string_capitalize_x (str)
3488 Upcase the first character of every word in @var{str}
3489 destructively and return @var{str}.
3490
3491 @lisp
3492 y @result{} "hello world"
3493 (string-capitalize! y) @result{} "Hello World"
3494 y @result{} "Hello World"
3495 @end lisp
3496 @end deffn
3497
3498 @deffn {Scheme Procedure} string-titlecase str [start [end]]
3499 @deffnx {C Function} scm_string_titlecase (str, start, end)
3500 Titlecase every first character in a word in @var{str}.
3501 @end deffn
3502
3503 @deffn {Scheme Procedure} string-titlecase! str [start [end]]
3504 @deffnx {C Function} scm_string_titlecase_x (str, start, end)
3505 Destructively titlecase every first character in a word in
3506 @var{str}.
3507 @end deffn
3508
3509 @node Reversing and Appending Strings
3510 @subsubsection Reversing and Appending Strings
3511
3512 @deffn {Scheme Procedure} string-reverse str [start [end]]
3513 @deffnx {C Function} scm_string_reverse (str, start, end)
3514 Reverse the string @var{str}. The optional arguments
3515 @var{start} and @var{end} delimit the region of @var{str} to
3516 operate on.
3517 @end deffn
3518
3519 @deffn {Scheme Procedure} string-reverse! str [start [end]]
3520 @deffnx {C Function} scm_string_reverse_x (str, start, end)
3521 Reverse the string @var{str} in-place. The optional arguments
3522 @var{start} and @var{end} delimit the region of @var{str} to
3523 operate on. The return value is unspecified.
3524 @end deffn
3525
3526 @rnindex string-append
3527 @deffn {Scheme Procedure} string-append . args
3528 @deffnx {C Function} scm_string_append (args)
3529 Return a newly allocated string whose characters form the
3530 concatenation of the given strings, @var{args}.
3531
3532 @example
3533 (let ((h "hello "))
3534 (string-append h "world"))
3535 @result{} "hello world"
3536 @end example
3537 @end deffn
3538
3539 @deffn {Scheme Procedure} string-append/shared . rest
3540 @deffnx {C Function} scm_string_append_shared (rest)
3541 Like @code{string-append}, but the result may share memory
3542 with the argument strings.
3543 @end deffn
3544
3545 @deffn {Scheme Procedure} string-concatenate ls
3546 @deffnx {C Function} scm_string_concatenate (ls)
3547 Append the elements of @var{ls} (which must be strings)
3548 together into a single string. Guaranteed to return a freshly
3549 allocated string.
3550 @end deffn
3551
3552 @deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3553 @deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3554 Without optional arguments, this procedure is equivalent to
3555
3556 @lisp
3557 (string-concatenate (reverse ls))
3558 @end lisp
3559
3560 If the optional argument @var{final_string} is specified, it is
3561 consed onto the beginning to @var{ls} before performing the
3562 list-reverse and string-concatenate operations. If @var{end}
3563 is given, only the characters of @var{final_string} up to index
3564 @var{end} are used.
3565
3566 Guaranteed to return a freshly allocated string.
3567 @end deffn
3568
3569 @deffn {Scheme Procedure} string-concatenate/shared ls
3570 @deffnx {C Function} scm_string_concatenate_shared (ls)
3571 Like @code{string-concatenate}, but the result may share memory
3572 with the strings in the list @var{ls}.
3573 @end deffn
3574
3575 @deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3576 @deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3577 Like @code{string-concatenate-reverse}, but the result may
3578 share memory with the strings in the @var{ls} arguments.
3579 @end deffn
3580
3581 @node Mapping Folding and Unfolding
3582 @subsubsection Mapping, Folding, and Unfolding
3583
3584 @deffn {Scheme Procedure} string-map proc s [start [end]]
3585 @deffnx {C Function} scm_string_map (proc, s, start, end)
3586 @var{proc} is a char->char procedure, it is mapped over
3587 @var{s}. The order in which the procedure is applied to the
3588 string elements is not specified.
3589 @end deffn
3590
3591 @deffn {Scheme Procedure} string-map! proc s [start [end]]
3592 @deffnx {C Function} scm_string_map_x (proc, s, start, end)
3593 @var{proc} is a char->char procedure, it is mapped over
3594 @var{s}. The order in which the procedure is applied to the
3595 string elements is not specified. The string @var{s} is
3596 modified in-place, the return value is not specified.
3597 @end deffn
3598
3599 @deffn {Scheme Procedure} string-for-each proc s [start [end]]
3600 @deffnx {C Function} scm_string_for_each (proc, s, start, end)
3601 @var{proc} is mapped over @var{s} in left-to-right order. The
3602 return value is not specified.
3603 @end deffn
3604
3605 @deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
3606 @deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
3607 Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
3608 right.
3609
3610 For example, to change characters to alternately upper and lower case,
3611
3612 @example
3613 (define str (string-copy "studly"))
3614 (string-for-each-index
3615 (lambda (i)
3616 (string-set! str i
3617 ((if (even? i) char-upcase char-downcase)
3618 (string-ref str i))))
3619 str)
3620 str @result{} "StUdLy"
3621 @end example
3622 @end deffn
3623
3624 @deffn {Scheme Procedure} string-fold kons knil s [start [end]]
3625 @deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
3626 Fold @var{kons} over the characters of @var{s}, with @var{knil}
3627 as the terminating element, from left to right. @var{kons}
3628 must expect two arguments: The actual character and the last
3629 result of @var{kons}' application.
3630 @end deffn
3631
3632 @deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
3633 @deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
3634 Fold @var{kons} over the characters of @var{s}, with @var{knil}
3635 as the terminating element, from right to left. @var{kons}
3636 must expect two arguments: The actual character and the last
3637 result of @var{kons}' application.
3638 @end deffn
3639
3640 @deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
3641 @deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
3642 @itemize @bullet
3643 @item @var{g} is used to generate a series of @emph{seed}
3644 values from the initial @var{seed}: @var{seed}, (@var{g}
3645 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3646 @dots{}
3647 @item @var{p} tells us when to stop -- when it returns true
3648 when applied to one of these seed values.
3649 @item @var{f} maps each seed value to the corresponding
3650 character in the result string. These chars are assembled
3651 into the string in a left-to-right order.
3652 @item @var{base} is the optional initial/leftmost portion
3653 of the constructed string; it default to the empty
3654 string.
3655 @item @var{make_final} is applied to the terminal seed
3656 value (on which @var{p} returns true) to produce
3657 the final/rightmost portion of the constructed string.
3658 The default is nothing extra.
3659 @end itemize
3660 @end deffn
3661
3662 @deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
3663 @deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
3664 @itemize @bullet
3665 @item @var{g} is used to generate a series of @emph{seed}
3666 values from the initial @var{seed}: @var{seed}, (@var{g}
3667 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3668 @dots{}
3669 @item @var{p} tells us when to stop -- when it returns true
3670 when applied to one of these seed values.
3671 @item @var{f} maps each seed value to the corresponding
3672 character in the result string. These chars are assembled
3673 into the string in a right-to-left order.
3674 @item @var{base} is the optional initial/rightmost portion
3675 of the constructed string; it default to the empty
3676 string.
3677 @item @var{make_final} is applied to the terminal seed
3678 value (on which @var{p} returns true) to produce
3679 the final/leftmost portion of the constructed string.
3680 It defaults to @code{(lambda (x) )}.
3681 @end itemize
3682 @end deffn
3683
3684 @node Miscellaneous String Operations
3685 @subsubsection Miscellaneous String Operations
3686
3687 @deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
3688 @deffnx {C Function} scm_xsubstring (s, from, to, start, end)
3689 This is the @emph{extended substring} procedure that implements
3690 replicated copying of a substring of some string.
3691
3692 @var{s} is a string, @var{start} and @var{end} are optional
3693 arguments that demarcate a substring of @var{s}, defaulting to
3694 0 and the length of @var{s}. Replicate this substring up and
3695 down index space, in both the positive and negative directions.
3696 @code{xsubstring} returns the substring of this string
3697 beginning at index @var{from}, and ending at @var{to}, which
3698 defaults to @var{from} + (@var{end} - @var{start}).
3699 @end deffn
3700
3701 @deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
3702 @deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
3703 Exactly the same as @code{xsubstring}, but the extracted text
3704 is written into the string @var{target} starting at index
3705 @var{tstart}. The operation is not defined if @code{(eq?
3706 @var{target} @var{s})} or these arguments share storage -- you
3707 cannot copy a string on top of itself.
3708 @end deffn
3709
3710 @deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
3711 @deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
3712 Return the string @var{s1}, but with the characters
3713 @var{start1} @dots{} @var{end1} replaced by the characters
3714 @var{start2} @dots{} @var{end2} from @var{s2}.
3715 @end deffn
3716
3717 @deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
3718 @deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
3719 Split the string @var{s} into a list of substrings, where each
3720 substring is a maximal non-empty contiguous sequence of
3721 characters from the character set @var{token_set}, which
3722 defaults to @code{char-set:graphic}.
3723 If @var{start} or @var{end} indices are provided, they restrict
3724 @code{string-tokenize} to operating on the indicated substring
3725 of @var{s}.
3726 @end deffn
3727
3728 @deffn {Scheme Procedure} string-filter s char_pred [start [end]]
3729 @deffnx {C Function} scm_string_filter (s, char_pred, start, end)
3730 Filter the string @var{s}, retaining only those characters which
3731 satisfy @var{char_pred}.
3732
3733 If @var{char_pred} is a procedure, it is applied to each character as
3734 a predicate, if it is a character, it is tested for equality and if it
3735 is a character set, it is tested for membership.
3736 @end deffn
3737
3738 @deffn {Scheme Procedure} string-delete s char_pred [start [end]]
3739 @deffnx {C Function} scm_string_delete (s, char_pred, start, end)
3740 Delete characters satisfying @var{char_pred} from @var{s}.
3741
3742 If @var{char_pred} is a procedure, it is applied to each character as
3743 a predicate, if it is a character, it is tested for equality and if it
3744 is a character set, it is tested for membership.
3745 @end deffn
3746
3747 @node Conversion to/from C
3748 @subsubsection Conversion to/from C
3749
3750 When creating a Scheme string from a C string or when converting a
3751 Scheme string to a C string, the concept of character encoding becomes
3752 important.
3753
3754 In C, a string is just a sequence of bytes, and the character encoding
3755 describes the relation between these bytes and the actual characters
3756 that make up the string. For Scheme strings, character encoding is
3757 not an issue (most of the time), since in Scheme you never get to see
3758 the bytes, only the characters.
3759
3760 Well, ideally, anyway. Right now, Guile simply equates Scheme
3761 characters and bytes, ignoring the possibility of multi-byte encodings
3762 completely. This will change in the future, where Guile will use
3763 Unicode codepoints as its characters and UTF-8 or some other encoding
3764 as its internal encoding. When you exclusively use the functions
3765 listed in this section, you are `future-proof'.
3766
3767 Converting a Scheme string to a C string will often allocate fresh
3768 memory to hold the result. You must take care that this memory is
3769 properly freed eventually. In many cases, this can be achieved by
3770 using @code{scm_dynwind_free} inside an appropriate dynwind context,
3771 @xref{Dynamic Wind}.
3772
3773 @deftypefn {C Function} SCM scm_from_locale_string (const char *str)
3774 @deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
3775 Creates a new Scheme string that has the same contents as @var{str}
3776 when interpreted in the current locale character encoding.
3777
3778 For @code{scm_from_locale_string}, @var{str} must be null-terminated.
3779
3780 For @code{scm_from_locale_stringn}, @var{len} specifies the length of
3781 @var{str} in bytes, and @var{str} does not need to be null-terminated.
3782 If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
3783 null-terminated and the real length will be found with @code{strlen}.
3784 @end deftypefn
3785
3786 @deftypefn {C Function} SCM scm_take_locale_string (char *str)
3787 @deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
3788 Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
3789 respectively, but also frees @var{str} with @code{free} eventually.
3790 Thus, you can use this function when you would free @var{str} anyway
3791 immediately after creating the Scheme string. In certain cases, Guile
3792 can then use @var{str} directly as its internal representation.
3793 @end deftypefn
3794
3795 @deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
3796 @deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
3797 Returns a C string in the current locale encoding with the same
3798 contents as @var{str}. The C string must be freed with @code{free}
3799 eventually, maybe by using @code{scm_dynwind_free}, @xref{Dynamic
3800 Wind}.
3801
3802 For @code{scm_to_locale_string}, the returned string is
3803 null-terminated and an error is signalled when @var{str} contains
3804 @code{#\nul} characters.
3805
3806 For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
3807 @var{str} might contain @code{#\nul} characters and the length of the
3808 returned string in bytes is stored in @code{*@var{lenp}}. The
3809 returned string will not be null-terminated in this case. If
3810 @var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
3811 @code{scm_to_locale_string}.
3812 @end deftypefn
3813
3814 @deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
3815 Puts @var{str} as a C string in the current locale encoding into the
3816 memory pointed to by @var{buf}. The buffer at @var{buf} has room for
3817 @var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
3818 more than that. No terminating @code{'\0'} will be stored.
3819
3820 The return value of @code{scm_to_locale_stringbuf} is the number of
3821 bytes that are needed for all of @var{str}, regardless of whether
3822 @var{buf} was large enough to hold them. Thus, when the return value
3823 is larger than @var{max_len}, only @var{max_len} bytes have been
3824 stored and you probably need to try again with a larger buffer.
3825 @end deftypefn
3826
3827 @node Bytevectors
3828 @subsection Bytevectors
3829
3830 @cindex bytevector
3831 @cindex R6RS
3832
3833 A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevector)}
3834 module provides the programming interface specified by the
3835 @uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
3836 Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
3837 interpret their contents in a number of ways: bytevector contents can be
3838 accessed as signed or unsigned integer of various sizes and endianness,
3839 as IEEE-754 floating point numbers, or as strings. It is a useful tool
3840 to encode and decode binary data.
3841
3842 The R6RS (Section 4.3.4) specifies an external representation for
3843 bytevectors, whereby the octets (integers in the range 0--255) contained
3844 in the bytevector are represented as a list prefixed by @code{#vu8}:
3845
3846 @lisp
3847 #vu8(1 53 204)
3848 @end lisp
3849
3850 denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
3851 string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
3852 they do not need to be quoted:
3853
3854 @lisp
3855 #vu8(1 53 204)
3856 @result{} #vu8(1 53 204)
3857 @end lisp
3858
3859 Bytevectors can be used with the binary input/output primitives of the
3860 R6RS (@pxref{R6RS I/O Ports}).
3861
3862 @menu
3863 * Bytevector Endianness:: Dealing with byte order.
3864 * Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
3865 * Bytevectors as Integers:: Interpreting bytes as integers.
3866 * Bytevectors and Integer Lists:: Converting to/from an integer list.
3867 * Bytevectors as Floats:: Interpreting bytes as real numbers.
3868 * Bytevectors as Strings:: Interpreting bytes as Unicode strings.
3869 * Bytevectors as Generalized Vectors:: Guile extension to the bytevector API.
3870 @end menu
3871
3872 @node Bytevector Endianness
3873 @subsubsection Endianness
3874
3875 @cindex endianness
3876 @cindex byte order
3877 @cindex word order
3878
3879 Some of the following procedures take an @var{endianness} parameter.
3880 The @dfn{endianness} is defined as the order of bytes in multi-byte
3881 numbers: numbers encoded in @dfn{big endian} have their most
3882 significant bytes written first, whereas numbers encoded in
3883 @dfn{little endian} have their least significant bytes
3884 first@footnote{Big-endian and little-endian are the most common
3885 ``endiannesses'', but others do exist. For instance, the GNU MP
3886 library allows @dfn{word order} to be specified independently of
3887 @dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
3888 Multiple Precision Arithmetic Library Manual}).}.
3889
3890 Little-endian is the native endianness of the IA32 architecture and
3891 its derivatives, while big-endian is native to SPARC and PowerPC,
3892 among others. The @code{native-endianness} procedure returns the
3893 native endianness of the machine it runs on.
3894
3895 @deffn {Scheme Procedure} native-endianness
3896 @deffnx {C Function} scm_native_endianness ()
3897 Return a value denoting the native endianness of the host machine.
3898 @end deffn
3899
3900 @deffn {Scheme Macro} endianness symbol
3901 Return an object denoting the endianness specified by @var{symbol}. If
3902 @var{symbol} is neither @code{big} nor @code{little} then an error is
3903 raised at expand-time.
3904 @end deffn
3905
3906 @defvr {C Variable} scm_endianness_big
3907 @defvrx {C Variable} scm_endianness_little
3908 The objects denoting big- and little-endianness, respectively.
3909 @end defvr
3910
3911
3912 @node Bytevector Manipulation
3913 @subsubsection Manipulating Bytevectors
3914
3915 Bytevectors can be created, copied, and analyzed with the following
3916 procedures and C functions.
3917
3918 @deffn {Scheme Procedure} make-bytevector len [fill]
3919 @deffnx {C Function} scm_make_bytevector (len, fill)
3920 @deffnx {C Function} scm_c_make_bytevector (size_t len)
3921 Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
3922 is given, fill it with @var{fill}; @var{fill} must be in the range
3923 [-128,255].
3924 @end deffn
3925
3926 @deffn {Scheme Procedure} bytevector? obj
3927 @deffnx {C Function} scm_bytevector_p (obj)
3928 Return true if @var{obj} is a bytevector.
3929 @end deffn
3930
3931 @deftypefn {C Function} int scm_is_bytevector (SCM obj)
3932 Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
3933 @end deftypefn
3934
3935 @deffn {Scheme Procedure} bytevector-length bv
3936 @deffnx {C Function} scm_bytevector_length (bv)
3937 Return the length in bytes of bytevector @var{bv}.
3938 @end deffn
3939
3940 @deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
3941 Likewise, return the length in bytes of bytevector @var{bv}.
3942 @end deftypefn
3943
3944 @deffn {Scheme Procedure} bytevector=? bv1 bv2
3945 @deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
3946 Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
3947 length and contents.
3948 @end deffn
3949
3950 @deffn {Scheme Procedure} bytevector-fill! bv fill
3951 @deffnx {C Function} scm_bytevector_fill_x (bv, fill)
3952 Fill bytevector @var{bv} with @var{fill}, a byte.
3953 @end deffn
3954
3955 @deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
3956 @deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
3957 Copy @var{len} bytes from @var{source} into @var{target}, starting
3958 reading from @var{source-start} (a positive index within @var{source})
3959 and start writing at @var{target-start}.
3960 @end deffn
3961
3962 @deffn {Scheme Procedure} bytevector-copy bv
3963 @deffnx {C Function} scm_bytevector_copy (bv)
3964 Return a newly allocated copy of @var{bv}.
3965 @end deffn
3966
3967 @deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
3968 Return the byte at @var{index} in bytevector @var{bv}.
3969 @end deftypefn
3970
3971 @deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
3972 Set the byte at @var{index} in @var{bv} to @var{value}.
3973 @end deftypefn
3974
3975 Low-level C macros are available. They do not perform any
3976 type-checking; as such they should be used with care.
3977
3978 @deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
3979 Return the length in bytes of bytevector @var{bv}.
3980 @end deftypefn
3981
3982 @deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
3983 Return a pointer to the contents of bytevector @var{bv}.
3984 @end deftypefn
3985
3986
3987 @node Bytevectors as Integers
3988 @subsubsection Interpreting Bytevector Contents as Integers
3989
3990 The contents of a bytevector can be interpreted as a sequence of
3991 integers of any given size, sign, and endianness.
3992
3993 @lisp
3994 (let ((bv (make-bytevector 4)))
3995 (bytevector-u8-set! bv 0 #x12)
3996 (bytevector-u8-set! bv 1 #x34)
3997 (bytevector-u8-set! bv 2 #x56)
3998 (bytevector-u8-set! bv 3 #x78)
3999
4000 (map (lambda (number)
4001 (number->string number 16))
4002 (list (bytevector-u8-ref bv 0)
4003 (bytevector-u16-ref bv 0 (endianness big))
4004 (bytevector-u32-ref bv 0 (endianness little)))))
4005
4006 @result{} ("12" "1234" "78563412")
4007 @end lisp
4008
4009 The most generic procedures to interpret bytevector contents as integers
4010 are described below.
4011
4012 @deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
4013 @deffnx {Scheme Procedure} bytevector-sint-ref bv index endianness size
4014 @deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4015 @deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4016 Return the @var{size}-byte long unsigned (resp. signed) integer at
4017 index @var{index} in @var{bv}, decoded according to @var{endianness}.
4018 @end deffn
4019
4020 @deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
4021 @deffnx {Scheme Procedure} bytevector-sint-set! bv index value endianness size
4022 @deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4023 @deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4024 Set the @var{size}-byte long unsigned (resp. signed) integer at
4025 @var{index} to @var{value}, encoded according to @var{endianness}.
4026 @end deffn
4027
4028 The following procedures are similar to the ones above, but specialized
4029 to a given integer size:
4030
4031 @deffn {Scheme Procedure} bytevector-u8-ref bv index
4032 @deffnx {Scheme Procedure} bytevector-s8-ref bv index
4033 @deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4034 @deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4035 @deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4036 @deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4037 @deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4038 @deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4039 @deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4040 @deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4041 @deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4042 @deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4043 @deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4044 @deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4045 @deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4046 @deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4047 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4048 16, 32 or 64) from @var{bv} at @var{index}, decoded according to
4049 @var{endianness}.
4050 @end deffn
4051
4052 @deffn {Scheme Procedure} bytevector-u8-set! bv index value
4053 @deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4054 @deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4055 @deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4056 @deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4057 @deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4058 @deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4059 @deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4060 @deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4061 @deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4062 @deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4063 @deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4064 @deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4065 @deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4066 @deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4067 @deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4068 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4069 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4070 @var{endianness}.
4071 @end deffn
4072
4073 Finally, a variant specialized for the host's endianness is available
4074 for each of these functions (with the exception of the @code{u8}
4075 accessors, for obvious reasons):
4076
4077 @deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4078 @deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4079 @deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4080 @deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4081 @deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4082 @deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4083 @deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4084 @deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4085 @deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4086 @deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4087 @deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4088 @deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4089 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4090 16, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4091 host's native endianness.
4092 @end deffn
4093
4094 @deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4095 @deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4096 @deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4097 @deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4098 @deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4099 @deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4100 @deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4101 @deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4102 @deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4103 @deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4104 @deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4105 @deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4106 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4107 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4108 host's native endianness.
4109 @end deffn
4110
4111
4112 @node Bytevectors and Integer Lists
4113 @subsubsection Converting Bytevectors to/from Integer Lists
4114
4115 Bytevector contents can readily be converted to/from lists of signed or
4116 unsigned integers:
4117
4118 @lisp
4119 (bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4120 (endianness little) 2)
4121 @result{} (-1 -1)
4122 @end lisp
4123
4124 @deffn {Scheme Procedure} bytevector->u8-list bv
4125 @deffnx {C Function} scm_bytevector_to_u8_list (bv)
4126 Return a newly allocated list of unsigned 8-bit integers from the
4127 contents of @var{bv}.
4128 @end deffn
4129
4130 @deffn {Scheme Procedure} u8-list->bytevector lst
4131 @deffnx {C Function} scm_u8_list_to_bytevector (lst)
4132 Return a newly allocated bytevector consisting of the unsigned 8-bit
4133 integers listed in @var{lst}.
4134 @end deffn
4135
4136 @deffn {Scheme Procedure} bytevector->uint-list bv endianness size
4137 @deffnx {Scheme Procedure} bytevector->sint-list bv endianness size
4138 @deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4139 @deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4140 Return a list of unsigned (resp. signed) integers of @var{size} bytes
4141 representing the contents of @var{bv}, decoded according to
4142 @var{endianness}.
4143 @end deffn
4144
4145 @deffn {Scheme Procedure} uint-list->bytevector lst endianness size
4146 @deffnx {Scheme Procedure} sint-list->bytevector lst endianness size
4147 @deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4148 @deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4149 Return a new bytevector containing the unsigned (resp. signed) integers
4150 listed in @var{lst} and encoded on @var{size} bytes according to
4151 @var{endianness}.
4152 @end deffn
4153
4154 @node Bytevectors as Floats
4155 @subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4156
4157 @cindex IEEE-754 floating point numbers
4158
4159 Bytevector contents can also be accessed as IEEE-754 single- or
4160 double-precision floating point numbers (respectively 32 and 64-bit
4161 long) using the procedures described here.
4162
4163 @deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4164 @deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4165 @deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4166 @deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4167 Return the IEEE-754 single-precision floating point number from @var{bv}
4168 at @var{index} according to @var{endianness}.
4169 @end deffn
4170
4171 @deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4172 @deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4173 @deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4174 @deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4175 Store real number @var{value} in @var{bv} at @var{index} according to
4176 @var{endianness}.
4177 @end deffn
4178
4179 Specialized procedures are also available:
4180
4181 @deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4182 @deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4183 @deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4184 @deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4185 Return the IEEE-754 single-precision floating point number from @var{bv}
4186 at @var{index} according to the host's native endianness.
4187 @end deffn
4188
4189 @deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4190 @deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4191 @deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4192 @deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4193 Store real number @var{value} in @var{bv} at @var{index} according to
4194 the host's native endianness.
4195 @end deffn
4196
4197
4198 @node Bytevectors as Strings
4199 @subsubsection Interpreting Bytevector Contents as Unicode Strings
4200
4201 @cindex Unicode string encoding
4202
4203 Bytevector contents can also be interpreted as Unicode strings encoded
4204 in one of the most commonly available encoding formats@footnote{Guile
4205 1.8 does @emph{not} support Unicode strings. Therefore, the procedures
4206 described here assume that Guile strings are internally encoded
4207 according to the current locale. For instance, if @code{$LC_CTYPE} is
4208 @code{fr_FR.ISO-8859-1}, then @code{string->utf-8} @i{et al.} will
4209 assume that Guile strings are Latin-1-encoded.}.
4210
4211 @lisp
4212 (utf8->string (u8-list->bytevector '(99 97 102 101)))
4213 @result{} "cafe"
4214
4215 (string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4216 @result{} #vu8(99 97 102 195 169)
4217 @end lisp
4218
4219 @deffn {Scheme Procedure} string->utf8 str
4220 @deffnx {Scheme Procedure} string->utf16 str
4221 @deffnx {Scheme Procedure} string->utf32 str
4222 @deffnx {C Function} scm_string_to_utf8 (str)
4223 @deffnx {C Function} scm_string_to_utf16 (str)
4224 @deffnx {C Function} scm_string_to_utf32 (str)
4225 Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
4226 UTF-32 (aka. UCS-4) encoding of @var{str}.
4227 @end deffn
4228
4229 @deffn {Scheme Procedure} utf8->string utf
4230 @deffnx {Scheme Procedure} utf16->string utf
4231 @deffnx {Scheme Procedure} utf32->string utf
4232 @deffnx {C Function} scm_utf8_to_string (utf)
4233 @deffnx {C Function} scm_utf16_to_string (utf)
4234 @deffnx {C Function} scm_utf32_to_string (utf)
4235 Return a newly allocated string that contains from the UTF-8-, UTF-16-,
4236 or UTF-32-decoded contents of bytevector @var{utf}.
4237 @end deffn
4238
4239 @node Bytevectors as Generalized Vectors
4240 @subsubsection Accessing Bytevectors with the Generalized Vector API
4241
4242 As an extension to the R6RS, Guile allows bytevectors to be manipulated
4243 with the @dfn{generalized vector} procedures (@pxref{Generalized
4244 Vectors}). This also allows bytevectors to be accessed using the
4245 generic @dfn{array} procedures (@pxref{Array Procedures}). When using
4246 these APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4247
4248 @example
4249 (define bv #vu8(0 1 2 3))
4250
4251 (generalized-vector? bv)
4252 @result{} #t
4253
4254 (generalized-vector-ref bv 2)
4255 @result{} 2
4256
4257 (generalized-vector-set! bv 2 77)
4258 (array-ref bv 2)
4259 @result{} 77
4260
4261 (array-type bv)
4262 @result{} vu8
4263 @end example
4264
4265
4266 @node Regular Expressions
4267 @subsection Regular Expressions
4268 @tpindex Regular expressions
4269
4270 @cindex regular expressions
4271 @cindex regex
4272 @cindex emacs regexp
4273
4274 A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
4275 describes a whole class of strings. A full description of regular
4276 expressions and their syntax is beyond the scope of this manual;
4277 an introduction can be found in the Emacs manual (@pxref{Regexps,
4278 , Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
4279 in many general Unix reference books.
4280
4281 If your system does not include a POSIX regular expression library,
4282 and you have not linked Guile with a third-party regexp library such
4283 as Rx, these functions will not be available. You can tell whether
4284 your Guile installation includes regular expression support by
4285 checking whether @code{(provided? 'regex)} returns true.
4286
4287 The following regexp and string matching features are provided by the
4288 @code{(ice-9 regex)} module. Before using the described functions,
4289 you should load this module by executing @code{(use-modules (ice-9
4290 regex))}.
4291
4292 @menu
4293 * Regexp Functions:: Functions that create and match regexps.
4294 * Match Structures:: Finding what was matched by a regexp.
4295 * Backslash Escapes:: Removing the special meaning of regexp
4296 meta-characters.
4297 @end menu
4298
4299
4300 @node Regexp Functions
4301 @subsubsection Regexp Functions
4302
4303 By default, Guile supports POSIX extended regular expressions.
4304 That means that the characters @samp{(}, @samp{)}, @samp{+} and
4305 @samp{?} are special, and must be escaped if you wish to match the
4306 literal characters.
4307
4308 This regular expression interface was modeled after that
4309 implemented by SCSH, the Scheme Shell. It is intended to be
4310 upwardly compatible with SCSH regular expressions.
4311
4312 Zero bytes (@code{#\nul}) cannot be used in regex patterns or input
4313 strings, since the underlying C functions treat that as the end of
4314 string. If there's a zero byte an error is thrown.
4315
4316 Patterns and input strings are treated as being in the locale
4317 character set if @code{setlocale} has been called (@pxref{Locales}),
4318 and in a multibyte locale this includes treating multi-byte sequences
4319 as a single character. (Guile strings are currently merely bytes,
4320 though this may change in the future, @xref{Conversion to/from C}.)
4321
4322 @deffn {Scheme Procedure} string-match pattern str [start]
4323 Compile the string @var{pattern} into a regular expression and compare
4324 it with @var{str}. The optional numeric argument @var{start} specifies
4325 the position of @var{str} at which to begin matching.
4326
4327 @code{string-match} returns a @dfn{match structure} which
4328 describes what, if anything, was matched by the regular
4329 expression. @xref{Match Structures}. If @var{str} does not match
4330 @var{pattern} at all, @code{string-match} returns @code{#f}.
4331 @end deffn
4332
4333 Two examples of a match follow. In the first example, the pattern
4334 matches the four digits in the match string. In the second, the pattern
4335 matches nothing.
4336
4337 @example
4338 (string-match "[0-9][0-9][0-9][0-9]" "blah2002")
4339 @result{} #("blah2002" (4 . 8))
4340
4341 (string-match "[A-Za-z]" "123456")
4342 @result{} #f
4343 @end example
4344
4345 Each time @code{string-match} is called, it must compile its
4346 @var{pattern} argument into a regular expression structure. This
4347 operation is expensive, which makes @code{string-match} inefficient if
4348 the same regular expression is used several times (for example, in a
4349 loop). For better performance, you can compile a regular expression in
4350 advance and then match strings against the compiled regexp.
4351
4352 @deffn {Scheme Procedure} make-regexp pat flag@dots{}
4353 @deffnx {C Function} scm_make_regexp (pat, flaglst)
4354 Compile the regular expression described by @var{pat}, and
4355 return the compiled regexp structure. If @var{pat} does not
4356 describe a legal regular expression, @code{make-regexp} throws
4357 a @code{regular-expression-syntax} error.
4358
4359 The @var{flag} arguments change the behavior of the compiled
4360 regular expression. The following values may be supplied:
4361
4362 @defvar regexp/icase
4363 Consider uppercase and lowercase letters to be the same when
4364 matching.
4365 @end defvar
4366
4367 @defvar regexp/newline
4368 If a newline appears in the target string, then permit the
4369 @samp{^} and @samp{$} operators to match immediately after or
4370 immediately before the newline, respectively. Also, the
4371 @samp{.} and @samp{[^...]} operators will never match a newline
4372 character. The intent of this flag is to treat the target
4373 string as a buffer containing many lines of text, and the
4374 regular expression as a pattern that may match a single one of
4375 those lines.
4376 @end defvar
4377
4378 @defvar regexp/basic
4379 Compile a basic (``obsolete'') regexp instead of the extended
4380 (``modern'') regexps that are the default. Basic regexps do
4381 not consider @samp{|}, @samp{+} or @samp{?} to be special
4382 characters, and require the @samp{@{...@}} and @samp{(...)}
4383 metacharacters to be backslash-escaped (@pxref{Backslash
4384 Escapes}). There are several other differences between basic
4385 and extended regular expressions, but these are the most
4386 significant.
4387 @end defvar
4388
4389 @defvar regexp/extended
4390 Compile an extended regular expression rather than a basic
4391 regexp. This is the default behavior; this flag will not
4392 usually be needed. If a call to @code{make-regexp} includes
4393 both @code{regexp/basic} and @code{regexp/extended} flags, the
4394 one which comes last will override the earlier one.
4395 @end defvar
4396 @end deffn
4397
4398 @deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
4399 @deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
4400 Match the compiled regular expression @var{rx} against
4401 @code{str}. If the optional integer @var{start} argument is
4402 provided, begin matching from that position in the string.
4403 Return a match structure describing the results of the match,
4404 or @code{#f} if no match could be found.
4405
4406 The @var{flags} argument changes the matching behavior. The following
4407 flag values may be supplied, use @code{logior} (@pxref{Bitwise
4408 Operations}) to combine them,
4409
4410 @defvar regexp/notbol
4411 Consider that the @var{start} offset into @var{str} is not the
4412 beginning of a line and should not match operator @samp{^}.
4413
4414 If @var{rx} was created with the @code{regexp/newline} option above,
4415 @samp{^} will still match after a newline in @var{str}.
4416 @end defvar
4417
4418 @defvar regexp/noteol
4419 Consider that the end of @var{str} is not the end of a line and should
4420 not match operator @samp{$}.
4421
4422 If @var{rx} was created with the @code{regexp/newline} option above,
4423 @samp{$} will still match before a newline in @var{str}.
4424 @end defvar
4425 @end deffn
4426
4427 @lisp
4428 ;; Regexp to match uppercase letters
4429 (define r (make-regexp "[A-Z]*"))
4430
4431 ;; Regexp to match letters, ignoring case
4432 (define ri (make-regexp "[A-Z]*" regexp/icase))
4433
4434 ;; Search for bob using regexp r
4435 (match:substring (regexp-exec r "bob"))
4436 @result{} "" ; no match
4437
4438 ;; Search for bob using regexp ri
4439 (match:substring (regexp-exec ri "Bob"))
4440 @result{} "Bob" ; matched case insensitive
4441 @end lisp
4442
4443 @deffn {Scheme Procedure} regexp? obj
4444 @deffnx {C Function} scm_regexp_p (obj)
4445 Return @code{#t} if @var{obj} is a compiled regular expression,
4446 or @code{#f} otherwise.
4447 @end deffn
4448
4449 @sp 1
4450 @deffn {Scheme Procedure} list-matches regexp str [flags]
4451 Return a list of match structures which are the non-overlapping
4452 matches of @var{regexp} in @var{str}. @var{regexp} can be either a
4453 pattern string or a compiled regexp. The @var{flags} argument is as
4454 per @code{regexp-exec} above.
4455
4456 @example
4457 (map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
4458 @result{} ("abc" "def")
4459 @end example
4460 @end deffn
4461
4462 @deffn {Scheme Procedure} fold-matches regexp str init proc [flags]
4463 Apply @var{proc} to the non-overlapping matches of @var{regexp} in
4464 @var{str}, to build a result. @var{regexp} can be either a pattern
4465 string or a compiled regexp. The @var{flags} argument is as per
4466 @code{regexp-exec} above.
4467
4468 @var{proc} is called as @code{(@var{proc} match prev)} where
4469 @var{match} is a match structure and @var{prev} is the previous return
4470 from @var{proc}. For the first call @var{prev} is the given
4471 @var{init} parameter. @code{fold-matches} returns the final value
4472 from @var{proc}.
4473
4474 For example to count matches,
4475
4476 @example
4477 (fold-matches "[a-z][0-9]" "abc x1 def y2" 0
4478 (lambda (match count)
4479 (1+ count)))
4480 @result{} 2
4481 @end example
4482 @end deffn
4483
4484 @sp 1
4485 Regular expressions are commonly used to find patterns in one string
4486 and replace them with the contents of another string. The following
4487 functions are convenient ways to do this.
4488
4489 @c begin (scm-doc-string "regex.scm" "regexp-substitute")
4490 @deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
4491 Write to @var{port} selected parts of the match structure @var{match}.
4492 Or if @var{port} is @code{#f} then form a string from those parts and
4493 return that.
4494
4495 Each @var{item} specifies a part to be written, and may be one of the
4496 following,
4497
4498 @itemize @bullet
4499 @item
4500 A string. String arguments are written out verbatim.
4501
4502 @item
4503 An integer. The submatch with that number is written
4504 (@code{match:substring}). Zero is the entire match.
4505
4506 @item
4507 The symbol @samp{pre}. The portion of the matched string preceding
4508 the regexp match is written (@code{match:prefix}).
4509
4510 @item
4511 The symbol @samp{post}. The portion of the matched string following
4512 the regexp match is written (@code{match:suffix}).
4513 @end itemize
4514
4515 For example, changing a match and retaining the text before and after,
4516
4517 @example
4518 (regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
4519 'pre "37" 'post)
4520 @result{} "number 37 is good"
4521 @end example
4522
4523 Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
4524 re-ordering and hyphenating the fields.
4525
4526 @lisp
4527 (define date-regex
4528 "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
4529 (define s "Date 20020429 12am.")
4530 (regexp-substitute #f (string-match date-regex s)
4531 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
4532 @result{} "Date 04-29-2002 12am. (20020429)"
4533 @end lisp
4534 @end deffn
4535
4536
4537 @c begin (scm-doc-string "regex.scm" "regexp-substitute")
4538 @deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
4539 @cindex search and replace
4540 Write to @var{port} selected parts of matches of @var{regexp} in
4541 @var{target}. If @var{port} is @code{#f} then form a string from
4542 those parts and return that. @var{regexp} can be a string or a
4543 compiled regex.
4544
4545 This is similar to @code{regexp-substitute}, but allows global
4546 substitutions on @var{target}. Each @var{item} behaves as per
4547 @code{regexp-substitute}, with the following differences,
4548
4549 @itemize @bullet
4550 @item
4551 A function. Called as @code{(@var{item} match)} with the match
4552 structure for the @var{regexp} match, it should return a string to be
4553 written to @var{port}.
4554
4555 @item
4556 The symbol @samp{post}. This doesn't output anything, but instead
4557 causes @code{regexp-substitute/global} to recurse on the unmatched
4558 portion of @var{target}.
4559
4560 This @emph{must} be supplied to perform a global search and replace on
4561 @var{target}; without it @code{regexp-substitute/global} returns after
4562 a single match and output.
4563 @end itemize
4564
4565 For example, to collapse runs of tabs and spaces to a single hyphen
4566 each,
4567
4568 @example
4569 (regexp-substitute/global #f "[ \t]+" "this is the text"
4570 'pre "-" 'post)
4571 @result{} "this-is-the-text"
4572 @end example
4573
4574 Or using a function to reverse the letters in each word,
4575
4576 @example
4577 (regexp-substitute/global #f "[a-z]+" "to do and not-do"
4578 'pre (lambda (m) (string-reverse (match:substring m))) 'post)
4579 @result{} "ot od dna ton-od"
4580 @end example
4581
4582 Without the @code{post} symbol, just one regexp match is made. For
4583 example the following is the date example from
4584 @code{regexp-substitute} above, without the need for the separate
4585 @code{string-match} call.
4586
4587 @lisp
4588 (define date-regex
4589 "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
4590 (define s "Date 20020429 12am.")
4591 (regexp-substitute/global #f date-regex s
4592 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
4593
4594 @result{} "Date 04-29-2002 12am. (20020429)"
4595 @end lisp
4596 @end deffn
4597
4598
4599 @node Match Structures
4600 @subsubsection Match Structures
4601
4602 @cindex match structures
4603
4604 A @dfn{match structure} is the object returned by @code{string-match} and
4605 @code{regexp-exec}. It describes which portion of a string, if any,
4606 matched the given regular expression. Match structures include: a
4607 reference to the string that was checked for matches; the starting and
4608 ending positions of the regexp match; and, if the regexp included any
4609 parenthesized subexpressions, the starting and ending positions of each
4610 submatch.
4611
4612 In each of the regexp match functions described below, the @code{match}
4613 argument must be a match structure returned by a previous call to
4614 @code{string-match} or @code{regexp-exec}. Most of these functions
4615 return some information about the original target string that was
4616 matched against a regular expression; we will call that string
4617 @var{target} for easy reference.
4618
4619 @c begin (scm-doc-string "regex.scm" "regexp-match?")
4620 @deffn {Scheme Procedure} regexp-match? obj
4621 Return @code{#t} if @var{obj} is a match structure returned by a
4622 previous call to @code{regexp-exec}, or @code{#f} otherwise.
4623 @end deffn
4624
4625 @c begin (scm-doc-string "regex.scm" "match:substring")
4626 @deffn {Scheme Procedure} match:substring match [n]
4627 Return the portion of @var{target} matched by subexpression number
4628 @var{n}. Submatch 0 (the default) represents the entire regexp match.
4629 If the regular expression as a whole matched, but the subexpression
4630 number @var{n} did not match, return @code{#f}.
4631 @end deffn
4632
4633 @lisp
4634 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4635 (match:substring s)
4636 @result{} "2002"
4637
4638 ;; match starting at offset 6 in the string
4639 (match:substring
4640 (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
4641 @result{} "7654"
4642 @end lisp
4643
4644 @c begin (scm-doc-string "regex.scm" "match:start")
4645 @deffn {Scheme Procedure} match:start match [n]
4646 Return the starting position of submatch number @var{n}.
4647 @end deffn
4648
4649 In the following example, the result is 4, since the match starts at
4650 character index 4:
4651
4652 @lisp
4653 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4654 (match:start s)
4655 @result{} 4
4656 @end lisp
4657
4658 @c begin (scm-doc-string "regex.scm" "match:end")
4659 @deffn {Scheme Procedure} match:end match [n]
4660 Return the ending position of submatch number @var{n}.
4661 @end deffn
4662
4663 In the following example, the result is 8, since the match runs between
4664 characters 4 and 8 (i.e. the ``2002'').
4665
4666 @lisp
4667 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4668 (match:end s)
4669 @result{} 8
4670 @end lisp
4671
4672 @c begin (scm-doc-string "regex.scm" "match:prefix")
4673 @deffn {Scheme Procedure} match:prefix match
4674 Return the unmatched portion of @var{target} preceding the regexp match.
4675
4676 @lisp
4677 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4678 (match:prefix s)
4679 @result{} "blah"
4680 @end lisp
4681 @end deffn
4682
4683 @c begin (scm-doc-string "regex.scm" "match:suffix")
4684 @deffn {Scheme Procedure} match:suffix match
4685 Return the unmatched portion of @var{target} following the regexp match.
4686 @end deffn
4687
4688 @lisp
4689 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4690 (match:suffix s)
4691 @result{} "foo"
4692 @end lisp
4693
4694 @c begin (scm-doc-string "regex.scm" "match:count")
4695 @deffn {Scheme Procedure} match:count match
4696 Return the number of parenthesized subexpressions from @var{match}.
4697 Note that the entire regular expression match itself counts as a
4698 subexpression, and failed submatches are included in the count.
4699 @end deffn
4700
4701 @c begin (scm-doc-string "regex.scm" "match:string")
4702 @deffn {Scheme Procedure} match:string match
4703 Return the original @var{target} string.
4704 @end deffn
4705
4706 @lisp
4707 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4708 (match:string s)
4709 @result{} "blah2002foo"
4710 @end lisp
4711
4712
4713 @node Backslash Escapes
4714 @subsubsection Backslash Escapes
4715
4716 Sometimes you will want a regexp to match characters like @samp{*} or
4717 @samp{$} exactly. For example, to check whether a particular string
4718 represents a menu entry from an Info node, it would be useful to match
4719 it against a regexp like @samp{^* [^:]*::}. However, this won't work;
4720 because the asterisk is a metacharacter, it won't match the @samp{*} at
4721 the beginning of the string. In this case, we want to make the first
4722 asterisk un-magic.
4723
4724 You can do this by preceding the metacharacter with a backslash
4725 character @samp{\}. (This is also called @dfn{quoting} the
4726 metacharacter, and is known as a @dfn{backslash escape}.) When Guile
4727 sees a backslash in a regular expression, it considers the following
4728 glyph to be an ordinary character, no matter what special meaning it
4729 would ordinarily have. Therefore, we can make the above example work by
4730 changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
4731 the regular expression engine to match only a single asterisk in the
4732 target string.
4733
4734 Since the backslash is itself a metacharacter, you may force a regexp to
4735 match a backslash in the target string by preceding the backslash with
4736 itself. For example, to find variable references in a @TeX{} program,
4737 you might want to find occurrences of the string @samp{\let\} followed
4738 by any number of alphabetic characters. The regular expression
4739 @samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
4740 regexp each match a single backslash in the target string.
4741
4742 @c begin (scm-doc-string "regex.scm" "regexp-quote")
4743 @deffn {Scheme Procedure} regexp-quote str
4744 Quote each special character found in @var{str} with a backslash, and
4745 return the resulting string.
4746 @end deffn
4747
4748 @strong{Very important:} Using backslash escapes in Guile source code
4749 (as in Emacs Lisp or C) can be tricky, because the backslash character
4750 has special meaning for the Guile reader. For example, if Guile
4751 encounters the character sequence @samp{\n} in the middle of a string
4752 while processing Scheme code, it replaces those characters with a
4753 newline character. Similarly, the character sequence @samp{\t} is
4754 replaced by a horizontal tab. Several of these @dfn{escape sequences}
4755 are processed by the Guile reader before your code is executed.
4756 Unrecognized escape sequences are ignored: if the characters @samp{\*}
4757 appear in a string, they will be translated to the single character
4758 @samp{*}.
4759
4760 This translation is obviously undesirable for regular expressions, since
4761 we want to be able to include backslashes in a string in order to
4762 escape regexp metacharacters. Therefore, to make sure that a backslash
4763 is preserved in a string in your Guile program, you must use @emph{two}
4764 consecutive backslashes:
4765
4766 @lisp
4767 (define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
4768 @end lisp
4769
4770 The string in this example is preprocessed by the Guile reader before
4771 any code is executed. The resulting argument to @code{make-regexp} is
4772 the string @samp{^\* [^:]*}, which is what we really want.
4773
4774 This also means that in order to write a regular expression that matches
4775 a single backslash character, the regular expression string in the
4776 source code must include @emph{four} backslashes. Each consecutive pair
4777 of backslashes gets translated by the Guile reader to a single
4778 backslash, and the resulting double-backslash is interpreted by the
4779 regexp engine as matching a single backslash character. Hence:
4780
4781 @lisp
4782 (define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
4783 @end lisp
4784
4785 The reason for the unwieldiness of this syntax is historical. Both
4786 regular expression pattern matchers and Unix string processing systems
4787 have traditionally used backslashes with the special meanings
4788 described above. The POSIX regular expression specification and ANSI C
4789 standard both require these semantics. Attempting to abandon either
4790 convention would cause other kinds of compatibility problems, possibly
4791 more severe ones. Therefore, without extending the Scheme reader to
4792 support strings with different quoting conventions (an ungainly and
4793 confusing extension when implemented in other languages), we must adhere
4794 to this cumbersome escape syntax.
4795
4796
4797 @node Symbols
4798 @subsection Symbols
4799 @tpindex Symbols
4800
4801 Symbols in Scheme are widely used in three ways: as items of discrete
4802 data, as lookup keys for alists and hash tables, and to denote variable
4803 references.
4804
4805 A @dfn{symbol} is similar to a string in that it is defined by a
4806 sequence of characters. The sequence of characters is known as the
4807 symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4808 name doesn't include any characters that could be confused with other
4809 elements of Scheme syntax --- a symbol is written in a Scheme program by
4810 writing the sequence of characters that make up the name, @emph{without}
4811 any quotation marks or other special syntax. For example, the symbol
4812 whose name is ``multiply-by-2'' is written, simply:
4813
4814 @lisp
4815 multiply-by-2
4816 @end lisp
4817
4818 Notice how this differs from a @emph{string} with contents
4819 ``multiply-by-2'', which is written with double quotation marks, like
4820 this:
4821
4822 @lisp
4823 "multiply-by-2"
4824 @end lisp
4825
4826 Looking beyond how they are written, symbols are different from strings
4827 in two important respects.
4828
4829 The first important difference is uniqueness. If the same-looking
4830 string is read twice from two different places in a program, the result
4831 is two @emph{different} string objects whose contents just happen to be
4832 the same. If, on the other hand, the same-looking symbol is read twice
4833 from two different places in a program, the result is the @emph{same}
4834 symbol object both times.
4835
4836 Given two read symbols, you can use @code{eq?} to test whether they are
4837 the same (that is, have the same name). @code{eq?} is the most
4838 efficient comparison operator in Scheme, and comparing two symbols like
4839 this is as fast as comparing, for example, two numbers. Given two
4840 strings, on the other hand, you must use @code{equal?} or
4841 @code{string=?}, which are much slower comparison operators, to
4842 determine whether the strings have the same contents.
4843
4844 @lisp
4845 (define sym1 (quote hello))
4846 (define sym2 (quote hello))
4847 (eq? sym1 sym2) @result{} #t
4848
4849 (define str1 "hello")
4850 (define str2 "hello")
4851 (eq? str1 str2) @result{} #f
4852 (equal? str1 str2) @result{} #t
4853 @end lisp
4854
4855 The second important difference is that symbols, unlike strings, are not
4856 self-evaluating. This is why we need the @code{(quote @dots{})}s in the
4857 example above: @code{(quote hello)} evaluates to the symbol named
4858 "hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
4859 symbol named "hello" and evaluated as a variable reference @dots{} about
4860 which more below (@pxref{Symbol Variables}).
4861
4862 @menu
4863 * Symbol Data:: Symbols as discrete data.
4864 * Symbol Keys:: Symbols as lookup keys.
4865 * Symbol Variables:: Symbols as denoting variables.
4866 * Symbol Primitives:: Operations related to symbols.
4867 * Symbol Props:: Function slots and property lists.
4868 * Symbol Read Syntax:: Extended read syntax for symbols.
4869 * Symbol Uninterned:: Uninterned symbols.
4870 @end menu
4871
4872
4873 @node Symbol Data
4874 @subsubsection Symbols as Discrete Data
4875
4876 Numbers and symbols are similar to the extent that they both lend
4877 themselves to @code{eq?} comparison. But symbols are more descriptive
4878 than numbers, because a symbol's name can be used directly to describe
4879 the concept for which that symbol stands.
4880
4881 For example, imagine that you need to represent some colours in a
4882 computer program. Using numbers, you would have to choose arbitrarily
4883 some mapping between numbers and colours, and then take care to use that
4884 mapping consistently:
4885
4886 @lisp
4887 ;; 1=red, 2=green, 3=purple
4888
4889 (if (eq? (colour-of car) 1)
4890 ...)
4891 @end lisp
4892
4893 @noindent
4894 You can make the mapping more explicit and the code more readable by
4895 defining constants:
4896
4897 @lisp
4898 (define red 1)
4899 (define green 2)
4900 (define purple 3)
4901
4902 (if (eq? (colour-of car) red)
4903 ...)
4904 @end lisp
4905
4906 @noindent
4907 But the simplest and clearest approach is not to use numbers at all, but
4908 symbols whose names specify the colours that they refer to:
4909
4910 @lisp
4911 (if (eq? (colour-of car) 'red)
4912 ...)
4913 @end lisp
4914
4915 The descriptive advantages of symbols over numbers increase as the set
4916 of concepts that you want to describe grows. Suppose that a car object
4917 can have other properties as well, such as whether it has or uses:
4918
4919 @itemize @bullet
4920 @item
4921 automatic or manual transmission
4922 @item
4923 leaded or unleaded fuel
4924 @item
4925 power steering (or not).
4926 @end itemize
4927
4928 @noindent
4929 Then a car's combined property set could be naturally represented and
4930 manipulated as a list of symbols:
4931
4932 @lisp
4933 (properties-of car1)
4934 @result{}
4935 (red manual unleaded power-steering)
4936
4937 (if (memq 'power-steering (properties-of car1))
4938 (display "Unfit people can drive this car.\n")
4939 (display "You'll need strong arms to drive this car!\n"))
4940 @print{}
4941 Unfit people can drive this car.
4942 @end lisp
4943
4944 Remember, the fundamental property of symbols that we are relying on
4945 here is that an occurrence of @code{'red} in one part of a program is an
4946 @emph{indistinguishable} symbol from an occurrence of @code{'red} in
4947 another part of a program; this means that symbols can usefully be
4948 compared using @code{eq?}. At the same time, symbols have naturally
4949 descriptive names. This combination of efficiency and descriptive power
4950 makes them ideal for use as discrete data.
4951
4952
4953 @node Symbol Keys
4954 @subsubsection Symbols as Lookup Keys
4955
4956 Given their efficiency and descriptive power, it is natural to use
4957 symbols as the keys in an association list or hash table.
4958
4959 To illustrate this, consider a more structured representation of the car
4960 properties example from the preceding subsection. Rather than
4961 mixing all the properties up together in a flat list, we could use an
4962 association list like this:
4963
4964 @lisp
4965 (define car1-properties '((colour . red)
4966 (transmission . manual)
4967 (fuel . unleaded)
4968 (steering . power-assisted)))
4969 @end lisp
4970
4971 Notice how this structure is more explicit and extensible than the flat
4972 list. For example it makes clear that @code{manual} refers to the
4973 transmission rather than, say, the windows or the locking of the car.
4974 It also allows further properties to use the same symbols among their
4975 possible values without becoming ambiguous:
4976
4977 @lisp
4978 (define car1-properties '((colour . red)
4979 (transmission . manual)
4980 (fuel . unleaded)
4981 (steering . power-assisted)
4982 (seat-colour . red)
4983 (locking . manual)))
4984 @end lisp
4985
4986 With a representation like this, it is easy to use the efficient
4987 @code{assq-XXX} family of procedures (@pxref{Association Lists}) to
4988 extract or change individual pieces of information:
4989
4990 @lisp
4991 (assq-ref car1-properties 'fuel) @result{} unleaded
4992 (assq-ref car1-properties 'transmission) @result{} manual
4993
4994 (assq-set! car1-properties 'seat-colour 'black)
4995 @result{}
4996 ((colour . red)
4997 (transmission . manual)
4998 (fuel . unleaded)
4999 (steering . power-assisted)
5000 (seat-colour . black)
5001 (locking . manual)))
5002 @end lisp
5003
5004 Hash tables also have keys, and exactly the same arguments apply to the
5005 use of symbols in hash tables as in association lists. The hash value
5006 that Guile uses to decide where to add a symbol-keyed entry to a hash
5007 table can be obtained by calling the @code{symbol-hash} procedure:
5008
5009 @deffn {Scheme Procedure} symbol-hash symbol
5010 @deffnx {C Function} scm_symbol_hash (symbol)
5011 Return a hash value for @var{symbol}.
5012 @end deffn
5013
5014 See @ref{Hash Tables} for information about hash tables in general, and
5015 for why you might choose to use a hash table rather than an association
5016 list.
5017
5018
5019 @node Symbol Variables
5020 @subsubsection Symbols as Denoting Variables
5021
5022 When an unquoted symbol in a Scheme program is evaluated, it is
5023 interpreted as a variable reference, and the result of the evaluation is
5024 the appropriate variable's value.
5025
5026 For example, when the expression @code{(string-length "abcd")} is read
5027 and evaluated, the sequence of characters @code{string-length} is read
5028 as the symbol whose name is "string-length". This symbol is associated
5029 with a variable whose value is the procedure that implements string
5030 length calculation. Therefore evaluation of the @code{string-length}
5031 symbol results in that procedure.
5032
5033 The details of the connection between an unquoted symbol and the
5034 variable to which it refers are explained elsewhere. See @ref{Binding
5035 Constructs}, for how associations between symbols and variables are
5036 created, and @ref{Modules}, for how those associations are affected by
5037 Guile's module system.
5038
5039
5040 @node Symbol Primitives
5041 @subsubsection Operations Related to Symbols
5042
5043 Given any Scheme value, you can determine whether it is a symbol using
5044 the @code{symbol?} primitive:
5045
5046 @rnindex symbol?
5047 @deffn {Scheme Procedure} symbol? obj
5048 @deffnx {C Function} scm_symbol_p (obj)
5049 Return @code{#t} if @var{obj} is a symbol, otherwise return
5050 @code{#f}.
5051 @end deffn
5052
5053 @deftypefn {C Function} int scm_is_symbol (SCM val)
5054 Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5055 @end deftypefn
5056
5057 Once you know that you have a symbol, you can obtain its name as a
5058 string by calling @code{symbol->string}. Note that Guile differs by
5059 default from R5RS on the details of @code{symbol->string} as regards
5060 case-sensitivity:
5061
5062 @rnindex symbol->string
5063 @deffn {Scheme Procedure} symbol->string s
5064 @deffnx {C Function} scm_symbol_to_string (s)
5065 Return the name of symbol @var{s} as a string. By default, Guile reads
5066 symbols case-sensitively, so the string returned will have the same case
5067 variation as the sequence of characters that caused @var{s} to be
5068 created.
5069
5070 If Guile is set to read symbols case-insensitively (as specified by
5071 R5RS), and @var{s} comes into being as part of a literal expression
5072 (@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5073 by a call to the @code{read} or @code{string-ci->symbol} procedures,
5074 Guile converts any alphabetic characters in the symbol's name to
5075 lower case before creating the symbol object, so the string returned
5076 here will be in lower case.
5077
5078 If @var{s} was created by @code{string->symbol}, the case of characters
5079 in the string returned will be the same as that in the string that was
5080 passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5081 setting at the time @var{s} was created.
5082
5083 It is an error to apply mutation procedures like @code{string-set!} to
5084 strings returned by this procedure.
5085 @end deffn
5086
5087 Most symbols are created by writing them literally in code. However it
5088 is also possible to create symbols programmatically using the following
5089 @code{string->symbol} and @code{string-ci->symbol} procedures:
5090
5091 @rnindex string->symbol
5092 @deffn {Scheme Procedure} string->symbol string
5093 @deffnx {C Function} scm_string_to_symbol (string)
5094 Return the symbol whose name is @var{string}. This procedure can create
5095 symbols with names containing special characters or letters in the
5096 non-standard case, but it is usually a bad idea to create such symbols
5097 because in some implementations of Scheme they cannot be read as
5098 themselves.
5099 @end deffn
5100
5101 @deffn {Scheme Procedure} string-ci->symbol str
5102 @deffnx {C Function} scm_string_ci_to_symbol (str)
5103 Return the symbol whose name is @var{str}. If Guile is currently
5104 reading symbols case-insensitively, @var{str} is converted to lowercase
5105 before the returned symbol is looked up or created.
5106 @end deffn
5107
5108 The following examples illustrate Guile's detailed behaviour as regards
5109 the case-sensitivity of symbols:
5110
5111 @lisp
5112 (read-enable 'case-insensitive) ; R5RS compliant behaviour
5113
5114 (symbol->string 'flying-fish) @result{} "flying-fish"
5115 (symbol->string 'Martin) @result{} "martin"
5116 (symbol->string
5117 (string->symbol "Malvina")) @result{} "Malvina"
5118
5119 (eq? 'mISSISSIppi 'mississippi) @result{} #t
5120 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5121 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5122 (eq? 'LolliPop
5123 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5124 (string=? "K. Harper, M.D."
5125 (symbol->string
5126 (string->symbol "K. Harper, M.D."))) @result{} #t
5127
5128 (read-disable 'case-insensitive) ; Guile default behaviour
5129
5130 (symbol->string 'flying-fish) @result{} "flying-fish"
5131 (symbol->string 'Martin) @result{} "Martin"
5132 (symbol->string
5133 (string->symbol "Malvina")) @result{} "Malvina"
5134
5135 (eq? 'mISSISSIppi 'mississippi) @result{} #f
5136 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5137 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5138 (eq? 'LolliPop
5139 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5140 (string=? "K. Harper, M.D."
5141 (symbol->string
5142 (string->symbol "K. Harper, M.D."))) @result{} #t
5143 @end lisp
5144
5145 From C, there are lower level functions that construct a Scheme symbol
5146 from a C string in the current locale encoding.
5147
5148 When you want to do more from C, you should convert between symbols
5149 and strings using @code{scm_symbol_to_string} and
5150 @code{scm_string_to_symbol} and work with the strings.
5151
5152 @deffn {C Function} scm_from_locale_symbol (const char *name)
5153 @deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
5154 Construct and return a Scheme symbol whose name is specified by
5155 @var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5156 terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
5157 specified explicitly by @var{len}.
5158 @end deffn
5159
5160 @deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5161 @deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5162 Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5163 respectively, but also frees @var{str} with @code{free} eventually.
5164 Thus, you can use this function when you would free @var{str} anyway
5165 immediately after creating the Scheme string. In certain cases, Guile
5166 can then use @var{str} directly as its internal representation.
5167 @end deftypefn
5168
5169 The size of a symbol can also be obtained from C:
5170
5171 @deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5172 Return the number of characters in @var{sym}.
5173 @end deftypefn
5174
5175 Finally, some applications, especially those that generate new Scheme
5176 code dynamically, need to generate symbols for use in the generated
5177 code. The @code{gensym} primitive meets this need:
5178
5179 @deffn {Scheme Procedure} gensym [prefix]
5180 @deffnx {C Function} scm_gensym (prefix)
5181 Create a new symbol with a name constructed from a prefix and a counter
5182 value. The string @var{prefix} can be specified as an optional
5183 argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5184 at each call. There is no provision for resetting the counter.
5185 @end deffn
5186
5187 The symbols generated by @code{gensym} are @emph{likely} to be unique,
5188 since their names begin with a space and it is only otherwise possible
5189 to generate such symbols if a programmer goes out of their way to do
5190 so. Uniqueness can be guaranteed by instead using uninterned symbols
5191 (@pxref{Symbol Uninterned}), though they can't be usefully written out
5192 and read back in.
5193
5194
5195 @node Symbol Props
5196 @subsubsection Function Slots and Property Lists
5197
5198 In traditional Lisp dialects, symbols are often understood as having
5199 three kinds of value at once:
5200
5201 @itemize @bullet
5202 @item
5203 a @dfn{variable} value, which is used when the symbol appears in
5204 code in a variable reference context
5205
5206 @item
5207 a @dfn{function} value, which is used when the symbol appears in
5208 code in a function name position (i.e. as the first element in an
5209 unquoted list)
5210
5211 @item
5212 a @dfn{property list} value, which is used when the symbol is given as
5213 the first argument to Lisp's @code{put} or @code{get} functions.
5214 @end itemize
5215
5216 Although Scheme (as one of its simplifications with respect to Lisp)
5217 does away with the distinction between variable and function namespaces,
5218 Guile currently retains some elements of the traditional structure in
5219 case they turn out to be useful when implementing translators for other
5220 languages, in particular Emacs Lisp.
5221
5222 Specifically, Guile symbols have two extra slots. for a symbol's
5223 property list, and for its ``function value.'' The following procedures
5224 are provided to access these slots.
5225
5226 @deffn {Scheme Procedure} symbol-fref symbol
5227 @deffnx {C Function} scm_symbol_fref (symbol)
5228 Return the contents of @var{symbol}'s @dfn{function slot}.
5229 @end deffn
5230
5231 @deffn {Scheme Procedure} symbol-fset! symbol value
5232 @deffnx {C Function} scm_symbol_fset_x (symbol, value)
5233 Set the contents of @var{symbol}'s function slot to @var{value}.
5234 @end deffn
5235
5236 @deffn {Scheme Procedure} symbol-pref symbol
5237 @deffnx {C Function} scm_symbol_pref (symbol)
5238 Return the @dfn{property list} currently associated with @var{symbol}.
5239 @end deffn
5240
5241 @deffn {Scheme Procedure} symbol-pset! symbol value
5242 @deffnx {C Function} scm_symbol_pset_x (symbol, value)
5243 Set @var{symbol}'s property list to @var{value}.
5244 @end deffn
5245
5246 @deffn {Scheme Procedure} symbol-property sym prop
5247 From @var{sym}'s property list, return the value for property
5248 @var{prop}. The assumption is that @var{sym}'s property list is an
5249 association list whose keys are distinguished from each other using
5250 @code{equal?}; @var{prop} should be one of the keys in that list. If
5251 the property list has no entry for @var{prop}, @code{symbol-property}
5252 returns @code{#f}.
5253 @end deffn
5254
5255 @deffn {Scheme Procedure} set-symbol-property! sym prop val
5256 In @var{sym}'s property list, set the value for property @var{prop} to
5257 @var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5258 none already exists. For the structure of the property list, see
5259 @code{symbol-property}.
5260 @end deffn
5261
5262 @deffn {Scheme Procedure} symbol-property-remove! sym prop
5263 From @var{sym}'s property list, remove the entry for property
5264 @var{prop}, if there is one. For the structure of the property list,
5265 see @code{symbol-property}.
5266 @end deffn
5267
5268 Support for these extra slots may be removed in a future release, and it
5269 is probably better to avoid using them. For a more modern and Schemely
5270 approach to properties, see @ref{Object Properties}.
5271
5272
5273 @node Symbol Read Syntax
5274 @subsubsection Extended Read Syntax for Symbols
5275
5276 The read syntax for a symbol is a sequence of letters, digits, and
5277 @dfn{extended alphabetic characters}, beginning with a character that
5278 cannot begin a number. In addition, the special cases of @code{+},
5279 @code{-}, and @code{...} are read as symbols even though numbers can
5280 begin with @code{+}, @code{-} or @code{.}.
5281
5282 Extended alphabetic characters may be used within identifiers as if
5283 they were letters. The set of extended alphabetic characters is:
5284
5285 @example
5286 ! $ % & * + - . / : < = > ? @@ ^ _ ~
5287 @end example
5288
5289 In addition to the standard read syntax defined above (which is taken
5290 from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5291 Scheme})), Guile provides an extended symbol read syntax that allows the
5292 inclusion of unusual characters such as space characters, newlines and
5293 parentheses. If (for whatever reason) you need to write a symbol
5294 containing characters not mentioned above, you can do so as follows.
5295
5296 @itemize @bullet
5297 @item
5298 Begin the symbol with the characters @code{#@{},
5299
5300 @item
5301 write the characters of the symbol and
5302
5303 @item
5304 finish the symbol with the characters @code{@}#}.
5305 @end itemize
5306
5307 Here are a few examples of this form of read syntax. The first symbol
5308 needs to use extended syntax because it contains a space character, the
5309 second because it contains a line break, and the last because it looks
5310 like a number.
5311
5312 @lisp
5313 #@{foo bar@}#
5314
5315 #@{what
5316 ever@}#
5317
5318 #@{4242@}#
5319 @end lisp
5320
5321 Although Guile provides this extended read syntax for symbols,
5322 widespread usage of it is discouraged because it is not portable and not
5323 very readable.
5324
5325
5326 @node Symbol Uninterned
5327 @subsubsection Uninterned Symbols
5328
5329 What makes symbols useful is that they are automatically kept unique.
5330 There are no two symbols that are distinct objects but have the same
5331 name. But of course, there is no rule without exception. In addition
5332 to the normal symbols that have been discussed up to now, you can also
5333 create special @dfn{uninterned} symbols that behave slightly
5334 differently.
5335
5336 To understand what is different about them and why they might be useful,
5337 we look at how normal symbols are actually kept unique.
5338
5339 Whenever Guile wants to find the symbol with a specific name, for
5340 example during @code{read} or when executing @code{string->symbol}, it
5341 first looks into a table of all existing symbols to find out whether a
5342 symbol with the given name already exists. When this is the case, Guile
5343 just returns that symbol. When not, a new symbol with the name is
5344 created and entered into the table so that it can be found later.
5345
5346 Sometimes you might want to create a symbol that is guaranteed `fresh',
5347 i.e. a symbol that did not exist previously. You might also want to
5348 somehow guarantee that no one else will ever unintentionally stumble
5349 across your symbol in the future. These properties of a symbol are
5350 often needed when generating code during macro expansion. When
5351 introducing new temporary variables, you want to guarantee that they
5352 don't conflict with variables in other people's code.
5353
5354 The simplest way to arrange for this is to create a new symbol but
5355 not enter it into the global table of all symbols. That way, no one
5356 will ever get access to your symbol by chance. Symbols that are not in
5357 the table are called @dfn{uninterned}. Of course, symbols that
5358 @emph{are} in the table are called @dfn{interned}.
5359
5360 You create new uninterned symbols with the function @code{make-symbol}.
5361 You can test whether a symbol is interned or not with
5362 @code{symbol-interned?}.
5363
5364 Uninterned symbols break the rule that the name of a symbol uniquely
5365 identifies the symbol object. Because of this, they can not be written
5366 out and read back in like interned symbols. Currently, Guile has no
5367 support for reading uninterned symbols. Note that the function
5368 @code{gensym} does not return uninterned symbols for this reason.
5369
5370 @deffn {Scheme Procedure} make-symbol name
5371 @deffnx {C Function} scm_make_symbol (name)
5372 Return a new uninterned symbol with the name @var{name}. The returned
5373 symbol is guaranteed to be unique and future calls to
5374 @code{string->symbol} will not return it.
5375 @end deffn
5376
5377 @deffn {Scheme Procedure} symbol-interned? symbol
5378 @deffnx {C Function} scm_symbol_interned_p (symbol)
5379 Return @code{#t} if @var{symbol} is interned, otherwise return
5380 @code{#f}.
5381 @end deffn
5382
5383 For example:
5384
5385 @lisp
5386 (define foo-1 (string->symbol "foo"))
5387 (define foo-2 (string->symbol "foo"))
5388 (define foo-3 (make-symbol "foo"))
5389 (define foo-4 (make-symbol "foo"))
5390
5391 (eq? foo-1 foo-2)
5392 @result{} #t
5393 ; Two interned symbols with the same name are the same object,
5394
5395 (eq? foo-1 foo-3)
5396 @result{} #f
5397 ; but a call to make-symbol with the same name returns a
5398 ; distinct object.
5399
5400 (eq? foo-3 foo-4)
5401 @result{} #f
5402 ; A call to make-symbol always returns a new object, even for
5403 ; the same name.
5404
5405 foo-3
5406 @result{} #<uninterned-symbol foo 8085290>
5407 ; Uninterned symbols print differently from interned symbols,
5408
5409 (symbol? foo-3)
5410 @result{} #t
5411 ; but they are still symbols,
5412
5413 (symbol-interned? foo-3)
5414 @result{} #f
5415 ; just not interned.
5416 @end lisp
5417
5418
5419 @node Keywords
5420 @subsection Keywords
5421 @tpindex Keywords
5422
5423 Keywords are self-evaluating objects with a convenient read syntax that
5424 makes them easy to type.
5425
5426 Guile's keyword support conforms to R5RS, and adds a (switchable) read
5427 syntax extension to permit keywords to begin with @code{:} as well as
5428 @code{#:}, or to end with @code{:}.
5429
5430 @menu
5431 * Why Use Keywords?:: Motivation for keyword usage.
5432 * Coding With Keywords:: How to use keywords.
5433 * Keyword Read Syntax:: Read syntax for keywords.
5434 * Keyword Procedures:: Procedures for dealing with keywords.
5435 @end menu
5436
5437 @node Why Use Keywords?
5438 @subsubsection Why Use Keywords?
5439
5440 Keywords are useful in contexts where a program or procedure wants to be
5441 able to accept a large number of optional arguments without making its
5442 interface unmanageable.
5443
5444 To illustrate this, consider a hypothetical @code{make-window}
5445 procedure, which creates a new window on the screen for drawing into
5446 using some graphical toolkit. There are many parameters that the caller
5447 might like to specify, but which could also be sensibly defaulted, for
5448 example:
5449
5450 @itemize @bullet
5451 @item
5452 color depth -- Default: the color depth for the screen
5453
5454 @item
5455 background color -- Default: white
5456
5457 @item
5458 width -- Default: 600
5459
5460 @item
5461 height -- Default: 400
5462 @end itemize
5463
5464 If @code{make-window} did not use keywords, the caller would have to
5465 pass in a value for each possible argument, remembering the correct
5466 argument order and using a special value to indicate the default value
5467 for that argument:
5468
5469 @lisp
5470 (make-window 'default ;; Color depth
5471 'default ;; Background color
5472 800 ;; Width
5473 100 ;; Height
5474 @dots{}) ;; More make-window arguments
5475 @end lisp
5476
5477 With keywords, on the other hand, defaulted arguments are omitted, and
5478 non-default arguments are clearly tagged by the appropriate keyword. As
5479 a result, the invocation becomes much clearer:
5480
5481 @lisp
5482 (make-window #:width 800 #:height 100)
5483 @end lisp
5484
5485 On the other hand, for a simpler procedure with few arguments, the use
5486 of keywords would be a hindrance rather than a help. The primitive
5487 procedure @code{cons}, for example, would not be improved if it had to
5488 be invoked as
5489
5490 @lisp
5491 (cons #:car x #:cdr y)
5492 @end lisp
5493
5494 So the decision whether to use keywords or not is purely pragmatic: use
5495 them if they will clarify the procedure invocation at point of call.
5496
5497 @node Coding With Keywords
5498 @subsubsection Coding With Keywords
5499
5500 If a procedure wants to support keywords, it should take a rest argument
5501 and then use whatever means is convenient to extract keywords and their
5502 corresponding arguments from the contents of that rest argument.
5503
5504 The following example illustrates the principle: the code for
5505 @code{make-window} uses a helper procedure called
5506 @code{get-keyword-value} to extract individual keyword arguments from
5507 the rest argument.
5508
5509 @lisp
5510 (define (get-keyword-value args keyword default)
5511 (let ((kv (memq keyword args)))
5512 (if (and kv (>= (length kv) 2))
5513 (cadr kv)
5514 default)))
5515
5516 (define (make-window . args)
5517 (let ((depth (get-keyword-value args #:depth screen-depth))
5518 (bg (get-keyword-value args #:bg "white"))
5519 (width (get-keyword-value args #:width 800))
5520 (height (get-keyword-value args #:height 100))
5521 @dots{})
5522 @dots{}))
5523 @end lisp
5524
5525 But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5526 optargs)} module provides a set of powerful macros that you can use to
5527 implement keyword-supporting procedures like this:
5528
5529 @lisp
5530 (use-modules (ice-9 optargs))
5531
5532 (define (make-window . args)
5533 (let-keywords args #f ((depth screen-depth)
5534 (bg "white")
5535 (width 800)
5536 (height 100))
5537 ...))
5538 @end lisp
5539
5540 @noindent
5541 Or, even more economically, like this:
5542
5543 @lisp
5544 (use-modules (ice-9 optargs))
5545
5546 (define* (make-window #:key (depth screen-depth)
5547 (bg "white")
5548 (width 800)
5549 (height 100))
5550 ...)
5551 @end lisp
5552
5553 For further details on @code{let-keywords}, @code{define*} and other
5554 facilities provided by the @code{(ice-9 optargs)} module, see
5555 @ref{Optional Arguments}.
5556
5557
5558 @node Keyword Read Syntax
5559 @subsubsection Keyword Read Syntax
5560
5561 Guile, by default, only recognizes a keyword syntax that is compatible
5562 with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5563 same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5564 external representation of the keyword named @code{NAME}. Keyword
5565 objects print using this syntax as well, so values containing keyword
5566 objects can be read back into Guile. When used in an expression,
5567 keywords are self-quoting objects.
5568
5569 If the @code{keyword} read option is set to @code{'prefix}, Guile also
5570 recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5571 of the form @code{:NAME} are read as symbols, as required by R5RS.
5572
5573 @cindex SRFI-88 keyword syntax
5574
5575 If the @code{keyword} read option is set to @code{'postfix}, Guile
5576 recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5577 Otherwise, tokens of this form are read as symbols.
5578
5579 To enable and disable the alternative non-R5RS keyword syntax, you use
5580 the @code{read-set!} procedure documented in @ref{User level options
5581 interfaces} and @ref{Reader options}. Note that the @code{prefix} and
5582 @code{postfix} syntax are mutually exclusive.
5583
5584 @lisp
5585 (read-set! keywords 'prefix)
5586
5587 #:type
5588 @result{}
5589 #:type
5590
5591 :type
5592 @result{}
5593 #:type
5594
5595 (read-set! keywords 'postfix)
5596
5597 type:
5598 @result{}
5599 #:type
5600
5601 :type
5602 @result{}
5603 :type
5604
5605 (read-set! keywords #f)
5606
5607 #:type
5608 @result{}
5609 #:type
5610
5611 :type
5612 @print{}
5613 ERROR: In expression :type:
5614 ERROR: Unbound variable: :type
5615 ABORT: (unbound-variable)
5616 @end lisp
5617
5618 @node Keyword Procedures
5619 @subsubsection Keyword Procedures
5620
5621 @deffn {Scheme Procedure} keyword? obj
5622 @deffnx {C Function} scm_keyword_p (obj)
5623 Return @code{#t} if the argument @var{obj} is a keyword, else
5624 @code{#f}.
5625 @end deffn
5626
5627 @deffn {Scheme Procedure} keyword->symbol keyword
5628 @deffnx {C Function} scm_keyword_to_symbol (keyword)
5629 Return the symbol with the same name as @var{keyword}.
5630 @end deffn
5631
5632 @deffn {Scheme Procedure} symbol->keyword symbol
5633 @deffnx {C Function} scm_symbol_to_keyword (symbol)
5634 Return the keyword with the same name as @var{symbol}.
5635 @end deffn
5636
5637 @deftypefn {C Function} int scm_is_keyword (SCM obj)
5638 Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
5639 @end deftypefn
5640
5641 @deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
5642 @deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
5643 Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5644 (@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5645 (@var{str}, @var{len}))}, respectively.
5646 @end deftypefn
5647
5648 @node Other Types
5649 @subsection ``Functionality-Centric'' Data Types
5650
5651 Procedures and macros are documented in their own chapter: see
5652 @ref{Procedures and Macros}.
5653
5654 Variable objects are documented as part of the description of Guile's
5655 module system: see @ref{Variables}.
5656
5657 Asyncs, dynamic roots and fluids are described in the chapter on
5658 scheduling: see @ref{Scheduling}.
5659
5660 Hooks are documented in the chapter on general utility functions: see
5661 @ref{Hooks}.
5662
5663 Ports are described in the chapter on I/O: see @ref{Input and Output}.
5664
5665
5666 @c Local Variables:
5667 @c TeX-master: "guile.texi"
5668 @c End: