(scm_round, scm_truncate): Renamed to scm_c_round and scm_c_truncate;
[bpt/guile.git] / libguile / numbers.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004 Free Software Foundation, Inc.
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 \f
23 /* General assumptions:
24 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
25 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
26 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
27 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
28 * All objects satisfying SCM_FRACTIONP are never an integer.
29 */
30
31 /* TODO:
32
33 - see if special casing bignums and reals in integer-exponent when
34 possible (to use mpz_pow and mpf_pow_ui) is faster.
35
36 - look in to better short-circuiting of common cases in
37 integer-expt and elsewhere.
38
39 - see if direct mpz operations can help in ash and elsewhere.
40
41 */
42
43 /* tell glibc (2.3) to give prototype for C99 trunc() */
44 #define _GNU_SOURCE
45
46 #if HAVE_CONFIG_H
47 # include <config.h>
48 #endif
49
50 #include <math.h>
51 #include <ctype.h>
52 #include <string.h>
53 #include <gmp.h>
54
55 #include "libguile/_scm.h"
56 #include "libguile/feature.h"
57 #include "libguile/ports.h"
58 #include "libguile/root.h"
59 #include "libguile/smob.h"
60 #include "libguile/strings.h"
61
62 #include "libguile/validate.h"
63 #include "libguile/numbers.h"
64 #include "libguile/deprecation.h"
65
66 #include "libguile/eq.h"
67
68 #include "libguile/discouraged.h"
69
70 \f
71
72 /*
73 Wonder if this might be faster for some of our code? A switch on
74 the numtag would jump directly to the right case, and the
75 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
76
77 #define SCM_I_NUMTAG_NOTNUM 0
78 #define SCM_I_NUMTAG_INUM 1
79 #define SCM_I_NUMTAG_BIG scm_tc16_big
80 #define SCM_I_NUMTAG_REAL scm_tc16_real
81 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
82 #define SCM_I_NUMTAG(x) \
83 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
84 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
85 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
86 : SCM_I_NUMTAG_NOTNUM)))
87 */
88 /* the macro above will not work as is with fractions */
89
90
91 #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
92
93 /* FLOBUFLEN is the maximum number of characters neccessary for the
94 * printed or scm_string representation of an inexact number.
95 */
96 #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
97
98 #if defined (SCO)
99 #if ! defined (HAVE_ISNAN)
100 #define HAVE_ISNAN
101 static int
102 isnan (double x)
103 {
104 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
105 }
106 #endif
107 #if ! defined (HAVE_ISINF)
108 #define HAVE_ISINF
109 static int
110 isinf (double x)
111 {
112 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
113 }
114
115 #endif
116 #endif
117
118
119 /* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
120 an explicit check. In some future gmp (don't know what version number),
121 mpz_cmp_d is supposed to do this itself. */
122 #if 1
123 #define xmpz_cmp_d(z, d) \
124 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
125 #else
126 #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
127 #endif
128
129 /* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
130 isinf. It does have finite and isnan though, hence the use of those.
131 fpclass would be a possibility on that system too. */
132 static int
133 xisinf (double x)
134 {
135 #if defined (HAVE_ISINF)
136 return isinf (x);
137 #elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
138 return (! (finite (x) || isnan (x)));
139 #else
140 return 0;
141 #endif
142 }
143
144 static int
145 xisnan (double x)
146 {
147 #if defined (HAVE_ISNAN)
148 return isnan (x);
149 #else
150 return 0;
151 #endif
152 }
153
154 \f
155
156 static mpz_t z_negative_one;
157
158 \f
159
160 SCM_C_INLINE_KEYWORD SCM
161 scm_i_mkbig ()
162 {
163 /* Return a newly created bignum. */
164 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
165 mpz_init (SCM_I_BIG_MPZ (z));
166 return z;
167 }
168
169 SCM_C_INLINE_KEYWORD SCM
170 scm_i_long2big (long x)
171 {
172 /* Return a newly created bignum initialized to X. */
173 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
174 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
175 return z;
176 }
177
178 SCM_C_INLINE_KEYWORD SCM
179 scm_i_ulong2big (unsigned long x)
180 {
181 /* Return a newly created bignum initialized to X. */
182 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
183 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
184 return z;
185 }
186
187 SCM_C_INLINE_KEYWORD static SCM
188 scm_i_clonebig (SCM src_big, int same_sign_p)
189 {
190 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
191 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
192 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
193 if (!same_sign_p)
194 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
195 return z;
196 }
197
198 SCM_C_INLINE_KEYWORD int
199 scm_i_bigcmp (SCM x, SCM y)
200 {
201 /* Return neg if x < y, pos if x > y, and 0 if x == y */
202 /* presume we already know x and y are bignums */
203 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
204 scm_remember_upto_here_2 (x, y);
205 return result;
206 }
207
208 SCM_C_INLINE_KEYWORD SCM
209 scm_i_dbl2big (double d)
210 {
211 /* results are only defined if d is an integer */
212 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
213 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
214 return z;
215 }
216
217 /* Convert a integer in double representation to a SCM number. */
218
219 SCM_C_INLINE_KEYWORD SCM
220 scm_i_dbl2num (double u)
221 {
222 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
223 powers of 2, so there's no rounding when making "double" values
224 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
225 get rounded on a 64-bit machine, hence the "+1".
226
227 The use of floor() to force to an integer value ensures we get a
228 "numerically closest" value without depending on how a
229 double->long cast or how mpz_set_d will round. For reference,
230 double->long probably follows the hardware rounding mode,
231 mpz_set_d truncates towards zero. */
232
233 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
234 representable as a double? */
235
236 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
237 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
238 return SCM_I_MAKINUM ((long) u);
239 else
240 return scm_i_dbl2big (u);
241 }
242
243 /* scm_i_big2dbl() rounds to the closest representable double, in accordance
244 with R5RS exact->inexact.
245
246 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
247 (ie. truncate towards zero), then adjust to get the closest double by
248 examining the next lower bit and adding 1 (to the absolute value) if
249 necessary.
250
251 Bignums exactly half way between representable doubles are rounded to the
252 next higher absolute value (ie. away from zero). This seems like an
253 adequate interpretation of R5RS "numerically closest", and it's easier
254 and faster than a full "nearest-even" style.
255
256 The bit test must be done on the absolute value of the mpz_t, which means
257 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
258 negatives as twos complement.
259
260 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
261 following the hardware rounding mode, but applied to the absolute value
262 of the mpz_t operand. This is not what we want so we put the high
263 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
264 mpz_get_d is supposed to always truncate towards zero.
265
266 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
267 is a slowdown. It'd be faster to pick out the relevant high bits with
268 mpz_getlimbn if we could be bothered coding that, and if the new
269 truncating gmp doesn't come out. */
270
271 double
272 scm_i_big2dbl (SCM b)
273 {
274 double result;
275 size_t bits;
276
277 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
278
279 #if 1
280 {
281 /* Current GMP, eg. 4.1.3, force truncation towards zero */
282 mpz_t tmp;
283 if (bits > DBL_MANT_DIG)
284 {
285 size_t shift = bits - DBL_MANT_DIG;
286 mpz_init2 (tmp, DBL_MANT_DIG);
287 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
288 result = ldexp (mpz_get_d (tmp), shift);
289 mpz_clear (tmp);
290 }
291 else
292 {
293 result = mpz_get_d (SCM_I_BIG_MPZ (b));
294 }
295 }
296 #else
297 /* Future GMP */
298 result = mpz_get_d (SCM_I_BIG_MPZ (b));
299 #endif
300
301 if (bits > DBL_MANT_DIG)
302 {
303 unsigned long pos = bits - DBL_MANT_DIG - 1;
304 /* test bit number "pos" in absolute value */
305 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
306 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
307 {
308 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
309 }
310 }
311
312 scm_remember_upto_here_1 (b);
313 return result;
314 }
315
316 SCM_C_INLINE_KEYWORD SCM
317 scm_i_normbig (SCM b)
318 {
319 /* convert a big back to a fixnum if it'll fit */
320 /* presume b is a bignum */
321 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
322 {
323 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
324 if (SCM_FIXABLE (val))
325 b = SCM_I_MAKINUM (val);
326 }
327 return b;
328 }
329
330 static SCM_C_INLINE_KEYWORD SCM
331 scm_i_mpz2num (mpz_t b)
332 {
333 /* convert a mpz number to a SCM number. */
334 if (mpz_fits_slong_p (b))
335 {
336 long val = mpz_get_si (b);
337 if (SCM_FIXABLE (val))
338 return SCM_I_MAKINUM (val);
339 }
340
341 {
342 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
343 mpz_init_set (SCM_I_BIG_MPZ (z), b);
344 return z;
345 }
346 }
347
348 /* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
349 static SCM scm_divide2real (SCM x, SCM y);
350
351 static SCM
352 scm_i_make_ratio (SCM numerator, SCM denominator)
353 #define FUNC_NAME "make-ratio"
354 {
355 /* First make sure the arguments are proper.
356 */
357 if (SCM_I_INUMP (denominator))
358 {
359 if (scm_is_eq (denominator, SCM_INUM0))
360 scm_num_overflow ("make-ratio");
361 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
362 return numerator;
363 }
364 else
365 {
366 if (!(SCM_BIGP(denominator)))
367 SCM_WRONG_TYPE_ARG (2, denominator);
368 }
369 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
370 SCM_WRONG_TYPE_ARG (1, numerator);
371
372 /* Then flip signs so that the denominator is positive.
373 */
374 if (scm_is_true (scm_negative_p (denominator)))
375 {
376 numerator = scm_difference (numerator, SCM_UNDEFINED);
377 denominator = scm_difference (denominator, SCM_UNDEFINED);
378 }
379
380 /* Now consider for each of the four fixnum/bignum combinations
381 whether the rational number is really an integer.
382 */
383 if (SCM_I_INUMP (numerator))
384 {
385 long x = SCM_I_INUM (numerator);
386 if (scm_is_eq (numerator, SCM_INUM0))
387 return SCM_INUM0;
388 if (SCM_I_INUMP (denominator))
389 {
390 long y;
391 y = SCM_I_INUM (denominator);
392 if (x == y)
393 return SCM_I_MAKINUM(1);
394 if ((x % y) == 0)
395 return SCM_I_MAKINUM (x / y);
396 }
397 else
398 {
399 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
400 of that value for the denominator, as a bignum. Apart from
401 that case, abs(bignum) > abs(inum) so inum/bignum is not an
402 integer. */
403 if (x == SCM_MOST_NEGATIVE_FIXNUM
404 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
405 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
406 return SCM_I_MAKINUM(-1);
407 }
408 }
409 else if (SCM_BIGP (numerator))
410 {
411 if (SCM_I_INUMP (denominator))
412 {
413 long yy = SCM_I_INUM (denominator);
414 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
415 return scm_divide (numerator, denominator);
416 }
417 else
418 {
419 if (scm_is_eq (numerator, denominator))
420 return SCM_I_MAKINUM(1);
421 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
422 SCM_I_BIG_MPZ (denominator)))
423 return scm_divide(numerator, denominator);
424 }
425 }
426
427 /* No, it's a proper fraction.
428 */
429 return scm_double_cell (scm_tc16_fraction,
430 SCM_UNPACK (numerator),
431 SCM_UNPACK (denominator), 0);
432 }
433 #undef FUNC_NAME
434
435 static void scm_i_fraction_reduce (SCM z)
436 {
437 if (!(SCM_FRACTION_REDUCED (z)))
438 {
439 SCM divisor;
440 divisor = scm_gcd (SCM_FRACTION_NUMERATOR (z), SCM_FRACTION_DENOMINATOR (z));
441 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
442 {
443 /* is this safe? */
444 SCM_FRACTION_SET_NUMERATOR (z, scm_divide (SCM_FRACTION_NUMERATOR (z), divisor));
445 SCM_FRACTION_SET_DENOMINATOR (z, scm_divide (SCM_FRACTION_DENOMINATOR (z), divisor));
446 }
447 SCM_FRACTION_REDUCED_SET (z);
448 }
449 }
450
451 double
452 scm_i_fraction2double (SCM z)
453 {
454 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
455 SCM_FRACTION_DENOMINATOR (z)));
456 }
457
458 SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
459 (SCM x),
460 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
461 "otherwise.")
462 #define FUNC_NAME s_scm_exact_p
463 {
464 if (SCM_I_INUMP (x))
465 return SCM_BOOL_T;
466 if (SCM_BIGP (x))
467 return SCM_BOOL_T;
468 if (SCM_FRACTIONP (x))
469 return SCM_BOOL_T;
470 if (SCM_NUMBERP (x))
471 return SCM_BOOL_F;
472 SCM_WRONG_TYPE_ARG (1, x);
473 }
474 #undef FUNC_NAME
475
476
477 SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
478 (SCM n),
479 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
480 "otherwise.")
481 #define FUNC_NAME s_scm_odd_p
482 {
483 if (SCM_I_INUMP (n))
484 {
485 long val = SCM_I_INUM (n);
486 return scm_from_bool ((val & 1L) != 0);
487 }
488 else if (SCM_BIGP (n))
489 {
490 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
491 scm_remember_upto_here_1 (n);
492 return scm_from_bool (odd_p);
493 }
494 else if (scm_is_true (scm_inf_p (n)))
495 return SCM_BOOL_T;
496 else if (SCM_REALP (n))
497 {
498 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
499 if (rem == 1.0)
500 return SCM_BOOL_T;
501 else if (rem == 0.0)
502 return SCM_BOOL_F;
503 else
504 SCM_WRONG_TYPE_ARG (1, n);
505 }
506 else
507 SCM_WRONG_TYPE_ARG (1, n);
508 }
509 #undef FUNC_NAME
510
511
512 SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
513 (SCM n),
514 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
515 "otherwise.")
516 #define FUNC_NAME s_scm_even_p
517 {
518 if (SCM_I_INUMP (n))
519 {
520 long val = SCM_I_INUM (n);
521 return scm_from_bool ((val & 1L) == 0);
522 }
523 else if (SCM_BIGP (n))
524 {
525 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
526 scm_remember_upto_here_1 (n);
527 return scm_from_bool (even_p);
528 }
529 else if (scm_is_true (scm_inf_p (n)))
530 return SCM_BOOL_T;
531 else if (SCM_REALP (n))
532 {
533 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
534 if (rem == 1.0)
535 return SCM_BOOL_F;
536 else if (rem == 0.0)
537 return SCM_BOOL_T;
538 else
539 SCM_WRONG_TYPE_ARG (1, n);
540 }
541 else
542 SCM_WRONG_TYPE_ARG (1, n);
543 }
544 #undef FUNC_NAME
545
546 SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
547 (SCM n),
548 "Return @code{#t} if @var{n} is infinite, @code{#f}\n"
549 "otherwise.")
550 #define FUNC_NAME s_scm_inf_p
551 {
552 if (SCM_REALP (n))
553 return scm_from_bool (xisinf (SCM_REAL_VALUE (n)));
554 else if (SCM_COMPLEXP (n))
555 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (n))
556 || xisinf (SCM_COMPLEX_IMAG (n)));
557 else
558 return SCM_BOOL_F;
559 }
560 #undef FUNC_NAME
561
562 SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
563 (SCM n),
564 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
565 "otherwise.")
566 #define FUNC_NAME s_scm_nan_p
567 {
568 if (SCM_REALP (n))
569 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
570 else if (SCM_COMPLEXP (n))
571 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
572 || xisnan (SCM_COMPLEX_IMAG (n)));
573 else
574 return SCM_BOOL_F;
575 }
576 #undef FUNC_NAME
577
578 /* Guile's idea of infinity. */
579 static double guile_Inf;
580
581 /* Guile's idea of not a number. */
582 static double guile_NaN;
583
584 static void
585 guile_ieee_init (void)
586 {
587 #if defined (HAVE_ISINF) || defined (HAVE_FINITE)
588
589 /* Some version of gcc on some old version of Linux used to crash when
590 trying to make Inf and NaN. */
591
592 #ifdef INFINITY
593 /* C99 INFINITY, when available.
594 FIXME: The standard allows for INFINITY to be something that overflows
595 at compile time. We ought to have a configure test to check for that
596 before trying to use it. (But in practice we believe this is not a
597 problem on any system guile is likely to target.) */
598 guile_Inf = INFINITY;
599 #elif HAVE_DINFINITY
600 /* OSF */
601 extern unsigned int DINFINITY[2];
602 guile_Inf = (*(X_CAST(double *, DINFINITY)));
603 #else
604 double tmp = 1e+10;
605 guile_Inf = tmp;
606 for (;;)
607 {
608 guile_Inf *= 1e+10;
609 if (guile_Inf == tmp)
610 break;
611 tmp = guile_Inf;
612 }
613 #endif
614
615 #endif
616
617 #if defined (HAVE_ISNAN)
618
619 #ifdef NAN
620 /* C99 NAN, when available */
621 guile_NaN = NAN;
622 #elif HAVE_DQNAN
623 /* OSF */
624 extern unsigned int DQNAN[2];
625 guile_NaN = (*(X_CAST(double *, DQNAN)));
626 #else
627 guile_NaN = guile_Inf / guile_Inf;
628 #endif
629
630 #endif
631 }
632
633 SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
634 (void),
635 "Return Inf.")
636 #define FUNC_NAME s_scm_inf
637 {
638 static int initialized = 0;
639 if (! initialized)
640 {
641 guile_ieee_init ();
642 initialized = 1;
643 }
644 return scm_from_double (guile_Inf);
645 }
646 #undef FUNC_NAME
647
648 SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
649 (void),
650 "Return NaN.")
651 #define FUNC_NAME s_scm_nan
652 {
653 static int initialized = 0;
654 if (!initialized)
655 {
656 guile_ieee_init ();
657 initialized = 1;
658 }
659 return scm_from_double (guile_NaN);
660 }
661 #undef FUNC_NAME
662
663
664 SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
665 (SCM x),
666 "Return the absolute value of @var{x}.")
667 #define FUNC_NAME
668 {
669 if (SCM_I_INUMP (x))
670 {
671 long int xx = SCM_I_INUM (x);
672 if (xx >= 0)
673 return x;
674 else if (SCM_POSFIXABLE (-xx))
675 return SCM_I_MAKINUM (-xx);
676 else
677 return scm_i_long2big (-xx);
678 }
679 else if (SCM_BIGP (x))
680 {
681 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
682 if (sgn < 0)
683 return scm_i_clonebig (x, 0);
684 else
685 return x;
686 }
687 else if (SCM_REALP (x))
688 {
689 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
690 double xx = SCM_REAL_VALUE (x);
691 if (xx < 0.0)
692 return scm_from_double (-xx);
693 else
694 return x;
695 }
696 else if (SCM_FRACTIONP (x))
697 {
698 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
699 return x;
700 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
701 SCM_FRACTION_DENOMINATOR (x));
702 }
703 else
704 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
705 }
706 #undef FUNC_NAME
707
708
709 SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
710 /* "Return the quotient of the numbers @var{x} and @var{y}."
711 */
712 SCM
713 scm_quotient (SCM x, SCM y)
714 {
715 if (SCM_I_INUMP (x))
716 {
717 long xx = SCM_I_INUM (x);
718 if (SCM_I_INUMP (y))
719 {
720 long yy = SCM_I_INUM (y);
721 if (yy == 0)
722 scm_num_overflow (s_quotient);
723 else
724 {
725 long z = xx / yy;
726 if (SCM_FIXABLE (z))
727 return SCM_I_MAKINUM (z);
728 else
729 return scm_i_long2big (z);
730 }
731 }
732 else if (SCM_BIGP (y))
733 {
734 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
735 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
736 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
737 {
738 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
739 scm_remember_upto_here_1 (y);
740 return SCM_I_MAKINUM (-1);
741 }
742 else
743 return SCM_I_MAKINUM (0);
744 }
745 else
746 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
747 }
748 else if (SCM_BIGP (x))
749 {
750 if (SCM_I_INUMP (y))
751 {
752 long yy = SCM_I_INUM (y);
753 if (yy == 0)
754 scm_num_overflow (s_quotient);
755 else if (yy == 1)
756 return x;
757 else
758 {
759 SCM result = scm_i_mkbig ();
760 if (yy < 0)
761 {
762 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
763 SCM_I_BIG_MPZ (x),
764 - yy);
765 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
766 }
767 else
768 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
769 scm_remember_upto_here_1 (x);
770 return scm_i_normbig (result);
771 }
772 }
773 else if (SCM_BIGP (y))
774 {
775 SCM result = scm_i_mkbig ();
776 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
777 SCM_I_BIG_MPZ (x),
778 SCM_I_BIG_MPZ (y));
779 scm_remember_upto_here_2 (x, y);
780 return scm_i_normbig (result);
781 }
782 else
783 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
784 }
785 else
786 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
787 }
788
789 SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
790 /* "Return the remainder of the numbers @var{x} and @var{y}.\n"
791 * "@lisp\n"
792 * "(remainder 13 4) @result{} 1\n"
793 * "(remainder -13 4) @result{} -1\n"
794 * "@end lisp"
795 */
796 SCM
797 scm_remainder (SCM x, SCM y)
798 {
799 if (SCM_I_INUMP (x))
800 {
801 if (SCM_I_INUMP (y))
802 {
803 long yy = SCM_I_INUM (y);
804 if (yy == 0)
805 scm_num_overflow (s_remainder);
806 else
807 {
808 long z = SCM_I_INUM (x) % yy;
809 return SCM_I_MAKINUM (z);
810 }
811 }
812 else if (SCM_BIGP (y))
813 {
814 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
815 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
816 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
817 {
818 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
819 scm_remember_upto_here_1 (y);
820 return SCM_I_MAKINUM (0);
821 }
822 else
823 return x;
824 }
825 else
826 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
827 }
828 else if (SCM_BIGP (x))
829 {
830 if (SCM_I_INUMP (y))
831 {
832 long yy = SCM_I_INUM (y);
833 if (yy == 0)
834 scm_num_overflow (s_remainder);
835 else
836 {
837 SCM result = scm_i_mkbig ();
838 if (yy < 0)
839 yy = - yy;
840 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
841 scm_remember_upto_here_1 (x);
842 return scm_i_normbig (result);
843 }
844 }
845 else if (SCM_BIGP (y))
846 {
847 SCM result = scm_i_mkbig ();
848 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
849 SCM_I_BIG_MPZ (x),
850 SCM_I_BIG_MPZ (y));
851 scm_remember_upto_here_2 (x, y);
852 return scm_i_normbig (result);
853 }
854 else
855 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
856 }
857 else
858 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
859 }
860
861
862 SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
863 /* "Return the modulo of the numbers @var{x} and @var{y}.\n"
864 * "@lisp\n"
865 * "(modulo 13 4) @result{} 1\n"
866 * "(modulo -13 4) @result{} 3\n"
867 * "@end lisp"
868 */
869 SCM
870 scm_modulo (SCM x, SCM y)
871 {
872 if (SCM_I_INUMP (x))
873 {
874 long xx = SCM_I_INUM (x);
875 if (SCM_I_INUMP (y))
876 {
877 long yy = SCM_I_INUM (y);
878 if (yy == 0)
879 scm_num_overflow (s_modulo);
880 else
881 {
882 /* FIXME: I think this may be a bug on some arches -- results
883 of % with negative second arg are undefined... */
884 long z = xx % yy;
885 long result;
886
887 if (yy < 0)
888 {
889 if (z > 0)
890 result = z + yy;
891 else
892 result = z;
893 }
894 else
895 {
896 if (z < 0)
897 result = z + yy;
898 else
899 result = z;
900 }
901 return SCM_I_MAKINUM (result);
902 }
903 }
904 else if (SCM_BIGP (y))
905 {
906 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
907 {
908 mpz_t z_x;
909 SCM result;
910
911 if (sgn_y < 0)
912 {
913 SCM pos_y = scm_i_clonebig (y, 0);
914 /* do this after the last scm_op */
915 mpz_init_set_si (z_x, xx);
916 result = pos_y; /* re-use this bignum */
917 mpz_mod (SCM_I_BIG_MPZ (result),
918 z_x,
919 SCM_I_BIG_MPZ (pos_y));
920 scm_remember_upto_here_1 (pos_y);
921 }
922 else
923 {
924 result = scm_i_mkbig ();
925 /* do this after the last scm_op */
926 mpz_init_set_si (z_x, xx);
927 mpz_mod (SCM_I_BIG_MPZ (result),
928 z_x,
929 SCM_I_BIG_MPZ (y));
930 scm_remember_upto_here_1 (y);
931 }
932
933 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
934 mpz_add (SCM_I_BIG_MPZ (result),
935 SCM_I_BIG_MPZ (y),
936 SCM_I_BIG_MPZ (result));
937 scm_remember_upto_here_1 (y);
938 /* and do this before the next one */
939 mpz_clear (z_x);
940 return scm_i_normbig (result);
941 }
942 }
943 else
944 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
945 }
946 else if (SCM_BIGP (x))
947 {
948 if (SCM_I_INUMP (y))
949 {
950 long yy = SCM_I_INUM (y);
951 if (yy == 0)
952 scm_num_overflow (s_modulo);
953 else
954 {
955 SCM result = scm_i_mkbig ();
956 mpz_mod_ui (SCM_I_BIG_MPZ (result),
957 SCM_I_BIG_MPZ (x),
958 (yy < 0) ? - yy : yy);
959 scm_remember_upto_here_1 (x);
960 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
961 mpz_sub_ui (SCM_I_BIG_MPZ (result),
962 SCM_I_BIG_MPZ (result),
963 - yy);
964 return scm_i_normbig (result);
965 }
966 }
967 else if (SCM_BIGP (y))
968 {
969 {
970 SCM result = scm_i_mkbig ();
971 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
972 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
973 mpz_mod (SCM_I_BIG_MPZ (result),
974 SCM_I_BIG_MPZ (x),
975 SCM_I_BIG_MPZ (pos_y));
976
977 scm_remember_upto_here_1 (x);
978 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
979 mpz_add (SCM_I_BIG_MPZ (result),
980 SCM_I_BIG_MPZ (y),
981 SCM_I_BIG_MPZ (result));
982 scm_remember_upto_here_2 (y, pos_y);
983 return scm_i_normbig (result);
984 }
985 }
986 else
987 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
988 }
989 else
990 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
991 }
992
993 SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
994 /* "Return the greatest common divisor of all arguments.\n"
995 * "If called without arguments, 0 is returned."
996 */
997 SCM
998 scm_gcd (SCM x, SCM y)
999 {
1000 if (SCM_UNBNDP (y))
1001 return SCM_UNBNDP (x) ? SCM_INUM0 : x;
1002
1003 if (SCM_I_INUMP (x))
1004 {
1005 if (SCM_I_INUMP (y))
1006 {
1007 long xx = SCM_I_INUM (x);
1008 long yy = SCM_I_INUM (y);
1009 long u = xx < 0 ? -xx : xx;
1010 long v = yy < 0 ? -yy : yy;
1011 long result;
1012 if (xx == 0)
1013 result = v;
1014 else if (yy == 0)
1015 result = u;
1016 else
1017 {
1018 long k = 1;
1019 long t;
1020 /* Determine a common factor 2^k */
1021 while (!(1 & (u | v)))
1022 {
1023 k <<= 1;
1024 u >>= 1;
1025 v >>= 1;
1026 }
1027 /* Now, any factor 2^n can be eliminated */
1028 if (u & 1)
1029 t = -v;
1030 else
1031 {
1032 t = u;
1033 b3:
1034 t = SCM_SRS (t, 1);
1035 }
1036 if (!(1 & t))
1037 goto b3;
1038 if (t > 0)
1039 u = t;
1040 else
1041 v = -t;
1042 t = u - v;
1043 if (t != 0)
1044 goto b3;
1045 result = u * k;
1046 }
1047 return (SCM_POSFIXABLE (result)
1048 ? SCM_I_MAKINUM (result)
1049 : scm_i_long2big (result));
1050 }
1051 else if (SCM_BIGP (y))
1052 {
1053 SCM_SWAP (x, y);
1054 goto big_inum;
1055 }
1056 else
1057 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1058 }
1059 else if (SCM_BIGP (x))
1060 {
1061 if (SCM_I_INUMP (y))
1062 {
1063 unsigned long result;
1064 long yy;
1065 big_inum:
1066 yy = SCM_I_INUM (y);
1067 if (yy == 0)
1068 return scm_abs (x);
1069 if (yy < 0)
1070 yy = -yy;
1071 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1072 scm_remember_upto_here_1 (x);
1073 return (SCM_POSFIXABLE (result)
1074 ? SCM_I_MAKINUM (result)
1075 : scm_from_ulong (result));
1076 }
1077 else if (SCM_BIGP (y))
1078 {
1079 SCM result = scm_i_mkbig ();
1080 mpz_gcd (SCM_I_BIG_MPZ (result),
1081 SCM_I_BIG_MPZ (x),
1082 SCM_I_BIG_MPZ (y));
1083 scm_remember_upto_here_2 (x, y);
1084 return scm_i_normbig (result);
1085 }
1086 else
1087 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1088 }
1089 else
1090 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
1091 }
1092
1093 SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
1094 /* "Return the least common multiple of the arguments.\n"
1095 * "If called without arguments, 1 is returned."
1096 */
1097 SCM
1098 scm_lcm (SCM n1, SCM n2)
1099 {
1100 if (SCM_UNBNDP (n2))
1101 {
1102 if (SCM_UNBNDP (n1))
1103 return SCM_I_MAKINUM (1L);
1104 n2 = SCM_I_MAKINUM (1L);
1105 }
1106
1107 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
1108 g_lcm, n1, n2, SCM_ARG1, s_lcm);
1109 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
1110 g_lcm, n1, n2, SCM_ARGn, s_lcm);
1111
1112 if (SCM_I_INUMP (n1))
1113 {
1114 if (SCM_I_INUMP (n2))
1115 {
1116 SCM d = scm_gcd (n1, n2);
1117 if (scm_is_eq (d, SCM_INUM0))
1118 return d;
1119 else
1120 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1121 }
1122 else
1123 {
1124 /* inum n1, big n2 */
1125 inumbig:
1126 {
1127 SCM result = scm_i_mkbig ();
1128 long nn1 = SCM_I_INUM (n1);
1129 if (nn1 == 0) return SCM_INUM0;
1130 if (nn1 < 0) nn1 = - nn1;
1131 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1132 scm_remember_upto_here_1 (n2);
1133 return result;
1134 }
1135 }
1136 }
1137 else
1138 {
1139 /* big n1 */
1140 if (SCM_I_INUMP (n2))
1141 {
1142 SCM_SWAP (n1, n2);
1143 goto inumbig;
1144 }
1145 else
1146 {
1147 SCM result = scm_i_mkbig ();
1148 mpz_lcm(SCM_I_BIG_MPZ (result),
1149 SCM_I_BIG_MPZ (n1),
1150 SCM_I_BIG_MPZ (n2));
1151 scm_remember_upto_here_2(n1, n2);
1152 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1153 return result;
1154 }
1155 }
1156 }
1157
1158 /* Emulating 2's complement bignums with sign magnitude arithmetic:
1159
1160 Logand:
1161 X Y Result Method:
1162 (len)
1163 + + + x (map digit:logand X Y)
1164 + - + x (map digit:logand X (lognot (+ -1 Y)))
1165 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1166 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1167
1168 Logior:
1169 X Y Result Method:
1170
1171 + + + (map digit:logior X Y)
1172 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1173 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1174 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1175
1176 Logxor:
1177 X Y Result Method:
1178
1179 + + + (map digit:logxor X Y)
1180 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1181 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1182 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1183
1184 Logtest:
1185 X Y Result
1186
1187 + + (any digit:logand X Y)
1188 + - (any digit:logand X (lognot (+ -1 Y)))
1189 - + (any digit:logand (lognot (+ -1 X)) Y)
1190 - - #t
1191
1192 */
1193
1194 SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
1195 (SCM n1, SCM n2),
1196 "Return the bitwise AND of the integer arguments.\n\n"
1197 "@lisp\n"
1198 "(logand) @result{} -1\n"
1199 "(logand 7) @result{} 7\n"
1200 "(logand #b111 #b011 #b001) @result{} 1\n"
1201 "@end lisp")
1202 #define FUNC_NAME s_scm_logand
1203 {
1204 long int nn1;
1205
1206 if (SCM_UNBNDP (n2))
1207 {
1208 if (SCM_UNBNDP (n1))
1209 return SCM_I_MAKINUM (-1);
1210 else if (!SCM_NUMBERP (n1))
1211 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1212 else if (SCM_NUMBERP (n1))
1213 return n1;
1214 else
1215 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1216 }
1217
1218 if (SCM_I_INUMP (n1))
1219 {
1220 nn1 = SCM_I_INUM (n1);
1221 if (SCM_I_INUMP (n2))
1222 {
1223 long nn2 = SCM_I_INUM (n2);
1224 return SCM_I_MAKINUM (nn1 & nn2);
1225 }
1226 else if SCM_BIGP (n2)
1227 {
1228 intbig:
1229 if (n1 == 0)
1230 return SCM_INUM0;
1231 {
1232 SCM result_z = scm_i_mkbig ();
1233 mpz_t nn1_z;
1234 mpz_init_set_si (nn1_z, nn1);
1235 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1236 scm_remember_upto_here_1 (n2);
1237 mpz_clear (nn1_z);
1238 return scm_i_normbig (result_z);
1239 }
1240 }
1241 else
1242 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1243 }
1244 else if (SCM_BIGP (n1))
1245 {
1246 if (SCM_I_INUMP (n2))
1247 {
1248 SCM_SWAP (n1, n2);
1249 nn1 = SCM_I_INUM (n1);
1250 goto intbig;
1251 }
1252 else if (SCM_BIGP (n2))
1253 {
1254 SCM result_z = scm_i_mkbig ();
1255 mpz_and (SCM_I_BIG_MPZ (result_z),
1256 SCM_I_BIG_MPZ (n1),
1257 SCM_I_BIG_MPZ (n2));
1258 scm_remember_upto_here_2 (n1, n2);
1259 return scm_i_normbig (result_z);
1260 }
1261 else
1262 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1263 }
1264 else
1265 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1266 }
1267 #undef FUNC_NAME
1268
1269
1270 SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
1271 (SCM n1, SCM n2),
1272 "Return the bitwise OR of the integer arguments.\n\n"
1273 "@lisp\n"
1274 "(logior) @result{} 0\n"
1275 "(logior 7) @result{} 7\n"
1276 "(logior #b000 #b001 #b011) @result{} 3\n"
1277 "@end lisp")
1278 #define FUNC_NAME s_scm_logior
1279 {
1280 long int nn1;
1281
1282 if (SCM_UNBNDP (n2))
1283 {
1284 if (SCM_UNBNDP (n1))
1285 return SCM_INUM0;
1286 else if (SCM_NUMBERP (n1))
1287 return n1;
1288 else
1289 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1290 }
1291
1292 if (SCM_I_INUMP (n1))
1293 {
1294 nn1 = SCM_I_INUM (n1);
1295 if (SCM_I_INUMP (n2))
1296 {
1297 long nn2 = SCM_I_INUM (n2);
1298 return SCM_I_MAKINUM (nn1 | nn2);
1299 }
1300 else if (SCM_BIGP (n2))
1301 {
1302 intbig:
1303 if (nn1 == 0)
1304 return n2;
1305 {
1306 SCM result_z = scm_i_mkbig ();
1307 mpz_t nn1_z;
1308 mpz_init_set_si (nn1_z, nn1);
1309 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1310 scm_remember_upto_here_1 (n2);
1311 mpz_clear (nn1_z);
1312 return result_z;
1313 }
1314 }
1315 else
1316 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1317 }
1318 else if (SCM_BIGP (n1))
1319 {
1320 if (SCM_I_INUMP (n2))
1321 {
1322 SCM_SWAP (n1, n2);
1323 nn1 = SCM_I_INUM (n1);
1324 goto intbig;
1325 }
1326 else if (SCM_BIGP (n2))
1327 {
1328 SCM result_z = scm_i_mkbig ();
1329 mpz_ior (SCM_I_BIG_MPZ (result_z),
1330 SCM_I_BIG_MPZ (n1),
1331 SCM_I_BIG_MPZ (n2));
1332 scm_remember_upto_here_2 (n1, n2);
1333 return result_z;
1334 }
1335 else
1336 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1337 }
1338 else
1339 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1340 }
1341 #undef FUNC_NAME
1342
1343
1344 SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
1345 (SCM n1, SCM n2),
1346 "Return the bitwise XOR of the integer arguments. A bit is\n"
1347 "set in the result if it is set in an odd number of arguments.\n"
1348 "@lisp\n"
1349 "(logxor) @result{} 0\n"
1350 "(logxor 7) @result{} 7\n"
1351 "(logxor #b000 #b001 #b011) @result{} 2\n"
1352 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1353 "@end lisp")
1354 #define FUNC_NAME s_scm_logxor
1355 {
1356 long int nn1;
1357
1358 if (SCM_UNBNDP (n2))
1359 {
1360 if (SCM_UNBNDP (n1))
1361 return SCM_INUM0;
1362 else if (SCM_NUMBERP (n1))
1363 return n1;
1364 else
1365 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1366 }
1367
1368 if (SCM_I_INUMP (n1))
1369 {
1370 nn1 = SCM_I_INUM (n1);
1371 if (SCM_I_INUMP (n2))
1372 {
1373 long nn2 = SCM_I_INUM (n2);
1374 return SCM_I_MAKINUM (nn1 ^ nn2);
1375 }
1376 else if (SCM_BIGP (n2))
1377 {
1378 intbig:
1379 {
1380 SCM result_z = scm_i_mkbig ();
1381 mpz_t nn1_z;
1382 mpz_init_set_si (nn1_z, nn1);
1383 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1384 scm_remember_upto_here_1 (n2);
1385 mpz_clear (nn1_z);
1386 return scm_i_normbig (result_z);
1387 }
1388 }
1389 else
1390 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1391 }
1392 else if (SCM_BIGP (n1))
1393 {
1394 if (SCM_I_INUMP (n2))
1395 {
1396 SCM_SWAP (n1, n2);
1397 nn1 = SCM_I_INUM (n1);
1398 goto intbig;
1399 }
1400 else if (SCM_BIGP (n2))
1401 {
1402 SCM result_z = scm_i_mkbig ();
1403 mpz_xor (SCM_I_BIG_MPZ (result_z),
1404 SCM_I_BIG_MPZ (n1),
1405 SCM_I_BIG_MPZ (n2));
1406 scm_remember_upto_here_2 (n1, n2);
1407 return scm_i_normbig (result_z);
1408 }
1409 else
1410 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1411 }
1412 else
1413 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1414 }
1415 #undef FUNC_NAME
1416
1417
1418 SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1419 (SCM j, SCM k),
1420 "@lisp\n"
1421 "(logtest j k) @equiv{} (not (zero? (logand j k)))\n\n"
1422 "(logtest #b0100 #b1011) @result{} #f\n"
1423 "(logtest #b0100 #b0111) @result{} #t\n"
1424 "@end lisp")
1425 #define FUNC_NAME s_scm_logtest
1426 {
1427 long int nj;
1428
1429 if (SCM_I_INUMP (j))
1430 {
1431 nj = SCM_I_INUM (j);
1432 if (SCM_I_INUMP (k))
1433 {
1434 long nk = SCM_I_INUM (k);
1435 return scm_from_bool (nj & nk);
1436 }
1437 else if (SCM_BIGP (k))
1438 {
1439 intbig:
1440 if (nj == 0)
1441 return SCM_BOOL_F;
1442 {
1443 SCM result;
1444 mpz_t nj_z;
1445 mpz_init_set_si (nj_z, nj);
1446 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1447 scm_remember_upto_here_1 (k);
1448 result = scm_from_bool (mpz_sgn (nj_z) != 0);
1449 mpz_clear (nj_z);
1450 return result;
1451 }
1452 }
1453 else
1454 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1455 }
1456 else if (SCM_BIGP (j))
1457 {
1458 if (SCM_I_INUMP (k))
1459 {
1460 SCM_SWAP (j, k);
1461 nj = SCM_I_INUM (j);
1462 goto intbig;
1463 }
1464 else if (SCM_BIGP (k))
1465 {
1466 SCM result;
1467 mpz_t result_z;
1468 mpz_init (result_z);
1469 mpz_and (result_z,
1470 SCM_I_BIG_MPZ (j),
1471 SCM_I_BIG_MPZ (k));
1472 scm_remember_upto_here_2 (j, k);
1473 result = scm_from_bool (mpz_sgn (result_z) != 0);
1474 mpz_clear (result_z);
1475 return result;
1476 }
1477 else
1478 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1479 }
1480 else
1481 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
1482 }
1483 #undef FUNC_NAME
1484
1485
1486 SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
1487 (SCM index, SCM j),
1488 "@lisp\n"
1489 "(logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)\n\n"
1490 "(logbit? 0 #b1101) @result{} #t\n"
1491 "(logbit? 1 #b1101) @result{} #f\n"
1492 "(logbit? 2 #b1101) @result{} #t\n"
1493 "(logbit? 3 #b1101) @result{} #t\n"
1494 "(logbit? 4 #b1101) @result{} #f\n"
1495 "@end lisp")
1496 #define FUNC_NAME s_scm_logbit_p
1497 {
1498 unsigned long int iindex;
1499 iindex = scm_to_ulong (index);
1500
1501 if (SCM_I_INUMP (j))
1502 {
1503 /* bits above what's in an inum follow the sign bit */
1504 iindex = min (iindex, SCM_LONG_BIT - 1);
1505 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
1506 }
1507 else if (SCM_BIGP (j))
1508 {
1509 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1510 scm_remember_upto_here_1 (j);
1511 return scm_from_bool (val);
1512 }
1513 else
1514 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
1515 }
1516 #undef FUNC_NAME
1517
1518
1519 SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1520 (SCM n),
1521 "Return the integer which is the ones-complement of the integer\n"
1522 "argument.\n"
1523 "\n"
1524 "@lisp\n"
1525 "(number->string (lognot #b10000000) 2)\n"
1526 " @result{} \"-10000001\"\n"
1527 "(number->string (lognot #b0) 2)\n"
1528 " @result{} \"-1\"\n"
1529 "@end lisp")
1530 #define FUNC_NAME s_scm_lognot
1531 {
1532 if (SCM_I_INUMP (n)) {
1533 /* No overflow here, just need to toggle all the bits making up the inum.
1534 Enhancement: No need to strip the tag and add it back, could just xor
1535 a block of 1 bits, if that worked with the various debug versions of
1536 the SCM typedef. */
1537 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
1538
1539 } else if (SCM_BIGP (n)) {
1540 SCM result = scm_i_mkbig ();
1541 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1542 scm_remember_upto_here_1 (n);
1543 return result;
1544
1545 } else {
1546 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1547 }
1548 }
1549 #undef FUNC_NAME
1550
1551 /* returns 0 if IN is not an integer. OUT must already be
1552 initialized. */
1553 static int
1554 coerce_to_big (SCM in, mpz_t out)
1555 {
1556 if (SCM_BIGP (in))
1557 mpz_set (out, SCM_I_BIG_MPZ (in));
1558 else if (SCM_I_INUMP (in))
1559 mpz_set_si (out, SCM_I_INUM (in));
1560 else
1561 return 0;
1562
1563 return 1;
1564 }
1565
1566 SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
1567 (SCM n, SCM k, SCM m),
1568 "Return @var{n} raised to the integer exponent\n"
1569 "@var{k}, modulo @var{m}.\n"
1570 "\n"
1571 "@lisp\n"
1572 "(modulo-expt 2 3 5)\n"
1573 " @result{} 3\n"
1574 "@end lisp")
1575 #define FUNC_NAME s_scm_modulo_expt
1576 {
1577 mpz_t n_tmp;
1578 mpz_t k_tmp;
1579 mpz_t m_tmp;
1580
1581 /* There are two classes of error we might encounter --
1582 1) Math errors, which we'll report by calling scm_num_overflow,
1583 and
1584 2) wrong-type errors, which of course we'll report by calling
1585 SCM_WRONG_TYPE_ARG.
1586 We don't report those errors immediately, however; instead we do
1587 some cleanup first. These variables tell us which error (if
1588 any) we should report after cleaning up.
1589 */
1590 int report_overflow = 0;
1591
1592 int position_of_wrong_type = 0;
1593 SCM value_of_wrong_type = SCM_INUM0;
1594
1595 SCM result = SCM_UNDEFINED;
1596
1597 mpz_init (n_tmp);
1598 mpz_init (k_tmp);
1599 mpz_init (m_tmp);
1600
1601 if (scm_is_eq (m, SCM_INUM0))
1602 {
1603 report_overflow = 1;
1604 goto cleanup;
1605 }
1606
1607 if (!coerce_to_big (n, n_tmp))
1608 {
1609 value_of_wrong_type = n;
1610 position_of_wrong_type = 1;
1611 goto cleanup;
1612 }
1613
1614 if (!coerce_to_big (k, k_tmp))
1615 {
1616 value_of_wrong_type = k;
1617 position_of_wrong_type = 2;
1618 goto cleanup;
1619 }
1620
1621 if (!coerce_to_big (m, m_tmp))
1622 {
1623 value_of_wrong_type = m;
1624 position_of_wrong_type = 3;
1625 goto cleanup;
1626 }
1627
1628 /* if the exponent K is negative, and we simply call mpz_powm, we
1629 will get a divide-by-zero exception when an inverse 1/n mod m
1630 doesn't exist (or is not unique). Since exceptions are hard to
1631 handle, we'll attempt the inversion "by hand" -- that way, we get
1632 a simple failure code, which is easy to handle. */
1633
1634 if (-1 == mpz_sgn (k_tmp))
1635 {
1636 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1637 {
1638 report_overflow = 1;
1639 goto cleanup;
1640 }
1641 mpz_neg (k_tmp, k_tmp);
1642 }
1643
1644 result = scm_i_mkbig ();
1645 mpz_powm (SCM_I_BIG_MPZ (result),
1646 n_tmp,
1647 k_tmp,
1648 m_tmp);
1649
1650 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1651 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1652
1653 cleanup:
1654 mpz_clear (m_tmp);
1655 mpz_clear (k_tmp);
1656 mpz_clear (n_tmp);
1657
1658 if (report_overflow)
1659 scm_num_overflow (FUNC_NAME);
1660
1661 if (position_of_wrong_type)
1662 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1663 value_of_wrong_type);
1664
1665 return scm_i_normbig (result);
1666 }
1667 #undef FUNC_NAME
1668
1669 SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
1670 (SCM n, SCM k),
1671 "Return @var{n} raised to the non-negative integer exponent\n"
1672 "@var{k}.\n"
1673 "\n"
1674 "@lisp\n"
1675 "(integer-expt 2 5)\n"
1676 " @result{} 32\n"
1677 "(integer-expt -3 3)\n"
1678 " @result{} -27\n"
1679 "@end lisp")
1680 #define FUNC_NAME s_scm_integer_expt
1681 {
1682 long i2 = 0;
1683 SCM z_i2 = SCM_BOOL_F;
1684 int i2_is_big = 0;
1685 SCM acc = SCM_I_MAKINUM (1L);
1686
1687 /* 0^0 == 1 according to R5RS */
1688 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
1689 return scm_is_false (scm_zero_p(k)) ? n : acc;
1690 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
1691 return scm_is_false (scm_even_p (k)) ? n : acc;
1692
1693 if (SCM_I_INUMP (k))
1694 i2 = SCM_I_INUM (k);
1695 else if (SCM_BIGP (k))
1696 {
1697 z_i2 = scm_i_clonebig (k, 1);
1698 scm_remember_upto_here_1 (k);
1699 i2_is_big = 1;
1700 }
1701 else if (SCM_REALP (k))
1702 {
1703 double r = SCM_REAL_VALUE (k);
1704 if (floor (r) != r)
1705 SCM_WRONG_TYPE_ARG (2, k);
1706 if ((r > SCM_MOST_POSITIVE_FIXNUM) || (r < SCM_MOST_NEGATIVE_FIXNUM))
1707 {
1708 z_i2 = scm_i_mkbig ();
1709 mpz_set_d (SCM_I_BIG_MPZ (z_i2), r);
1710 i2_is_big = 1;
1711 }
1712 else
1713 {
1714 i2 = r;
1715 }
1716 }
1717 else
1718 SCM_WRONG_TYPE_ARG (2, k);
1719
1720 if (i2_is_big)
1721 {
1722 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1723 {
1724 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1725 n = scm_divide (n, SCM_UNDEFINED);
1726 }
1727 while (1)
1728 {
1729 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1730 {
1731 return acc;
1732 }
1733 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1734 {
1735 return scm_product (acc, n);
1736 }
1737 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1738 acc = scm_product (acc, n);
1739 n = scm_product (n, n);
1740 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1741 }
1742 }
1743 else
1744 {
1745 if (i2 < 0)
1746 {
1747 i2 = -i2;
1748 n = scm_divide (n, SCM_UNDEFINED);
1749 }
1750 while (1)
1751 {
1752 if (0 == i2)
1753 return acc;
1754 if (1 == i2)
1755 return scm_product (acc, n);
1756 if (i2 & 1)
1757 acc = scm_product (acc, n);
1758 n = scm_product (n, n);
1759 i2 >>= 1;
1760 }
1761 }
1762 }
1763 #undef FUNC_NAME
1764
1765 SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1766 (SCM n, SCM cnt),
1767 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1768 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1769 "\n"
1770 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
1771 "@var{cnt} is negative it's a division, rounded towards negative\n"
1772 "infinity. (Note that this is not the same rounding as\n"
1773 "@code{quotient} does.)\n"
1774 "\n"
1775 "With @var{n} viewed as an infinite precision twos complement,\n"
1776 "@code{ash} means a left shift introducing zero bits, or a right\n"
1777 "shift dropping bits.\n"
1778 "\n"
1779 "@lisp\n"
1780 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1781 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
1782 "\n"
1783 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1784 "(ash -23 -2) @result{} -6\n"
1785 "@end lisp")
1786 #define FUNC_NAME s_scm_ash
1787 {
1788 long bits_to_shift;
1789 bits_to_shift = scm_to_long (cnt);
1790
1791 if (bits_to_shift < 0)
1792 {
1793 /* Shift right by abs(cnt) bits. This is realized as a division
1794 by div:=2^abs(cnt). However, to guarantee the floor
1795 rounding, negative values require some special treatment.
1796 */
1797 SCM div = scm_integer_expt (SCM_I_MAKINUM (2),
1798 scm_from_long (-bits_to_shift));
1799
1800 /* scm_quotient assumes its arguments are integers, but it's legal to (ash 1/2 -1) */
1801 if (scm_is_false (scm_negative_p (n)))
1802 return scm_quotient (n, div);
1803 else
1804 return scm_sum (SCM_I_MAKINUM (-1L),
1805 scm_quotient (scm_sum (SCM_I_MAKINUM (1L), n), div));
1806 }
1807 else
1808 /* Shift left is done by multiplication with 2^CNT */
1809 return scm_product (n, scm_integer_expt (SCM_I_MAKINUM (2), cnt));
1810 }
1811 #undef FUNC_NAME
1812
1813
1814 SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1815 (SCM n, SCM start, SCM end),
1816 "Return the integer composed of the @var{start} (inclusive)\n"
1817 "through @var{end} (exclusive) bits of @var{n}. The\n"
1818 "@var{start}th bit becomes the 0-th bit in the result.\n"
1819 "\n"
1820 "@lisp\n"
1821 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1822 " @result{} \"1010\"\n"
1823 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1824 " @result{} \"10110\"\n"
1825 "@end lisp")
1826 #define FUNC_NAME s_scm_bit_extract
1827 {
1828 unsigned long int istart, iend, bits;
1829 istart = scm_to_ulong (start);
1830 iend = scm_to_ulong (end);
1831 SCM_ASSERT_RANGE (3, end, (iend >= istart));
1832
1833 /* how many bits to keep */
1834 bits = iend - istart;
1835
1836 if (SCM_I_INUMP (n))
1837 {
1838 long int in = SCM_I_INUM (n);
1839
1840 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
1841 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
1842 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
1843
1844 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1845 {
1846 /* Since we emulate two's complement encoded numbers, this
1847 * special case requires us to produce a result that has
1848 * more bits than can be stored in a fixnum.
1849 */
1850 SCM result = scm_i_long2big (in);
1851 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1852 bits);
1853 return result;
1854 }
1855
1856 /* mask down to requisite bits */
1857 bits = min (bits, SCM_I_FIXNUM_BIT);
1858 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
1859 }
1860 else if (SCM_BIGP (n))
1861 {
1862 SCM result;
1863 if (bits == 1)
1864 {
1865 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
1866 }
1867 else
1868 {
1869 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
1870 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
1871 such bits into a ulong. */
1872 result = scm_i_mkbig ();
1873 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
1874 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
1875 result = scm_i_normbig (result);
1876 }
1877 scm_remember_upto_here_1 (n);
1878 return result;
1879 }
1880 else
1881 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1882 }
1883 #undef FUNC_NAME
1884
1885
1886 static const char scm_logtab[] = {
1887 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
1888 };
1889
1890 SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1891 (SCM n),
1892 "Return the number of bits in integer @var{n}. If integer is\n"
1893 "positive, the 1-bits in its binary representation are counted.\n"
1894 "If negative, the 0-bits in its two's-complement binary\n"
1895 "representation are counted. If 0, 0 is returned.\n"
1896 "\n"
1897 "@lisp\n"
1898 "(logcount #b10101010)\n"
1899 " @result{} 4\n"
1900 "(logcount 0)\n"
1901 " @result{} 0\n"
1902 "(logcount -2)\n"
1903 " @result{} 1\n"
1904 "@end lisp")
1905 #define FUNC_NAME s_scm_logcount
1906 {
1907 if (SCM_I_INUMP (n))
1908 {
1909 unsigned long int c = 0;
1910 long int nn = SCM_I_INUM (n);
1911 if (nn < 0)
1912 nn = -1 - nn;
1913 while (nn)
1914 {
1915 c += scm_logtab[15 & nn];
1916 nn >>= 4;
1917 }
1918 return SCM_I_MAKINUM (c);
1919 }
1920 else if (SCM_BIGP (n))
1921 {
1922 unsigned long count;
1923 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
1924 count = mpz_popcount (SCM_I_BIG_MPZ (n));
1925 else
1926 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
1927 scm_remember_upto_here_1 (n);
1928 return SCM_I_MAKINUM (count);
1929 }
1930 else
1931 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1932 }
1933 #undef FUNC_NAME
1934
1935
1936 static const char scm_ilentab[] = {
1937 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
1938 };
1939
1940
1941 SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
1942 (SCM n),
1943 "Return the number of bits necessary to represent @var{n}.\n"
1944 "\n"
1945 "@lisp\n"
1946 "(integer-length #b10101010)\n"
1947 " @result{} 8\n"
1948 "(integer-length 0)\n"
1949 " @result{} 0\n"
1950 "(integer-length #b1111)\n"
1951 " @result{} 4\n"
1952 "@end lisp")
1953 #define FUNC_NAME s_scm_integer_length
1954 {
1955 if (SCM_I_INUMP (n))
1956 {
1957 unsigned long int c = 0;
1958 unsigned int l = 4;
1959 long int nn = SCM_I_INUM (n);
1960 if (nn < 0)
1961 nn = -1 - nn;
1962 while (nn)
1963 {
1964 c += 4;
1965 l = scm_ilentab [15 & nn];
1966 nn >>= 4;
1967 }
1968 return SCM_I_MAKINUM (c - 4 + l);
1969 }
1970 else if (SCM_BIGP (n))
1971 {
1972 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
1973 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
1974 1 too big, so check for that and adjust. */
1975 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
1976 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
1977 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
1978 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
1979 size--;
1980 scm_remember_upto_here_1 (n);
1981 return SCM_I_MAKINUM (size);
1982 }
1983 else
1984 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1985 }
1986 #undef FUNC_NAME
1987
1988 /*** NUMBERS -> STRINGS ***/
1989 #define SCM_MAX_DBL_PREC 60
1990 #define SCM_MAX_DBL_RADIX 36
1991
1992 /* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
1993 static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
1994 static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
1995
1996 static
1997 void init_dblprec(int *prec, int radix) {
1998 /* determine floating point precision by adding successively
1999 smaller increments to 1.0 until it is considered == 1.0 */
2000 double f = ((double)1.0)/radix;
2001 double fsum = 1.0 + f;
2002
2003 *prec = 0;
2004 while (fsum != 1.0)
2005 {
2006 if (++(*prec) > SCM_MAX_DBL_PREC)
2007 fsum = 1.0;
2008 else
2009 {
2010 f /= radix;
2011 fsum = f + 1.0;
2012 }
2013 }
2014 (*prec) -= 1;
2015 }
2016
2017 static
2018 void init_fx_radix(double *fx_list, int radix)
2019 {
2020 /* initialize a per-radix list of tolerances. When added
2021 to a number < 1.0, we can determine if we should raund
2022 up and quit converting a number to a string. */
2023 int i;
2024 fx_list[0] = 0.0;
2025 fx_list[1] = 0.5;
2026 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2027 fx_list[i] = (fx_list[i-1] / radix);
2028 }
2029
2030 /* use this array as a way to generate a single digit */
2031 static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2032
2033 static size_t
2034 idbl2str (double f, char *a, int radix)
2035 {
2036 int efmt, dpt, d, i, wp;
2037 double *fx;
2038 #ifdef DBL_MIN_10_EXP
2039 double f_cpy;
2040 int exp_cpy;
2041 #endif /* DBL_MIN_10_EXP */
2042 size_t ch = 0;
2043 int exp = 0;
2044
2045 if(radix < 2 ||
2046 radix > SCM_MAX_DBL_RADIX)
2047 {
2048 /* revert to existing behavior */
2049 radix = 10;
2050 }
2051
2052 wp = scm_dblprec[radix-2];
2053 fx = fx_per_radix[radix-2];
2054
2055 if (f == 0.0)
2056 {
2057 #ifdef HAVE_COPYSIGN
2058 double sgn = copysign (1.0, f);
2059
2060 if (sgn < 0.0)
2061 a[ch++] = '-';
2062 #endif
2063 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2064 }
2065
2066 if (xisinf (f))
2067 {
2068 if (f < 0)
2069 strcpy (a, "-inf.0");
2070 else
2071 strcpy (a, "+inf.0");
2072 return ch+6;
2073 }
2074 else if (xisnan (f))
2075 {
2076 strcpy (a, "+nan.0");
2077 return ch+6;
2078 }
2079
2080 if (f < 0.0)
2081 {
2082 f = -f;
2083 a[ch++] = '-';
2084 }
2085
2086 #ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2087 make-uniform-vector, from causing infinite loops. */
2088 /* just do the checking...if it passes, we do the conversion for our
2089 radix again below */
2090 f_cpy = f;
2091 exp_cpy = exp;
2092
2093 while (f_cpy < 1.0)
2094 {
2095 f_cpy *= 10.0;
2096 if (exp_cpy-- < DBL_MIN_10_EXP)
2097 {
2098 a[ch++] = '#';
2099 a[ch++] = '.';
2100 a[ch++] = '#';
2101 return ch;
2102 }
2103 }
2104 while (f_cpy > 10.0)
2105 {
2106 f_cpy *= 0.10;
2107 if (exp_cpy++ > DBL_MAX_10_EXP)
2108 {
2109 a[ch++] = '#';
2110 a[ch++] = '.';
2111 a[ch++] = '#';
2112 return ch;
2113 }
2114 }
2115 #endif
2116
2117 while (f < 1.0)
2118 {
2119 f *= radix;
2120 exp--;
2121 }
2122 while (f > radix)
2123 {
2124 f /= radix;
2125 exp++;
2126 }
2127
2128 if (f + fx[wp] >= radix)
2129 {
2130 f = 1.0;
2131 exp++;
2132 }
2133 zero:
2134 #ifdef ENGNOT
2135 /* adding 9999 makes this equivalent to abs(x) % 3 */
2136 dpt = (exp + 9999) % 3;
2137 exp -= dpt++;
2138 efmt = 1;
2139 #else
2140 efmt = (exp < -3) || (exp > wp + 2);
2141 if (!efmt)
2142 {
2143 if (exp < 0)
2144 {
2145 a[ch++] = '0';
2146 a[ch++] = '.';
2147 dpt = exp;
2148 while (++dpt)
2149 a[ch++] = '0';
2150 }
2151 else
2152 dpt = exp + 1;
2153 }
2154 else
2155 dpt = 1;
2156 #endif
2157
2158 do
2159 {
2160 d = f;
2161 f -= d;
2162 a[ch++] = number_chars[d];
2163 if (f < fx[wp])
2164 break;
2165 if (f + fx[wp] >= 1.0)
2166 {
2167 a[ch - 1] = number_chars[d+1];
2168 break;
2169 }
2170 f *= radix;
2171 if (!(--dpt))
2172 a[ch++] = '.';
2173 }
2174 while (wp--);
2175
2176 if (dpt > 0)
2177 {
2178 #ifndef ENGNOT
2179 if ((dpt > 4) && (exp > 6))
2180 {
2181 d = (a[0] == '-' ? 2 : 1);
2182 for (i = ch++; i > d; i--)
2183 a[i] = a[i - 1];
2184 a[d] = '.';
2185 efmt = 1;
2186 }
2187 else
2188 #endif
2189 {
2190 while (--dpt)
2191 a[ch++] = '0';
2192 a[ch++] = '.';
2193 }
2194 }
2195 if (a[ch - 1] == '.')
2196 a[ch++] = '0'; /* trailing zero */
2197 if (efmt && exp)
2198 {
2199 a[ch++] = 'e';
2200 if (exp < 0)
2201 {
2202 exp = -exp;
2203 a[ch++] = '-';
2204 }
2205 for (i = radix; i <= exp; i *= radix);
2206 for (i /= radix; i; i /= radix)
2207 {
2208 a[ch++] = number_chars[exp / i];
2209 exp %= i;
2210 }
2211 }
2212 return ch;
2213 }
2214
2215 static size_t
2216 iflo2str (SCM flt, char *str, int radix)
2217 {
2218 size_t i;
2219 if (SCM_REALP (flt))
2220 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
2221 else
2222 {
2223 i = idbl2str (SCM_COMPLEX_REAL (flt), str, radix);
2224 if (SCM_COMPLEX_IMAG (flt) != 0.0)
2225 {
2226 double imag = SCM_COMPLEX_IMAG (flt);
2227 /* Don't output a '+' for negative numbers or for Inf and
2228 NaN. They will provide their own sign. */
2229 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2230 str[i++] = '+';
2231 i += idbl2str (imag, &str[i], radix);
2232 str[i++] = 'i';
2233 }
2234 }
2235 return i;
2236 }
2237
2238 /* convert a long to a string (unterminated). returns the number of
2239 characters in the result.
2240 rad is output base
2241 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2242 size_t
2243 scm_iint2str (long num, int rad, char *p)
2244 {
2245 size_t j = 1;
2246 size_t i;
2247 unsigned long n = (num < 0) ? -num : num;
2248
2249 for (n /= rad; n > 0; n /= rad)
2250 j++;
2251
2252 i = j;
2253 if (num < 0)
2254 {
2255 *p++ = '-';
2256 j++;
2257 n = -num;
2258 }
2259 else
2260 n = num;
2261 while (i--)
2262 {
2263 int d = n % rad;
2264
2265 n /= rad;
2266 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2267 }
2268 return j;
2269 }
2270
2271 SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
2272 (SCM n, SCM radix),
2273 "Return a string holding the external representation of the\n"
2274 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2275 "inexact, a radix of 10 will be used.")
2276 #define FUNC_NAME s_scm_number_to_string
2277 {
2278 int base;
2279
2280 if (SCM_UNBNDP (radix))
2281 base = 10;
2282 else
2283 base = scm_to_signed_integer (radix, 2, 36);
2284
2285 if (SCM_I_INUMP (n))
2286 {
2287 char num_buf [SCM_INTBUFLEN];
2288 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
2289 return scm_mem2string (num_buf, length);
2290 }
2291 else if (SCM_BIGP (n))
2292 {
2293 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2294 scm_remember_upto_here_1 (n);
2295 return scm_take0str (str);
2296 }
2297 else if (SCM_FRACTIONP (n))
2298 {
2299 scm_i_fraction_reduce (n);
2300 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
2301 scm_mem2string ("/", 1),
2302 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2303 }
2304 else if (SCM_INEXACTP (n))
2305 {
2306 char num_buf [FLOBUFLEN];
2307 return scm_mem2string (num_buf, iflo2str (n, num_buf, base));
2308 }
2309 else
2310 SCM_WRONG_TYPE_ARG (1, n);
2311 }
2312 #undef FUNC_NAME
2313
2314
2315 /* These print routines used to be stubbed here so that scm_repl.c
2316 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
2317
2318 int
2319 scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2320 {
2321 char num_buf[FLOBUFLEN];
2322 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2323 return !0;
2324 }
2325
2326 int
2327 scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2328
2329 {
2330 char num_buf[FLOBUFLEN];
2331 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2332 return !0;
2333 }
2334
2335 int
2336 scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2337 {
2338 SCM str;
2339 scm_i_fraction_reduce (sexp);
2340 str = scm_number_to_string (sexp, SCM_UNDEFINED);
2341 scm_lfwrite (SCM_STRING_CHARS (str), SCM_STRING_LENGTH (str), port);
2342 scm_remember_upto_here_1 (str);
2343 return !0;
2344 }
2345
2346 int
2347 scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
2348 {
2349 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2350 scm_remember_upto_here_1 (exp);
2351 scm_lfwrite (str, (size_t) strlen (str), port);
2352 free (str);
2353 return !0;
2354 }
2355 /*** END nums->strs ***/
2356
2357
2358 /*** STRINGS -> NUMBERS ***/
2359
2360 /* The following functions implement the conversion from strings to numbers.
2361 * The implementation somehow follows the grammar for numbers as it is given
2362 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2363 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2364 * points should be noted about the implementation:
2365 * * Each function keeps a local index variable 'idx' that points at the
2366 * current position within the parsed string. The global index is only
2367 * updated if the function could parse the corresponding syntactic unit
2368 * successfully.
2369 * * Similarly, the functions keep track of indicators of inexactness ('#',
2370 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2371 * global exactness information is only updated after each part has been
2372 * successfully parsed.
2373 * * Sequences of digits are parsed into temporary variables holding fixnums.
2374 * Only if these fixnums would overflow, the result variables are updated
2375 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2376 * the temporary variables holding the fixnums are cleared, and the process
2377 * starts over again. If for example fixnums were able to store five decimal
2378 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2379 * and the result was computed as 12345 * 100000 + 67890. In other words,
2380 * only every five digits two bignum operations were performed.
2381 */
2382
2383 enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2384
2385 /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2386
2387 /* In non ASCII-style encodings the following macro might not work. */
2388 #define XDIGIT2UINT(d) \
2389 (isdigit ((int) (unsigned char) d) \
2390 ? (d) - '0' \
2391 : tolower ((int) (unsigned char) d) - 'a' + 10)
2392
2393 static SCM
2394 mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
2395 unsigned int radix, enum t_exactness *p_exactness)
2396 {
2397 unsigned int idx = *p_idx;
2398 unsigned int hash_seen = 0;
2399 scm_t_bits shift = 1;
2400 scm_t_bits add = 0;
2401 unsigned int digit_value;
2402 SCM result;
2403 char c;
2404
2405 if (idx == len)
2406 return SCM_BOOL_F;
2407
2408 c = mem[idx];
2409 if (!isxdigit ((int) (unsigned char) c))
2410 return SCM_BOOL_F;
2411 digit_value = XDIGIT2UINT (c);
2412 if (digit_value >= radix)
2413 return SCM_BOOL_F;
2414
2415 idx++;
2416 result = SCM_I_MAKINUM (digit_value);
2417 while (idx != len)
2418 {
2419 char c = mem[idx];
2420 if (isxdigit ((int) (unsigned char) c))
2421 {
2422 if (hash_seen)
2423 break;
2424 digit_value = XDIGIT2UINT (c);
2425 if (digit_value >= radix)
2426 break;
2427 }
2428 else if (c == '#')
2429 {
2430 hash_seen = 1;
2431 digit_value = 0;
2432 }
2433 else
2434 break;
2435
2436 idx++;
2437 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2438 {
2439 result = scm_product (result, SCM_I_MAKINUM (shift));
2440 if (add > 0)
2441 result = scm_sum (result, SCM_I_MAKINUM (add));
2442
2443 shift = radix;
2444 add = digit_value;
2445 }
2446 else
2447 {
2448 shift = shift * radix;
2449 add = add * radix + digit_value;
2450 }
2451 };
2452
2453 if (shift > 1)
2454 result = scm_product (result, SCM_I_MAKINUM (shift));
2455 if (add > 0)
2456 result = scm_sum (result, SCM_I_MAKINUM (add));
2457
2458 *p_idx = idx;
2459 if (hash_seen)
2460 *p_exactness = INEXACT;
2461
2462 return result;
2463 }
2464
2465
2466 /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2467 * covers the parts of the rules that start at a potential point. The value
2468 * of the digits up to the point have been parsed by the caller and are given
2469 * in variable result. The content of *p_exactness indicates, whether a hash
2470 * has already been seen in the digits before the point.
2471 */
2472
2473 /* In non ASCII-style encodings the following macro might not work. */
2474 #define DIGIT2UINT(d) ((d) - '0')
2475
2476 static SCM
2477 mem2decimal_from_point (SCM result, const char* mem, size_t len,
2478 unsigned int *p_idx, enum t_exactness *p_exactness)
2479 {
2480 unsigned int idx = *p_idx;
2481 enum t_exactness x = *p_exactness;
2482
2483 if (idx == len)
2484 return result;
2485
2486 if (mem[idx] == '.')
2487 {
2488 scm_t_bits shift = 1;
2489 scm_t_bits add = 0;
2490 unsigned int digit_value;
2491 SCM big_shift = SCM_I_MAKINUM (1);
2492
2493 idx++;
2494 while (idx != len)
2495 {
2496 char c = mem[idx];
2497 if (isdigit ((int) (unsigned char) c))
2498 {
2499 if (x == INEXACT)
2500 return SCM_BOOL_F;
2501 else
2502 digit_value = DIGIT2UINT (c);
2503 }
2504 else if (c == '#')
2505 {
2506 x = INEXACT;
2507 digit_value = 0;
2508 }
2509 else
2510 break;
2511
2512 idx++;
2513 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2514 {
2515 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2516 result = scm_product (result, SCM_I_MAKINUM (shift));
2517 if (add > 0)
2518 result = scm_sum (result, SCM_I_MAKINUM (add));
2519
2520 shift = 10;
2521 add = digit_value;
2522 }
2523 else
2524 {
2525 shift = shift * 10;
2526 add = add * 10 + digit_value;
2527 }
2528 };
2529
2530 if (add > 0)
2531 {
2532 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2533 result = scm_product (result, SCM_I_MAKINUM (shift));
2534 result = scm_sum (result, SCM_I_MAKINUM (add));
2535 }
2536
2537 result = scm_divide (result, big_shift);
2538
2539 /* We've seen a decimal point, thus the value is implicitly inexact. */
2540 x = INEXACT;
2541 }
2542
2543 if (idx != len)
2544 {
2545 int sign = 1;
2546 unsigned int start;
2547 char c;
2548 int exponent;
2549 SCM e;
2550
2551 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2552
2553 switch (mem[idx])
2554 {
2555 case 'd': case 'D':
2556 case 'e': case 'E':
2557 case 'f': case 'F':
2558 case 'l': case 'L':
2559 case 's': case 'S':
2560 idx++;
2561 start = idx;
2562 c = mem[idx];
2563 if (c == '-')
2564 {
2565 idx++;
2566 sign = -1;
2567 c = mem[idx];
2568 }
2569 else if (c == '+')
2570 {
2571 idx++;
2572 sign = 1;
2573 c = mem[idx];
2574 }
2575 else
2576 sign = 1;
2577
2578 if (!isdigit ((int) (unsigned char) c))
2579 return SCM_BOOL_F;
2580
2581 idx++;
2582 exponent = DIGIT2UINT (c);
2583 while (idx != len)
2584 {
2585 char c = mem[idx];
2586 if (isdigit ((int) (unsigned char) c))
2587 {
2588 idx++;
2589 if (exponent <= SCM_MAXEXP)
2590 exponent = exponent * 10 + DIGIT2UINT (c);
2591 }
2592 else
2593 break;
2594 }
2595
2596 if (exponent > SCM_MAXEXP)
2597 {
2598 size_t exp_len = idx - start;
2599 SCM exp_string = scm_mem2string (&mem[start], exp_len);
2600 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2601 scm_out_of_range ("string->number", exp_num);
2602 }
2603
2604 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
2605 if (sign == 1)
2606 result = scm_product (result, e);
2607 else
2608 result = scm_divide2real (result, e);
2609
2610 /* We've seen an exponent, thus the value is implicitly inexact. */
2611 x = INEXACT;
2612
2613 break;
2614
2615 default:
2616 break;
2617 }
2618 }
2619
2620 *p_idx = idx;
2621 if (x == INEXACT)
2622 *p_exactness = x;
2623
2624 return result;
2625 }
2626
2627
2628 /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2629
2630 static SCM
2631 mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
2632 unsigned int radix, enum t_exactness *p_exactness)
2633 {
2634 unsigned int idx = *p_idx;
2635 SCM result;
2636
2637 if (idx == len)
2638 return SCM_BOOL_F;
2639
2640 if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
2641 {
2642 *p_idx = idx+5;
2643 return scm_inf ();
2644 }
2645
2646 if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
2647 {
2648 enum t_exactness x = EXACT;
2649
2650 /* Cobble up the fractional part. We might want to set the
2651 NaN's mantissa from it. */
2652 idx += 4;
2653 mem2uinteger (mem, len, &idx, 10, &x);
2654 *p_idx = idx;
2655 return scm_nan ();
2656 }
2657
2658 if (mem[idx] == '.')
2659 {
2660 if (radix != 10)
2661 return SCM_BOOL_F;
2662 else if (idx + 1 == len)
2663 return SCM_BOOL_F;
2664 else if (!isdigit ((int) (unsigned char) mem[idx + 1]))
2665 return SCM_BOOL_F;
2666 else
2667 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem, len,
2668 p_idx, p_exactness);
2669 }
2670 else
2671 {
2672 enum t_exactness x = EXACT;
2673 SCM uinteger;
2674
2675 uinteger = mem2uinteger (mem, len, &idx, radix, &x);
2676 if (scm_is_false (uinteger))
2677 return SCM_BOOL_F;
2678
2679 if (idx == len)
2680 result = uinteger;
2681 else if (mem[idx] == '/')
2682 {
2683 SCM divisor;
2684
2685 idx++;
2686
2687 divisor = mem2uinteger (mem, len, &idx, radix, &x);
2688 if (scm_is_false (divisor))
2689 return SCM_BOOL_F;
2690
2691 /* both are int/big here, I assume */
2692 result = scm_i_make_ratio (uinteger, divisor);
2693 }
2694 else if (radix == 10)
2695 {
2696 result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
2697 if (scm_is_false (result))
2698 return SCM_BOOL_F;
2699 }
2700 else
2701 result = uinteger;
2702
2703 *p_idx = idx;
2704 if (x == INEXACT)
2705 *p_exactness = x;
2706 }
2707
2708 /* When returning an inexact zero, make sure it is represented as a
2709 floating point value so that we can change its sign.
2710 */
2711 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
2712 result = scm_from_double (0.0);
2713
2714 return result;
2715 }
2716
2717
2718 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2719
2720 static SCM
2721 mem2complex (const char* mem, size_t len, unsigned int idx,
2722 unsigned int radix, enum t_exactness *p_exactness)
2723 {
2724 char c;
2725 int sign = 0;
2726 SCM ureal;
2727
2728 if (idx == len)
2729 return SCM_BOOL_F;
2730
2731 c = mem[idx];
2732 if (c == '+')
2733 {
2734 idx++;
2735 sign = 1;
2736 }
2737 else if (c == '-')
2738 {
2739 idx++;
2740 sign = -1;
2741 }
2742
2743 if (idx == len)
2744 return SCM_BOOL_F;
2745
2746 ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
2747 if (scm_is_false (ureal))
2748 {
2749 /* input must be either +i or -i */
2750
2751 if (sign == 0)
2752 return SCM_BOOL_F;
2753
2754 if (mem[idx] == 'i' || mem[idx] == 'I')
2755 {
2756 idx++;
2757 if (idx != len)
2758 return SCM_BOOL_F;
2759
2760 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
2761 }
2762 else
2763 return SCM_BOOL_F;
2764 }
2765 else
2766 {
2767 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2768 ureal = scm_difference (ureal, SCM_UNDEFINED);
2769
2770 if (idx == len)
2771 return ureal;
2772
2773 c = mem[idx];
2774 switch (c)
2775 {
2776 case 'i': case 'I':
2777 /* either +<ureal>i or -<ureal>i */
2778
2779 idx++;
2780 if (sign == 0)
2781 return SCM_BOOL_F;
2782 if (idx != len)
2783 return SCM_BOOL_F;
2784 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
2785
2786 case '@':
2787 /* polar input: <real>@<real>. */
2788
2789 idx++;
2790 if (idx == len)
2791 return SCM_BOOL_F;
2792 else
2793 {
2794 int sign;
2795 SCM angle;
2796 SCM result;
2797
2798 c = mem[idx];
2799 if (c == '+')
2800 {
2801 idx++;
2802 sign = 1;
2803 }
2804 else if (c == '-')
2805 {
2806 idx++;
2807 sign = -1;
2808 }
2809 else
2810 sign = 1;
2811
2812 angle = mem2ureal (mem, len, &idx, radix, p_exactness);
2813 if (scm_is_false (angle))
2814 return SCM_BOOL_F;
2815 if (idx != len)
2816 return SCM_BOOL_F;
2817
2818 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2819 angle = scm_difference (angle, SCM_UNDEFINED);
2820
2821 result = scm_make_polar (ureal, angle);
2822 return result;
2823 }
2824 case '+':
2825 case '-':
2826 /* expecting input matching <real>[+-]<ureal>?i */
2827
2828 idx++;
2829 if (idx == len)
2830 return SCM_BOOL_F;
2831 else
2832 {
2833 int sign = (c == '+') ? 1 : -1;
2834 SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
2835
2836 if (scm_is_false (imag))
2837 imag = SCM_I_MAKINUM (sign);
2838 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2839 imag = scm_difference (imag, SCM_UNDEFINED);
2840
2841 if (idx == len)
2842 return SCM_BOOL_F;
2843 if (mem[idx] != 'i' && mem[idx] != 'I')
2844 return SCM_BOOL_F;
2845
2846 idx++;
2847 if (idx != len)
2848 return SCM_BOOL_F;
2849
2850 return scm_make_rectangular (ureal, imag);
2851 }
2852 default:
2853 return SCM_BOOL_F;
2854 }
2855 }
2856 }
2857
2858
2859 /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
2860
2861 enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
2862
2863 SCM
2864 scm_i_mem2number (const char* mem, size_t len, unsigned int default_radix)
2865 {
2866 unsigned int idx = 0;
2867 unsigned int radix = NO_RADIX;
2868 enum t_exactness forced_x = NO_EXACTNESS;
2869 enum t_exactness implicit_x = EXACT;
2870 SCM result;
2871
2872 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
2873 while (idx + 2 < len && mem[idx] == '#')
2874 {
2875 switch (mem[idx + 1])
2876 {
2877 case 'b': case 'B':
2878 if (radix != NO_RADIX)
2879 return SCM_BOOL_F;
2880 radix = DUAL;
2881 break;
2882 case 'd': case 'D':
2883 if (radix != NO_RADIX)
2884 return SCM_BOOL_F;
2885 radix = DEC;
2886 break;
2887 case 'i': case 'I':
2888 if (forced_x != NO_EXACTNESS)
2889 return SCM_BOOL_F;
2890 forced_x = INEXACT;
2891 break;
2892 case 'e': case 'E':
2893 if (forced_x != NO_EXACTNESS)
2894 return SCM_BOOL_F;
2895 forced_x = EXACT;
2896 break;
2897 case 'o': case 'O':
2898 if (radix != NO_RADIX)
2899 return SCM_BOOL_F;
2900 radix = OCT;
2901 break;
2902 case 'x': case 'X':
2903 if (radix != NO_RADIX)
2904 return SCM_BOOL_F;
2905 radix = HEX;
2906 break;
2907 default:
2908 return SCM_BOOL_F;
2909 }
2910 idx += 2;
2911 }
2912
2913 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2914 if (radix == NO_RADIX)
2915 result = mem2complex (mem, len, idx, default_radix, &implicit_x);
2916 else
2917 result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
2918
2919 if (scm_is_false (result))
2920 return SCM_BOOL_F;
2921
2922 switch (forced_x)
2923 {
2924 case EXACT:
2925 if (SCM_INEXACTP (result))
2926 return scm_inexact_to_exact (result);
2927 else
2928 return result;
2929 case INEXACT:
2930 if (SCM_INEXACTP (result))
2931 return result;
2932 else
2933 return scm_exact_to_inexact (result);
2934 case NO_EXACTNESS:
2935 default:
2936 if (implicit_x == INEXACT)
2937 {
2938 if (SCM_INEXACTP (result))
2939 return result;
2940 else
2941 return scm_exact_to_inexact (result);
2942 }
2943 else
2944 return result;
2945 }
2946 }
2947
2948
2949 SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
2950 (SCM string, SCM radix),
2951 "Return a number of the maximally precise representation\n"
2952 "expressed by the given @var{string}. @var{radix} must be an\n"
2953 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
2954 "is a default radix that may be overridden by an explicit radix\n"
2955 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
2956 "supplied, then the default radix is 10. If string is not a\n"
2957 "syntactically valid notation for a number, then\n"
2958 "@code{string->number} returns @code{#f}.")
2959 #define FUNC_NAME s_scm_string_to_number
2960 {
2961 SCM answer;
2962 unsigned int base;
2963 SCM_VALIDATE_STRING (1, string);
2964
2965 if (SCM_UNBNDP (radix))
2966 base = 10;
2967 else
2968 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
2969
2970 answer = scm_i_mem2number (SCM_STRING_CHARS (string),
2971 SCM_STRING_LENGTH (string),
2972 base);
2973 return scm_return_first (answer, string);
2974 }
2975 #undef FUNC_NAME
2976
2977
2978 /*** END strs->nums ***/
2979
2980
2981 SCM
2982 scm_bigequal (SCM x, SCM y)
2983 {
2984 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
2985 scm_remember_upto_here_2 (x, y);
2986 return scm_from_bool (0 == result);
2987 }
2988
2989 SCM
2990 scm_real_equalp (SCM x, SCM y)
2991 {
2992 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
2993 }
2994
2995 SCM
2996 scm_complex_equalp (SCM x, SCM y)
2997 {
2998 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
2999 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3000 }
3001
3002 SCM
3003 scm_i_fraction_equalp (SCM x, SCM y)
3004 {
3005 scm_i_fraction_reduce (x);
3006 scm_i_fraction_reduce (y);
3007 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
3008 SCM_FRACTION_NUMERATOR (y)))
3009 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
3010 SCM_FRACTION_DENOMINATOR (y))))
3011 return SCM_BOOL_F;
3012 else
3013 return SCM_BOOL_T;
3014 }
3015
3016
3017 SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3018 (SCM x),
3019 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3020 "otherwise.")
3021 #define FUNC_NAME s_scm_number_p
3022 {
3023 return scm_from_bool (SCM_NUMBERP (x));
3024 }
3025 #undef FUNC_NAME
3026
3027 SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
3028 (SCM x),
3029 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
3030 "otherwise. Note that the sets of real, rational and integer\n"
3031 "values form subsets of the set of complex numbers, i. e. the\n"
3032 "predicate will also be fulfilled if @var{x} is a real,\n"
3033 "rational or integer number.")
3034 #define FUNC_NAME s_scm_complex_p
3035 {
3036 /* all numbers are complex. */
3037 return scm_number_p (x);
3038 }
3039 #undef FUNC_NAME
3040
3041 SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3042 (SCM x),
3043 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3044 "otherwise. Note that the set of integer values forms a subset of\n"
3045 "the set of real numbers, i. e. the predicate will also be\n"
3046 "fulfilled if @var{x} is an integer number.")
3047 #define FUNC_NAME s_scm_real_p
3048 {
3049 /* we can't represent irrational numbers. */
3050 return scm_rational_p (x);
3051 }
3052 #undef FUNC_NAME
3053
3054 SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
3055 (SCM x),
3056 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
3057 "otherwise. Note that the set of integer values forms a subset of\n"
3058 "the set of rational numbers, i. e. the predicate will also be\n"
3059 "fulfilled if @var{x} is an integer number.")
3060 #define FUNC_NAME s_scm_rational_p
3061 {
3062 if (SCM_I_INUMP (x))
3063 return SCM_BOOL_T;
3064 else if (SCM_IMP (x))
3065 return SCM_BOOL_F;
3066 else if (SCM_BIGP (x))
3067 return SCM_BOOL_T;
3068 else if (SCM_FRACTIONP (x))
3069 return SCM_BOOL_T;
3070 else if (SCM_REALP (x))
3071 /* due to their limited precision, all floating point numbers are
3072 rational as well. */
3073 return SCM_BOOL_T;
3074 else
3075 return SCM_BOOL_F;
3076 }
3077 #undef FUNC_NAME
3078
3079 SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
3080 (SCM x),
3081 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3082 "else.")
3083 #define FUNC_NAME s_scm_integer_p
3084 {
3085 double r;
3086 if (SCM_I_INUMP (x))
3087 return SCM_BOOL_T;
3088 if (SCM_IMP (x))
3089 return SCM_BOOL_F;
3090 if (SCM_BIGP (x))
3091 return SCM_BOOL_T;
3092 if (!SCM_INEXACTP (x))
3093 return SCM_BOOL_F;
3094 if (SCM_COMPLEXP (x))
3095 return SCM_BOOL_F;
3096 r = SCM_REAL_VALUE (x);
3097 if (r == floor (r))
3098 return SCM_BOOL_T;
3099 return SCM_BOOL_F;
3100 }
3101 #undef FUNC_NAME
3102
3103
3104 SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
3105 (SCM x),
3106 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3107 "else.")
3108 #define FUNC_NAME s_scm_inexact_p
3109 {
3110 if (SCM_INEXACTP (x))
3111 return SCM_BOOL_T;
3112 if (SCM_NUMBERP (x))
3113 return SCM_BOOL_F;
3114 SCM_WRONG_TYPE_ARG (1, x);
3115 }
3116 #undef FUNC_NAME
3117
3118
3119 SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
3120 /* "Return @code{#t} if all parameters are numerically equal." */
3121 SCM
3122 scm_num_eq_p (SCM x, SCM y)
3123 {
3124 again:
3125 if (SCM_I_INUMP (x))
3126 {
3127 long xx = SCM_I_INUM (x);
3128 if (SCM_I_INUMP (y))
3129 {
3130 long yy = SCM_I_INUM (y);
3131 return scm_from_bool (xx == yy);
3132 }
3133 else if (SCM_BIGP (y))
3134 return SCM_BOOL_F;
3135 else if (SCM_REALP (y))
3136 return scm_from_bool ((double) xx == SCM_REAL_VALUE (y));
3137 else if (SCM_COMPLEXP (y))
3138 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
3139 && (0.0 == SCM_COMPLEX_IMAG (y)));
3140 else if (SCM_FRACTIONP (y))
3141 return SCM_BOOL_F;
3142 else
3143 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3144 }
3145 else if (SCM_BIGP (x))
3146 {
3147 if (SCM_I_INUMP (y))
3148 return SCM_BOOL_F;
3149 else if (SCM_BIGP (y))
3150 {
3151 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3152 scm_remember_upto_here_2 (x, y);
3153 return scm_from_bool (0 == cmp);
3154 }
3155 else if (SCM_REALP (y))
3156 {
3157 int cmp;
3158 if (xisnan (SCM_REAL_VALUE (y)))
3159 return SCM_BOOL_F;
3160 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3161 scm_remember_upto_here_1 (x);
3162 return scm_from_bool (0 == cmp);
3163 }
3164 else if (SCM_COMPLEXP (y))
3165 {
3166 int cmp;
3167 if (0.0 != SCM_COMPLEX_IMAG (y))
3168 return SCM_BOOL_F;
3169 if (xisnan (SCM_COMPLEX_REAL (y)))
3170 return SCM_BOOL_F;
3171 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3172 scm_remember_upto_here_1 (x);
3173 return scm_from_bool (0 == cmp);
3174 }
3175 else if (SCM_FRACTIONP (y))
3176 return SCM_BOOL_F;
3177 else
3178 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3179 }
3180 else if (SCM_REALP (x))
3181 {
3182 if (SCM_I_INUMP (y))
3183 return scm_from_bool (SCM_REAL_VALUE (x) == (double) SCM_I_INUM (y));
3184 else if (SCM_BIGP (y))
3185 {
3186 int cmp;
3187 if (xisnan (SCM_REAL_VALUE (x)))
3188 return SCM_BOOL_F;
3189 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3190 scm_remember_upto_here_1 (y);
3191 return scm_from_bool (0 == cmp);
3192 }
3193 else if (SCM_REALP (y))
3194 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3195 else if (SCM_COMPLEXP (y))
3196 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
3197 && (0.0 == SCM_COMPLEX_IMAG (y)));
3198 else if (SCM_FRACTIONP (y))
3199 {
3200 double xx = SCM_REAL_VALUE (x);
3201 if (xisnan (xx))
3202 return SCM_BOOL_F;
3203 if (xisinf (xx))
3204 return scm_from_bool (xx < 0.0);
3205 x = scm_inexact_to_exact (x); /* with x as frac or int */
3206 goto again;
3207 }
3208 else
3209 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3210 }
3211 else if (SCM_COMPLEXP (x))
3212 {
3213 if (SCM_I_INUMP (y))
3214 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
3215 && (SCM_COMPLEX_IMAG (x) == 0.0));
3216 else if (SCM_BIGP (y))
3217 {
3218 int cmp;
3219 if (0.0 != SCM_COMPLEX_IMAG (x))
3220 return SCM_BOOL_F;
3221 if (xisnan (SCM_COMPLEX_REAL (x)))
3222 return SCM_BOOL_F;
3223 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3224 scm_remember_upto_here_1 (y);
3225 return scm_from_bool (0 == cmp);
3226 }
3227 else if (SCM_REALP (y))
3228 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
3229 && (SCM_COMPLEX_IMAG (x) == 0.0));
3230 else if (SCM_COMPLEXP (y))
3231 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
3232 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
3233 else if (SCM_FRACTIONP (y))
3234 {
3235 double xx;
3236 if (SCM_COMPLEX_IMAG (x) != 0.0)
3237 return SCM_BOOL_F;
3238 xx = SCM_COMPLEX_REAL (x);
3239 if (xisnan (xx))
3240 return SCM_BOOL_F;
3241 if (xisinf (xx))
3242 return scm_from_bool (xx < 0.0);
3243 x = scm_inexact_to_exact (x); /* with x as frac or int */
3244 goto again;
3245 }
3246 else
3247 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3248 }
3249 else if (SCM_FRACTIONP (x))
3250 {
3251 if (SCM_I_INUMP (y))
3252 return SCM_BOOL_F;
3253 else if (SCM_BIGP (y))
3254 return SCM_BOOL_F;
3255 else if (SCM_REALP (y))
3256 {
3257 double yy = SCM_REAL_VALUE (y);
3258 if (xisnan (yy))
3259 return SCM_BOOL_F;
3260 if (xisinf (yy))
3261 return scm_from_bool (0.0 < yy);
3262 y = scm_inexact_to_exact (y); /* with y as frac or int */
3263 goto again;
3264 }
3265 else if (SCM_COMPLEXP (y))
3266 {
3267 double yy;
3268 if (SCM_COMPLEX_IMAG (y) != 0.0)
3269 return SCM_BOOL_F;
3270 yy = SCM_COMPLEX_REAL (y);
3271 if (xisnan (yy))
3272 return SCM_BOOL_F;
3273 if (xisinf (yy))
3274 return scm_from_bool (0.0 < yy);
3275 y = scm_inexact_to_exact (y); /* with y as frac or int */
3276 goto again;
3277 }
3278 else if (SCM_FRACTIONP (y))
3279 return scm_i_fraction_equalp (x, y);
3280 else
3281 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3282 }
3283 else
3284 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
3285 }
3286
3287
3288 /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3289 done are good for inums, but for bignums an answer can almost always be
3290 had by just examining a few high bits of the operands, as done by GMP in
3291 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3292 of the float exponent to take into account. */
3293
3294 SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
3295 /* "Return @code{#t} if the list of parameters is monotonically\n"
3296 * "increasing."
3297 */
3298 SCM
3299 scm_less_p (SCM x, SCM y)
3300 {
3301 again:
3302 if (SCM_I_INUMP (x))
3303 {
3304 long xx = SCM_I_INUM (x);
3305 if (SCM_I_INUMP (y))
3306 {
3307 long yy = SCM_I_INUM (y);
3308 return scm_from_bool (xx < yy);
3309 }
3310 else if (SCM_BIGP (y))
3311 {
3312 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3313 scm_remember_upto_here_1 (y);
3314 return scm_from_bool (sgn > 0);
3315 }
3316 else if (SCM_REALP (y))
3317 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
3318 else if (SCM_FRACTIONP (y))
3319 {
3320 /* "x < a/b" becomes "x*b < a" */
3321 int_frac:
3322 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3323 y = SCM_FRACTION_NUMERATOR (y);
3324 goto again;
3325 }
3326 else
3327 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3328 }
3329 else if (SCM_BIGP (x))
3330 {
3331 if (SCM_I_INUMP (y))
3332 {
3333 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3334 scm_remember_upto_here_1 (x);
3335 return scm_from_bool (sgn < 0);
3336 }
3337 else if (SCM_BIGP (y))
3338 {
3339 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3340 scm_remember_upto_here_2 (x, y);
3341 return scm_from_bool (cmp < 0);
3342 }
3343 else if (SCM_REALP (y))
3344 {
3345 int cmp;
3346 if (xisnan (SCM_REAL_VALUE (y)))
3347 return SCM_BOOL_F;
3348 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3349 scm_remember_upto_here_1 (x);
3350 return scm_from_bool (cmp < 0);
3351 }
3352 else if (SCM_FRACTIONP (y))
3353 goto int_frac;
3354 else
3355 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3356 }
3357 else if (SCM_REALP (x))
3358 {
3359 if (SCM_I_INUMP (y))
3360 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
3361 else if (SCM_BIGP (y))
3362 {
3363 int cmp;
3364 if (xisnan (SCM_REAL_VALUE (x)))
3365 return SCM_BOOL_F;
3366 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3367 scm_remember_upto_here_1 (y);
3368 return scm_from_bool (cmp > 0);
3369 }
3370 else if (SCM_REALP (y))
3371 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
3372 else if (SCM_FRACTIONP (y))
3373 {
3374 double xx = SCM_REAL_VALUE (x);
3375 if (xisnan (xx))
3376 return SCM_BOOL_F;
3377 if (xisinf (xx))
3378 return scm_from_bool (xx < 0.0);
3379 x = scm_inexact_to_exact (x); /* with x as frac or int */
3380 goto again;
3381 }
3382 else
3383 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3384 }
3385 else if (SCM_FRACTIONP (x))
3386 {
3387 if (SCM_I_INUMP (y) || SCM_BIGP (y))
3388 {
3389 /* "a/b < y" becomes "a < y*b" */
3390 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3391 x = SCM_FRACTION_NUMERATOR (x);
3392 goto again;
3393 }
3394 else if (SCM_REALP (y))
3395 {
3396 double yy = SCM_REAL_VALUE (y);
3397 if (xisnan (yy))
3398 return SCM_BOOL_F;
3399 if (xisinf (yy))
3400 return scm_from_bool (0.0 < yy);
3401 y = scm_inexact_to_exact (y); /* with y as frac or int */
3402 goto again;
3403 }
3404 else if (SCM_FRACTIONP (y))
3405 {
3406 /* "a/b < c/d" becomes "a*d < c*b" */
3407 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3408 SCM_FRACTION_DENOMINATOR (y));
3409 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3410 SCM_FRACTION_DENOMINATOR (x));
3411 x = new_x;
3412 y = new_y;
3413 goto again;
3414 }
3415 else
3416 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3417 }
3418 else
3419 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
3420 }
3421
3422
3423 SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
3424 /* "Return @code{#t} if the list of parameters is monotonically\n"
3425 * "decreasing."
3426 */
3427 #define FUNC_NAME s_scm_gr_p
3428 SCM
3429 scm_gr_p (SCM x, SCM y)
3430 {
3431 if (!SCM_NUMBERP (x))
3432 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3433 else if (!SCM_NUMBERP (y))
3434 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3435 else
3436 return scm_less_p (y, x);
3437 }
3438 #undef FUNC_NAME
3439
3440
3441 SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
3442 /* "Return @code{#t} if the list of parameters is monotonically\n"
3443 * "non-decreasing."
3444 */
3445 #define FUNC_NAME s_scm_leq_p
3446 SCM
3447 scm_leq_p (SCM x, SCM y)
3448 {
3449 if (!SCM_NUMBERP (x))
3450 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3451 else if (!SCM_NUMBERP (y))
3452 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
3453 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3454 return SCM_BOOL_F;
3455 else
3456 return scm_not (scm_less_p (y, x));
3457 }
3458 #undef FUNC_NAME
3459
3460
3461 SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
3462 /* "Return @code{#t} if the list of parameters is monotonically\n"
3463 * "non-increasing."
3464 */
3465 #define FUNC_NAME s_scm_geq_p
3466 SCM
3467 scm_geq_p (SCM x, SCM y)
3468 {
3469 if (!SCM_NUMBERP (x))
3470 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3471 else if (!SCM_NUMBERP (y))
3472 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
3473 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3474 return SCM_BOOL_F;
3475 else
3476 return scm_not (scm_less_p (x, y));
3477 }
3478 #undef FUNC_NAME
3479
3480
3481 SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
3482 /* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3483 * "zero."
3484 */
3485 SCM
3486 scm_zero_p (SCM z)
3487 {
3488 if (SCM_I_INUMP (z))
3489 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
3490 else if (SCM_BIGP (z))
3491 return SCM_BOOL_F;
3492 else if (SCM_REALP (z))
3493 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
3494 else if (SCM_COMPLEXP (z))
3495 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
3496 && SCM_COMPLEX_IMAG (z) == 0.0);
3497 else if (SCM_FRACTIONP (z))
3498 return SCM_BOOL_F;
3499 else
3500 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
3501 }
3502
3503
3504 SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
3505 /* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3506 * "zero."
3507 */
3508 SCM
3509 scm_positive_p (SCM x)
3510 {
3511 if (SCM_I_INUMP (x))
3512 return scm_from_bool (SCM_I_INUM (x) > 0);
3513 else if (SCM_BIGP (x))
3514 {
3515 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3516 scm_remember_upto_here_1 (x);
3517 return scm_from_bool (sgn > 0);
3518 }
3519 else if (SCM_REALP (x))
3520 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
3521 else if (SCM_FRACTIONP (x))
3522 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
3523 else
3524 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
3525 }
3526
3527
3528 SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
3529 /* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3530 * "zero."
3531 */
3532 SCM
3533 scm_negative_p (SCM x)
3534 {
3535 if (SCM_I_INUMP (x))
3536 return scm_from_bool (SCM_I_INUM (x) < 0);
3537 else if (SCM_BIGP (x))
3538 {
3539 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3540 scm_remember_upto_here_1 (x);
3541 return scm_from_bool (sgn < 0);
3542 }
3543 else if (SCM_REALP (x))
3544 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
3545 else if (SCM_FRACTIONP (x))
3546 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
3547 else
3548 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
3549 }
3550
3551
3552 /* scm_min and scm_max return an inexact when either argument is inexact, as
3553 required by r5rs. On that basis, for exact/inexact combinations the
3554 exact is converted to inexact to compare and possibly return. This is
3555 unlike scm_less_p above which takes some trouble to preserve all bits in
3556 its test, such trouble is not required for min and max. */
3557
3558 SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
3559 /* "Return the maximum of all parameter values."
3560 */
3561 SCM
3562 scm_max (SCM x, SCM y)
3563 {
3564 if (SCM_UNBNDP (y))
3565 {
3566 if (SCM_UNBNDP (x))
3567 SCM_WTA_DISPATCH_0 (g_max, s_max);
3568 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3569 return x;
3570 else
3571 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
3572 }
3573
3574 if (SCM_I_INUMP (x))
3575 {
3576 long xx = SCM_I_INUM (x);
3577 if (SCM_I_INUMP (y))
3578 {
3579 long yy = SCM_I_INUM (y);
3580 return (xx < yy) ? y : x;
3581 }
3582 else if (SCM_BIGP (y))
3583 {
3584 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3585 scm_remember_upto_here_1 (y);
3586 return (sgn < 0) ? x : y;
3587 }
3588 else if (SCM_REALP (y))
3589 {
3590 double z = xx;
3591 /* if y==NaN then ">" is false and we return NaN */
3592 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3593 }
3594 else if (SCM_FRACTIONP (y))
3595 {
3596 use_less:
3597 return (scm_is_false (scm_less_p (x, y)) ? x : y);
3598 }
3599 else
3600 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3601 }
3602 else if (SCM_BIGP (x))
3603 {
3604 if (SCM_I_INUMP (y))
3605 {
3606 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3607 scm_remember_upto_here_1 (x);
3608 return (sgn < 0) ? y : x;
3609 }
3610 else if (SCM_BIGP (y))
3611 {
3612 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3613 scm_remember_upto_here_2 (x, y);
3614 return (cmp > 0) ? x : y;
3615 }
3616 else if (SCM_REALP (y))
3617 {
3618 /* if y==NaN then xx>yy is false, so we return the NaN y */
3619 double xx, yy;
3620 big_real:
3621 xx = scm_i_big2dbl (x);
3622 yy = SCM_REAL_VALUE (y);
3623 return (xx > yy ? scm_from_double (xx) : y);
3624 }
3625 else if (SCM_FRACTIONP (y))
3626 {
3627 goto use_less;
3628 }
3629 else
3630 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3631 }
3632 else if (SCM_REALP (x))
3633 {
3634 if (SCM_I_INUMP (y))
3635 {
3636 double z = SCM_I_INUM (y);
3637 /* if x==NaN then "<" is false and we return NaN */
3638 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
3639 }
3640 else if (SCM_BIGP (y))
3641 {
3642 SCM_SWAP (x, y);
3643 goto big_real;
3644 }
3645 else if (SCM_REALP (y))
3646 {
3647 /* if x==NaN then our explicit check means we return NaN
3648 if y==NaN then ">" is false and we return NaN
3649 calling isnan is unavoidable, since it's the only way to know
3650 which of x or y causes any compares to be false */
3651 double xx = SCM_REAL_VALUE (x);
3652 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3653 }
3654 else if (SCM_FRACTIONP (y))
3655 {
3656 double yy = scm_i_fraction2double (y);
3657 double xx = SCM_REAL_VALUE (x);
3658 return (xx < yy) ? scm_from_double (yy) : x;
3659 }
3660 else
3661 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3662 }
3663 else if (SCM_FRACTIONP (x))
3664 {
3665 if (SCM_I_INUMP (y))
3666 {
3667 goto use_less;
3668 }
3669 else if (SCM_BIGP (y))
3670 {
3671 goto use_less;
3672 }
3673 else if (SCM_REALP (y))
3674 {
3675 double xx = scm_i_fraction2double (x);
3676 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
3677 }
3678 else if (SCM_FRACTIONP (y))
3679 {
3680 goto use_less;
3681 }
3682 else
3683 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3684 }
3685 else
3686 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
3687 }
3688
3689
3690 SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
3691 /* "Return the minium of all parameter values."
3692 */
3693 SCM
3694 scm_min (SCM x, SCM y)
3695 {
3696 if (SCM_UNBNDP (y))
3697 {
3698 if (SCM_UNBNDP (x))
3699 SCM_WTA_DISPATCH_0 (g_min, s_min);
3700 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3701 return x;
3702 else
3703 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
3704 }
3705
3706 if (SCM_I_INUMP (x))
3707 {
3708 long xx = SCM_I_INUM (x);
3709 if (SCM_I_INUMP (y))
3710 {
3711 long yy = SCM_I_INUM (y);
3712 return (xx < yy) ? x : y;
3713 }
3714 else if (SCM_BIGP (y))
3715 {
3716 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3717 scm_remember_upto_here_1 (y);
3718 return (sgn < 0) ? y : x;
3719 }
3720 else if (SCM_REALP (y))
3721 {
3722 double z = xx;
3723 /* if y==NaN then "<" is false and we return NaN */
3724 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3725 }
3726 else if (SCM_FRACTIONP (y))
3727 {
3728 use_less:
3729 return (scm_is_false (scm_less_p (x, y)) ? y : x);
3730 }
3731 else
3732 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3733 }
3734 else if (SCM_BIGP (x))
3735 {
3736 if (SCM_I_INUMP (y))
3737 {
3738 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3739 scm_remember_upto_here_1 (x);
3740 return (sgn < 0) ? x : y;
3741 }
3742 else if (SCM_BIGP (y))
3743 {
3744 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3745 scm_remember_upto_here_2 (x, y);
3746 return (cmp > 0) ? y : x;
3747 }
3748 else if (SCM_REALP (y))
3749 {
3750 /* if y==NaN then xx<yy is false, so we return the NaN y */
3751 double xx, yy;
3752 big_real:
3753 xx = scm_i_big2dbl (x);
3754 yy = SCM_REAL_VALUE (y);
3755 return (xx < yy ? scm_from_double (xx) : y);
3756 }
3757 else if (SCM_FRACTIONP (y))
3758 {
3759 goto use_less;
3760 }
3761 else
3762 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3763 }
3764 else if (SCM_REALP (x))
3765 {
3766 if (SCM_I_INUMP (y))
3767 {
3768 double z = SCM_I_INUM (y);
3769 /* if x==NaN then "<" is false and we return NaN */
3770 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
3771 }
3772 else if (SCM_BIGP (y))
3773 {
3774 SCM_SWAP (x, y);
3775 goto big_real;
3776 }
3777 else if (SCM_REALP (y))
3778 {
3779 /* if x==NaN then our explicit check means we return NaN
3780 if y==NaN then "<" is false and we return NaN
3781 calling isnan is unavoidable, since it's the only way to know
3782 which of x or y causes any compares to be false */
3783 double xx = SCM_REAL_VALUE (x);
3784 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
3785 }
3786 else if (SCM_FRACTIONP (y))
3787 {
3788 double yy = scm_i_fraction2double (y);
3789 double xx = SCM_REAL_VALUE (x);
3790 return (yy < xx) ? scm_from_double (yy) : x;
3791 }
3792 else
3793 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3794 }
3795 else if (SCM_FRACTIONP (x))
3796 {
3797 if (SCM_I_INUMP (y))
3798 {
3799 goto use_less;
3800 }
3801 else if (SCM_BIGP (y))
3802 {
3803 goto use_less;
3804 }
3805 else if (SCM_REALP (y))
3806 {
3807 double xx = scm_i_fraction2double (x);
3808 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
3809 }
3810 else if (SCM_FRACTIONP (y))
3811 {
3812 goto use_less;
3813 }
3814 else
3815 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3816 }
3817 else
3818 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
3819 }
3820
3821
3822 SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
3823 /* "Return the sum of all parameter values. Return 0 if called without\n"
3824 * "any parameters."
3825 */
3826 SCM
3827 scm_sum (SCM x, SCM y)
3828 {
3829 if (SCM_UNBNDP (y))
3830 {
3831 if (SCM_NUMBERP (x)) return x;
3832 if (SCM_UNBNDP (x)) return SCM_INUM0;
3833 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
3834 }
3835
3836 if (SCM_I_INUMP (x))
3837 {
3838 if (SCM_I_INUMP (y))
3839 {
3840 long xx = SCM_I_INUM (x);
3841 long yy = SCM_I_INUM (y);
3842 long int z = xx + yy;
3843 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
3844 }
3845 else if (SCM_BIGP (y))
3846 {
3847 SCM_SWAP (x, y);
3848 goto add_big_inum;
3849 }
3850 else if (SCM_REALP (y))
3851 {
3852 long int xx = SCM_I_INUM (x);
3853 return scm_from_double (xx + SCM_REAL_VALUE (y));
3854 }
3855 else if (SCM_COMPLEXP (y))
3856 {
3857 long int xx = SCM_I_INUM (x);
3858 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
3859 SCM_COMPLEX_IMAG (y));
3860 }
3861 else if (SCM_FRACTIONP (y))
3862 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
3863 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3864 SCM_FRACTION_DENOMINATOR (y));
3865 else
3866 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3867 } else if (SCM_BIGP (x))
3868 {
3869 if (SCM_I_INUMP (y))
3870 {
3871 long int inum;
3872 int bigsgn;
3873 add_big_inum:
3874 inum = SCM_I_INUM (y);
3875 if (inum == 0)
3876 return x;
3877 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3878 if (inum < 0)
3879 {
3880 SCM result = scm_i_mkbig ();
3881 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
3882 scm_remember_upto_here_1 (x);
3883 /* we know the result will have to be a bignum */
3884 if (bigsgn == -1)
3885 return result;
3886 return scm_i_normbig (result);
3887 }
3888 else
3889 {
3890 SCM result = scm_i_mkbig ();
3891 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
3892 scm_remember_upto_here_1 (x);
3893 /* we know the result will have to be a bignum */
3894 if (bigsgn == 1)
3895 return result;
3896 return scm_i_normbig (result);
3897 }
3898 }
3899 else if (SCM_BIGP (y))
3900 {
3901 SCM result = scm_i_mkbig ();
3902 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
3903 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
3904 mpz_add (SCM_I_BIG_MPZ (result),
3905 SCM_I_BIG_MPZ (x),
3906 SCM_I_BIG_MPZ (y));
3907 scm_remember_upto_here_2 (x, y);
3908 /* we know the result will have to be a bignum */
3909 if (sgn_x == sgn_y)
3910 return result;
3911 return scm_i_normbig (result);
3912 }
3913 else if (SCM_REALP (y))
3914 {
3915 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
3916 scm_remember_upto_here_1 (x);
3917 return scm_from_double (result);
3918 }
3919 else if (SCM_COMPLEXP (y))
3920 {
3921 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
3922 + SCM_COMPLEX_REAL (y));
3923 scm_remember_upto_here_1 (x);
3924 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
3925 }
3926 else if (SCM_FRACTIONP (y))
3927 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
3928 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3929 SCM_FRACTION_DENOMINATOR (y));
3930 else
3931 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3932 }
3933 else if (SCM_REALP (x))
3934 {
3935 if (SCM_I_INUMP (y))
3936 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
3937 else if (SCM_BIGP (y))
3938 {
3939 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
3940 scm_remember_upto_here_1 (y);
3941 return scm_from_double (result);
3942 }
3943 else if (SCM_REALP (y))
3944 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
3945 else if (SCM_COMPLEXP (y))
3946 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
3947 SCM_COMPLEX_IMAG (y));
3948 else if (SCM_FRACTIONP (y))
3949 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
3950 else
3951 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3952 }
3953 else if (SCM_COMPLEXP (x))
3954 {
3955 if (SCM_I_INUMP (y))
3956 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
3957 SCM_COMPLEX_IMAG (x));
3958 else if (SCM_BIGP (y))
3959 {
3960 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
3961 + SCM_COMPLEX_REAL (x));
3962 scm_remember_upto_here_1 (y);
3963 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
3964 }
3965 else if (SCM_REALP (y))
3966 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
3967 SCM_COMPLEX_IMAG (x));
3968 else if (SCM_COMPLEXP (y))
3969 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
3970 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
3971 else if (SCM_FRACTIONP (y))
3972 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
3973 SCM_COMPLEX_IMAG (x));
3974 else
3975 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3976 }
3977 else if (SCM_FRACTIONP (x))
3978 {
3979 if (SCM_I_INUMP (y))
3980 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
3981 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
3982 SCM_FRACTION_DENOMINATOR (x));
3983 else if (SCM_BIGP (y))
3984 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
3985 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
3986 SCM_FRACTION_DENOMINATOR (x));
3987 else if (SCM_REALP (y))
3988 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
3989 else if (SCM_COMPLEXP (y))
3990 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
3991 SCM_COMPLEX_IMAG (y));
3992 else if (SCM_FRACTIONP (y))
3993 /* a/b + c/d = (ad + bc) / bd */
3994 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
3995 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
3996 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
3997 else
3998 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3999 }
4000 else
4001 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
4002 }
4003
4004
4005 SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
4006 /* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
4007 * the sum of all but the first argument are subtracted from the first
4008 * argument. */
4009 #define FUNC_NAME s_difference
4010 SCM
4011 scm_difference (SCM x, SCM y)
4012 {
4013 if (SCM_UNBNDP (y))
4014 {
4015 if (SCM_UNBNDP (x))
4016 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4017 else
4018 if (SCM_I_INUMP (x))
4019 {
4020 long xx = -SCM_I_INUM (x);
4021 if (SCM_FIXABLE (xx))
4022 return SCM_I_MAKINUM (xx);
4023 else
4024 return scm_i_long2big (xx);
4025 }
4026 else if (SCM_BIGP (x))
4027 /* FIXME: do we really need to normalize here? */
4028 return scm_i_normbig (scm_i_clonebig (x, 0));
4029 else if (SCM_REALP (x))
4030 return scm_from_double (-SCM_REAL_VALUE (x));
4031 else if (SCM_COMPLEXP (x))
4032 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
4033 -SCM_COMPLEX_IMAG (x));
4034 else if (SCM_FRACTIONP (x))
4035 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
4036 SCM_FRACTION_DENOMINATOR (x));
4037 else
4038 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
4039 }
4040
4041 if (SCM_I_INUMP (x))
4042 {
4043 if (SCM_I_INUMP (y))
4044 {
4045 long int xx = SCM_I_INUM (x);
4046 long int yy = SCM_I_INUM (y);
4047 long int z = xx - yy;
4048 if (SCM_FIXABLE (z))
4049 return SCM_I_MAKINUM (z);
4050 else
4051 return scm_i_long2big (z);
4052 }
4053 else if (SCM_BIGP (y))
4054 {
4055 /* inum-x - big-y */
4056 long xx = SCM_I_INUM (x);
4057
4058 if (xx == 0)
4059 return scm_i_clonebig (y, 0);
4060 else
4061 {
4062 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4063 SCM result = scm_i_mkbig ();
4064
4065 if (xx >= 0)
4066 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4067 else
4068 {
4069 /* x - y == -(y + -x) */
4070 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4071 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4072 }
4073 scm_remember_upto_here_1 (y);
4074
4075 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4076 /* we know the result will have to be a bignum */
4077 return result;
4078 else
4079 return scm_i_normbig (result);
4080 }
4081 }
4082 else if (SCM_REALP (y))
4083 {
4084 long int xx = SCM_I_INUM (x);
4085 return scm_from_double (xx - SCM_REAL_VALUE (y));
4086 }
4087 else if (SCM_COMPLEXP (y))
4088 {
4089 long int xx = SCM_I_INUM (x);
4090 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
4091 - SCM_COMPLEX_IMAG (y));
4092 }
4093 else if (SCM_FRACTIONP (y))
4094 /* a - b/c = (ac - b) / c */
4095 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4096 SCM_FRACTION_NUMERATOR (y)),
4097 SCM_FRACTION_DENOMINATOR (y));
4098 else
4099 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4100 }
4101 else if (SCM_BIGP (x))
4102 {
4103 if (SCM_I_INUMP (y))
4104 {
4105 /* big-x - inum-y */
4106 long yy = SCM_I_INUM (y);
4107 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4108
4109 scm_remember_upto_here_1 (x);
4110 if (sgn_x == 0)
4111 return (SCM_FIXABLE (-yy) ?
4112 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
4113 else
4114 {
4115 SCM result = scm_i_mkbig ();
4116
4117 if (yy >= 0)
4118 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4119 else
4120 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
4121 scm_remember_upto_here_1 (x);
4122
4123 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4124 /* we know the result will have to be a bignum */
4125 return result;
4126 else
4127 return scm_i_normbig (result);
4128 }
4129 }
4130 else if (SCM_BIGP (y))
4131 {
4132 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4133 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4134 SCM result = scm_i_mkbig ();
4135 mpz_sub (SCM_I_BIG_MPZ (result),
4136 SCM_I_BIG_MPZ (x),
4137 SCM_I_BIG_MPZ (y));
4138 scm_remember_upto_here_2 (x, y);
4139 /* we know the result will have to be a bignum */
4140 if ((sgn_x == 1) && (sgn_y == -1))
4141 return result;
4142 if ((sgn_x == -1) && (sgn_y == 1))
4143 return result;
4144 return scm_i_normbig (result);
4145 }
4146 else if (SCM_REALP (y))
4147 {
4148 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4149 scm_remember_upto_here_1 (x);
4150 return scm_from_double (result);
4151 }
4152 else if (SCM_COMPLEXP (y))
4153 {
4154 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4155 - SCM_COMPLEX_REAL (y));
4156 scm_remember_upto_here_1 (x);
4157 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
4158 }
4159 else if (SCM_FRACTIONP (y))
4160 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4161 SCM_FRACTION_NUMERATOR (y)),
4162 SCM_FRACTION_DENOMINATOR (y));
4163 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4164 }
4165 else if (SCM_REALP (x))
4166 {
4167 if (SCM_I_INUMP (y))
4168 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
4169 else if (SCM_BIGP (y))
4170 {
4171 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4172 scm_remember_upto_here_1 (x);
4173 return scm_from_double (result);
4174 }
4175 else if (SCM_REALP (y))
4176 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
4177 else if (SCM_COMPLEXP (y))
4178 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
4179 -SCM_COMPLEX_IMAG (y));
4180 else if (SCM_FRACTIONP (y))
4181 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
4182 else
4183 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4184 }
4185 else if (SCM_COMPLEXP (x))
4186 {
4187 if (SCM_I_INUMP (y))
4188 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
4189 SCM_COMPLEX_IMAG (x));
4190 else if (SCM_BIGP (y))
4191 {
4192 double real_part = (SCM_COMPLEX_REAL (x)
4193 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4194 scm_remember_upto_here_1 (x);
4195 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4196 }
4197 else if (SCM_REALP (y))
4198 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
4199 SCM_COMPLEX_IMAG (x));
4200 else if (SCM_COMPLEXP (y))
4201 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
4202 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
4203 else if (SCM_FRACTIONP (y))
4204 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
4205 SCM_COMPLEX_IMAG (x));
4206 else
4207 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4208 }
4209 else if (SCM_FRACTIONP (x))
4210 {
4211 if (SCM_I_INUMP (y))
4212 /* a/b - c = (a - cb) / b */
4213 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4214 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4215 SCM_FRACTION_DENOMINATOR (x));
4216 else if (SCM_BIGP (y))
4217 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4218 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4219 SCM_FRACTION_DENOMINATOR (x));
4220 else if (SCM_REALP (y))
4221 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
4222 else if (SCM_COMPLEXP (y))
4223 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
4224 -SCM_COMPLEX_IMAG (y));
4225 else if (SCM_FRACTIONP (y))
4226 /* a/b - c/d = (ad - bc) / bd */
4227 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4228 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4229 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4230 else
4231 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4232 }
4233 else
4234 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
4235 }
4236 #undef FUNC_NAME
4237
4238
4239 SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
4240 /* "Return the product of all arguments. If called without arguments,\n"
4241 * "1 is returned."
4242 */
4243 SCM
4244 scm_product (SCM x, SCM y)
4245 {
4246 if (SCM_UNBNDP (y))
4247 {
4248 if (SCM_UNBNDP (x))
4249 return SCM_I_MAKINUM (1L);
4250 else if (SCM_NUMBERP (x))
4251 return x;
4252 else
4253 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
4254 }
4255
4256 if (SCM_I_INUMP (x))
4257 {
4258 long xx;
4259
4260 intbig:
4261 xx = SCM_I_INUM (x);
4262
4263 switch (xx)
4264 {
4265 case 0: return x; break;
4266 case 1: return y; break;
4267 }
4268
4269 if (SCM_I_INUMP (y))
4270 {
4271 long yy = SCM_I_INUM (y);
4272 long kk = xx * yy;
4273 SCM k = SCM_I_MAKINUM (kk);
4274 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
4275 return k;
4276 else
4277 {
4278 SCM result = scm_i_long2big (xx);
4279 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4280 return scm_i_normbig (result);
4281 }
4282 }
4283 else if (SCM_BIGP (y))
4284 {
4285 SCM result = scm_i_mkbig ();
4286 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4287 scm_remember_upto_here_1 (y);
4288 return result;
4289 }
4290 else if (SCM_REALP (y))
4291 return scm_from_double (xx * SCM_REAL_VALUE (y));
4292 else if (SCM_COMPLEXP (y))
4293 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4294 xx * SCM_COMPLEX_IMAG (y));
4295 else if (SCM_FRACTIONP (y))
4296 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4297 SCM_FRACTION_DENOMINATOR (y));
4298 else
4299 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4300 }
4301 else if (SCM_BIGP (x))
4302 {
4303 if (SCM_I_INUMP (y))
4304 {
4305 SCM_SWAP (x, y);
4306 goto intbig;
4307 }
4308 else if (SCM_BIGP (y))
4309 {
4310 SCM result = scm_i_mkbig ();
4311 mpz_mul (SCM_I_BIG_MPZ (result),
4312 SCM_I_BIG_MPZ (x),
4313 SCM_I_BIG_MPZ (y));
4314 scm_remember_upto_here_2 (x, y);
4315 return result;
4316 }
4317 else if (SCM_REALP (y))
4318 {
4319 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4320 scm_remember_upto_here_1 (x);
4321 return scm_from_double (result);
4322 }
4323 else if (SCM_COMPLEXP (y))
4324 {
4325 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4326 scm_remember_upto_here_1 (x);
4327 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
4328 z * SCM_COMPLEX_IMAG (y));
4329 }
4330 else if (SCM_FRACTIONP (y))
4331 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4332 SCM_FRACTION_DENOMINATOR (y));
4333 else
4334 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4335 }
4336 else if (SCM_REALP (x))
4337 {
4338 if (SCM_I_INUMP (y))
4339 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4340 else if (SCM_BIGP (y))
4341 {
4342 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4343 scm_remember_upto_here_1 (y);
4344 return scm_from_double (result);
4345 }
4346 else if (SCM_REALP (y))
4347 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
4348 else if (SCM_COMPLEXP (y))
4349 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
4350 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
4351 else if (SCM_FRACTIONP (y))
4352 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
4353 else
4354 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4355 }
4356 else if (SCM_COMPLEXP (x))
4357 {
4358 if (SCM_I_INUMP (y))
4359 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4360 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4361 else if (SCM_BIGP (y))
4362 {
4363 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4364 scm_remember_upto_here_1 (y);
4365 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
4366 z * SCM_COMPLEX_IMAG (x));
4367 }
4368 else if (SCM_REALP (y))
4369 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
4370 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4371 else if (SCM_COMPLEXP (y))
4372 {
4373 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
4374 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4375 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4376 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4377 }
4378 else if (SCM_FRACTIONP (y))
4379 {
4380 double yy = scm_i_fraction2double (y);
4381 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
4382 yy * SCM_COMPLEX_IMAG (x));
4383 }
4384 else
4385 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4386 }
4387 else if (SCM_FRACTIONP (x))
4388 {
4389 if (SCM_I_INUMP (y))
4390 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4391 SCM_FRACTION_DENOMINATOR (x));
4392 else if (SCM_BIGP (y))
4393 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4394 SCM_FRACTION_DENOMINATOR (x));
4395 else if (SCM_REALP (y))
4396 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
4397 else if (SCM_COMPLEXP (y))
4398 {
4399 double xx = scm_i_fraction2double (x);
4400 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4401 xx * SCM_COMPLEX_IMAG (y));
4402 }
4403 else if (SCM_FRACTIONP (y))
4404 /* a/b * c/d = ac / bd */
4405 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
4406 SCM_FRACTION_NUMERATOR (y)),
4407 scm_product (SCM_FRACTION_DENOMINATOR (x),
4408 SCM_FRACTION_DENOMINATOR (y)));
4409 else
4410 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4411 }
4412 else
4413 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
4414 }
4415
4416 #if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4417 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4418 #define ALLOW_DIVIDE_BY_ZERO
4419 /* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4420 #endif
4421
4422 /* The code below for complex division is adapted from the GNU
4423 libstdc++, which adapted it from f2c's libF77, and is subject to
4424 this copyright: */
4425
4426 /****************************************************************
4427 Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4428
4429 Permission to use, copy, modify, and distribute this software
4430 and its documentation for any purpose and without fee is hereby
4431 granted, provided that the above copyright notice appear in all
4432 copies and that both that the copyright notice and this
4433 permission notice and warranty disclaimer appear in supporting
4434 documentation, and that the names of AT&T Bell Laboratories or
4435 Bellcore or any of their entities not be used in advertising or
4436 publicity pertaining to distribution of the software without
4437 specific, written prior permission.
4438
4439 AT&T and Bellcore disclaim all warranties with regard to this
4440 software, including all implied warranties of merchantability
4441 and fitness. In no event shall AT&T or Bellcore be liable for
4442 any special, indirect or consequential damages or any damages
4443 whatsoever resulting from loss of use, data or profits, whether
4444 in an action of contract, negligence or other tortious action,
4445 arising out of or in connection with the use or performance of
4446 this software.
4447 ****************************************************************/
4448
4449 SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
4450 /* Divide the first argument by the product of the remaining
4451 arguments. If called with one argument @var{z1}, 1/@var{z1} is
4452 returned. */
4453 #define FUNC_NAME s_divide
4454 static SCM
4455 scm_i_divide (SCM x, SCM y, int inexact)
4456 {
4457 double a;
4458
4459 if (SCM_UNBNDP (y))
4460 {
4461 if (SCM_UNBNDP (x))
4462 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
4463 else if (SCM_I_INUMP (x))
4464 {
4465 long xx = SCM_I_INUM (x);
4466 if (xx == 1 || xx == -1)
4467 return x;
4468 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4469 else if (xx == 0)
4470 scm_num_overflow (s_divide);
4471 #endif
4472 else
4473 {
4474 if (inexact)
4475 return scm_from_double (1.0 / (double) xx);
4476 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4477 }
4478 }
4479 else if (SCM_BIGP (x))
4480 {
4481 if (inexact)
4482 return scm_from_double (1.0 / scm_i_big2dbl (x));
4483 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4484 }
4485 else if (SCM_REALP (x))
4486 {
4487 double xx = SCM_REAL_VALUE (x);
4488 #ifndef ALLOW_DIVIDE_BY_ZERO
4489 if (xx == 0.0)
4490 scm_num_overflow (s_divide);
4491 else
4492 #endif
4493 return scm_from_double (1.0 / xx);
4494 }
4495 else if (SCM_COMPLEXP (x))
4496 {
4497 double r = SCM_COMPLEX_REAL (x);
4498 double i = SCM_COMPLEX_IMAG (x);
4499 if (r <= i)
4500 {
4501 double t = r / i;
4502 double d = i * (1.0 + t * t);
4503 return scm_c_make_rectangular (t / d, -1.0 / d);
4504 }
4505 else
4506 {
4507 double t = i / r;
4508 double d = r * (1.0 + t * t);
4509 return scm_c_make_rectangular (1.0 / d, -t / d);
4510 }
4511 }
4512 else if (SCM_FRACTIONP (x))
4513 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
4514 SCM_FRACTION_NUMERATOR (x));
4515 else
4516 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
4517 }
4518
4519 if (SCM_I_INUMP (x))
4520 {
4521 long xx = SCM_I_INUM (x);
4522 if (SCM_I_INUMP (y))
4523 {
4524 long yy = SCM_I_INUM (y);
4525 if (yy == 0)
4526 {
4527 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4528 scm_num_overflow (s_divide);
4529 #else
4530 return scm_from_double ((double) xx / (double) yy);
4531 #endif
4532 }
4533 else if (xx % yy != 0)
4534 {
4535 if (inexact)
4536 return scm_from_double ((double) xx / (double) yy);
4537 else return scm_i_make_ratio (x, y);
4538 }
4539 else
4540 {
4541 long z = xx / yy;
4542 if (SCM_FIXABLE (z))
4543 return SCM_I_MAKINUM (z);
4544 else
4545 return scm_i_long2big (z);
4546 }
4547 }
4548 else if (SCM_BIGP (y))
4549 {
4550 if (inexact)
4551 return scm_from_double ((double) xx / scm_i_big2dbl (y));
4552 else return scm_i_make_ratio (x, y);
4553 }
4554 else if (SCM_REALP (y))
4555 {
4556 double yy = SCM_REAL_VALUE (y);
4557 #ifndef ALLOW_DIVIDE_BY_ZERO
4558 if (yy == 0.0)
4559 scm_num_overflow (s_divide);
4560 else
4561 #endif
4562 return scm_from_double ((double) xx / yy);
4563 }
4564 else if (SCM_COMPLEXP (y))
4565 {
4566 a = xx;
4567 complex_div: /* y _must_ be a complex number */
4568 {
4569 double r = SCM_COMPLEX_REAL (y);
4570 double i = SCM_COMPLEX_IMAG (y);
4571 if (r <= i)
4572 {
4573 double t = r / i;
4574 double d = i * (1.0 + t * t);
4575 return scm_c_make_rectangular ((a * t) / d, -a / d);
4576 }
4577 else
4578 {
4579 double t = i / r;
4580 double d = r * (1.0 + t * t);
4581 return scm_c_make_rectangular (a / d, -(a * t) / d);
4582 }
4583 }
4584 }
4585 else if (SCM_FRACTIONP (y))
4586 /* a / b/c = ac / b */
4587 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4588 SCM_FRACTION_NUMERATOR (y));
4589 else
4590 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4591 }
4592 else if (SCM_BIGP (x))
4593 {
4594 if (SCM_I_INUMP (y))
4595 {
4596 long int yy = SCM_I_INUM (y);
4597 if (yy == 0)
4598 {
4599 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4600 scm_num_overflow (s_divide);
4601 #else
4602 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4603 scm_remember_upto_here_1 (x);
4604 return (sgn == 0) ? scm_nan () : scm_inf ();
4605 #endif
4606 }
4607 else if (yy == 1)
4608 return x;
4609 else
4610 {
4611 /* FIXME: HMM, what are the relative performance issues here?
4612 We need to test. Is it faster on average to test
4613 divisible_p, then perform whichever operation, or is it
4614 faster to perform the integer div opportunistically and
4615 switch to real if there's a remainder? For now we take the
4616 middle ground: test, then if divisible, use the faster div
4617 func. */
4618
4619 long abs_yy = yy < 0 ? -yy : yy;
4620 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
4621
4622 if (divisible_p)
4623 {
4624 SCM result = scm_i_mkbig ();
4625 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
4626 scm_remember_upto_here_1 (x);
4627 if (yy < 0)
4628 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4629 return scm_i_normbig (result);
4630 }
4631 else
4632 {
4633 if (inexact)
4634 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
4635 else return scm_i_make_ratio (x, y);
4636 }
4637 }
4638 }
4639 else if (SCM_BIGP (y))
4640 {
4641 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
4642 if (y_is_zero)
4643 {
4644 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4645 scm_num_overflow (s_divide);
4646 #else
4647 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4648 scm_remember_upto_here_1 (x);
4649 return (sgn == 0) ? scm_nan () : scm_inf ();
4650 #endif
4651 }
4652 else
4653 {
4654 /* big_x / big_y */
4655 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
4656 SCM_I_BIG_MPZ (y));
4657 if (divisible_p)
4658 {
4659 SCM result = scm_i_mkbig ();
4660 mpz_divexact (SCM_I_BIG_MPZ (result),
4661 SCM_I_BIG_MPZ (x),
4662 SCM_I_BIG_MPZ (y));
4663 scm_remember_upto_here_2 (x, y);
4664 return scm_i_normbig (result);
4665 }
4666 else
4667 {
4668 if (inexact)
4669 {
4670 double dbx = mpz_get_d (SCM_I_BIG_MPZ (x));
4671 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4672 scm_remember_upto_here_2 (x, y);
4673 return scm_from_double (dbx / dby);
4674 }
4675 else return scm_i_make_ratio (x, y);
4676 }
4677 }
4678 }
4679 else if (SCM_REALP (y))
4680 {
4681 double yy = SCM_REAL_VALUE (y);
4682 #ifndef ALLOW_DIVIDE_BY_ZERO
4683 if (yy == 0.0)
4684 scm_num_overflow (s_divide);
4685 else
4686 #endif
4687 return scm_from_double (scm_i_big2dbl (x) / yy);
4688 }
4689 else if (SCM_COMPLEXP (y))
4690 {
4691 a = scm_i_big2dbl (x);
4692 goto complex_div;
4693 }
4694 else if (SCM_FRACTIONP (y))
4695 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4696 SCM_FRACTION_NUMERATOR (y));
4697 else
4698 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4699 }
4700 else if (SCM_REALP (x))
4701 {
4702 double rx = SCM_REAL_VALUE (x);
4703 if (SCM_I_INUMP (y))
4704 {
4705 long int yy = SCM_I_INUM (y);
4706 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4707 if (yy == 0)
4708 scm_num_overflow (s_divide);
4709 else
4710 #endif
4711 return scm_from_double (rx / (double) yy);
4712 }
4713 else if (SCM_BIGP (y))
4714 {
4715 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4716 scm_remember_upto_here_1 (y);
4717 return scm_from_double (rx / dby);
4718 }
4719 else if (SCM_REALP (y))
4720 {
4721 double yy = SCM_REAL_VALUE (y);
4722 #ifndef ALLOW_DIVIDE_BY_ZERO
4723 if (yy == 0.0)
4724 scm_num_overflow (s_divide);
4725 else
4726 #endif
4727 return scm_from_double (rx / yy);
4728 }
4729 else if (SCM_COMPLEXP (y))
4730 {
4731 a = rx;
4732 goto complex_div;
4733 }
4734 else if (SCM_FRACTIONP (y))
4735 return scm_from_double (rx / scm_i_fraction2double (y));
4736 else
4737 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4738 }
4739 else if (SCM_COMPLEXP (x))
4740 {
4741 double rx = SCM_COMPLEX_REAL (x);
4742 double ix = SCM_COMPLEX_IMAG (x);
4743 if (SCM_I_INUMP (y))
4744 {
4745 long int yy = SCM_I_INUM (y);
4746 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4747 if (yy == 0)
4748 scm_num_overflow (s_divide);
4749 else
4750 #endif
4751 {
4752 double d = yy;
4753 return scm_c_make_rectangular (rx / d, ix / d);
4754 }
4755 }
4756 else if (SCM_BIGP (y))
4757 {
4758 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4759 scm_remember_upto_here_1 (y);
4760 return scm_c_make_rectangular (rx / dby, ix / dby);
4761 }
4762 else if (SCM_REALP (y))
4763 {
4764 double yy = SCM_REAL_VALUE (y);
4765 #ifndef ALLOW_DIVIDE_BY_ZERO
4766 if (yy == 0.0)
4767 scm_num_overflow (s_divide);
4768 else
4769 #endif
4770 return scm_c_make_rectangular (rx / yy, ix / yy);
4771 }
4772 else if (SCM_COMPLEXP (y))
4773 {
4774 double ry = SCM_COMPLEX_REAL (y);
4775 double iy = SCM_COMPLEX_IMAG (y);
4776 if (ry <= iy)
4777 {
4778 double t = ry / iy;
4779 double d = iy * (1.0 + t * t);
4780 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
4781 }
4782 else
4783 {
4784 double t = iy / ry;
4785 double d = ry * (1.0 + t * t);
4786 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
4787 }
4788 }
4789 else if (SCM_FRACTIONP (y))
4790 {
4791 double yy = scm_i_fraction2double (y);
4792 return scm_c_make_rectangular (rx / yy, ix / yy);
4793 }
4794 else
4795 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4796 }
4797 else if (SCM_FRACTIONP (x))
4798 {
4799 if (SCM_I_INUMP (y))
4800 {
4801 long int yy = SCM_I_INUM (y);
4802 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4803 if (yy == 0)
4804 scm_num_overflow (s_divide);
4805 else
4806 #endif
4807 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
4808 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4809 }
4810 else if (SCM_BIGP (y))
4811 {
4812 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
4813 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4814 }
4815 else if (SCM_REALP (y))
4816 {
4817 double yy = SCM_REAL_VALUE (y);
4818 #ifndef ALLOW_DIVIDE_BY_ZERO
4819 if (yy == 0.0)
4820 scm_num_overflow (s_divide);
4821 else
4822 #endif
4823 return scm_from_double (scm_i_fraction2double (x) / yy);
4824 }
4825 else if (SCM_COMPLEXP (y))
4826 {
4827 a = scm_i_fraction2double (x);
4828 goto complex_div;
4829 }
4830 else if (SCM_FRACTIONP (y))
4831 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4832 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
4833 else
4834 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4835 }
4836 else
4837 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
4838 }
4839
4840 SCM
4841 scm_divide (SCM x, SCM y)
4842 {
4843 return scm_i_divide (x, y, 0);
4844 }
4845
4846 static SCM scm_divide2real (SCM x, SCM y)
4847 {
4848 return scm_i_divide (x, y, 1);
4849 }
4850 #undef FUNC_NAME
4851
4852
4853 double
4854 scm_asinh (double x)
4855 {
4856 #if HAVE_ASINH
4857 return asinh (x);
4858 #else
4859 #define asinh scm_asinh
4860 return log (x + sqrt (x * x + 1));
4861 #endif
4862 }
4863 SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
4864 /* "Return the inverse hyperbolic sine of @var{x}."
4865 */
4866
4867
4868 double
4869 scm_acosh (double x)
4870 {
4871 #if HAVE_ACOSH
4872 return acosh (x);
4873 #else
4874 #define acosh scm_acosh
4875 return log (x + sqrt (x * x - 1));
4876 #endif
4877 }
4878 SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
4879 /* "Return the inverse hyperbolic cosine of @var{x}."
4880 */
4881
4882
4883 double
4884 scm_atanh (double x)
4885 {
4886 #if HAVE_ATANH
4887 return atanh (x);
4888 #else
4889 #define atanh scm_atanh
4890 return 0.5 * log ((1 + x) / (1 - x));
4891 #endif
4892 }
4893 SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
4894 /* "Return the inverse hyperbolic tangent of @var{x}."
4895 */
4896
4897
4898 double
4899 scm_c_truncate (double x)
4900 {
4901 #if HAVE_TRUNC
4902 return trunc (x);
4903 #else
4904 if (x < 0.0)
4905 return -floor (-x);
4906 return floor (x);
4907 #endif
4908 }
4909
4910 /* scm_c_round is done using floor(x+0.5) to round to nearest and with
4911 half-way case (ie. when x is an integer plus 0.5) going upwards.
4912 Then half-way cases are identified and adjusted down if the
4913 round-upwards didn't give the desired even integer.
4914
4915 "plus_half == result" identifies a half-way case. If plus_half, which is
4916 x + 0.5, is an integer then x must be an integer plus 0.5.
4917
4918 An odd "result" value is identified with result/2 != floor(result/2).
4919 This is done with plus_half, since that value is ready for use sooner in
4920 a pipelined cpu, and we're already requiring plus_half == result.
4921
4922 Note however that we need to be careful when x is big and already an
4923 integer. In that case "x+0.5" may round to an adjacent integer, causing
4924 us to return such a value, incorrectly. For instance if the hardware is
4925 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
4926 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
4927 returned. Or if the hardware is in round-upwards mode, then other bigger
4928 values like say x == 2^128 will see x+0.5 rounding up to the next higher
4929 representable value, 2^128+2^76 (or whatever), again incorrect.
4930
4931 These bad roundings of x+0.5 are avoided by testing at the start whether
4932 x is already an integer. If it is then clearly that's the desired result
4933 already. And if it's not then the exponent must be small enough to allow
4934 an 0.5 to be represented, and hence added without a bad rounding. */
4935
4936 double
4937 scm_c_round (double x)
4938 {
4939 double plus_half, result;
4940
4941 if (x == floor (x))
4942 return x;
4943
4944 plus_half = x + 0.5;
4945 result = floor (plus_half);
4946 /* Adjust so that the rounding is towards even. */
4947 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
4948 ? result - 1
4949 : result);
4950 }
4951
4952 SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
4953 (SCM x),
4954 "Round the number @var{x} towards zero.")
4955 #define FUNC_NAME s_scm_truncate_number
4956 {
4957 if (scm_is_false (scm_negative_p (x)))
4958 return scm_floor (x);
4959 else
4960 return scm_ceiling (x);
4961 }
4962 #undef FUNC_NAME
4963
4964 static SCM exactly_one_half;
4965
4966 SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
4967 (SCM x),
4968 "Round the number @var{x} towards the nearest integer. "
4969 "When it is exactly halfway between two integers, "
4970 "round towards the even one.")
4971 #define FUNC_NAME s_scm_round_number
4972 {
4973 if (SCM_I_INUMP (x) || SCM_BIGP (x))
4974 return x;
4975 else if (SCM_REALP (x))
4976 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
4977 else
4978 {
4979 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
4980 single quotient+remainder division then examining to see which way
4981 the rounding should go. */
4982 SCM plus_half = scm_sum (x, exactly_one_half);
4983 SCM result = scm_floor (plus_half);
4984 /* Adjust so that the rounding is towards even. */
4985 if (scm_is_true (scm_num_eq_p (plus_half, result))
4986 && scm_is_true (scm_odd_p (result)))
4987 return scm_difference (result, SCM_I_MAKINUM (1));
4988 else
4989 return result;
4990 }
4991 }
4992 #undef FUNC_NAME
4993
4994 SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
4995 (SCM x),
4996 "Round the number @var{x} towards minus infinity.")
4997 #define FUNC_NAME s_scm_floor
4998 {
4999 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5000 return x;
5001 else if (SCM_REALP (x))
5002 return scm_from_double (floor (SCM_REAL_VALUE (x)));
5003 else if (SCM_FRACTIONP (x))
5004 {
5005 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5006 SCM_FRACTION_DENOMINATOR (x));
5007 if (scm_is_false (scm_negative_p (x)))
5008 {
5009 /* For positive x, rounding towards zero is correct. */
5010 return q;
5011 }
5012 else
5013 {
5014 /* For negative x, we need to return q-1 unless x is an
5015 integer. But fractions are never integer, per our
5016 assumptions. */
5017 return scm_difference (q, SCM_I_MAKINUM (1));
5018 }
5019 }
5020 else
5021 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5022 }
5023 #undef FUNC_NAME
5024
5025 SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5026 (SCM x),
5027 "Round the number @var{x} towards infinity.")
5028 #define FUNC_NAME s_scm_ceiling
5029 {
5030 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5031 return x;
5032 else if (SCM_REALP (x))
5033 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
5034 else if (SCM_FRACTIONP (x))
5035 {
5036 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5037 SCM_FRACTION_DENOMINATOR (x));
5038 if (scm_is_false (scm_positive_p (x)))
5039 {
5040 /* For negative x, rounding towards zero is correct. */
5041 return q;
5042 }
5043 else
5044 {
5045 /* For positive x, we need to return q+1 unless x is an
5046 integer. But fractions are never integer, per our
5047 assumptions. */
5048 return scm_sum (q, SCM_I_MAKINUM (1));
5049 }
5050 }
5051 else
5052 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5053 }
5054 #undef FUNC_NAME
5055
5056 SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
5057 /* "Return the square root of the real number @var{x}."
5058 */
5059 SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
5060 /* "Return the absolute value of the real number @var{x}."
5061 */
5062 SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
5063 /* "Return the @var{x}th power of e."
5064 */
5065 SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
5066 /* "Return the natural logarithm of the real number @var{x}."
5067 */
5068 SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
5069 /* "Return the sine of the real number @var{x}."
5070 */
5071 SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
5072 /* "Return the cosine of the real number @var{x}."
5073 */
5074 SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
5075 /* "Return the tangent of the real number @var{x}."
5076 */
5077 SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
5078 /* "Return the arc sine of the real number @var{x}."
5079 */
5080 SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
5081 /* "Return the arc cosine of the real number @var{x}."
5082 */
5083 SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
5084 /* "Return the arc tangent of the real number @var{x}."
5085 */
5086 SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
5087 /* "Return the hyperbolic sine of the real number @var{x}."
5088 */
5089 SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
5090 /* "Return the hyperbolic cosine of the real number @var{x}."
5091 */
5092 SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
5093 /* "Return the hyperbolic tangent of the real number @var{x}."
5094 */
5095
5096 struct dpair
5097 {
5098 double x, y;
5099 };
5100
5101 static void scm_two_doubles (SCM x,
5102 SCM y,
5103 const char *sstring,
5104 struct dpair * xy);
5105
5106 static void
5107 scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
5108 {
5109 if (SCM_I_INUMP (x))
5110 xy->x = SCM_I_INUM (x);
5111 else if (SCM_BIGP (x))
5112 xy->x = scm_i_big2dbl (x);
5113 else if (SCM_REALP (x))
5114 xy->x = SCM_REAL_VALUE (x);
5115 else if (SCM_FRACTIONP (x))
5116 xy->x = scm_i_fraction2double (x);
5117 else
5118 scm_wrong_type_arg (sstring, SCM_ARG1, x);
5119
5120 if (SCM_I_INUMP (y))
5121 xy->y = SCM_I_INUM (y);
5122 else if (SCM_BIGP (y))
5123 xy->y = scm_i_big2dbl (y);
5124 else if (SCM_REALP (y))
5125 xy->y = SCM_REAL_VALUE (y);
5126 else if (SCM_FRACTIONP (y))
5127 xy->y = scm_i_fraction2double (y);
5128 else
5129 scm_wrong_type_arg (sstring, SCM_ARG2, y);
5130 }
5131
5132
5133 SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
5134 (SCM x, SCM y),
5135 "Return @var{x} raised to the power of @var{y}. This\n"
5136 "procedure does not accept complex arguments.")
5137 #define FUNC_NAME s_scm_sys_expt
5138 {
5139 struct dpair xy;
5140 scm_two_doubles (x, y, FUNC_NAME, &xy);
5141 return scm_from_double (pow (xy.x, xy.y));
5142 }
5143 #undef FUNC_NAME
5144
5145
5146 SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
5147 (SCM x, SCM y),
5148 "Return the arc tangent of the two arguments @var{x} and\n"
5149 "@var{y}. This is similar to calculating the arc tangent of\n"
5150 "@var{x} / @var{y}, except that the signs of both arguments\n"
5151 "are used to determine the quadrant of the result. This\n"
5152 "procedure does not accept complex arguments.")
5153 #define FUNC_NAME s_scm_sys_atan2
5154 {
5155 struct dpair xy;
5156 scm_two_doubles (x, y, FUNC_NAME, &xy);
5157 return scm_from_double (atan2 (xy.x, xy.y));
5158 }
5159 #undef FUNC_NAME
5160
5161 SCM
5162 scm_c_make_rectangular (double re, double im)
5163 {
5164 if (im == 0.0)
5165 return scm_from_double (re);
5166 else
5167 {
5168 SCM z;
5169 SCM_NEWSMOB (z, scm_tc16_complex, scm_gc_malloc (sizeof (scm_t_complex),
5170 "complex"));
5171 SCM_COMPLEX_REAL (z) = re;
5172 SCM_COMPLEX_IMAG (z) = im;
5173 return z;
5174 }
5175 }
5176
5177 SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
5178 (SCM real, SCM imaginary),
5179 "Return a complex number constructed of the given @var{real} and\n"
5180 "@var{imaginary} parts.")
5181 #define FUNC_NAME s_scm_make_rectangular
5182 {
5183 struct dpair xy;
5184 scm_two_doubles (real, imaginary, FUNC_NAME, &xy);
5185 return scm_c_make_rectangular (xy.x, xy.y);
5186 }
5187 #undef FUNC_NAME
5188
5189 SCM
5190 scm_c_make_polar (double mag, double ang)
5191 {
5192 double s, c;
5193 #if HAVE_SINCOS
5194 sincos (ang, &s, &c);
5195 #else
5196 s = sin (ang);
5197 c = cos (ang);
5198 #endif
5199 return scm_c_make_rectangular (mag * c, mag * s);
5200 }
5201
5202 SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
5203 (SCM x, SCM y),
5204 "Return the complex number @var{x} * e^(i * @var{y}).")
5205 #define FUNC_NAME s_scm_make_polar
5206 {
5207 struct dpair xy;
5208 scm_two_doubles (x, y, FUNC_NAME, &xy);
5209 return scm_c_make_polar (xy.x, xy.y);
5210 }
5211 #undef FUNC_NAME
5212
5213
5214 SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
5215 /* "Return the real part of the number @var{z}."
5216 */
5217 SCM
5218 scm_real_part (SCM z)
5219 {
5220 if (SCM_I_INUMP (z))
5221 return z;
5222 else if (SCM_BIGP (z))
5223 return z;
5224 else if (SCM_REALP (z))
5225 return z;
5226 else if (SCM_COMPLEXP (z))
5227 return scm_from_double (SCM_COMPLEX_REAL (z));
5228 else if (SCM_FRACTIONP (z))
5229 return z;
5230 else
5231 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
5232 }
5233
5234
5235 SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
5236 /* "Return the imaginary part of the number @var{z}."
5237 */
5238 SCM
5239 scm_imag_part (SCM z)
5240 {
5241 if (SCM_I_INUMP (z))
5242 return SCM_INUM0;
5243 else if (SCM_BIGP (z))
5244 return SCM_INUM0;
5245 else if (SCM_REALP (z))
5246 return scm_flo0;
5247 else if (SCM_COMPLEXP (z))
5248 return scm_from_double (SCM_COMPLEX_IMAG (z));
5249 else if (SCM_FRACTIONP (z))
5250 return SCM_INUM0;
5251 else
5252 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
5253 }
5254
5255 SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5256 /* "Return the numerator of the number @var{z}."
5257 */
5258 SCM
5259 scm_numerator (SCM z)
5260 {
5261 if (SCM_I_INUMP (z))
5262 return z;
5263 else if (SCM_BIGP (z))
5264 return z;
5265 else if (SCM_FRACTIONP (z))
5266 {
5267 scm_i_fraction_reduce (z);
5268 return SCM_FRACTION_NUMERATOR (z);
5269 }
5270 else if (SCM_REALP (z))
5271 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5272 else
5273 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5274 }
5275
5276
5277 SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5278 /* "Return the denominator of the number @var{z}."
5279 */
5280 SCM
5281 scm_denominator (SCM z)
5282 {
5283 if (SCM_I_INUMP (z))
5284 return SCM_I_MAKINUM (1);
5285 else if (SCM_BIGP (z))
5286 return SCM_I_MAKINUM (1);
5287 else if (SCM_FRACTIONP (z))
5288 {
5289 scm_i_fraction_reduce (z);
5290 return SCM_FRACTION_DENOMINATOR (z);
5291 }
5292 else if (SCM_REALP (z))
5293 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5294 else
5295 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5296 }
5297
5298 SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
5299 /* "Return the magnitude of the number @var{z}. This is the same as\n"
5300 * "@code{abs} for real arguments, but also allows complex numbers."
5301 */
5302 SCM
5303 scm_magnitude (SCM z)
5304 {
5305 if (SCM_I_INUMP (z))
5306 {
5307 long int zz = SCM_I_INUM (z);
5308 if (zz >= 0)
5309 return z;
5310 else if (SCM_POSFIXABLE (-zz))
5311 return SCM_I_MAKINUM (-zz);
5312 else
5313 return scm_i_long2big (-zz);
5314 }
5315 else if (SCM_BIGP (z))
5316 {
5317 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5318 scm_remember_upto_here_1 (z);
5319 if (sgn < 0)
5320 return scm_i_clonebig (z, 0);
5321 else
5322 return z;
5323 }
5324 else if (SCM_REALP (z))
5325 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
5326 else if (SCM_COMPLEXP (z))
5327 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
5328 else if (SCM_FRACTIONP (z))
5329 {
5330 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5331 return z;
5332 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
5333 SCM_FRACTION_DENOMINATOR (z));
5334 }
5335 else
5336 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
5337 }
5338
5339
5340 SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
5341 /* "Return the angle of the complex number @var{z}."
5342 */
5343 SCM
5344 scm_angle (SCM z)
5345 {
5346 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
5347 scm_flo0 to save allocating a new flonum with scm_from_double each time.
5348 But if atan2 follows the floating point rounding mode, then the value
5349 is not a constant. Maybe it'd be close enough though. */
5350 if (SCM_I_INUMP (z))
5351 {
5352 if (SCM_I_INUM (z) >= 0)
5353 return scm_flo0;
5354 else
5355 return scm_from_double (atan2 (0.0, -1.0));
5356 }
5357 else if (SCM_BIGP (z))
5358 {
5359 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5360 scm_remember_upto_here_1 (z);
5361 if (sgn < 0)
5362 return scm_from_double (atan2 (0.0, -1.0));
5363 else
5364 return scm_flo0;
5365 }
5366 else if (SCM_REALP (z))
5367 {
5368 if (SCM_REAL_VALUE (z) >= 0)
5369 return scm_flo0;
5370 else
5371 return scm_from_double (atan2 (0.0, -1.0));
5372 }
5373 else if (SCM_COMPLEXP (z))
5374 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
5375 else if (SCM_FRACTIONP (z))
5376 {
5377 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5378 return scm_flo0;
5379 else return scm_from_double (atan2 (0.0, -1.0));
5380 }
5381 else
5382 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
5383 }
5384
5385
5386 SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5387 /* Convert the number @var{x} to its inexact representation.\n"
5388 */
5389 SCM
5390 scm_exact_to_inexact (SCM z)
5391 {
5392 if (SCM_I_INUMP (z))
5393 return scm_from_double ((double) SCM_I_INUM (z));
5394 else if (SCM_BIGP (z))
5395 return scm_from_double (scm_i_big2dbl (z));
5396 else if (SCM_FRACTIONP (z))
5397 return scm_from_double (scm_i_fraction2double (z));
5398 else if (SCM_INEXACTP (z))
5399 return z;
5400 else
5401 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5402 }
5403
5404
5405 SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
5406 (SCM z),
5407 "Return an exact number that is numerically closest to @var{z}.")
5408 #define FUNC_NAME s_scm_inexact_to_exact
5409 {
5410 if (SCM_I_INUMP (z))
5411 return z;
5412 else if (SCM_BIGP (z))
5413 return z;
5414 else if (SCM_REALP (z))
5415 {
5416 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5417 SCM_OUT_OF_RANGE (1, z);
5418 else
5419 {
5420 mpq_t frac;
5421 SCM q;
5422
5423 mpq_init (frac);
5424 mpq_set_d (frac, SCM_REAL_VALUE (z));
5425 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
5426 scm_i_mpz2num (mpq_denref (frac)));
5427
5428 /* When scm_i_make_ratio throws, we leak the memory allocated
5429 for frac...
5430 */
5431 mpq_clear (frac);
5432 return q;
5433 }
5434 }
5435 else if (SCM_FRACTIONP (z))
5436 return z;
5437 else
5438 SCM_WRONG_TYPE_ARG (1, z);
5439 }
5440 #undef FUNC_NAME
5441
5442 SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
5443 (SCM x, SCM err),
5444 "Return an exact number that is within @var{err} of @var{x}.")
5445 #define FUNC_NAME s_scm_rationalize
5446 {
5447 if (SCM_I_INUMP (x))
5448 return x;
5449 else if (SCM_BIGP (x))
5450 return x;
5451 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
5452 {
5453 /* Use continued fractions to find closest ratio. All
5454 arithmetic is done with exact numbers.
5455 */
5456
5457 SCM ex = scm_inexact_to_exact (x);
5458 SCM int_part = scm_floor (ex);
5459 SCM tt = SCM_I_MAKINUM (1);
5460 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
5461 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
5462 SCM rx;
5463 int i = 0;
5464
5465 if (scm_is_true (scm_num_eq_p (ex, int_part)))
5466 return ex;
5467
5468 ex = scm_difference (ex, int_part); /* x = x-int_part */
5469 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
5470
5471 /* We stop after a million iterations just to be absolutely sure
5472 that we don't go into an infinite loop. The process normally
5473 converges after less than a dozen iterations.
5474 */
5475
5476 err = scm_abs (err);
5477 while (++i < 1000000)
5478 {
5479 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
5480 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
5481 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
5482 scm_is_false
5483 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
5484 err))) /* abs(x-a/b) <= err */
5485 {
5486 SCM res = scm_sum (int_part, scm_divide (a, b));
5487 if (scm_is_false (scm_exact_p (x))
5488 || scm_is_false (scm_exact_p (err)))
5489 return scm_exact_to_inexact (res);
5490 else
5491 return res;
5492 }
5493 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
5494 SCM_UNDEFINED);
5495 tt = scm_floor (rx); /* tt = floor (rx) */
5496 a2 = a1;
5497 b2 = b1;
5498 a1 = a;
5499 b1 = b;
5500 }
5501 scm_num_overflow (s_scm_rationalize);
5502 }
5503 else
5504 SCM_WRONG_TYPE_ARG (1, x);
5505 }
5506 #undef FUNC_NAME
5507
5508 /* conversion functions */
5509
5510 int
5511 scm_is_integer (SCM val)
5512 {
5513 return scm_is_true (scm_integer_p (val));
5514 }
5515
5516 int
5517 scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
5518 {
5519 if (SCM_I_INUMP (val))
5520 {
5521 scm_t_signed_bits n = SCM_I_INUM (val);
5522 return n >= min && n <= max;
5523 }
5524 else if (SCM_BIGP (val))
5525 {
5526 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
5527 return 0;
5528 else if (min >= LONG_MIN && max <= LONG_MAX)
5529 {
5530 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
5531 {
5532 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
5533 return n >= min && n <= max;
5534 }
5535 else
5536 return 0;
5537 }
5538 else
5539 {
5540 scm_t_intmax n;
5541 size_t count;
5542
5543 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5544 > CHAR_BIT*sizeof (scm_t_uintmax))
5545 return 0;
5546
5547 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5548 SCM_I_BIG_MPZ (val));
5549
5550 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
5551 {
5552 if (n < 0)
5553 return 0;
5554 }
5555 else
5556 {
5557 n = -n;
5558 if (n >= 0)
5559 return 0;
5560 }
5561
5562 return n >= min && n <= max;
5563 }
5564 }
5565 else
5566 return 0;
5567 }
5568
5569 int
5570 scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
5571 {
5572 if (SCM_I_INUMP (val))
5573 {
5574 scm_t_signed_bits n = SCM_I_INUM (val);
5575 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
5576 }
5577 else if (SCM_BIGP (val))
5578 {
5579 if (max <= SCM_MOST_POSITIVE_FIXNUM)
5580 return 0;
5581 else if (max <= ULONG_MAX)
5582 {
5583 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
5584 {
5585 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
5586 return n >= min && n <= max;
5587 }
5588 else
5589 return 0;
5590 }
5591 else
5592 {
5593 scm_t_uintmax n;
5594 size_t count;
5595
5596 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
5597 return 0;
5598
5599 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5600 > CHAR_BIT*sizeof (scm_t_uintmax))
5601 return 0;
5602
5603 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5604 SCM_I_BIG_MPZ (val));
5605
5606 return n >= min && n <= max;
5607 }
5608 }
5609 else
5610 return 0;
5611 }
5612
5613 #define TYPE scm_t_intmax
5614 #define TYPE_MIN min
5615 #define TYPE_MAX max
5616 #define SIZEOF_TYPE 0
5617 #define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
5618 #define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
5619 #include "libguile/conv-integer.i.c"
5620
5621 #define TYPE scm_t_uintmax
5622 #define TYPE_MIN min
5623 #define TYPE_MAX max
5624 #define SIZEOF_TYPE 0
5625 #define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
5626 #define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
5627 #include "libguile/conv-uinteger.i.c"
5628
5629 #define TYPE scm_t_int8
5630 #define TYPE_MIN SCM_T_INT8_MIN
5631 #define TYPE_MAX SCM_T_INT8_MAX
5632 #define SIZEOF_TYPE 1
5633 #define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
5634 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
5635 #include "libguile/conv-integer.i.c"
5636
5637 #define TYPE scm_t_uint8
5638 #define TYPE_MIN 0
5639 #define TYPE_MAX SCM_T_UINT8_MAX
5640 #define SIZEOF_TYPE 1
5641 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
5642 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
5643 #include "libguile/conv-uinteger.i.c"
5644
5645 #define TYPE scm_t_int16
5646 #define TYPE_MIN SCM_T_INT16_MIN
5647 #define TYPE_MAX SCM_T_INT16_MAX
5648 #define SIZEOF_TYPE 2
5649 #define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
5650 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
5651 #include "libguile/conv-integer.i.c"
5652
5653 #define TYPE scm_t_uint16
5654 #define TYPE_MIN 0
5655 #define TYPE_MAX SCM_T_UINT16_MAX
5656 #define SIZEOF_TYPE 2
5657 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
5658 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
5659 #include "libguile/conv-uinteger.i.c"
5660
5661 #define TYPE scm_t_int32
5662 #define TYPE_MIN SCM_T_INT32_MIN
5663 #define TYPE_MAX SCM_T_INT32_MAX
5664 #define SIZEOF_TYPE 4
5665 #define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
5666 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
5667 #include "libguile/conv-integer.i.c"
5668
5669 #define TYPE scm_t_uint32
5670 #define TYPE_MIN 0
5671 #define TYPE_MAX SCM_T_UINT32_MAX
5672 #define SIZEOF_TYPE 4
5673 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
5674 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
5675 #include "libguile/conv-uinteger.i.c"
5676
5677 #if SCM_HAVE_T_INT64
5678
5679 #define TYPE scm_t_int64
5680 #define TYPE_MIN SCM_T_INT64_MIN
5681 #define TYPE_MAX SCM_T_INT64_MAX
5682 #define SIZEOF_TYPE 8
5683 #define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
5684 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
5685 #include "libguile/conv-integer.i.c"
5686
5687 #define TYPE scm_t_uint64
5688 #define TYPE_MIN 0
5689 #define TYPE_MAX SCM_T_UINT64_MAX
5690 #define SIZEOF_TYPE 8
5691 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
5692 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
5693 #include "libguile/conv-uinteger.i.c"
5694
5695 #endif
5696
5697 int
5698 scm_is_real (SCM val)
5699 {
5700 return scm_is_true (scm_real_p (val));
5701 }
5702
5703 int
5704 scm_is_rational (SCM val)
5705 {
5706 return scm_is_true (scm_rational_p (val));
5707 }
5708
5709 double
5710 scm_to_double (SCM val)
5711 {
5712 if (SCM_I_INUMP (val))
5713 return SCM_I_INUM (val);
5714 else if (SCM_BIGP (val))
5715 return scm_i_big2dbl (val);
5716 else if (SCM_FRACTIONP (val))
5717 return scm_i_fraction2double (val);
5718 else if (SCM_REALP (val))
5719 return SCM_REAL_VALUE (val);
5720 else
5721 scm_wrong_type_arg (NULL, 0, val);
5722 }
5723
5724 SCM
5725 scm_from_double (double val)
5726 {
5727 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
5728 SCM_REAL_VALUE (z) = val;
5729 return z;
5730 }
5731
5732 #if SCM_ENABLE_DISCOURAGED == 1
5733
5734 float
5735 scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
5736 {
5737 if (SCM_BIGP (num))
5738 {
5739 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
5740 if (!xisinf (res))
5741 return res;
5742 else
5743 scm_out_of_range (NULL, num);
5744 }
5745 else
5746 return scm_to_double (num);
5747 }
5748
5749 double
5750 scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
5751 {
5752 if (SCM_BIGP (num))
5753 {
5754 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
5755 if (!xisinf (res))
5756 return res;
5757 else
5758 scm_out_of_range (NULL, num);
5759 }
5760 else
5761 return scm_to_double (num);
5762 }
5763
5764 #endif
5765
5766 int
5767 scm_is_complex (SCM val)
5768 {
5769 return scm_is_true (scm_complex_p (val));
5770 }
5771
5772 double
5773 scm_c_real_part (SCM z)
5774 {
5775 if (SCM_COMPLEXP (z))
5776 return SCM_COMPLEX_REAL (z);
5777 else
5778 {
5779 /* Use the scm_real_part to get proper error checking and
5780 dispatching.
5781 */
5782 return scm_to_double (scm_real_part (z));
5783 }
5784 }
5785
5786 double
5787 scm_c_imag_part (SCM z)
5788 {
5789 if (SCM_COMPLEXP (z))
5790 return SCM_COMPLEX_IMAG (z);
5791 else
5792 {
5793 /* Use the scm_imag_part to get proper error checking and
5794 dispatching. The result will almost always be 0.0, but not
5795 always.
5796 */
5797 return scm_to_double (scm_imag_part (z));
5798 }
5799 }
5800
5801 double
5802 scm_c_magnitude (SCM z)
5803 {
5804 return scm_to_double (scm_magnitude (z));
5805 }
5806
5807 double
5808 scm_c_angle (SCM z)
5809 {
5810 return scm_to_double (scm_angle (z));
5811 }
5812
5813 int
5814 scm_is_number (SCM z)
5815 {
5816 return scm_is_true (scm_number_p (z));
5817 }
5818
5819 void
5820 scm_init_numbers ()
5821 {
5822 int i;
5823
5824 mpz_init_set_si (z_negative_one, -1);
5825
5826 /* It may be possible to tune the performance of some algorithms by using
5827 * the following constants to avoid the creation of bignums. Please, before
5828 * using these values, remember the two rules of program optimization:
5829 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
5830 scm_c_define ("most-positive-fixnum",
5831 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
5832 scm_c_define ("most-negative-fixnum",
5833 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
5834
5835 scm_add_feature ("complex");
5836 scm_add_feature ("inexact");
5837 scm_flo0 = scm_from_double (0.0);
5838
5839 /* determine floating point precision */
5840 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
5841 {
5842 init_dblprec(&scm_dblprec[i-2],i);
5843 init_fx_radix(fx_per_radix[i-2],i);
5844 }
5845 #ifdef DBL_DIG
5846 /* hard code precision for base 10 if the preprocessor tells us to... */
5847 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
5848 #endif
5849
5850 #ifdef GUILE_DEBUG
5851 check_sanity ();
5852 #endif
5853
5854 exactly_one_half = scm_permanent_object (scm_divide (SCM_I_MAKINUM (1),
5855 SCM_I_MAKINUM (2)));
5856 #include "libguile/numbers.x"
5857 }
5858
5859 /*
5860 Local Variables:
5861 c-file-style: "gnu"
5862 End:
5863 */